1
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
2
|
Ahn YJ, Maya J, Singhal V. Update on Pediatric Anti-obesity Medications-Current Landscape and Approach to Prescribing. Curr Obes Rep 2024; 13:295-312. [PMID: 38689134 DOI: 10.1007/s13679-024-00566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW To review the current medical therapies available for treatment of obesity in children and adolescents less than 18 years old in the United States and outline the approach to their use. RECENT FINDINGS Obesity is a chronic disease with increasing prevalence in children and adolescents in the United States. Over the past few years, more FDA-approved medical treatments for obesity, such as GLP-1 receptor agonists, have emerged for patients less than 18 years old. Furthermore, there are medications with weight loss effects that can be used off-label for obesity in pediatric patients. However, access to many of these medications is limited due to age restrictions, insurance coverage, and cost. Medical options are improving to provide treatment for obesity in pediatric populations. FDA and off-label medications should be considered when appropriate to treat children and adolescents with obesity. However, further studies are needed to evaluate the efficacy and long-term safety of FDA-approved and off-label medications for obesity treatment in pediatric patients.
Collapse
Affiliation(s)
- Yoon Ji Ahn
- Division of Endocrinology-Metabolism Unit, Department of Internal Medicine, Massachusetts General Hospital, MGH Weight Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jacqueline Maya
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Vibha Singhal
- Harvard Medical School, Boston, MA, USA.
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Chartoumpekis DV, Habeos EE, Psilopanagioti A. Evaluating the effectiveness and underlying mechanisms of incretin-based treatments for hypothalamic obesity: A narrative review. OBESITY PILLARS 2024; 10:100104. [PMID: 38463533 PMCID: PMC10924130 DOI: 10.1016/j.obpill.2024.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Background Hypothalamic obesity represents a clinical condition within the broader spectrum of obesity that frequently eludes detection and appropriate diagnosis. This subset of obesity is characterized by a dearth of established predictive markers and a paucity of standardized therapeutic protocols. The advent and rising prominence of glucagon-like peptide-1 (GLP-1) receptor agonists in the obesity treatment landscape present novel therapeutic avenues for hypothalamic obesity management. Nonetheless, critical inquiries persist concerning the efficacy of GLP-1 receptor (GLP-1R) agonists in this context, particularly regarding their central mechanisms of action and specific impact on hypothalamic obesity. Methods In this narrative review, we concentrate on analyzing research papers that delineate the detection and function of GLP-1 receptors across various hypothalamic and cerebral regions. Additionally, we examine clinical research papers and reports detailing the application of GLP-1 receptor agonists in treating hypothalamic obesity. Furthermore, we include a concise presentation of a clinical case from our unit for contextual understanding. Results Currently, the clinical evidence supporting the efficacy of GLP-1 receptor agonists in hypothalamic obesity, as well as the diverse characteristics of this obesity subtype, remains insufficient. Preliminary data suggest that GLP-1R agonists might offer an effective treatment option, albeit with variable outcomes, particularly in younger patient cohorts. From a mechanistic perspective, the presence of GLP-1 receptors in various hypothalamic and broader brain regions potentially underpins the efficacy of GLP-1R agonists, even in instances of hypothalamic damage. Nevertheless, additional research is imperative to establish the functional relevance of these receptors in said brain regions. Conclusion GLP-1R agonists represent a potential therapeutic option for patients with hypothalamic obesity. However, further clinical and basic/translational research is essential to validate the efficacy of these drugs across different presentations of hypothalamic obesity and to understand the functionality of GLP-1R in the diverse brain regions where they are expressed.
Collapse
Affiliation(s)
- Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Evagelia E Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, GR-26504, Patras, Greece
| | - Aristea Psilopanagioti
- Division of Endocrinology, Department of Internal Medicine, University of Patras, GR-26504, Patras, Greece
| |
Collapse
|
4
|
Nogueiras R, Nauck MA, Tschöp MH. Gut hormone co-agonists for the treatment of obesity: from bench to bedside. Nat Metab 2023:10.1038/s42255-023-00812-z. [PMID: 37308724 DOI: 10.1038/s42255-023-00812-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
The discovery and development of so-called gut hormone co-agonists as a new class of drugs for the treatment of diabetes and obesity is considered a transformative breakthrough in the field. Combining action profiles of multiple gastrointestinal hormones within a single molecule, these novel therapeutics achieve synergistic metabolic benefits. The first such compound, reported in 2009, was based on balanced co-agonism at glucagon and glucagon-like peptide-1 (GLP-1) receptors. Today, several classes of gut hormone co-agonists are in development and advancing through clinical trials, including dual GLP-1-glucose-dependent insulinotropic polypeptide (GIP) co-agonists (first described in 2013), and triple GIP-GLP-1-glucagon co-agonists (initially designed in 2015). The GLP-1-GIP co-agonist tirzepatide was approved in 2022 by the US Food and Drug Administration for the treatment of type 2 diabetes, providing superior HbA1c reductions compared to basal insulin or selective GLP-1 receptor agonists. Tirzepatide also achieved unprecedented weight loss of up to 22.5%-similar to results achieved with some types of bariatric surgery-in non-diabetic individuals with obesity. In this Perspective, we summarize the discovery, development, mechanisms of action and clinical efficacy of the different types of gut hormone co-agonists, and discuss potential challenges, limitations and future developments.
Collapse
Affiliation(s)
- Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galicia Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Medical Department I, St. Josef-Hospital, Katholisches Klinikum Bochum, Ruhr University of Bochum, Bochum, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany.
| |
Collapse
|
5
|
Maffeis C, Olivieri F, Valerio G, Verduci E, Licenziati MR, Calcaterra V, Pelizzo G, Salerno M, Staiano A, Bernasconi S, Buganza R, Crinò A, Corciulo N, Corica D, Destro F, Di Bonito P, Di Pietro M, Di Sessa A, deSanctis L, Faienza MF, Filannino G, Fintini D, Fornari E, Franceschi R, Franco F, Franzese A, Giusti LF, Grugni G, Iafusco D, Iughetti L, Lera R, Limauro R, Maguolo A, Mancioppi V, Manco M, Del Giudice EM, Morandi A, Moro B, Mozzillo E, Rabbone I, Peverelli P, Predieri B, Purromuto S, Stagi S, Street ME, Tanas R, Tornese G, Umano GR, Wasniewska M. The treatment of obesity in children and adolescents: consensus position statement of the Italian society of pediatric endocrinology and diabetology, Italian Society of Pediatrics and Italian Society of Pediatric Surgery. Ital J Pediatr 2023; 49:69. [PMID: 37291604 DOI: 10.1186/s13052-023-01458-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023] Open
Abstract
This Position Statement updates the different components of the therapy of obesity (lifestyle intervention, drugs, and surgery) in children and adolescents, previously reported in the consensus position statement on pediatric obesity of the Italian Society of Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Lifestyle intervention is the first step of treatment. In children older than 12 years, pharmacotherapy is the second step, and bariatric surgery is the third one, in selected cases. Novelties are available in the field of the medical treatment of obesity. In particular, new drugs demonstrated their efficacy and safety and have been approved in adolescents. Moreover, several randomized control trials with other drugs are in process and it is likely that some of them will become available in the future. The increase of the portfolio of treatment options for obesity in children and adolescents is promising for a more effective treatment of this disorder.
Collapse
Affiliation(s)
- Claudio Maffeis
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Francesca Olivieri
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy.
| | - Giuliana Valerio
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| | - Elvira Verduci
- Deparment of Pediatrics, Department of Health Science, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Maria Rosaria Licenziati
- Department of Neurosciences, Neuro-Endocrine Diseases and Obesity Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Milan, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Department of Pediatric Surgery, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Mariacarolina Salerno
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Annamaria Staiano
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | | | - Raffaele Buganza
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Antonino Crinò
- Autoimmune Endocrine Diseases Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Francesca Destro
- Department of Pediatric Surgery, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Procolo Di Bonito
- Department of Internal Medicine, S. Maria Delle Grazie Hospital, Naples, Pozzuoli, Italy
| | - Mario Di Pietro
- Pediatric and Neonatal Unit, Hospital of Teramo and Atri, Teramo, Italy
| | - Anna Di Sessa
- Department of Woman, Child and General and Specialized Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Luisa deSanctis
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionan Area, University of Bari, Bari, Italy
| | | | - Danilo Fintini
- Refernce Center for Prader Willi Syndrome, Endocrinology and Diabetology Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Elena Fornari
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | | | - Francesca Franco
- Pediatric Department, Azienda Sanitaria Universitaria del Friuli Centrale, Hospital of Udine, Udine, Italy
| | - Adriana Franzese
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Lia Franca Giusti
- Italian Society for Pediatric Endocrinology and Diabetology (SIEDP), Lucca, Italy
| | - Graziano Grugni
- Division of Auxology, Istituto Auxologico Italiano, IRCCS, Verbania, Italy
| | - Dario Iafusco
- Department of Woman, Child and General and Specialized Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Lera
- Italian Society for Pediatric Endocrinology and Diabetology (SIEDP), Alessandria, Italy
| | | | - Alice Maguolo
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Valentina Mancioppi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Anita Morandi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Beatrice Moro
- UOSD Diabetology, Complesso Ai Colli, AULSS 6 Euganea, Padua, Italy
| | - Enza Mozzillo
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Paola Peverelli
- Department of Pediatrics and Gynecology, Hospital of Belluno, Belluno, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Stefano Stagi
- Department of Health Sciences, University of Florence, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, Unit of Paediatrics, University of Parma, University Hospital of Parma, Parma, Italy
| | - Rita Tanas
- Italian Society for Pediatric Endocrinology and Diabetology (SIEDP), Ferrara, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child and General and Specialized Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Schlögl H, Janssen L, Fasshauer M, Miehle K, Villringer A, Stumvoll M, Mueller K. Reward Processing During Monetary Incentive Delay Task After Leptin Substitution in Lipodystrophy-an fMRI Case Series. J Endocr Soc 2023; 7:bvad052. [PMID: 37180211 PMCID: PMC10174197 DOI: 10.1210/jendso/bvad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
Context Behaviorally, the most pronounced effects of leptin substitution in leptin deficiency are the hunger-decreasing and postprandial satiety-prolonging effects of the adipokine. Previously, with functional magnetic resonance imaging (MRI), we and others showed that eating behavior-controlling effects are at least in part conveyed by the reward system. However, to date, it is unclear if leptin only modulates eating behavior specific brain reward action or if it also alters the reward function of the brain unrelated to eating behavior. Objective We investigated with functional MRI the effects of metreleptin on the reward system in a reward task unrelated to eating behavior, the monetary incentive delay task. Design Measurements in 4 patients with the very rare disease of lipodystrophy (LD), resulting in leptin deficiency, and 3 untreated healthy control persons were performed at 4 different time points: before start and over 12 weeks of metreleptin treatment. Inside the MRI scanner, participants performed the monetary incentive delay task and brain activity during the reward receipt phase of the trial was analyzed. Results We found a reward-related brain activity decrease in our 4 patients with LD over the 12 weeks of metreleptin treatment in the subgenual region, a brain area associated with the reward network, which was not observed in our 3 untreated healthy control persons. Conclusions These results suggest that leptin replacement in LD induces changes of brain activity during reward reception processing completely unrelated to eating behavior or food stimuli. This could suggest eating behavior-unrelated functions of leptin in the human reward system. Trial registration The trial is registered as trial No. 147/10-ek at the ethics committee of the University of Leipzig and at the State Directorate of Saxony (Landesdirektion Sachsen).
Collapse
Affiliation(s)
- Haiko Schlögl
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Lieneke Janssen
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Mathias Fasshauer
- Institute of Nutritional Sciences, Justus-Liebig-University, 35390 Giessen, Germany
| | - Konstanze Miehle
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Arno Villringer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Day Clinic of Cognitive Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Karsten Mueller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, 12000 Prague, Czech Republic
| |
Collapse
|
7
|
Thomas MC, Coughlan MT, Cooper ME. The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 2023; 35:253-273. [PMID: 36754019 DOI: 10.1016/j.cmet.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Department of Biochemistry, Monash University, Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052 VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia.
| |
Collapse
|
8
|
Calcaterra V, Rossi V, Mari A, Casini F, Bergamaschi F, Zuccotti GV, Fabiano V. Medical treatment of weight loss in children and adolescents with obesity. Pharmacol Res 2022; 185:106471. [PMID: 36174963 DOI: 10.1016/j.phrs.2022.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
Abstract
Obesity remains one of the biggest health problems both in adults and children. Lifestyle modification, including diet and exercise, continues to be the mainstay of obesity prevention and treatment. Unfortunately, lifestyle modifications are often unsuccessful. Pharmacological treatment of obesity in pediatric patients can be applied in selected cases, and not before evidence of failure of the multidisciplinary lifestyle intervention. In this narrative review, we revised the most up-to-date evidence on medical treatment of weight loss in children and adolescents with obesity, including FDA- or EMA-approved and -experimented, not approved, drugs for pediatric population. Multidisciplinary treatment of childhood obesity, regulation of appetite control, energy balance and body weight were also discussed, in order to clarify the indications and mechanism action of drugs. Despite a substantial number of medications used for the treatment of obesity in adults, a limited number of drugs are approved by the drug regulatory agencies for pediatric population. Further research is needed to evaluate the efficacy and safety of novel pharmacological approaches for treatment of pediatric obesity in order to optimize weight management for children and adolescents and limit the development obesity-related comorbidities.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Virginia Rossi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy
| | - Alessandra Mari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy
| | - Francesca Casini
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy
| | | | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy
| | - Valentina Fabiano
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy.
| |
Collapse
|
9
|
GLP-1 Agonist to Treat Obesity and Prevent Cardiovascular Disease: What Have We Achieved so Far? Curr Atheroscler Rep 2022; 24:867-884. [PMID: 36044100 DOI: 10.1007/s11883-022-01062-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To discuss evidence supporting the use of glucagon-like peptide 1 receptor agonists (GLP-1RA) to treat obesity and their role as a cardioprotective drug. Obesity is not just a hypertrophy of the adipose tissue because it may become dysfunctional and inflamed resulting in increased insulin resistance. Being overweight is associated with increased incidence of cardiovascular events and weight loss achieved through lifestyle changes lowers risk factors, but has no clear effect on cardiovascular outcomes. In contrast, treating obesity with GLP-1RA decreases cardiovascular risk and the possible mechanisms of cardioprotection achieved by this class of drugs are discussed. GLP-1RA were initially developed to treat type 2 diabetes patients, in whom the effects upon glycemia and, moreover, weight loss, especially with long-acting GLP-1RA, were evident. However, cardiovascular safety trials in type 2 diabetes patients, the majority presenting cardiovascular disease and excess weight, showed that GLP-1 receptor agonists were indeed capable of decreasing cardiovascular risk. RECENT FINDINGS Type 2 diabetes treatment with GLP-1RA liraglutide and semaglutide paved way to a ground-breaking therapy specific for obesity, as shown with the SCALE 3 mg/day liraglutide program and the STEP 2.4 mg/week semaglutide program. A novel molecule with superior performance is tirzepatide, a GLP-1 and GIP (Gastric Inhibitory Peptide) receptor agonist and recent results from the SURPASS and SURMOUNT programs are briefly described. Liraglutide was approved without a CVOT (Cardiovascular Outcome Trial) because authorities accepted the results from the LEADER study, designed for superiority. The SELECT study with semaglutide will report results only in 2023 and tirzepatide is being tested in patients with diabetes in the SURPASS-CVOT. Clinical studies highlight that GLP-1RA to treat obesity, alongside their concomitant cardioprotective effects, have become a hallmark in clinical science.
Collapse
|
10
|
Baretić M. New frontiers in the hunger management involving GLP-1, taste and oestrogen. Diabet Med 2022; 39:e14846. [PMID: 35429193 DOI: 10.1111/dme.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Maja Baretić
- Division of Endocrinology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
12
|
Affiliation(s)
- Haiko Schlögl
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and the University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Napoli R, Avogaro A, Formoso G, Piro S, Purrello F, Targher G, Consoli A. Beneficial effects of glucagon-like peptide 1 receptor agonists on glucose control, cardiovascular risk profile, and non-alcoholic fatty liver disease. An expert opinion of the Italian diabetes society. Nutr Metab Cardiovasc Dis 2021; 31:3257-3270. [PMID: 34627692 DOI: 10.1016/j.numecd.2021.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) show an increased risk of cardiovascular diseases (CVD) and mortality. Many factors are implicated in the pathogenesis of CVD in patients with T2DM. Among the factors involved, chronic hyperglycemia and the cluster of CVD risk factors, such as dyslipidemia, hypertension, and obesity, play a major role. For many years, the control of hyperglycemia has been complicated by the fact that the use of many available drugs was associated with an increased risk of hypoglycemia. Paradoxically, hypoglycemia per se represents a risk factor for CVD. Recently, new drugs for the control of hyperglycemia have become available: many of them can determine a good control of hyperglycemia with minor risks of hypoglycemia. Among these new classes of drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs) offer many advantages. In addition to a strong anti-hyperglycemic action, they possess the ability to act on body weight and other relevant risk factors for CVD. Consistently, some of the GLP-1RAs have demonstrated, in RCT designed to assess their safety, to reduce the risk of major adverse cardiovascular events. Furthermore, GLP-1RAs possess properties useful to treat additional conditions, as the capability of improving liver damage in patients with NAFLD or NASH, highly prevalent conditions in people with T2DM. In this document, written by experts of the Italian diabetes society (SID), we will focus our attention on the therapy with GLP-1RAs in patients with T2DM, particularly on the effects on hyperglycemia, cardiovascular disease risk factors, NAFLD/NASH and CVD prevention.
Collapse
Affiliation(s)
- Raffaele Napoli
- Department of Translational Medical Sciences, Unit of Internal Medicine and Diabetes, Federico II University School of Medicine, Napoli, Italy.
| | - Angelo Avogaro
- Department of Medicine (DIMED), Chair of Endocrinology and Metabolic Diseases, University of Padua, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST, Ex CeSI-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST, Ex CeSI-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
14
|
Costa A, Ai M, Nunn N, Culotta I, Hunter J, Boudjadja MB, Valencia-Torres L, Aviello G, Hodson DJ, Snider BM, Coskun T, Emmerson PJ, Luckman SM, D'Agostino G. Anorectic and aversive effects of GLP-1 receptor agonism are mediated by brainstem cholecystokinin neurons, and modulated by GIP receptor activation. Mol Metab 2021; 55:101407. [PMID: 34844019 PMCID: PMC8689241 DOI: 10.1016/j.molmet.2021.101407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective medications to reduce appetite and body weight. These actions are centrally mediated; however, the neuronal substrates involved are poorly understood. Methods We employed a combination of neuroanatomical, genetic, and behavioral approaches in the mouse to investigate the involvement of caudal brainstem cholecystokinin-expressing neurons in the effect of the GLP-1RA exendin-4. We further confirmed key neuroanatomical findings in the non-human primate brain. Results We found that cholecystokinin-expressing neurons in the caudal brainstem are required for the anorectic and body weight-lowering effects of GLP-1RAs and for the induction of GLP-1RA-induced conditioned taste avoidance. We further show that, while cholecystokinin-expressing neurons are not a direct target for glucose-dependent insulinotropic peptide (GIP), GIP receptor activation results in a reduced recruitment of these GLP-1RA-responsive neurons and a selective reduction of conditioned taste avoidance. Conclusions In addition to disclosing a neuronal population required for the full appetite- and body weight-lowering effect of GLP-1RAs, our data also provide a novel framework for understanding and ameliorating GLP-1RA-induced nausea — a major factor for withdrawal from treatment. CCKAP/NTS neurons are required for the full anorectic and body weight-lowering effect of GLP-1 receptor agonists. GLP-1 receptor agonists promote the formation of conditioned taste avoidance by activating CCKAP/NTS neurons. CCKAP/NTS neurons are not activated in response to GIP receptor agonists. GIP receptor agonists reduce GLP-1 receptor agonist-induced neuronal responses in the caudal brainstem. GIP receptor agonists reduce GLP-1 receptor agonist-induced conditioned taste avoidance.
Collapse
Affiliation(s)
- Alessia Costa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Minrong Ai
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States.
| | - Nicolas Nunn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabella Culotta
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jenna Hunter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Gabriella Aviello
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - David J Hodson
- Institute of Metabolism and Systems Research University of Birmingham &Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Brandy M Snider
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Tamer Coskun
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Paul J Emmerson
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
15
|
Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab 2021; 57:101351. [PMID: 34626851 PMCID: PMC8859548 DOI: 10.1016/j.molmet.2021.101351] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP1RA) augment glucose-dependent insulin release and reduce glucagon secretion and gastric emptying, enabling their successful development for the treatment of type 2 diabetes (T2D). These agents also inhibit food intake and reduce body weight, fostering investigation of GLP1RA for the treatment of obesity. SCOPE OF REVIEW Here I discuss the physiology of Glucagon-like peptide-1 (GLP-1) action in the control of food intake in animals and humans, highlighting the importance of gut vs. brain-derived GLP-1 for the control of feeding and body weight. The widespread distribution and function of multiple GLP-1 receptor (GLP1R) populations in the central and autonomic nervous system are outlined, and the importance of pathways controlling energy expenditure in preclinical studies vs. reduction of food intake in both animals and humans is highlighted. The relative contributions of vagal afferent pathways vs. GLP1R+ populations in the central nervous system for the physiological reduction of food intake and the anorectic response to GLP1RA are compared and reviewed. Key data enabling the development of two GLP1RA for obesity therapy (liraglutide 3 mg daily and semaglutide 2.4 mg once weekly) are discussed. Finally, emerging data potentially supporting the combination of GLP-1 with additional peptide epitopes in unimolecular multi-agonists, as well as in fixed-dose combination therapies, are highlighted. MAJOR CONCLUSIONS The actions of GLP-1 to reduce food intake and body weight are highly conserved in obese animals and humans, in both adolescents and adults. The well-defined mechanisms of GLP-1 action through a single G protein-coupled receptor, together with the extensive safety database of GLP1RA in people with T2D, provide reassurance surrounding the long-term use of these agents in people with obesity and multiple co-morbidities. GLP1RA may also be effective in conditions associated with obesity, such as cardiovascular disease and non-alcoholic steatohepatitis (NASH). Progressive improvements in the efficacy of GLP1RA suggest that GLP-1-based therapies may soon rival bariatric surgery as viable options for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
16
|
Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab 2021; 46:101102. [PMID: 33068776 PMCID: PMC8085572 DOI: 10.1016/j.molmet.2020.101102] [Citation(s) in RCA: 609] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1 RAs) with exenatide b.i.d. first approved to treat type 2 diabetes in 2005 have been further developed to yield effective compounds/preparations that have overcome the original problem of rapid elimination (short half-life), initially necessitating short intervals between injections (twice daily for exenatide b.i.d.). SCOPE OF REVIEW To summarize current knowledge about GLP-1 receptor agonist. MAJOR CONCLUSIONS At present, GLP-1 RAs are injected twice daily (exenatide b.i.d.), once daily (lixisenatide and liraglutide), or once weekly (exenatide once weekly, dulaglutide, albiglutide, and semaglutide). A daily oral preparation of semaglutide, which has demonstrated clinical effectiveness close to the once-weekly subcutaneous preparation, was recently approved. All GLP-1 RAs share common mechanisms of action: augmentation of hyperglycemia-induced insulin secretion, suppression of glucagon secretion at hyper- or euglycemia, deceleration of gastric emptying preventing large post-meal glycemic increments, and a reduction in calorie intake and body weight. Short-acting agents (exenatide b.i.d., lixisenatide) have reduced effectiveness on overnight and fasting plasma glucose, but maintain their effect on gastric emptying during long-term treatment. Long-acting GLP-1 RAs (liraglutide, once-weekly exenatide, dulaglutide, albiglutide, and semaglutide) have more profound effects on overnight and fasting plasma glucose and HbA1c, both on a background of oral glucose-lowering agents and in combination with basal insulin. Effects on gastric emptying decrease over time (tachyphylaxis). Given a similar, if not superior, effectiveness for HbA1c reduction with additional weight reduction and no intrinsic risk of hypoglycemic episodes, GLP-1RAs are recommended as the preferred first injectable glucose-lowering therapy for type 2 diabetes, even before insulin treatment. However, GLP-1 RAs can be combined with (basal) insulin in either free- or fixed-dose preparations. More recently developed agents, in particular semaglutide, are characterized by greater efficacy with respect to lowering plasma glucose as well as body weight. Since 2016, several cardiovascular (CV) outcome studies have shown that GLP-1 RAs can effectively prevent CV events such as acute myocardial infarction or stroke and associated mortality. Therefore, guidelines particularly recommend treatment with GLP-1 RAs in patients with pre-existing atherosclerotic vascular disease (for example, previous CV events). The evidence of similar effects in lower-risk subjects is not quite as strong. Since sodium/glucose cotransporter-2 (SGLT-2) inhibitor treatment reduces CV events as well (with the effect mainly driven by a reduction in heart failure complications), the individual risk of ischemic or heart failure complications should guide the choice of treatment. GLP-1 RAs may also help prevent renal complications of type 2 diabetes. Other active research areas in the field of GLP-1 RAs are the definition of subgroups within the type 2 diabetes population who particularly benefit from treatment with GLP-1 RAs. These include pharmacogenomic approaches and the characterization of non-responders. Novel indications for GLP-1 RAs outside type 2 diabetes, such as type 1 diabetes, neurodegenerative diseases, and psoriasis, are being explored. Thus, within 15 years of their initial introduction, GLP-1 RAs have become a well-established class of glucose-lowering agents that has the potential for further development and growing impact for treating type 2 diabetes and potentially other diseases.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson's disease. Mol Med 2021; 27:17. [PMID: 33632120 PMCID: PMC7905684 DOI: 10.1186/s10020-021-00279-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the second more common neurodegenerative disease with increasing incidence worldwide associated to the population ageing. Despite increasing awareness and significant research advancements, treatment options comprise dopamine repleting, symptomatic therapies that have significantly increased quality of life and life expectancy, but no therapies that halt or reverse disease progression, which remain a great, unmet goal in PD research. Large biomarker development programs are undertaken to identify disease signatures that will improve patient selection and outcome measures in clinical trials. In this review, we summarize PD-related mechanisms that can serve as targets of therapeutic interventions aiming to slow or modify disease progression, as well as previous and ongoing clinical trials in each field, and discuss future perspectives.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden
| | - Paraskevi-Evita Papathoma
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Danderyd Hospital Stockholm, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden.
| |
Collapse
|
18
|
Marrano N, Biondi G, Borrelli A, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. Irisin and Incretin Hormones: Similarities, Differences, and Implications in Type 2 Diabetes and Obesity. Biomolecules 2021; 11:286. [PMID: 33671882 PMCID: PMC7918991 DOI: 10.3390/biom11020286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes β-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of β-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α- and β-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis-involving the gut, muscle, and endocrine pancreas that controls energy homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; (N.M.); (G.B.); (A.B.); (A.C.); (S.P.); (L.L.); (A.N.)
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Childhood obesity is escalating globally. Lifestyle and behavioral changes, which are the frequently used interventions in clinical practice, lead to only modest improvements in children with established obesity. Bariatric surgery is currently the most effective obesity treatment but has very limited utilization in pediatric obesity and is preferentially used for children with worsening comorbidities. There exists a massive treatment gap for children suffering with obesity especially after the failure of lifestyle modifications. Pharmacotherapy that is an established management tool in adults is very infrequently used in children. Only two medications, Phentermine and Orlistat are approved by the Food and Drug Administration (FDA) for use in adolescent obesity. Herein, we discuss the current landscape and available literature on the use of antiobesity pharmacotherapy in children. RECENT FINDINGS There are emerging pediatric data about the efficacy of the many weight loss medications that are FDA approved in adults. Moreover, more clinical trials are underway on the rarer, intractable forms of obesity such as monogenic, syndromic, and hypothalamic obesity. SUMMARY Weight loss medications in children, like adults, have variable efficacy and similar side effect profiles. Rigorous research and improved education of providers about weight loss medications may address the huge treatment gap in severe pediatric obesity.
Collapse
Affiliation(s)
- Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- MGH Weight Center, Harvard Medical School, Boston, MA
| | - Aluma Chovel Sella
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sonali Malhotra
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- MGH Weight Center, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Incretin Hormones in Obesity and Related Cardiometabolic Disorders: The Clinical Perspective. Nutrients 2021; 13:nu13020351. [PMID: 33503878 PMCID: PMC7910956 DOI: 10.3390/nu13020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity continues to grow rapidly worldwide, posing many public health challenges of the 21st century. Obese subjects are at major risk for serious diet-related noncommunicable diseases, including type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease. Understanding the mechanisms underlying obesity pathogenesis is needed for the development of effective treatment strategies. Dysregulation of incretin secretion and actions has been observed in obesity and related metabolic disorders; therefore, incretin-based therapies have been developed to provide new therapeutic options. Incretin mimetics present glucose-lowering properties, together with a reduction of appetite and food intake, resulting in weight loss. In this review, we describe the physiology of two known incretins—glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and their role in obesity and related cardiometabolic disorders. We also focus on the available and incoming incretin-based medications that can be used in the treatment of the above-mentioned conditions.
Collapse
|
21
|
Gobbi S, Weber S, Graf G, Hinz D, Asarian L, Geary N, Leeners B, Hare T, Tobler P. Reduced Neural Satiety Responses in Women Affected by Obesity. Neuroscience 2020; 447:94-112. [DOI: 10.1016/j.neuroscience.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
|
22
|
Markaki I, Winther K, Catrina SB, Svenningsson P. Repurposing GLP1 agonists for neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:91-112. [PMID: 32854860 DOI: 10.1016/bs.irn.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a large unmet medical need to find disease modifying therapies against neurodegenerative diseases. This review summarizes data indicating that insulin resistance occurs in neurodegeneration and strategies to normalize insulin sensitivity in neurons may provide neuroprotective actions. In particular, recent preclinical and clinical studies in Parkinson's disease and Alzheimer's disease have indicated that glucagon-like peptide 1 (GLP1) agonism and dipeptidyl peptidase-4 inhibition may exert neuroprotection. Mechanistic insights from these studies and future directions for drug development against neurodegeneration based on GLP1 agonism are discussed.
Collapse
Affiliation(s)
- Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden.
| | - Kristian Winther
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
23
|
Association between GLP-1 receptor gene polymorphisms with reward learning, anhedonia and depression diagnosis. Acta Neuropsychiatr 2020; 32:218-225. [PMID: 32213216 PMCID: PMC7351594 DOI: 10.1017/neu.2020.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 receptors (GLP-1Rs) are widely expressed in the brain. Evidence suggests that they may play a role in reward responses and neuroprotection. However, the association of GLP-1R with anhedonia and depression diagnosis has not been studied. Here, we examined the association of GLP-1R polymorphisms with objective and subjective measures of anhedonia, as well as depression diagnosis. METHODS Objective [response bias assessed by the probabilistic reward task (PRT)] and subjective [Snaith-Hamilton Pleasure Scale (SHAPS)] measures of anhedonia, clinical variables and DNA samples were collected from 100 controls and 164 patients at McLean Hospital. An independent sample genotyped as part of the Psychiatric Genomics Consortium (PGC) was used to study the effect of putative GLP-1R polymorphisms linked to response bias in PRT on depression diagnosis. RESULTS The C allele in rs1042044 was significantly associated with increased PRT response bias, when controlling for age, sex, case-control status and PRT discriminability. AA genotype of rs1042044 showed higher anhedonia phenotype based on SHAPS scores. However, analysis of PGC major depressive disorder data showed no association between rs1042044 and depression diagnosis. CONCLUSION Findings suggest a possible association of rs1042044 with anhedonia but no association with depression diagnosis.
Collapse
|
24
|
Bae JH, Choi HJ, Cho KIK, Kim LK, Kwon JS, Cho YM. Glucagon-Like Peptide-1 Receptor Agonist Differentially Affects Brain Activation in Response to Visual Food Cues in Lean and Obese Individuals with Type 2 Diabetes Mellitus. Diabetes Metab J 2020; 44:248-259. [PMID: 31701698 PMCID: PMC7188972 DOI: 10.4093/dmj.2019.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To investigate the effects of a glucagon-like peptide-1 receptor agonist on functional brain activation in lean and obese individuals with type 2 diabetes mellitus (T2DM) in response to visual food cues. METHODS In a randomized, single-blinded, crossover study, 15 lean and 14 obese individuals with T2DM were administered lixisenatide or normal saline subcutaneously with a 1-week washout period. We evaluated brain activation in response to pictures of high-calorie food, low-calorie food, and nonfood using functional magnetic resonance imaging and measured appetite and caloric intake in participants who were given access to an ad libitum buffet. RESULTS Obese individuals with T2DM showed significantly greater activation of the hypothalamus, pineal gland, parietal cortex (high-calorie food vs. low-calorie food, P<0.05), orbitofrontal cortex (high-calorie food vs. nonfood, P<0.05), and visual cortex (food vs. nonfood, P<0.05) than lean individuals with T2DM. Lixisenatide injection significantly reduced the functional activation of the fusiform gyrus and lateral ventricle in obese individuals with T2DM compared with that in lean individuals with T2DM (nonfood vs. high-calorie food, P<0.05). In addition, in individuals who decreased their caloric intake after lixisenatide injection, there were significant interaction effects between group and treatment in the posterior cingulate, medial frontal cortex (high-calorie food vs. low-calorie food, P<0.05), hypothalamus, orbitofrontal cortex, and temporal lobe (food vs. nonfood, P<0.05). CONCLUSION Brain responses to visual food cues were different in lean and obese individuals with T2DM. In addition, acute administration of lixisenatide differentially affected functional brain activation in these individuals, especially in those who decreased their caloric intake after lixisenatide injection.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyung Jin Choi
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, Korea
| | - Kang Ik Kevin Cho
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Lee Kyung Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Cheju Halla General Hospital, Jeju, Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
25
|
Abstract
Today, excluding insulin, there are eight classes of anti-diabetic medicines that have been added to the pharmacy since the introduction of metformin in the mid-1950s; the sulfonylureas, biguanides, thiazolidinediones, α-glucosidase inhibitors, meglitinides, incretins, and sodium glucose transport 2 inhibitors. Does the fact that metformin is still first-line treatment suggest that our drug discovery efforts over the past 60 years have not been good enough? Or does it suggest that diabetes is such a complex disorder that no single treatment, other than gastric bypass surgery, can affect true normalization of not only blood sugar but also the underlying pathologies? Our understanding of the disease has most definitely improved which may bring hope for the future in terms of science, but for it to be beneficial, this science has to be translated into better drug treatments for the disease. In this review, I have examined the eight classes of anti-diabetes drugs from a drug discovery perspective.
Collapse
Affiliation(s)
- John C Clapham
- Medical School, University of Buckingham, Buckingham, UK.
| |
Collapse
|
26
|
Woodard K, Louque L, Hsia DS. Medications for the treatment of obesity in adolescents. Ther Adv Endocrinol Metab 2020; 11:2042018820918789. [PMID: 32523671 PMCID: PMC7257846 DOI: 10.1177/2042018820918789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/21/2020] [Indexed: 12/16/2022] Open
Abstract
While there are eight medications/combinations approved for the treatment of obesity in adults, the options for the treatment of obesity in adolescents remain limited. Evidence for obesity medication use in adolescents is limited due to the relatively small number of clinical trials that have been completed and the few adolescents that have been included in many of the trials. The goal of this review will be to present the current evidence for the medications approved for adolescents, medications not approved for adolescents but have adolescent data, and medications approved for adults with the prospect for use in adolescents. We will also discuss current limitations and next steps in the exploration of future treatment options.
Collapse
Affiliation(s)
- Kaylee Woodard
- Pennington Biomedical Research Center, Clinical Trials Unit, Baton Rouge, LA, USA
| | - Logan Louque
- Pennington Biomedical Research Center, Clinical Trials Unit, Baton Rouge, LA, USA
| | | |
Collapse
|
27
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
28
|
Nauck MA, Meier JJ. Pioneering oral peptide therapy for patients with type 2 diabetes. Lancet Diabetes Endocrinol 2019; 7:500-502. [PMID: 31189516 DOI: 10.1016/s2213-8587(19)30182-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Michael A Nauck
- Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany.
| | - Juris J Meier
- Diabetes Center Bochum-Hattingen, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| |
Collapse
|
29
|
Pilitsi E, Farr OM, Polyzos SA, Perakakis N, Nolen-Doerr E, Papathanasiou AE, Mantzoros CS. Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism 2019; 92:170-192. [PMID: 30391259 DOI: 10.1016/j.metabol.2018.10.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a chronic disease with a continuously rising prevalence that currently affects more than half a billion people worldwide. Energy balance and appetite are highly regulated via central and peripheral mechanisms, and weight loss triggers a homeostatic response leading to weight regain. Lifestyle and behavioral modifications are the cornerstones of obesity management; however, they often fail to achieve or sustain long-term weight loss. Pharmacotherapy added onto lifestyle modifications results in an additional, albeit limited, weight reduction. Regardless, this weight reduction of 5-10% conveys multiple cardiovascular and metabolic benefits. In this review, evidence on the food and drug administration (FDA)-approved medications, i.e., orlistat, lorcaserin, phentermine/topiramate, liraglutide and naltrexone/bupropion, is summarized. Furthermore, anti-obesity agents in the pipeline for potential future therapeutic use are presented.
Collapse
Affiliation(s)
- Eleni Pilitsi
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215.
| | - Stergios A Polyzos
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Perakakis
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Eric Nolen-Doerr
- Department of Medicine, Boston Medical Center, Boston, MA, 02118, United States of America
| | - Aimilia-Eirini Papathanasiou
- Division of Pediatric Newborn Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02215, United States of America
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Yang J, Zhang LJ, Wang F, Hong T, Liu Z. Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting. Adv Drug Deliv Rev 2019; 139:32-50. [PMID: 30529307 DOI: 10.1016/j.addr.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic non-communicable disease affecting over 400 million people worldwide. Diabetic patients are at a high risk of various complications, such as cardiovascular, renal, and other diseases. The pathogenesis of diabetes (both type 1 and type 2 diabetes) is associated with a functional impairment of pancreatic β-cells. Consequently, most efforts to manage and prevent diabetes have focused on preserving β-cells and their function. Advances in imaging techniques, such as magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, and single-photon-emission computed tomography, have enabled noninvasive and quantitative detection and characterization of the population and function of β-cells in vivo. These advantages aid in defining and monitoring the progress of diabetes and determining the efficacy of anti-diabetic therapies. Beyond β-cell targeting, molecular imaging of biomarkers associated with the development of diabetes, e.g., lymphocyte infiltration, insulitis, and metabolic changes, may also be a promising strategy for early detection of diabetes, monitoring its progression, and occurrence of complications, as well as facilitating exploration of new therapeutic interventions. Moreover, molecular imaging of glucose uptake, production and excretion in specified tissues is critical for understanding the pathogenesis of diabetes. In the current review, we summarize and discuss recent advances in noninvasive imaging technologies for imaging of biomarkers beyond β-cells for early diagnosis of diabetes, investigation of glucose metabolism, and precise diagnosis and monitoring of diabetic complications for better management of diabetic patients.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
31
|
Meyer-Gerspach AC, Ly HG, Borgwardt S, Dupont P, Beglinger C, Van Oudenhove L, Wölnerhanssen BK. Endogenous GLP-1 alters postprandial functional connectivity between homeostatic and reward-related brain regions involved in regulation of appetite in healthy lean males: A pilotstudy. Diabetes Obes Metab 2018; 20:2330-2338. [PMID: 29790260 DOI: 10.1111/dom.13369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022]
Abstract
AIMS Peripheral infusion of glucagon-like peptide-1 (GLP-1) can affect brain activity in areas involved in the regulation of appetite, including hypothalamic and reward-related brain regions. In contrast, the physiological role of endogenous GLP-1 in the central regulation of appetite has hardly been investigated. MATERIALS AND METHODS This was a randomized, cross-over trial that involved 12 healthy volunteers who received an intragastric (ig) glucose (gluc) load, with or without intravenous (iv) exendin9-39 (ex9-39; specific GLP-1 receptor antagonist). Functional magnetic resonance imaging was used to investigate the effect of endogenous GLP-1 on resting state functional connectivity (rsFC) between homeostatic and reward-related brain regions. Visual analogue scales were used to rate appetite-related sensations. Blood samples were collected for GI hormone measurements. RESULTS Administration of iv-ex9-39/ig-gluc induced a significantly higher rsFC, relative to ig-gluc administration, between the hypothalamus and the left lateral orbitofrontal cortex (OFC) as well as the left amygdala (P ≤ .001, respectively). Administration of iv-ex9-39/ig-gluc induced a significantly higher rsFC, relative to ig-gluc administration, between the right nucleus accumbens and the right lateral OFC (P < .001). Administration of iv-ex9-39/ig-gluc induced a significantly lower rsFC, relative to ig-gluc administration, between the midbrain and the right caudate nucleus (P = .001). Administration of ig-gluc significantly decreased prospective food consumption and increased sensations of fullness compared to pre-infusion baseline (P = .028 and P = .019, respectively); these effects were not present in the iv-ex9-39/ig-gluc condition. CONCLUSIONS This pilot trial provides preliminary experimental evidence that glucose-induced endogenous GLP-1 affects central regulation of appetite by modulating rsFC in homeostatic and reward-related brain regions in healthy lean male participants in a GLP-1 receptor-mediated fashion.
Collapse
Affiliation(s)
- Anne Christin Meyer-Gerspach
- St. Clara Research Ltd, Basel, Switzerland
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Catholic University of Leuven, Leuven, Belgium
| | - Huynh Giao Ly
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Catholic University of Leuven, Leuven, Belgium
| | - Stefan Borgwardt
- Department of Psychiatry, University Hospital Basel, Basel, Switzerland
| | - Patrick Dupont
- Department of Neurosciences, Laboratory for Cognitive Neurology, Catholic University of Leuven, Leuven, Belgium
| | | | - Lukas Van Oudenhove
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Catholic University of Leuven, Leuven, Belgium
| | - Bettina K Wölnerhanssen
- St. Clara Research Ltd, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
32
|
Mansur RB, Lee Y, Subramaniapillai M, Brietzke E, McIntyre RS. Cognitive dysfunction and metabolic comorbidities in mood disorders: A repurposing opportunity for glucagon-like peptide 1 receptor agonists? Neuropharmacology 2018; 136:335-342. [PMID: 29481915 DOI: 10.1016/j.neuropharm.2018.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
Major depressive disorder and bipolar disorder are highly prevalent and disabling conditions. Cognition is considered a core domain of their psychopathology and a principle mediator of psychosocial impairment, disproportionately accounting for overall illness-associated costs. There are few interventions with replicated evidence of efficacy in treating cognitive deficits in mood disorders. Evidence also indicates that cognitive deficits are associated with obesity and involve significant impairment across multiple domains. Conversely, weight-loss interventions, such as physical exercise and bariatric surgery, have been shown to beneficially affect cognitive function. This convergent phenomenology suggests that currently available agents that target metabolic systems may also be capable of mitigating deficits in cognitive functions, and are, therefore, candidates for repurposing. The incretin glucagon-like peptide-1 (GLP-1) is a hormone secreted by intestinal epithelial cells. GLP-1 receptors (GLP-1R) are widely expressed in the central nervous system. Activation of GLP-1R leads to facilitation of glucose utilization and antiapoptotic effects in various organs. Pre-clinical trials have demonstrated significant neuroprotective effects of GLP-1, including protection from cell death, promotion of neuronal differentiation and proliferation; and facilitation of long-term potentiation. Liraglutide is a GLP-1R agonist that has been approved for the treatment of type 2 diabetes mellitus and obesity. Convergent preclinical and clinical evidence, including a proof-of-concept pilot study from group, has suggested that liraglutide may improve objective measures of cognitive function in adults with mood disorders. The safety and availability of GLP-1R agonists indicate that they are promising candidates for repurposing, and that they may be viable therapeutic options for mood disorders. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; University of Toronto, Toronto, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Mehala Subramaniapillai
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Department of Psychiatry, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Upadhyay J, Polyzos SA, Perakakis N, Thakkar B, Paschou SA, Katsiki N, Underwood P, Park KH, Seufert J, Kang ES, Sternthal E, Karagiannis A, Mantzoros CS. Pharmacotherapy of type 2 diabetes: An update. Metabolism 2018; 78:13-42. [PMID: 28920861 DOI: 10.1016/j.metabol.2017.08.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2DM) is a leading cause of morbidity and mortality worldwide and a major economic burden. The prevalence of T2DM is rising, suggesting more effective prevention and treatment strategies are necessary. The aim of this narrative review is to summarize the pharmacologic treatment options available for patients with T2DM. Each therapeutic class is presented in detail, outlining medication effects, side effects, glycemic control, effect on weight, indications and contraindications, and use in selected populations (heart failure, renal insufficiency, obesity and the elderly). We also present representative cost for each antidiabetic category. Then, we provide an individualized guide for initiation and intensification of treatment and discuss the considerations and rationale for an individualized glycemic goal.
Collapse
Affiliation(s)
- Jagriti Upadhyay
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Divisions of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital of Freiburg, Freiburg, Germany
| | - Bindiya Thakkar
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, USA
| | - Stavroula A Paschou
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Patricia Underwood
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, USA
| | - Kyung-Hee Park
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| | - Jochen Seufert
- Divisions of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital of Freiburg, Freiburg, Germany
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Elliot Sternthal
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, USA
| | - Asterios Karagiannis
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Lu K, Chen X, Yan J, Li X, Huang C, Wan Q, Deng X, Zou Q. The Effect of Feeding Behavior on Hypothalamus in Obese Type 2 Diabetic Rats with Glucagon-like Peptide-1 Receptor Agonist Intervention. Obes Facts 2018; 11:181-194. [PMID: 29788009 PMCID: PMC6103358 DOI: 10.1159/000486316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the utility of intravoxel incoherent motion-diffusion weighted imaging (IVIM-DWI) derived parameters in hypothalamus for monitoring the effect of Exendin-4 (Ex-4) intervention on the feeding behavior in obese diabetic rats within early feeding. METHODS 21 obese and 19 non-obese rats which were treated with streptozotocin injections were initially divided into an obese diabetes group (OD, n = 10), a non-obese diabetes group (D, n = 8), an obese group (O, n = 9) and a non-obese group (N, n = 9). Then, the rats in the 4 groups received subcutaneous injections of Ex-4, and feeding behavior was examined at 5, 35, 65, 95, and 125 min. The hypothalamic function was evaluated by IVIM-DWI. Finally, the relationship between the hypothalamic function and the amount of food intake was analyzed. RESULTS In comparison with the N group, the food intake significantly decreased in the O , OD, and D groups in response to Ex-4. Furthermore, a significant positive correlation was found between food intake and D values at different times from 5 to 125 min after Ex-4 intervention in all 4 groups. CONCLUSION A direct correlation between the change of hypothalamic function and feeding behavior was detected in OD rats with Ex-4 intervention in the early feeding period. The hypothalamic D value derived from IVIM-DWI is promising to reflect the dynamic change of hypothalamic function due to intervention.
Collapse
Affiliation(s)
- Ke Lu
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Chen
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Dr. Xiaoyan Chen, Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China,
| | - Jianhua Yan
- Department of Radiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinchun Li
- Department of MRI, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Huang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Qi Wan
- Department of MRI, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuelian Deng
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiao Zou
- Department of MRI, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Coveleskie K, Kilpatrick LA, Gupta A, Stains J, Connolly L, Labus JS, Sanmiguel C, Mayer EA. The effect of the GLP-1 analogue Exenatide on functional connectivity within an NTS-based network in women with and without obesity. Obes Sci Pract 2017; 3:434-445. [PMID: 29259802 PMCID: PMC5729499 DOI: 10.1002/osp4.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Objective The differential effect of GLP-1 agonist Exenatide on functional connectivity of the nucleus tractus solitaries (NTS), a key region associated with homeostasis, and on appetite-related behaviours was investigated in women with normal weight compared with women with obesity. Methods Following an 8-h fast, 19 female subjects (11 lean, 8 obese) participated in a 2-d double blind crossover study. Subjects underwent functional magnetic resonance imaging at fast and 30-min post subcutaneous injection of 5 μg of Exenatide or placebo. Functional connectivity was examined with the NTS. Drug-induced functional connectivity changes within and between groups and correlations with appetite measures were examined in a region of interest approach focusing on the thalamus and hypothalamus. Results Women with obesity reported less hunger after drug injection. Exenatide administration increased functional connectivity of the left NTS with the left thalamus and hypothalamus in the obese group only and increased the correlation between NTS functional connectivity and hunger scores in all subjects, but more so in the obese. Conclusions Obesity can impact the effects of Exenatide on brain connectivity, specifically in the NTS and is linked to changes in appetite control. This has implications for the use of GLP-1 analogues in therapeutic interventions.
Collapse
Affiliation(s)
- K. Coveleskie
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
| | - L. A. Kilpatrick
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - A. Gupta
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - J. Stains
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
| | - L. Connolly
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - J. S. Labus
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - C. Sanmiguel
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - E. A. Mayer
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- Ahmanson‐Lovelace Brain Mapping CenterUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| |
Collapse
|
36
|
Mansur RB, Zugman A, Ahmed J, Cha DS, Subramaniapillai M, Lee Y, Lovshin J, Lee JG, Lee JH, Drobinin V, Newport J, Brietzke E, Reininghaus EZ, Sim K, Vinberg M, Rasgon N, Hajek T, McIntyre RS. Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontal-striatal brain structures in individuals with mood disorders. Eur Neuropsychopharmacol 2017; 27:1153-1162. [PMID: 28867303 DOI: 10.1016/j.euroneuro.2017.08.433] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
Cognitive deficits are a core feature across psychiatric disorders. Emerging evidence indicates that metabolic pathways are highly relevant for the substrates and phenomenology of the cognitive domain. Herein, we aimed to determine the effects of liraglutide, a GLP-1R agonist, on brain structural/volumetric parameters in adults with a mood disorder. This is the secondary analysis of a 4-week, pilot, proof-of-concept, open-label study. Participants (N=19) exhibiting impairments in executive function with either major depressive disorder (MDD) or bipolar disorder (BD) were recruited. Liraglutide 1.8mg/day was added as an adjunct to existing pharmacotherapy. Structural magnetic resonance imaging (MRI) scanning was obtained at baseline and endpoint. Results showed that at endpoint there was significant weight loss (mean: 3.15%; p<0.001). Changes in frontal and striatal volumes were significantly correlated with changes in body mass index (BMI), indicating the weight loss was associated with volume increase in most regions (e.g. r=-0.561, p=0.042 in the left superior frontal area). After adjusting for intracranial volume, age, gender, and BMI, we observed significant changes from baseline to endpoint in multiple regions (e.g. RR: 1.011, p=0.049 in the left rostral middle frontal area). Changes in regional volumes were associated with improvement in executive function (e.g. r=0.698, p=0.003 for the right superior frontal area). Adjunctive liraglutide results in clinically significant weight loss, with corresponding improvement in cognitive function; changes in cognitive function were partially moderated by changes in brain morphometry, underscoring the interrelationship between weight and brain structure/function.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - Andre Zugman
- Interdiscipinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juhie Ahmed
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Danielle S Cha
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Mehala Subramaniapillai
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Julie Lovshin
- Division of Endocrinology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Jung G Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jae-Hon Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Psychiatry, Samsung Seoul Hospital, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | | | - Jason Newport
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Kang Sim
- Research Division, Institute of Mental Health, Singapore
| | - Maj Vinberg
- Psychiatric Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Rasgon
- Department of Psychiatry, Stanford University, Palo Alto, CA, United states
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| |
Collapse
|
37
|
van der Klaauw AA, Ziauddeen H, Keogh JM, Henning E, Dachi S, Fletcher PC, Farooqi IS. Oxytocin administration suppresses hypothalamic activation in response to visual food cues. Sci Rep 2017; 7:4266. [PMID: 28655900 PMCID: PMC5487325 DOI: 10.1038/s41598-017-04600-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to use functional neuroimaging to investigate whether oxytocin modulates the neural response to visual food cues in brain regions involved in the control of food intake. Twenty-four normal weight volunteers received intranasal oxytocin (24 IU) or placebo in a double-blind, randomized crossover study. Measurements were made forty-five minutes after dosing. On two occasions, functional MRI (fMRI) scans were performed in the fasted state; the blood oxygen level-dependent (BOLD) response to images of high-calorie foods versus low-calorie foods was measured. Given its critical role in eating behaviour, the primary region of interest was the hypothalamus. Secondary analyses examined the parabrachial nuclei and other brain regions involved in food intake and food reward. Intranasal oxytocin administration suppressed hypothalamic activation to images of high-calorie compared to low-calorie food (P = 0.0125). There was also a trend towards suppression of activation in the parabrachial nucleus (P = 0.0683). No effects of intranasal oxytocin were seen in reward circuits or on ad libitum food intake. Further characterization of the effects of oxytocin on neural circuits in the hypothalamus is needed to establish the utility of targeting oxytocin signalling in obesity.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and the NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Hisham Ziauddeen
- University of Cambridge Metabolic Research Laboratories and the NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and the NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and the NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Sekesai Dachi
- University of Cambridge Metabolic Research Laboratories and the NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Paul C Fletcher
- University of Cambridge Metabolic Research Laboratories and the NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and the NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
38
|
Geloneze B, de Lima-Júnior JC, Velloso LA. Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) in the Brain-Adipocyte Axis. Drugs 2017; 77:493-503. [PMID: 28233273 PMCID: PMC5357258 DOI: 10.1007/s40265-017-0706-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity of neural circuits that control food intake and energy balance in the hypothalamic nuclei explains some of the constraints involved in the prevention and treatment of obesity. Two major neuronal populations present in the arcuate nucleus control caloric intake and energy expenditure: one population co-expresses orexigenic agouti-related peptide (AgRP) and neuropeptide Y and the other expresses the anorexigenic anorectic neuropeptides proopiomelanocortin and cocaine- and amphetamine-regulated transcript (POMC/CART). In addition to integrating signals from neurotransmitters and hormones, the hypothalamic systems that regulate energy homeostasis are affected by nutrients. Fat-rich diets, for instance, elicit hypothalamic inflammation (reactive activation and proliferation of microglia, a condition named gliosis). This process generates resistance to the anorexigenic hormones leptin and insulin, contributing to the genesis of obesity. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) have increasingly been used to treat type 2 diabetes mellitus. One compound (liraglutide) was recently approved for the treatment of obesity. Although most studies suggest that GLP-1RAs promote weight loss mainly due to their inhibitory effect on food intake, other central effects that have been described for native GLP-1 and some GLP-1RAs in rodents and humans encourage future clinical trials to explore additional mechanisms that potentially underlie the beneficial effects observed with this drug class. In this article we review the most relevant data exploring the mechanisms involved in the effects of GLP-1RAs in the brain–adipocyte axis.
Collapse
Affiliation(s)
- Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes-LIMED, University of Campinas, UNICAMP, Campinas, 13084-970, Brazil.
| | - José Carlos de Lima-Júnior
- Laboratory of Investigation in Metabolism and Diabetes-LIMED, University of Campinas, UNICAMP, Campinas, 13084-970, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas-UNICAMP, Campinas, Brazil
| | - Lício A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas-UNICAMP, Campinas, Brazil
| |
Collapse
|
39
|
Camastra S, Astiarraga B, Tura A, Frascerra S, Ciociaro D, Mari A, Gastaldelli A, Ferrannini E. Effect of exenatide on postprandial glucose fluxes, lipolysis, and ß-cell function in non-diabetic, morbidly obese patients. Diabetes Obes Metab 2017; 19:412-420. [PMID: 27898183 DOI: 10.1111/dom.12836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/10/2016] [Accepted: 11/25/2016] [Indexed: 01/02/2023]
Abstract
AIMS To investigate the effect of exenatide on glucose disposal, insulin secretion, ß-cell function, lipolysis and hormone concentrations in non-diabetic, morbidly obese subjects under physiological conditions. MATERIALS AND METHODS Patients were assigned to exenatide 10 µg twice daily (EXE, n = 15) or control (CT, n = 15) for 3 months. Patients received a meal test/tracer study (MTT) to measure endogenous glucose production (EGP), rate of oral glucose appearance (RaO), insulin secretion rate (ISR), ß-cell function, hepatic insulin resistance (HIR) and adipose tissue insulin resistance (AT-IR) and insulin sensitivity (IS). RESULTS Post treatment, the EXE group showed a significant reduction in body weight ( P < .001). The postmeal time-course of glucose, insulin and ISR showed a lower peak between 60 and 180 minutes in phase with a reduction in RaO ( P < .01). After an initial similar suppression, EGP resumed at higher rates between 60 and 180 minutes ( P = .02) in EXE vs CT, while total RaO and EGP were similar throughout the MTT. In EXE, the postmeal glucagon, GLP1 and GIP responses were reduced ( P < .05). Fasting and postprandial lipolysis and ß-cell function were unaltered by active treatment. HIR, AT-IR and IS were all improved after exenatide treatment ( P < .05). CONCLUSIONS In morbidly obese non-diabetic subjects, exenatide causes weight loss, decreased postprandial glycaemia and glucagon response without changes in ß-cell function. These effects are consequent upon delayed oral glucose appearance in the circulation. Exenatide treatment is also associated with an improvement in hepatic, adipose tissue and whole-body IS with no influence on postprandial lipolysis.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Brenno Astiarraga
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Tura
- Institute of Neurosciences, C.N.R., Padua, Italy
| | - Silvia Frascerra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Mari
- Institute of Neurosciences, C.N.R., Padua, Italy
| | | | | |
Collapse
|
40
|
Muscogiuri G, DeFronzo RA, Gastaldelli A, Holst JJ. Glucagon-like Peptide-1 and the Central/Peripheral Nervous System: Crosstalk in Diabetes. Trends Endocrinol Metab 2017; 28:88-103. [PMID: 27871675 DOI: 10.1016/j.tem.2016.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/17/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is released in response to meals and exerts important roles in the maintenance of normal glucose homeostasis. GLP-1 is also important in the regulation of neurologic and cognitive functions. These actions are mediated via neurons in the nucleus of the solitary tract that project to multiple regions expressing GLP-1 receptors (GLP-1Rs). Treatment with GLP-1R agonists (GLP-1-RAs) reduces ischemia-induced hyperactivity, oxidative stress, neuronal damage and apoptosis, cerebral infarct volume, and neurologic damage, after cerebral ischemia, in experimental models. Ongoing human trials report a neuroprotective effect of GLP-1-RAs in Alzheimer's and Parkinson's disease. In this review, we discuss the role of GLP-1 and GLP-1-RAs in the nervous system with focus on GLP-1 actions on appetite regulation, glucose homeostasis, and neuroprotection.
Collapse
Affiliation(s)
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Amalia Gastaldelli
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA; Institute of Clinical Physiology of the National Research Council (CNR), Pisa, Italy.
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
42
|
Mansur RB, Ahmed J, Cha DS, Woldeyohannes HO, Subramaniapillai M, Lovshin J, Lee JG, Lee JH, Brietzke E, Reininghaus EZ, Sim K, Vinberg M, Rasgon N, Hajek T, McIntyre RS. Liraglutide promotes improvements in objective measures of cognitive dysfunction in individuals with mood disorders: A pilot, open-label study. J Affect Disord 2017; 207:114-120. [PMID: 27721184 DOI: 10.1016/j.jad.2016.09.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/16/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is a paucity of treatments that are capable of reliably and robustly improving cognitive function in adults with mood disorders. Glucagon-like peptide-1 is synthesized centrally and its receptors are abundantly expressed in neural circuits subserving cognitive function. We aimed to determine the effects of liraglutide, a GLP-1 receptor (GLP-1R) agonist, on objective measures of cognition in adults with a depressive or bipolar disorder. METHODS In this 4-week, pilot, open-label, domain-based study (e.g. cognition), we recruited 19 individuals with major depressive disorder (MDD) or bipolar disorder (BD) and an impairment in executive function, defined as a below-average performance in the Trail Making Test-B (TMTB). Liraglutide 1.8mg/day was added as an adjunct to existing pharmacotherapy. RESULTS Participants had significant increases from baseline to week 4 in the TMTB standard score (age and education corrected) (Cohen's d=0.64, p=0.009) and in a composite Z-score comprising multiple cognitive tests (i.e. Digit Symbol Substitution Test, Rey Auditory Verbal Learning Test, Stroop test) (Cohen's d=0.77, p<0.001). Neither changes in mood rating scales nor metabolic parameters were associated with changes in cognitive performance (all p>0.05); however baseline insulin resistance (IR) and body mass index (BMI) moderated the changes in the composite Z-score (p=0.021 and p=0.046, respectively), indicating larger responses in individuals with higher IR and BMI at baseline. There was a significant increase in lipase (p<0.001), but individual values were above the upper limit of normality. LIMITATIONS Small sample size, open-label design, lack of a placebo group. CONCLUSIONS Liraglutide was safe and well tolerated by a sample of non-diabetic individuals with mood disorders and had beneficial effects on objective measures of cognitive function. Larger studies with controlled trial designs are necessary to confirm and expand the results described herein.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - Juhie Ahmed
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Danielle S Cha
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Hanna O Woldeyohannes
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Mehala Subramaniapillai
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Julie Lovshin
- Division of Endocrinology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Jung G Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jae-Hon Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Department of Psychiatry, Samsung Seoul Hospital, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Kang Sim
- Research Division, Institute of Mental Health, Singapore
| | - Maj Vinberg
- Psychiatric Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Rasgon
- Department of Psychiatry, Stanford University, Palo Alto, CA, United States
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Chatterjee S, Ghosal S, Chatterjee S. Glucagon-like peptide-1 receptor agonists favorably address all components of metabolic syndrome. World J Diabetes 2016; 7:441-448. [PMID: 27795818 PMCID: PMC5065664 DOI: 10.4239/wjd.v7.i18.441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/28/2016] [Accepted: 08/06/2016] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiology of cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome (MetS). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. MetS is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of MetS. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome.
Collapse
|
44
|
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230:R95-R113. [PMID: 27496374 DOI: 10.1530/joe-16-0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada Department of PhysiologyUniversity of Toronto, Toronto, ON, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada
| |
Collapse
|
45
|
Kahathuduwa CN, Boyd LA, Davis T, O'Boyle M, Binks M. Brain regions involved in ingestive behavior and related psychological constructs in people undergoing calorie restriction. Appetite 2016; 107:348-361. [PMID: 27565377 DOI: 10.1016/j.appet.2016.08.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022]
Abstract
Human food intake is regulated by physiological energy homeostatic mechanisms and hedonic mechanisms. These are affected by both very short-term and longer-term calorie restriction (CR). To date, there are parallel discussions in the literature that fail to integrate across these disciplines and topics. First, much of the available neuroimaging research focusses on specific functional paradigms (e.g. reward, energy homeostasis). These paradigms often fail to consider more complex and inclusive models that examine how potential brain regions of interest interact to influence ingestion. Second, the paradigms used focus primarily on short-term CR (fasting) which has limited generalizability to clinical application. Finally, the behavioral literature, while frequently examining longer-term CR and related psychological constructs in the context of weight management (e.g. hedonic restraint, 'liking', 'wanting' and food craving), fails to adequately tie these phenomena to underlying neural mechanisms. The result is a less than complete picture of the brain's role in the complexity of the human experience of ingestion. This disconnect highlights a major limitation in the CR literature, where attempts are persistently made to exert behavioral control over ingestion, without fully understanding the complex bio behavioral systems involved. In this review we attempt to summarize all potential brain regions important for human ingestion, present a broad conceptual overview of the brain's multifaceted role in ingestive behavior, the human (psychological) experiences related to ingestion and to examine how these factors differ according to three forms of CR. These include short-term fasting, extended CR, and restrained eating. We aim to bring together the neuroimaging literature with the behavioral literature within a conceptual framework that may inform future translational research.
Collapse
Affiliation(s)
- Chanaka N Kahathuduwa
- Behavioral Medicine and Translational Research Lab, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Department of Physiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Lori A Boyd
- Behavioral Medicine and Translational Research Lab, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Tyler Davis
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michael O'Boyle
- Department of Human Development and Family Studies, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University, Health Sciences Center, Lubbock, TX, USA
| | - Martin Binks
- Behavioral Medicine and Translational Research Lab, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
46
|
Schlögl H, Müller K, Horstmann A, Miehle K, Püschel J, Villringer A, Pleger B, Stumvoll M, Fasshauer M. Leptin Substitution in Patients With Lipodystrophy: Neural Correlates for Long-term Success in the Normalization of Eating Behavior. Diabetes 2016; 65:2179-86. [PMID: 27207511 DOI: 10.2337/db15-1550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 11/13/2022]
Abstract
Lipodystrophy (LD) is a rare disease with a paucity of subcutaneous adipocytes and leptin deficiency. Patients often develop severe diabetes and, additionally, show a disturbed eating behavior with reduced satiety. The disturbed eating behavior can be restored by substitution with the leptin analog metreleptin. Long-term effects of metreleptin on resting state brain connectivity in treatment-naive patients with LD have not been assessed. In this study, resting state functional MRI scans and extensive behavioral testing assessing changes in hunger/satiety regulation were performed during the first 52 weeks of metreleptin treatment in nine patients with LD. Resting state connectivity significantly increased over the course of metreleptin treatment in three brain areas (i.e., hypothalamus, insula/superior temporal gyrus, medial prefrontal cortex). Behavioral tests demonstrated that perceived hunger, importance of eating, eating frequencies, and liking ratings of food pictures significantly decreased during metreleptin therapy. Taken together, leptin substitution was accompanied by long-term changes of hedonic and homeostatic central nervous networks regulating eating behavior as well as decreased hunger feelings and diminished incentive value of food. Future studies need to assess whether metreleptin treatment in LD restores physiological processes important for the development of satiety.
Collapse
Affiliation(s)
- Haiko Schlögl
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany Integrated Research and Treatment Center AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Konstanze Miehle
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Janett Püschel
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany Integrated Research and Treatment Center AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany Day Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - Burkhard Pleger
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany Department of Neurology, BG University Clinic Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Michael Stumvoll
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Mathias Fasshauer
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany Integrated Research and Treatment Center AdiposityDiseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Schlögl H, Horstmann A, Villringer A, Stumvoll M. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol 2016; 4:695-705. [PMID: 26838265 DOI: 10.1016/s2213-8587(15)00475-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
Recently, exciting progress has been made in understanding the role of the CNS in controlling eating behaviour and in the development of overeating. Regions and networks of the human brain involved in eating behaviour and appetite control have been identified with neuroimaging techniques such as functional MRI, PET, electroencephalography, and magnetoencephalography. Hormones that regulate our drive to eat (eg, leptin, insulin, and glucagon-like peptide-1) can affect brain function. Defects in central hunger signalling are present in many pathologies. On the basis of an understanding of brain mechanisms that lead to overeating, powerful neuroimaging protocols could be a future clinical approach to allow individually tailored treatment options for patients with obesity. The aim of our Review is to provide an overview of neuroimaging approaches for obesity (ie, neuroimaging study design, questions which can be answered by neuroimaging, and limitations of neuroimaging techniques), examine current models of central nervous processes regulating eating behaviour, summarise and review important neuroimaging studies investigating therapeutic approaches to treat obesity or to control eating behaviour, and to provide a perspective on how neuroimaging might lead to new therapeutic approaches to obesity.
Collapse
Affiliation(s)
- Haiko Schlögl
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany; IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Annette Horstmann
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University Hospital Leipzig, Leipzig, Germany; IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
48
|
Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, Filippaios A, Bowers J, Srnka A, Gavrieli A, Ko BJ, Liakou C, Kanyuch N, Tseleni-Balafouta S, Mantzoros CS. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia 2016; 59:954-65. [PMID: 26831302 PMCID: PMC4826792 DOI: 10.1007/s00125-016-3874-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/04/2016] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue that has been demonstrated to successfully treat diabetes and promote weight loss. The mechanisms by which liraglutide confers weight loss remain to be fully clarified. Thus, we investigated whether GLP-1 receptors are expressed in human brains and whether liraglutide administration affects neural responses to food cues in diabetic individuals (primary outcome). METHODS In 22 consecutively studied human brains, expression of GLP-1 receptors in the hypothalamus, medulla oblongata and parietal cortex was examined using immunohistochemistry. In a randomised (assigned by the pharmacy using a randomisation enrolment table), placebo-controlled, double-blind, crossover trial, 21 individuals with type 2 diabetes (18 included in analysis due to lack or poor quality of data) were treated with placebo and liraglutide for a total of 17 days each (0.6 mg for 7 days, 1.2 mg for 7 days, and 1.8 mg for 3 days). Participants were eligible if they had type 2 diabetes and were currently being treated with lifestyle changes or metformin. Participants, caregivers, people doing measurements and/or examinations, and people assessing the outcomes were blinded to the medication assignment. We studied metabolic changes as well as neurocognitive and neuroimaging (functional MRI) of responses to food cues at the clinical research centre of Beth Israel Deaconess Medical Center. RESULTS Immunohistochemical analysis revealed the presence of GLP-1 receptors on neurons in the human hypothalamus, medulla and parietal cortex. Liraglutide decreased activation of the parietal cortex in response to highly desirable (vs less desirable) food images (p < 0.001; effect size: placebo 0.53 ± 0.24, liraglutide -0.47 ± 0.18). No significant adverse effects were noted. In a secondary analysis, we observed decreased activation in the insula and putamen, areas involved in the reward system. Furthermore, we showed that increased ratings of hunger and appetite correlated with increased brain activation in response to highly desirable food cues while on liraglutide, while ratings of nausea correlated with decreased brain activation. CONCLUSIONS/INTERPRETATION For the first time, we demonstrate the presence of GLP-1 receptors in human brains. We also observe that liraglutide alters brain activity related to highly desirable food cues. Our data point to a central mechanism contributing to, or underlying, the effects of liraglutide on metabolism and weight loss. Future studies will be needed to confirm and extend these findings in larger samples of diabetic individuals and/or with the higher doses of liraglutide (3 mg) recently approved for obesity. TRIAL REGISTRATION ClinicalTrials.gov NCT01562678 FUNDING : The study was funded by Novo Nordisk, NIH UL1 RR025758 and 5T32HD052961.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA.
| | - Michail Sofopoulos
- Department of Pathology, St Savvas Anticancer-Oncology Hospital, Athens, Greece
| | - Michael A Tsoukas
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Fadime Dincer
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Bindiya Thakkar
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Ayse Sahin-Efe
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Andreas Filippaios
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Jennifer Bowers
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Alexandra Srnka
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Anna Gavrieli
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | - Byung-Joon Ko
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chrysoula Liakou
- Department of Pathology, St Savvas Anticancer-Oncology Hospital, Athens, Greece
| | - Nickole Kanyuch
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| | | | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Stoneman 820, Boston, MA, 02215, USA
| |
Collapse
|
49
|
de Boer SA, Lefrandt JD, Petersen JF, Boersma HH, Mulder DJ, Hoogenberg K. The effects of GLP-1 analogues in obese, insulin-using type 2 diabetes in relation to eating behaviour. Int J Clin Pharm 2015; 38:144-51. [PMID: 26597956 PMCID: PMC4733138 DOI: 10.1007/s11096-015-0219-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/07/2015] [Indexed: 02/07/2023]
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1 RA) added to insulin in type 2 diabetes patients have shown to lower body weight, improve glycaemic control and reduce total daily insulin dose in short term studies, although the individual response greatly varies. Objective To evaluate GLP-1 RA treatment on body weight, glycaemic control and total daily insulin dose in obese, insulin-using type 2 diabetes patients after 2 years follow-up in a real life setting and to explore a possible relation with eating behaviour. Setting The Martini Hospital and the University Medical Center in Groningen in the Netherlands. Methods Eligible patients were at least 18 years of age, were on insulin therapy and obese (BMI > 30 kg/m2), started GLP-1 RA treatment. At baseline eating behaviour was classified according to the validated Dutch Eating Behaviour Questionnaire. A 2 years follow-up was performed. Main outcome measures Body weight, HbA1c and total daily insulin dose. Results 151 Patients started with exenatide or liraglutide. 120 patients completed the 2 years follow-up. From baseline to 2 years, body weight (mean ± SD) changed from 117.9 ± 22.1 to 107.9 ± 22.9 kg (P < 0.0001), HbA1c (median, IQR) changed from 7.9 (7.2–8.9) to 7.6 (6.9–8.3) % [63 (55–74) to 60 (52–67) mmol/mol] (P < 0.0001), total daily insulin dose changed from 90 (56–150) to 60 (0–100) Units/day (P < 0.0001). Weight change differed between eating behaviour groups (P < 0.001) in which external eating behaviour (n = 17) resulted in the smallest decline (−3.1 %) and restrained (n = 41) in the greatest (−10.3 %) in comparison with emotional (n = 37, −8.5 %) and indifferent (n = 25, −9.6 %) eating behaviours. Conclusion Two year of GLP-1 RA treatment resulted in a sustained reduction of weight, HbA1c and total daily insulin dose in obese, insulin-using type 2 diabetes patients in a real life setting. Largest weight loss was achieved in patients with a predominant restraint eating pattern while a predominant external eating pattern resulted in the smallest weight reduction.
Collapse
Affiliation(s)
- Stefanie Amarens de Boer
- Department of Internal Medicine, Martini Hospital, Groningen, The Netherlands.,Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joop Daniel Lefrandt
- Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Japke Frida Petersen
- Department of Internal Medicine, Martini Hospital, Groningen, The Netherlands.,Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrikus Hessel Boersma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Douwe Johannes Mulder
- Department of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Hoogenberg
- Department of Internal Medicine, Martini Hospital, Groningen, The Netherlands.
| |
Collapse
|
50
|
Daniele G, Iozzo P, Molina-Carrion M, Lancaster J, Ciociaro D, Cersosimo E, Tripathy D, Triplitt C, Fox P, Musi N, DeFronzo R, Gastaldelli A. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System. Diabetes 2015; 64:3406-12. [PMID: 26116695 PMCID: PMC6908417 DOI: 10.2337/db14-1718] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/21/2015] [Indexed: 01/01/2023]
Abstract
Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.
Collapse
Affiliation(s)
| | | | | | - Jack Lancaster
- University of Texas Health Science Center, San Antonio, TX
| | | | | | | | | | - Peter Fox
- University of Texas Health Science Center, San Antonio, TX
| | - Nicolas Musi
- University of Texas Health Science Center, San Antonio, TX
| | - Ralph DeFronzo
- University of Texas Health Science Center, San Antonio, TX
| | - Amalia Gastaldelli
- University of Texas Health Science Center, San Antonio, TX Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|