1
|
Durumutla HB, Haller A, Noble G, Prabakaran AD, McFarland K, Latimer H, Akinborewa O, Namjou-Khales B, Hui DY, Quattrocelli M. The human glucocorticoid receptor variant rs6190 promotes blood cholesterol and atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625727. [PMID: 39677678 PMCID: PMC11642783 DOI: 10.1101/2024.11.27.625727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Elevated cholesterol poses a significant cardiovascular risk, particularly in older women. The glucocorticoid receptor (GR), a crucial nuclear transcription factor that regulates the metabolism of virtually all major nutrients, harbors a still undefined role in cholesterol regulation. Here, we report that a coding single nucleotide polymorphism (SNP) in the gene encoding the GR, rs6190, associated with increased cholesterol levels in women according to UK Biobank and All Of Us datasets. In SNP-genocopying transgenic mice, we found that the rs6190 SNP enhanced hepatic GR activity to transactivate Pcsk9 and Bhlhe40, negative regulators of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) receptors in liver respectively. Accordingly, in mice the rs6190 SNP was sufficient to elevate circulating cholesterol levels across all lipoprotein fractions and the risk and severity of atherosclerotic lesions on the pro-atherogenic hAPOE*2/*2 background. The SNP effect on atherosclerosis was blocked by in vivo knockdown of Pcsk9 and Bhlhe40 in liver. Remarkably, we found that this mechanism was conserved in human hepatocyte-like cells using CRISPR-engineered, SNP-genocopying human induced pluripotent stem cells (hiPSCs). Taken together, our study leverages a non-rare human variant to uncover a novel GR-dependent mechanism contributing to atherogenic risk, particularly in women.
Collapse
Affiliation(s)
- Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Dept. Pediatrics; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - April Haller
- Deparent of Pathology; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Greta Noble
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Bahram Namjou-Khales
- Dept. Pediatrics; University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David Y. Hui
- Dept. Pediatrics; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
Iqbal Z, Vasan SK, Fachim H, Warner-Levy J, Donn RP, Ammori BJ, Heald AH, Soran H, Syed AA. Are weight loss and metabolic outcomes of bariatric surgery influenced by candidate glucocorticoid receptor gene polymorphisms? A prospective study. Adipocyte 2024; 13:2369776. [PMID: 38982594 PMCID: PMC11238915 DOI: 10.1080/21623945.2024.2369776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Bariatric surgery is the most effective treatment for severe obesity. There can be variation in the degree of weight reduction following bariatric surgery. It is unknown whether single nucleotide polymorphisms (SNPs) in the glucocorticoid receptor locus (GRL) affect postoperative weight loss and metabolic outcomes. MATERIALS/METHODS We studied the association between selected candidate SNPs and postoperative weight loss and metabolic outcomes in patients with severe obesity undergoing bariatric surgery. The polymorphisms rs41423247 (Bcl1), rs56149945 (N363S) and rs6189/rs6190 (ER22/23EK) were analysed. RESULTS The 139 participants included 95 women (68.3%) and had a median (interquartile range) age of 53.0 (46.0-60.0) years and mean (SD) weight of 140.8 (28.8) kg and body mass index of 50.3 (8.6) kg/m2. At baseline, 59 patients had type 2 diabetes (T2D), 60 had hypertension and 35 had obstructive sleep apnoea syndrome treated with continuous positive airway pressure (CPAP). 84 patients (60.4%) underwent gastric bypass and 55 (39.6%) underwent sleeve gastrectomy. There were no significant differences in weight loss, glycated haemoglobin (HbA1c) or lipid profile categorized by genotype status, sex or median age. There was significant weight reduction after bariatric surgery with a postoperative BMI of 34.1 (6.8) kg/m2 at 24 months (p < 0.001). CONCLUSION While GRL polymorphisms with a known deleterious effect on adipose tissue mass and function may have a small, additive effect on the prevalence of obesity and related metabolic disorders in the population, we suggest that the relatively weak biological influence of these SNPs is readily overcome by bariatric surgery.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Senthil Kandaswamy Vasan
- Endocrinology and Diabetes, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | - John Warner-Levy
- Endocrinology and Diabetes, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Rachelle P. Donn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Basil J. Ammori
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian H. Heald
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Akheel A. Syed
- Endocrinology and Diabetes, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| |
Collapse
|
3
|
Chen Y, Lin H, Xu J, Zhou X. Estimated glucose disposal rate is correlated with increased depression: a population-based study. BMC Psychiatry 2024; 24:786. [PMID: 39529068 PMCID: PMC11556201 DOI: 10.1186/s12888-024-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Recent studies have identified a correlation between insulin resistance (IR) and depression. This study aims to explore the correlation between estimated glucose disposal rate (eGDR), a practical and noninvasive measure for assessing IR, and depression in the general population. METHODS In this population-based cross-sectional study, data from 28,444 adults aged 18 years old or older in the NHANES during the period from 1999 to 2018 were analyzed. The correlation between eGDR and depression was examined through multivariate logistic regression analyses, subgroup analyses, restricted cubic spline, and interaction tests. Furthermore, a mediation analysis was conducted to elucidate the role of the atherogenic index of plasma (AIP) in mediating the effect of eGDR on depression. RESULTS Multivariate logistic regression analysis and restricted cubic splines analysis indicated that eGDR can exhibit a linearly correlation with depression (OR = 0.913; 95% CI: 0.875, 0.953). Subjects in eGDR6-8 and eGDR > 8 groups had a decrease risk of depression as 25.4% and 41.5% than those in the eGDR < 4 group. This negative correlation was more pronounced in those with obesity. Mediation analysis indicated that AIP mediated 9.6% of the correlation between eGDR and depression. CONCLUSIONS eGDR was linear negatively correlated with depression, with AIP playing a mediating role. This study provides a novel perspective on the mechanism connecting IR to depression. Managing IR and monitoring AIP may contribute to alleviating depression.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang Province, P. R. China
| | - Hao Lin
- Department of Gastroenterology, Pingyang Hospital of Wenzhou Medical University, Pingyang County, Wenzhou, Zhejiang Province, P. R. China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang Province, P. R. China
| | - Xinhe Zhou
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
4
|
Aung TT, Wah W, Chakraborti A, Garg V. Subclinical hypothyroidism and metabolic syndrome in psychiatric patients: A systematic literature review and meta-analysis. Australas Psychiatry 2024; 32:470-476. [PMID: 39046130 DOI: 10.1177/10398562241267149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVE The systematic review evaluated the association of subclinical hypothyroidism (SCH) with metabolic syndrome (MetS) and specific MetS components in people with major psychiatric disorders. METHODS A systematic review and meta-analysis was conducted to evaluate the association of SCH with MetS and its components in people with major psychiatric conditions. RESULTS Five studies incorporating 24,158 participants met the inclusion criteria. All five studies comprised patients with depression and/or anxiety. Three studies incorporating 3365 participants were suitable for the meta-analysis. The pooled Odds Ratio (OR) of MetS was 3.46 (95% Confidence Interval/CI = 1.39-8.62) in major depressive disorder (MDD) and anxiety disorders patients with concurrent SCH compared to those without SCH. Meta-analysis showed a significant positive association between SCH and high body mass index (OR = 2.58, 95%CI = 1.33-5.01), high fasting plasma glucose (OR = 3.05, 95%CI = 1.79-5.18) and low high-density lipoprotein cholesterol (OR = 2.30, 95%CI = 1.82-2.92). CONCLUSIONS These findings suggest a significant positive association between MetS and SCH in people with MDD and anxiety disorders. This review informed the clinical implications of MetS in MDD with comorbid SCH and the importance of early diagnosis and treatment for SCH and MetS in psychiatric patients.
Collapse
Affiliation(s)
- The The Aung
- Launceston General Hospital, Launceston, Tasmania, Australia
| | - Win Wah
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Arnob Chakraborti
- Tasmanian Mental Health Service, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Vikas Garg
- Acute Mental Health Unit, Darling Downs Hospital and Health Service, Toowoomba, Queensland, Australia
- Rural Clinical School, The University of Queensland, Toowoomba, Queensland, Australia; and
- Gold Coast Campus, Griffith University School of Medicine and Dentistry, Queensland, Australia
| |
Collapse
|
5
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
6
|
Huang Q, Wang D, Chen S, Tang L, Ma C. Association of METS-IR index with depressive symptoms in US adults: A cross-sectional study. J Affect Disord 2024; 355:355-362. [PMID: 38554881 DOI: 10.1016/j.jad.2024.03.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND An association between insulin resistance (IR) and depression has been identified in recent years. The purpose of this study was to examine the relationship between IR and depression in the general population. METHODS The population for this cross-sectional study consisted of adults participating in the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. Insulin sensitivity was assessed using the Metabolic Score for IR (METS-IR) index, while depression was evaluated using the Patient Health Questionnaire (PHQ)-9. Logistic regression analyses, subgroup analyses, and dose-response curves were conducted to assess the association between the METS-IR index and depression. RESULTS A total of 13,157 adults aged over 20 years were included in this study. After adjusting for potential confounders, it was observed that each unit increase in the METS-IR index was associated with a 1.1 percentage point increase in the prevalence of depression (OR = 1.011; 95 % CI: 1.008, 1.014). Patients in the 4th quartile of the METS-IR index had a higher likelihood of depression compared to those in the 1st quartile (OR = 1.386, 95 % CI: 1.239, 1.549). Stratified analyses demonstrated consistent results in all subgroups, except for men, patients under 40 years of age, and those with a history of cancer. Dose-response curves indicated a nonlinear relationship between the METS-IR index and the risk of depression, with an inflection point value of 32.443 according to threshold effect analysis. CONCLUSIONS Our findings suggest that higher METS-IR scores are associated with an increased likelihood of experiencing depressive symptoms among U.S. adults.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Denghong Wang
- Department of Traditional Chinese Medicine and Rehabilitation, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430311, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lei Tang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Chaoyang Ma
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
7
|
Mohd Ahmed H, Abdel Aziz K, Al Ammari A, Galadari M, Alsaadi A, Alhassani A, Al Marzooqi F, AlAhbabi M, Alsheryani H, Bahayan M, Ahmed R, Alameri S, Stip E, Aly El-Gabry D. Prevalence and risk factors for metabolic syndrome in schizophrenia, schizoaffective, and bipolar disorder. Int J Psychiatry Clin Pract 2024; 28:35-44. [PMID: 38329470 DOI: 10.1080/13651501.2024.2310847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/23/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Metabolic Syndrome (MetS) is a risk for developing cardiovascular diseases and its prevalence is especially high in psychiatric patients. To date, there is limited data from the United Arab Emirates (UAE) on the prevalence of MetS. Therefore, we aimed to investigate its prevalence and possible risk factors in a large sample of psychiatric patients in the UAE. METHODS A cross-sectional study was conducted at Al-Ain Hospital, in Al-Ain City, UAE. We collected demographic and clinical data on patients diagnosed with schizophrenia, schizoaffective, and bipolar affective disorder in the period between January 2017 and December 2020. This included their secondary diagnosis (psychiatric or medical), vital signs (heart rate, systolic and diastolic blood pressure, Body Mass Index [BMI]), metabolic parameters (fasting blood glucose, cholesterol, triglycerides, low-density lipoprotein, high-density lipoproteins), and prescribed medications. We used the American Association of Clinical Endocrinology (AACE) criteria to diagnose MetS. RESULTS We included 889 subjects and of these, 79.8% (N = 709) had a BMI ≥25 kg/m2 and 9.8% (N = 87) had no abnormal metabolic parameters. Overall, 28.1% (N = 250) had MetS with no statistical difference between the three groups. Fasting blood glucose levels and abnormally elevated triglycerides were significant predictors for MetS. CONCLUSION Our study found that around one in three patients had MetS irrespective of the three diagnoses. Some variables were significant predictors for MetS. Our findings were consistent with other studies and warrant the need for regular screening and management of abnormal metabolic parameters.
Collapse
Affiliation(s)
- Hind Mohd Ahmed
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Karim Abdel Aziz
- Department of Psychiatry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Abeer Al Ammari
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Mohammed Galadari
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Aaisha Alsaadi
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Aysha Alhassani
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Fatima Al Marzooqi
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Mohammed AlAhbabi
- Behavioural Science Institute, Al-Ain Hospital, Al-Ain, United Arab Emirates
| | - Hind Alsheryani
- Department of Psychiatry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Meera Bahayan
- Department of Psychiatry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Reem Ahmed
- Department of Psychiatry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sara Alameri
- Department of Psychiatry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Emmanuel Stip
- Department of Psychiatry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Psychiatry, University of Montréal, Montreal, Canada
- Institut Universitaire en Santé Mentale de Montréal Université de Montréal, Montreal, Canada
| | - Dina Aly El-Gabry
- Department of Psychiatry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Okasha Institute of Psychiatry, Neuropsychiatry Department, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Vu T, Smith JA. The pathophysiology and management of depression in cardiac surgery patients. Front Psychiatry 2023; 14:1195028. [PMID: 37928924 PMCID: PMC10623009 DOI: 10.3389/fpsyt.2023.1195028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background Depression is common in the cardiac surgery population. This contemporary narrative review aims to explore the main pathophysiological disturbances underpinning depression specifically within the cardiac surgery population. The common non-pharmacological and pharmacological management strategies used to manage depression within the cardiac surgery patient population are also explored. Methods A total of 1291 articles were identified through Ovid Medline and Embase. The findings from 39 studies were included for qualitative analysis in this narrative review. Results Depression is associated with several pathophysiological and behavioral factors which increase the likelihood of developing coronary heart disease which may ultimately require surgical intervention. The main pathophysiological factors contributing to depression are well characterized and include autonomic nervous system dysregulation, excessive inflammation and disruption of the hypothalamic-pituitary-adrenal axis. There are also several behavioral factors in depressed patients associated with the development of coronary heart disease including poor diet, insufficient exercise, poor compliance with medications and reduced adherence to cardiac rehabilitation. The common preventative and management modalities used for depression following cardiac surgery include preoperative and peri-operative education, cardiac rehabilitation, cognitive behavioral therapy, religion/prayer/spirituality, biobehavioral feedback, anti-depressant medications, and statins. Conclusion This contemporary review explores the pathophysiological mechanisms leading to depression following cardiac surgery and the current management modalities. Further studies on the preventative and management strategies for postoperative depression in the cardiac surgery patient population are warranted.
Collapse
Affiliation(s)
- Tony Vu
- Department of Cardiothoracic Surgery, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Julian A. Smith
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Cardiothoracic Surgery, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Ahdi M, Gerards MC, Smits PH, Meesters EW, Brandjes DPM, Nieuwdorp M, Gerdes VEA. Genetic glucocorticoid receptor variants differ between ethnic groups but do not explain variation in age of diabetes onset, metabolic and inflammation parameters in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1200183. [PMID: 37732126 PMCID: PMC10507347 DOI: 10.3389/fendo.2023.1200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
Aims The effect of excess glucocorticoid receptor (GR) stimulation through glucocorticoid medication or cortisol on glucose metabolism is well established. There are genetic GR variants that result in increased or decreased GR stimulation. We aimed to determine the prevalence of genetic GR variants in different ethnic groups in a cohort of patients with type 2 diabetes, and we aimed to determine their association with age of diabetes onset and metabolic and inflammation parameters. Methods A cross-sectional analysis was performed in a multiethnic cohort (n = 602) of patients with established type 2 diabetes. Polymorphisms in the GR gene that have previously been associated with altered glucocorticoid sensitivity (TthIIII, ER22/23EK N363S, BclI and 9β) were determined and combined into 6 haplotypes. Associations with age of diabetes onset, HbA1c, hs-CRP and lipid values were evaluated in multivariate regression models. Results The prevalence of the SNPs of N363S and BclI was higher in Dutch than in non-Dutch patients. We observed a lower prevalence of the SNP 9β in Dutch, South(East) Asian and Black African patients versus Turkish and Moroccan patients. We did not detect an association between SNPs and diabetes age of onset or metabolic parameters. We only found a trend for lower age of onset and higher HbA1c in patients with 1 or 2 copies of haplotype 3 (TthIIII + 9β). Conclusions The prevalence of genetic GR variants differs between patients of different ethnic origins. We did not find a clear association between genetic GR variants and age of diabetes onset or metabolic and inflammation parameters. This indicates that the clinical relevance of GR variants in patients with established type 2 diabetes is limited.
Collapse
Affiliation(s)
- Mohamed Ahdi
- Department of Vascular Medicine, Amsterdam University Medical Centers (UMCs), Amsterdam, Netherlands
| | - Maaike C. Gerards
- Department of Vascular Medicine, Amsterdam University Medical Centers (UMCs), Amsterdam, Netherlands
| | - Paul H.M. Smits
- Department of Molecular Biology, Atalmedial, Amsterdam, Netherlands
| | - Eelco W. Meesters
- Department of Internal Medicine, Spaarne Hospital, Hoofddorp, Netherlands
| | - Dees P. M. Brandjes
- Department of Vascular Medicine, Amsterdam University Medical Centers (UMCs), Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers (UMCs), Amsterdam, Netherlands
| | - Victor E. A. Gerdes
- Department of Vascular Medicine, Amsterdam University Medical Centers (UMCs), Amsterdam, Netherlands
- Department of Internal Medicine, Spaarne Hospital, Hoofddorp, Netherlands
| |
Collapse
|
10
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
11
|
Lin J, Yang R, Zhang Y, Hou Y, Yang H, Zhou X, Liu T, Yang Q, Wang Y. The mediation effects of metabolic and immune-inflammation factors on the depression-premature coronary heart disease association. J Affect Disord 2023; 331:434-441. [PMID: 36990287 DOI: 10.1016/j.jad.2023.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Accumulated evidence confirmed depression was positively associated with CHD. But evidence of the association between depression and premature CHD is still unknown. OBJECTIVES To explore the association between depression and premature CHD, and to investigate whether and to what extent the association is mediated by metabolic factors and systemic immune-inflammation index (SII). METHODS In this large population-based cohort study based on the UK Biobank, 176,428 CHD-free (mean age: 52.70) adults were followed up for 15 years to detect incident premature CHD. Depression and premature CHD (mean age: female, 54.53; male, 48.13) were ascertained from self-report data and linked hospital-based clinical diagnosis. Metabolic factors included central obesity, hypertension, dyslipidemia, hypertriglyceridemia, hyperglycemia, and hyperuricemia. Systemic inflammation was evaluated by calculating SII, which equals platelet count (/L) × neutrophil count (/L) / lymphocyte count (/L). Data were analyzed using Cox proportional hazards models and generalized structural equation model (GSEM). RESULTS During follow-up (median: 8.0 years, interquartile range: 4.0 to 14.0 years), 2990 participants developed premature CHD (1.7 %). The adjusted hazard ratio (HR) and 95 % confidence interval (CI) of premature CHD related to depression were 1.72 (1.44-2.05). The association between depression and premature CHD was 32.9 % mediated by comprehensive metabolic factors (β = 0.24, 95 % CI: 0.17-0.32) and 2.7 % by SII (β = 0.02, 95 % CI = 0.01-0.04), respectively. Concerning metabolic factors, the strongest indirect association was for central obesity, accounting for 11.0 % of the association between depression and premature CHD (β = 0.08, 95 % CI: 0.05-0.11). CONCLUSIONS Depression was associated with an increased risk of premature CHD. Our study provided evidence that metabolic and inflammatory factors might play a mediating role in the association between depression and premature CHD, especially central obesity.
Collapse
Affiliation(s)
- Jing Lin
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Rongrong Yang
- School of Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yabing Hou
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hongxi Yang
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
12
|
Azadi S, Azarpira N, Roozbeh J, Ezzatzadegan-Jahromi S, Raees-Jalali GA, Foroughinia F, Karimzadeh I. Genetic polymorphisms of glucocorticoid receptor and their association with new-onset diabetes mellitus in kidney transplant recipients. Gene 2023; 856:147138. [PMID: 36574937 DOI: 10.1016/j.gene.2022.147138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The variability in developing New-onset Diabetes Mellitus After Transplantation (NODAT), together with previously well-established interindividual variation in glucocorticoid sensitivity, led us to hypothesize that polymorphisms in the NR3C1 gene encoding glucocorticoid receptor may alter glucose balance in kidney transplant recipients. This study aimed to evaluate the association of three functional polymorphisms, BclI, N363S, and ER22/23EK, on the NR3C1 gene with NODAT in kidney allograft recipients. METHODS From Jun 2020 to July 2022 in Shiraz, 52 patients with NODAT (case group) and 52 non-diabetic kidney transplant recipients (control group) were randomly screened and recruited in this case-control study. The PCR-RFLP technique determined the genotypes of BclI, N363S, and ER22/23EK polymorphisms. RESULTS The allelic frequencies of the mutant alleles of BclI, N363S, and ER22/23EK polymorphisms in all patients were 0.36, 0.03, and 0.009, respectively. BclI mutant genotypes (CG and GG) were significantly associated with an increased risk of NODAT (P = 0.016), while the two other polymorphisms disclosed no significant association with NODAT development. In the case group, no significant association was detected between the onset time of NODAT and studied polymorphisms, including BclI (P = 0.43), N363S (P = 0.30), and ER22/23EK. P value was not reported for the last polymorphism because all patients with NODAT had the wild-type genotype (GG/GG) and performing statistical analysis was not feasible. Among studied demographic/clinical/paraclinical variables, factors such as higher mean trough level of tacrolimus during the first month after transplantation and higher mean daily dose of prednisolone significantly linked with NODAT development. CONCLUSION Our data suggested that BclI polymorphism significantly affects NODAT development among Iranian kidney allograft recipients.
Collapse
Affiliation(s)
- Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamshid Roozbeh
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Nephro-urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shahrokh Ezzatzadegan-Jahromi
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Nephro-urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghanbar Ali Raees-Jalali
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farzaneh Foroughinia
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Бровкина СС, Джериева ИС, Волкова НИ, Шкурат ТП, Гончарова ЗА, Машкина ЕВ, Решетников ИБ. [Association of the structure of the glucocorticoid receptor and single nucleotide NR3C1 gene polymorphisms with metabolic disorders]. PROBLEMY ENDOKRINOLOGII 2023; 69:50-58. [PMID: 36842077 PMCID: PMC9978877 DOI: 10.14341/probl13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 02/27/2023]
Abstract
Glucocorticoid therapy is widely used in the treatment of various pathologies. Sensitivity to glucocorticoids (GC) has a serious impact not only on the effectiveness of their action, but also on the severity of side effects, the formation of risk factors and the development of cardiovascular diseases (CVD). Variability of sensitivity to GC causes different phenotypes and severity of metabolic disorders underlying CVD. Among them, one can distinguish a decrease in muscle mass and strength, obesity, glucose and lipid metabolism impairment, and others. Glucocorticoids carry out their effects by binding to the glucocorticoid receptor (GR), and therefore this is considered a critical point in their action. This review presents data on the significance of the glucocorticoid receptor structure, examines the main single nucleotide polymorphisms (SNP) of the NR3C1 gene associated with hypersensitivity or relative resistance to glucocorticoids in the context of metabolic disorders and the development of CVD. The association of the four most studied SNP of the GR gene with metabolic risks is described in detail: BclI (rs41423247), N363S (rs56149945), ER22/23EK (rs6189/rs6190), GR-9ß (rs6198). Their determination can contribute to clarifying the prognosis of both the effectiveness of GC and the development of metabolic disorders, and subsequent early correction of CVD risk factors.
Collapse
|
14
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
15
|
Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081912. [PMID: 36009459 PMCID: PMC9405671 DOI: 10.3390/biomedicines10081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Early diagnosis and elimination of risk factors are crucial for better managing CVDs. Atherosclerosis, whose development might be associated with glucocorticoids (GCs), is a critical factor in the development of carotid artery (CA) stenosis and most other CVDs. Aim: To investigate the association of Tth111I, N363S, and ER22/23EK-NR3C1 polymorphisms and the incidence of CA stenosis. Methods: The study group consisted of 117 patients diagnosed with coronary artery disease (CAD) and CA stenosis and 88 patients with CAD and ruled out CA stenosis. Genomic DNA was extracted from blood, and genotyping was carried out using Tth111I, N363S, and ER22/23EK-NR3C1 polymorphism sequencing. Results: No significant association between studied polymorphisms and the incidence or the severity of CA stenosis in the Polish population with CAD was found. Conclusion: This is the first study that proves that common NR3C1 gene variants do not influence CA stenosis and probably are not associated with atherosclerosis. The search for genes that can act as prognostic markers in predicting CA stenosis is still ongoing.
Collapse
|
16
|
Lengton R, Iyer AM, van der Valk ES, Hoogeveen EK, Meijer OC, van der Voorn B, van Rossum EFC. Variation in glucocorticoid sensitivity and the relation with obesity. Obes Rev 2022; 23:e13401. [PMID: 34837448 PMCID: PMC9285588 DOI: 10.1111/obr.13401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
Increasing evidence points to a relation between increased glucocorticoid (GC) exposure and weight gain. In support, long-term cortisol measurements using hair analysis revealed that many individuals with obesity appear to have cortisol values in the high physiological range. The mechanisms behind this relationship need to be determined in order to develop targeted therapy to reach sustainable weight loss in these subgroups. The effect of GCs is not only determined by the plasma concentration of GCs but also by individual differences in GC sensitivity and the target tissue, which can be analyzed by functional GC assays. GC sensitivity is influenced by multiple genetic and acquired (e.g., disease-related) factors, including intracellular GC availability, hormone binding affinity, and expression levels of the GC receptors and their isoforms, as well as factors involved in the modulation of gene transcription. Interindividual differences in GC sensitivity also play a role in the response to exogenous GCs, with respect to both therapeutic and adverse effects. Accordingly, in this review, we summarize current knowledge on mechanisms that influence GC sensitivity and their relationships with obesity and discuss personalized treatment options targeting the GC receptor.
Collapse
Affiliation(s)
- Robin Lengton
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ellen K Hoogeveen
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bibian van der Voorn
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
17
|
NR3C1 Glucocorticoid Receptor Gene Polymorphisms Are Associated with Membranous and IgA Nephropathies. Cells 2021; 10:cells10113186. [PMID: 34831409 PMCID: PMC8625873 DOI: 10.3390/cells10113186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 01/27/2023] Open
Abstract
Glomerular diseases (GNs) are responsible for approximately 20% of chronic kidney diseases. Glucocorticoid receptor gene (NR3C1) single nucleotide polymorphisms (SNPs) are implicated in differences in predisposition to autoimmunity and steroid sensitivity. The aim of this study was to evaluate the frequency of the NR3C1 SNPs—rs6198, rs41423247 and rs17209237—in 72 IgA nephropathy (IgAN) and 38 membranous nephropathy (MN) patients compared to 175 healthy controls and to correlate the effectiveness of treatment in IgAN and MN groups defined as a reduction of proteinuria <1 g/24 h after 12 months of treatment. Real-time polymerase chain reactions and SNP array-based typing were used. We found significant rs41423247 association with MN (p = 0.026); a significant association of rs17209237 with eGFR reduction after follow-up period in all patients with GNs (p = 0.021) and with the degree of proteinuria after 1 year of therapy in all patients with a glomerulopathy (p = 0.013) and IgAN (p = 0.021); and in the same groups treated with steroids (p = 0.021; p = 0.012). We also observed the association between rs41423247 and IgAN histopathologic findings (p = 0.012). In conclusion, our results indicate that NR3C1 polymorphisms may influence treatment susceptibility and clinical outcome in IgAN and MN.
Collapse
|
18
|
Kokkinopoulou I, Diakoumi A, Moutsatsou P. Glucocorticoid Receptor Signaling in Diabetes. Int J Mol Sci 2021; 22:ijms222011173. [PMID: 34681832 PMCID: PMC8537243 DOI: 10.3390/ijms222011173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Stress and depression increase the risk of Type 2 Diabetes (T2D) development. Evidence demonstrates that the Glucocorticoid (GC) negative feedback is impaired (GC resistance) in T2D patients resulting in Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity and hypercortisolism. High GCs, in turn, activate multiple aspects of glucose homeostasis in peripheral tissues leading to hyperglycemia. Elucidation of the underlying molecular mechanisms revealed that Glucocorticoid Receptor (GR) mediates the GC-induced dysregulation of glucose production, uptake and insulin signaling in GC-sensitive peripheral tissues, such as liver, skeletal muscle, adipose tissue, and pancreas. In contrast to increased GR peripheral sensitivity, an impaired GR signaling in Peripheral Blood Mononuclear Cells (PBMCs) of T2D patients, associated with hyperglycemia, hyperlipidemia, and increased inflammation, has been shown. Given that GR changes in immune cells parallel those in brain, the above data implicate that a reduced brain GR function may be the biological link among stress, HPA hyperactivity, hypercortisolism and hyperglycemia. GR polymorphisms have also been associated with metabolic disturbances in T2D while dysregulation of micro-RNAs—known to target GR mRNA—has been described. Collectively, GR has a crucial role in T2D, acting in a cell-type and context-specific manner, leading to either GC sensitivity or GC resistance. Selective modulation of GR signaling in T2D therapy warrants further investigation.
Collapse
|
19
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Villela TR, Barra CB, Belisário AR, Luizon MR, Simões E Silva AC, Silva IN. Glucocorticoid receptor Gene (NR3C1) Polymorphisms and Haplotypes in patients with congenital adrenal hyperplasia. Mol Cell Endocrinol 2021; 536:111399. [PMID: 34298075 DOI: 10.1016/j.mce.2021.111399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lifelong glucocorticoid (GC) replacement is the mainstay treatment of congenital adrenal hyperplasia (CAH) due to classic 21-hydroxylase deficiency (21-OHD). Challenges posed by therapeutic management of these patients are well known, but novel insights into the variability in clinical response to GC highlight a role for single nucleotide polymorphisms (SNPs) of the glucocorticoid receptor gene (NR3C1). AIM To assess whether six commonly studied NR3C1 SNPs, which were previously associated with modified response to GC, are associated with CAH. We further assessed the linkage disequilibrium (LD) among these NR3C1 SNPs and their combination into haplotypes. METHODS Genotypes were determined by Taqman allele discrimination assays for Tth111I (rs10052957), ER22 (rs6189), 23 EK (rs6190), N363S (rs56149945), BclI (rs41423247) and 9β (rs6198) in a Brazilian cohort of 102 unrelated 21-OHD patients and 163 unrelated healthy subjects (controls). Haplotypes were estimated using Haplo.stats, and LD among SNPs using Haploview. RESULTS Heterozygous subjects for Tth111I were more frequent in 21-OHD patients (P = 0.004), while heterozygous for BclI were more frequent in controls (P = 0.049). We found a strong LD among the six NR3C1 SNPs, and four out of six common haplotypes contained the Tth111I-variant. Although we found no significant differences in overall haplotype analysis, the BclI-haplotype was less frequent among 21-OHD patients (P = 0.0180). CONCLUSIONS BclI-haplotype was less common and heterozygous for Tth111I were more frequent in 21-OHD patients, while heterozygous for BclI were more frequent in controls. Our novel findings may contribute to further clinical studies on the prognostic value of NR3C1 haplotypes towards individualized treatment for 21-OHD patients.
Collapse
Affiliation(s)
- Thais Ramos Villela
- Pediatric Endocrinology Division, Hospital das Clínicas da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Cristina Botelho Barra
- Pediatric Endocrinology Division, Hospital das Clínicas da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Department of Pediatrics, Medical School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - André Rolim Belisário
- Interdisciplinary Medical Research Lab, Medical School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cristina Simões E Silva
- Department of Pediatrics, Medical School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Interdisciplinary Medical Research Lab, Medical School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ivani Novato Silva
- Pediatric Endocrinology Division, Hospital das Clínicas da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Department of Pediatrics, Medical School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiovascular Health and Disease. Cells 2021; 10:cells10082155. [PMID: 34440924 PMCID: PMC8394287 DOI: 10.3390/cells10082155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids (GCs) are essential in regulating functions and homeostasis in many biological systems and are extensively used to treat a variety of conditions associated with immune/inflammatory processes. GCs are among the most powerful drugs for the treatment of autoimmune and inflammatory diseases, but their long-term usage is limited by severe adverse effects. For this reason, to envision new therapies devoid of typical GC side effects, research has focused on expanding the knowledge of cellular and molecular effects of GCs. GC-induced leucine zipper (GILZ) is a GC-target protein shown to mediate several actions of GCs, including inhibition of the NF-κB and MAPK pathways. GILZ expression is not restricted to immune cells, and it has been shown to play a regulatory role in many organs and tissues, including the cardiovascular system. Research on the role of GILZ on endothelial cells has demonstrated its ability to modulate the inflammatory cascade, resulting in a downregulation of cytokines, chemokines, and cellular adhesion molecules. GILZ also has the capacity to protect myocardial cells, as its deletion makes the heart, after a deleterious stimulus, more susceptible to apoptosis, immune cell infiltration, hypertrophy, and impaired function. Despite these advances, we have only just begun to appreciate the relevance of GILZ in cardiovascular homeostasis and dysfunction. This review summarizes the current understanding of the role of GILZ in modulating biological processes relevant to cardiovascular biology.
Collapse
|
22
|
Abstract
Synthetic glucocorticoids are widely used for their anti-inflammatory and immunosuppressive actions. A possible unwanted effect of glucocorticoid treatment is suppression of the hypothalamic-pituitary-adrenal axis, which can lead to adrenal insufficiency. Factors affecting the risk of glucocorticoid induced adrenal insufficiency (GI-AI) include the duration of glucocorticoid therapy, mode of administration, glucocorticoid dose and potency, concomitant drugs that interfere with glucocorticoid metabolism, and individual susceptibility. Patients with exogenous glucocorticoid use may develop features of Cushing's syndrome and, subsequently, glucocorticoid withdrawal syndrome when the treatment is tapered down. Symptoms of glucocorticoid withdrawal can overlap with those of the underlying disorder, as well as of GI-AI. A careful approach to the glucocorticoid taper and appropriate patient counseling are needed to assure a successful taper. Glucocorticoid therapy should not be completely stopped until recovery of adrenal function is achieved. In this review, we discuss the factors affecting the risk of GI-AI, propose a regimen for the glucocorticoid taper, and make suggestions for assessment of adrenal function recovery. We also describe current gaps in the management of patients with GI-AI and make suggestions for an approach to the glucocorticoid withdrawal syndrome, chronic management of glucocorticoid therapy, and education on GI-AI for patients and providers.
Collapse
Affiliation(s)
- Alessandro Prete
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Vohra M, Sharma AR, Satyamoorthy K, Rai PS. Pharmacogenomic considerations for repurposing of dexamethasone as a potential drug against SARS-CoV-2 infection. Per Med 2021; 18:389-398. [PMID: 34086487 PMCID: PMC8186476 DOI: 10.2217/pme-2020-0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Immunomodulatory and analgesic effects of dexamethasone are clinically well established, and this synthetic corticosteroid acts as an agonist of glucocorticoid receptors. Early results of the RECOVERY Trial from the United Kingdom and others suggest certain benefits of dexamethasone against COVID-19 chronic patients. The efforts have been acknowledged by World Health Organization with an interim guideline to use in patients with a severe and critical illness. The inherent genetic variations in genes such as CYP3A5, NR3C1, NR3C2, etc., involved in the pharmacokinetic and pharmacodynamic processes may influence dexamethasone's effects as an anti-inflammatory drug. Besides, the drug may influence transcriptome or metabolic changes in the individuals. In the present review, we summarize the reported genetic variations that impact dexamethasone response and discuss dexamethasone-induced changes in transcriptome and metabolome that may influence potential treatment outcome against COVID-19.
Collapse
Affiliation(s)
- Manik Vohra
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
24
|
Milligan Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D. Chronic stress and Alzheimer's disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 2021; 96:2209-2228. [PMID: 34159699 DOI: 10.1111/brv.12750] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022]
Abstract
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic-pituitary-adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals' risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - Anthony White
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - John Haynes
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Victor Villemagne
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Simon M Laws
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Giuseppe Verdile
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - David Groth
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| |
Collapse
|
25
|
Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle. Nutrients 2021; 13:nu13062120. [PMID: 34205537 PMCID: PMC8234096 DOI: 10.3390/nu13062120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
In clinical practice, differences in glucocorticoid sensitivity among healthy subjects may influence the outcome and any adverse effects of glucocorticoid therapy. Thus, a fast and accurate methodology that could enable the classification of individuals based on their tissue glucocorticoid sensitivity would be of value. We investigated the usefulness of untargeted plasma metabolomics in identifying a panel of metabolites to distinguish glucocorticoid-resistant from glucocorticoid-sensitive healthy subjects who do not carry mutations in the human glucocorticoid receptor (NR3C1) gene. Applying a published methodology designed for the study of glucocorticoid sensitivity in healthy adults, 101 healthy subjects were ranked according to their tissue glucocorticoid sensitivity based on 8:00 a.m. serum cortisol concentrations following a very low-dose dexamethasone suppression test. Ten percent of the cohort, i.e., 11 participants, on each side of the ranking, with no NR3C1 mutations or polymorphisms, were selected, respectively, as the most glucocorticoid-sensitive and most glucocorticoid-resistant of the cohort to be analyzed and compared with untargeted blood plasma metabolomics using gas chromatography–mass spectrometry (GC–MS). The acquired metabolic profiles were evaluated using multivariate statistical analysis methods. Nineteen metabolites were identified with significantly lower abundance in the most sensitive compared to the most resistant group of the cohort, including fatty acids, sugar alcohols, and serine/threonine metabolism intermediates. These results, combined with a higher glucose, sorbitol, and lactate abundance, suggest a higher Cori cycle, polyol pathway, and inter-tissue one-carbon metabolism rate and a lower fat mobilization rate at the fasting state in the most sensitive compared to the most resistant group. In fact, this was the first study correlating tissue glucocorticoid sensitivity with serine/threonine metabolism. Overall, the observed metabolic signature in this cohort implies a worse cardiometabolic profile in the most glucocorticoid-sensitive compared to the most glucocorticoid-resistant healthy subjects. These findings offer a metabolic signature that distinguishes most glucocorticoid-sensitive from most glucocorticoid-resistant healthy subjects to be further validated in larger cohorts. Moreover, they support the correlation of tissue glucocorticoid sensitivity with insulin resistance and metabolic syndrome-associated pathways, further emphasizing the need for nutritionists and doctors to consider the tissue glucocorticoid sensitivity in dietary and exercise planning, particularly when these subjects are to be treated with glucocorticoids.
Collapse
|
26
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
27
|
Savas M, Wester VL, van der Voorn B, Iyer AM, Koper JW, van den Akker ELT, van Rossum EFC. Anthropometrics and Metabolic Syndrome in Relation to Glucocorticoid Receptor Polymorphisms in Corticosteroid Users. Neuroendocrinology 2021; 111:1121-1129. [PMID: 33311027 DOI: 10.1159/000513703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Corticosteroids are widely prescribed and their use has been linked to adverse cardiometabolic outcomes. A pivotal role in the action of corticosteroids is reserved for the glucocorticoid receptor (GR). Here, we assessed the relationship of glucocorticoid sensitivity-altering GR polymorphisms with anthropometrics and metabolic syndrome (MetS) in corticosteroid users. METHODS In this population-based cohort study (Lifelines), we genotyped 10,621 adult participants for GR hypersensitive (1/2 copies BclI and/or N363S) and GR resistant (1/2 copies ER22/23EK and/or 9β) variants. We assessed the relationship between functional GR polymorphisms with BMI, waist circumference (WC), and MetS in users of corticosteroids. RESULTS Overall corticosteroid use was associated with a significantly higher BMI and WC in GR wild-type (WT) users (BMI, +0.63 kg/m2 [0.09-1.16], p = 0.022; WC, +2.03 cm [0.61-3.44], p = 0.005) and GR hypersensitive (BMI, +0.66 kg/m2 [95% CI, 0.31-1.01]; WC, +2.06 cm [1.13-2.98], both p < 0.001) but not in GR resistant users. Significantly higher WC in GR resistant carriers was observed only for inhaled corticosteroid users. With respect to MetS, again only GR WT users (odds ratio [OR] 1.44 [1.07-1.94], p = 0.017) and GR hypersensitives (OR 1.23 [95% CI, 1.00-1.50], p = 0.046) were more likely to have MetS; even more pronounced in only inhaled corticosteroid users (GR WT users, OR 1.64 [1.06-2.55], p = 0.027; GR hypersensitive users, OR 1.43 [1.08-1.91], p = 0.013). CONCLUSIONS Polymorphisms associated with increased GR sensitivity and WT GR are related to increased BMI, WC, and an increased MetS presence in corticosteroid users, especially of the inhaled types, when compared to nonusers. The adverse effects of corticosteroid use are less pronounced in users harboring GR resistant polymorphisms.
Collapse
Affiliation(s)
- Mesut Savas
- Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent L Wester
- Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bibian van der Voorn
- Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anand M Iyer
- Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan W Koper
- Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Pediatric Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,
- Obesity Center CGG (Centrum Gezond Gewicht), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,
| |
Collapse
|
28
|
Nikolac Perkovic M, Sagud M, Tudor L, Konjevod M, Svob Strac D, Pivac N. A Load to Find Clinically Useful Biomarkers for Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:175-202. [PMID: 33834401 DOI: 10.1007/978-981-33-6044-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is heterogeneous and complex disease with diverse symptoms. Its neurobiological underpinning is still not completely understood. For now, there are still no validated, easy obtainable, clinically useful noninvasive biomarker(s) or biomarker panel that will be able to confirm a diagnosis of depression, its subtypes and improve diagnostic procedures. Future multimodal preclinical and clinical research that involves (epi)genetic, molecular, cellular, imaging, and other studies is necessary to advance our understanding of the role of monoamines, GABA, HPA axis, neurotrophins, metabolome, and glycome in the pathogenesis of depression and their potential as diagnostic, prognostic, and treatment response biomarkers. These studies should be focused to include the first-episode depression and antidepressant drug-naïve patients with large sample sizes to reduce variability in different biological and clinical parameters. At present, metabolomics study revealed with high precision that a neurometabolite panel consisting of plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) might represent clinically useful biomarkers of MDD.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
29
|
Castro-Vale I, Carvalho D. The Pathways between Cortisol-Related Regulation Genes and PTSD Psychotherapy. Healthcare (Basel) 2020; 8:healthcare8040376. [PMID: 33019527 PMCID: PMC7712185 DOI: 10.3390/healthcare8040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 01/30/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) only develops after exposure to a traumatic event in some individuals. PTSD can be chronic and debilitating, and is associated with co-morbidities such as depression, substance use, and cardiometabolic disorders. One of the most important pathophysiological mechanisms underlying the development of PTSD and its subsequent maintenance is a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis. The corticotrophin-releasing hormone, cortisol, glucocorticoid receptor (GR), and their respective genes are some of the mediators of PTSD's pathophysiology. Several treatments are available, including medication and psychotherapies, although their success rate is limited. Some pharmacological therapies based on the HPA axis are currently being tested in clinical trials and changes in HPA axis biomarkers have been found to occur in response not only to pharmacological treatments, but also to psychotherapy-including the epigenetic modification of the GR gene. Psychotherapies are considered to be the first line treatments for PTSD in some guidelines, even though they are effective for some, but not for all patients with PTSD. This review aims to address how knowledge of the HPA axis-related genetic makeup can inform and predict the outcomes of psychotherapeutic treatments.
Collapse
Affiliation(s)
- Ivone Castro-Vale
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence:
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, São João Hospital University Centre, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| |
Collapse
|
30
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
31
|
Insights into glucocorticoid responses derived from omics studies. Pharmacol Ther 2020; 218:107674. [PMID: 32910934 DOI: 10.1016/j.pharmthera.2020.107674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
Glucocorticoid drugs are commonly used in the treatment of several conditions, including autoimmune diseases, asthma and cancer. Despite their widespread use and knowledge of biological pathways via which they act, much remains to be learned about the cell type-specific mechanisms of glucocorticoid action and the reasons why patients respond differently to them. In recent years, human and in vitro studies have addressed these questions with genomics, transcriptomics and other omics approaches. Here, we summarize key insights derived from omics studies of glucocorticoid response, and we identify existing knowledge gaps related to mechanisms of glucocorticoid action that future studies can address.
Collapse
|
32
|
Bastin M, Andreelli F. [Corticosteroid-induced diabetes: Novelties in pathophysiology and management]. Rev Med Interne 2020; 41:607-616. [PMID: 32782164 DOI: 10.1016/j.revmed.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
Diabetes frequently occurs during corticosteroid treatment, sometimes necessitating urgent therapeutic management, with insulin for example. Corticosteroids induce insulin resistance in the liver, adipocytes and skeletal muscle, and have direct deleterious effects on insulin secretion. The development of insulin resistance during corticosteroid treatment, and the insufficient adaptation of insulin secretion, are key elements in the pathophysiology of corticosteroid-induced diabetes. The capacity of pancreatic β-cells to increase insulin secretion in response to insulin resistance is partly genetically determined. A familial history of type 2 diabetes is, therefore, a major risk factor for diabetes development on corticosteroid treatment. Corticosteroid treatments are usually initiated at a fairly high dose, which is subsequently decreased to the lowest level sufficient to achieve disease control. Pharmacological management of diabetes is needed in patients with blood glucose levels exceeding 2.16 g/l (12 mmol/l) and insulin therapy can be started when blood glucose levels are higher than 3.6 g/l (20 mmol/l) with clinical symptoms of diabetes. Insulin can then be replaced with oral hypoglycemic compounds when both blood glucose levels and corticosteroid dose have decreased. Patient education is essential, particularly for the management of hypoglycemia when corticosteroids are withdrawn or their dose tapered.
Collapse
Affiliation(s)
- M Bastin
- CHU Pitié-Salpêtrière, Service de diabétologie-métabolismes, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - F Andreelli
- CHU Pitié-Salpêtrière, Service de diabétologie-métabolismes, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
| |
Collapse
|
33
|
Nuclear Receptors as Regulators of Pituitary Corticotroph Pro-Opiomelanocortin Transcription. Cells 2020; 9:cells9040900. [PMID: 32272677 PMCID: PMC7226830 DOI: 10.3390/cells9040900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis plays a critical role in adaptive stress responses and maintaining organism homeostasis. The pituitary corticotroph is the central player in the HPA axis and is regulated by a plethora of hormonal and stress related factors that synergistically interact to activate and temper pro-opiomelanocortin (POMC) transcription, to either increase or decrease adrenocorticotropic hormone (ACTH) production and secretion as needed. Nuclear receptors are a family of highly conserved transcription factors that can also be induced by various physiologic signals, and they mediate their responses via multiple targets to regulate metabolism and homeostasis. In this review, we summarize the modulatory roles of nuclear receptors on pituitary corticotroph cell POMC transcription, describe the unique and complex role these factors play in hypothalamic–pituitary–adrenal axis (HPA) regulation and discuss potential therapeutic targets in disease states.
Collapse
|
34
|
Müller LM, Kienitz T, Deutschbein T, Riester A, Hahner S, Burger-Stritt S, Berr CM, Oßwald A, Braun L, Rubinstein G, Reincke M, Quinkler M. Glucocorticoid Receptor Polymorphisms Influence Muscle Strength in Cushing's Syndrome. J Clin Endocrinol Metab 2020; 105:5587858. [PMID: 31613324 DOI: 10.1210/clinem/dgz052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT An important clinical feature of Cushing's syndrome (CS) is proximal muscle myopathy caused by glucocorticoid induced protein metabolism. However, interindividual differences cannot be explained solely by the pure extent of hypercortisolemia. OBJECTIVE To evaluate the effects of glucocorticoid receptor (GR) polymorphisms (BclI, N363S, ER22/23EK and A3669G), which influence peripheral glucocorticoid sensitivity on muscular function in endogenous CS. METHODS 205 patients with proven endogenous CS (128 central, 77 adrenal) from 3 centers of the German Cushing's Registry and 125 subjects, in whom CS was ruled out, were included. All subjects were assessed for grip strength (via hand grip dynamometer) and performed a chair-rising test (CRT). DNA samples were obtained from peripheral blood leukocytes for GR genotyping. RESULTS In patients with active CS, normalized handgrip strength of the dominant and nondominant hand was higher in A3669G minor allele than in wildtype carriers (P = .006 and P = .021, respectively). CS patients in remission and ruled-out CS showed no differences in handgrip strength regarding A3669G minor allele and wildtype carriers. Male CS patients harboring the ER22/23EK wildtype presented lower hand grip strength than minor allele carriers (P = .049 dominant hand; P = .027 nondominant hand). The other polymorphisms did not influence handgrip strength. CRT showed no differences regarding GR polymorphisms carrier status. CONCLUSION Handgrip strength seems to be more susceptible to hypercortisolism in A3669G wildtype than in A3669G minor allele carriers. This might partially explain the inter-individual differences of glucocorticoid-induced myopathy in patients with endogenous CS. ER22/23EK polymorphism seems to exert sex-specific differences.
Collapse
Affiliation(s)
- Lisa Marie Müller
- Endocrinology in Charlottenburg, Berlin, Germany
- Clinical Endocrinology CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tina Kienitz
- Endocrinology in Charlottenburg, Berlin, Germany
- Clinical Endocrinology CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timo Deutschbein
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, Würzburg, Germany
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Stefanie Hahner
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, Würzburg, Germany
| | - Stephanie Burger-Stritt
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, Würzburg, Germany
| | - Christina M Berr
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Andrea Oßwald
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Leah Braun
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - German Rubinstein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | | |
Collapse
|
35
|
Moradi M, Gharesouran J, Ghafouri-Fard S, Noroozi R, Talebian S, Taheri M, Rezazadeh M. Role of NR3C1 and GAS5 genes polymorphisms in multiple sclerosis. Int J Neurosci 2019; 130:407-412. [PMID: 31724909 DOI: 10.1080/00207454.2019.1694019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Multiple sclerosis (MS) as a progressive chronic disease of the central nervous system (CNS) is characterized by demyelination and axonal loss. Results of genetic studies and clinical trials have proved a key role for the immune system in the pathogenesis of MS. Glucocorticoids (GR) are regarded as potent therapeutic compounds for autoimmune and inflammatory diseases which act through their receptors encoded by Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1) gene. Meanwhile, the long non-coding RNA (lncRNA) growth arrest specific 5 (GAS5) interacts with GR through binding to the DNA-binding domain (DBD) region and reduces GR transcriptional activity.Methods: The purpose of our study was to evaluate the association between MS and polymorphisms within NR3C1 (rs6189/6190, rs56149945, rs41423247) and GAS5 (rs55829688) genes in 300 relapsing-remitting MS patients and 300 healthy subjects.Results: We demonstrated significant differences in distribution of genotype, allele and haplotype frequencies of rs6189, rs41423247 and rs55829688 between the study groups.Conclusion: Our data may suggest that rs6189, rs41423247 and rs55829688 are associated with the increased risk of MS development. Future studies are needed to verify our results in larger sample sizes and elaborate the underlying mechanisms for contribution of these variants in MS disease.
Collapse
Affiliation(s)
- Mohsen Moradi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019; 8:cells8101227. [PMID: 31601045 PMCID: PMC6829609 DOI: 10.3390/cells8101227] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor is a member of the nuclear receptor family that controls many distinct gene networks, governing various aspects of development, metabolism, inflammation, and the stress response, as well as other key biological processes in the cardiovascular system. Recently, research in both animal models and humans has begun to unravel the profound complexity of glucocorticoid signaling and convincingly demonstrates that the glucocorticoid receptor has direct effects on the heart and vessels in vivo and in vitro. This research has contributed directly to improving therapeutic strategies in human disease. The glucocorticoid receptor is activated either by the endogenous steroid hormone cortisol or by exogenous glucocorticoids and acts within the cardiovascular system via both genomic and non-genomic pathways. Polymorphisms of the glucocorticoid receptor are also reported to influence the progress and prognosis of cardiovascular disease. In this review, we provide an update on glucocorticoid signaling and highlight the critical role of this signaling in both physiological and pathological conditions of the cardiovascular system. With increasing in-depth understanding of glucocorticoid signaling, the future is promising for the development of targeted glucocorticoid treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tie-Ning Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jessica K Knight
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Brzozowska MM, Kepreotis S, Tsang F, Fuentes- Patarroyo SX. Improvement in cognitive impairment following the successful treatment of endogenous Cushing's syndrome-a case report and literature review. BMC Endocr Disord 2019; 19:68. [PMID: 31253144 PMCID: PMC6599300 DOI: 10.1186/s12902-019-0401-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endogenous Cushing's syndrome, a rare endocrine disorder, characterised by chronic cortisol hypersecretion, results in neuropsychiatric disturbances and in cognitive deficits, which are only partially reversible after the biochemical remission of the disease. CASE PRESENTATION We report a case of a woman with a profound cognitive deficit and a gradual functional decline caused by Cushing's disease of at least 10 years duration. The neurosurgical resection of her 2 mm adrenocorticotropic hormone (ACTH) secreting pituitary microadenoma resulted in a successful resolution of the patient's hypercortisolism and a significant recovery of her neurocognitive function. The patient's progress was evaluated using serial clinical observations, functional assessments, Mini-Mental Status exams and through the formal neuropsychological report. Furthermore, the patient's recovery of her neurocognitive function was reflected by a sustained improvement in the patient's specific structural brain abnormalities on radiological imaging. CONCLUSIONS This report illustrates the importance of early detection and treatment of Cushing's syndrome in order to prevent neurocognitive impairment and neuropsychiatric disorders which are associated with an endogenous cortisol hypersecretion. The long term adverse effects of severe hypercortisolaemia on brain function and the pathophysiological mechanisms responsible for the structural and functional changes in brain anatomy due to glucocorticoid excess are reviewed.
Collapse
Affiliation(s)
- Malgorzata Monika Brzozowska
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW Australia
- Garvan institute of Medical Research, Darlinghurst, NSW Australia
| | - Sacha Kepreotis
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
| | - Fiona Tsang
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
| | | |
Collapse
|
38
|
Leventhal SM, Lim D, Green TL, Cantrell AE, Cho K, Greenhalgh DG. Uncovering a multitude of human glucocorticoid receptor variants: an expansive survey of a single gene. BMC Genet 2019; 20:16. [PMID: 30736733 PMCID: PMC6368729 DOI: 10.1186/s12863-019-0718-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Background Glucocorticoids are commonly used in the clinical setting for their potent anti-inflammatory effects; however, significant variations in response to treatment have been demonstrated. Although the underlying mechanisms have yet to be fully understood, this variable response may be a result of alterations in human glucocorticoid receptor (hGR) expression and function. In addition to hGRα, the biologically active isoform, a screening of current databases and publications revealed five alternative splice isoforms and hundreds of variants that have been reported to date. Many of these changes in the hGR-coding gene, NR3C1, have been linked to pathophysiology. However, many studies focus on evaluating hGR expression in vitro or detecting previously reported variants. Results In this study, blood from healthy volunteers, burn and asthma patients, as well as from peripheral blood mononuclear cells isolated from leukoreduced donor whole blood, were screened for NR3C1 isoforms. We identified more than 1500 variants, including an additional 21 unique splice isoforms which contain 15 new cryptic exons. A dynamic database, named the Universal hGR (UhGR), was created to annotate and visualize the variants. Conclusion This identification of naturally occurring and stress-induced hGR isoforms, as well as the establishment of an hGR-specific database, may reveal new patterns or suggest areas of interest that will lead to the improved understanding of the human stress response system. Electronic supplementary material The online version of this article (10.1186/s12863-019-0718-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stacey M Leventhal
- Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Debora Lim
- Department of Surgery, University of California, Davis, Sacramento, California, USA
| | - Tajia L Green
- Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Anna E Cantrell
- Department of Surgery, University of California, Davis, Sacramento, California, USA
| | - Kiho Cho
- Shriners Hospitals for Children Northern California, Sacramento, California, USA. .,Department of Surgery, University of California, Davis, Sacramento, California, USA.
| | - David G Greenhalgh
- Shriners Hospitals for Children Northern California, Sacramento, California, USA. .,Department of Surgery, University of California, Davis, Sacramento, California, USA.
| |
Collapse
|
39
|
Nandam LS, Brazel M, Zhou M, Jhaveri DJ. Cortisol and Major Depressive Disorder-Translating Findings From Humans to Animal Models and Back. Front Psychiatry 2019; 10:974. [PMID: 32038323 PMCID: PMC6987444 DOI: 10.3389/fpsyt.2019.00974] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a global problem for which current pharmacotherapies are not completely effective. Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has long been associated with MDD; however, the value of assessing cortisol as a biological benchmark of the pathophysiology or treatment of MDD is still debated. In this review, we critically evaluate the relationship between HPA axis dysfunction and cortisol level in relation to MDD subtype, stress, gender and treatment regime, as well as in rodent models. We find that an elevated cortisol response to stress is associated with acute and severe, but not mild or atypical, forms of MDD. Furthermore, the increased incidence of MDD in females is associated with greater cortisol response variability rather than higher baseline levels of cortisol. Despite almost all current MDD treatments influencing cortisol levels, we could find no convincing relationship between cortisol level and therapeutic response in either a clinical or preclinical setting. Thus, we argue that the absolute level of cortisol is unreliable for predicting the efficacy of antidepressant treatment. We propose that future preclinical models should reliably produce exaggerated HPA axis responses to acute or chronic stress a priori, which may, or may not, alter baseline cortisol levels, while also modelling the core symptoms of MDD that can be targeted for reversal. Combining genetic and environmental risk factors in such a model, together with the interrogation of the resultant molecular, cellular, and behavioral changes, promises a new mechanistic understanding of MDD and focused therapeutic strategies.
Collapse
Affiliation(s)
- L. Sanjay Nandam
- Mental Health Unit, Prince Charles Hospital, Brisbane, QLD, Australia
- *Correspondence: L. Sanjay Nandam, ; Dhanisha J. Jhaveri,
| | - Matthew Brazel
- Mental Health Unit, Prince Charles Hospital, Brisbane, QLD, Australia
- Department of Psychiatry, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Mei Zhou
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dhanisha J. Jhaveri
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: L. Sanjay Nandam, ; Dhanisha J. Jhaveri,
| |
Collapse
|
40
|
Abstract
Primary generalized glucocorticoid resistance or Chrousos syndrome is a rare disorder, which affects all tissues expressing the human glucocorticoid receptor. It is characterized by generalized, partial tissue insensitivity to glucocorticoids caused by genetic defects in the NR3C1 gene. We and others have applied standard methods of molecular and structural biology to investigate the molecular mechanisms and conformational alterations through which the mutant glucocorticoid receptors lead to the broad spectrum of clinical manifestations of Chrousos syndrome. The ever-increasing application of novel technologies, including the next-generation sequencing, will enhance our knowledge in factors that influence the glucocorticoid signal transduction in a positive or negative fashion.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
41
|
Firouzabadi N, Nouraei H, Mandegary A. Genetic Variant of Glucocorticoid Receptor Gene at rs41423247 and Its Association with Major Depressive Disorder: A Case-Control Study. Galen Med J 2018; 7:e1181. [PMID: 34466443 PMCID: PMC8344155 DOI: 10.22086/gmj.v0i0.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022] Open
Abstract
Background Extensive distribution of glucocorticoid receptors (GCRs) in different brain areas along with disruption of hypothalamic-pituitary-adrenal (HPA) axis in major depressive disorder (MDD) and the cross talk between GCRs and HPA proposes genetic variants of GC receptor genes as potential contributors in MDD. Among the GCR polymorphisms, rs41423247, rs6195 and rs6189/rs6190 are suggested to be involved in MDD. Materials and Methods We investigated the association between rs41423247, rs6195 and rs6189/rs6190 and MDD in a case-control study. One hundred MDD patients along with 100 healthy individuals were enrolled in this study. genetic variants of rs41423247, rs6195 and rs6189/rs6190 were determined in extracted DNAs using PCR-RFLP. Result The prevalence of heterozygote and mutant carriers of rs41423247 were significantly and by 1.9 fold greater in cases versus controls (P=0.033; OR; 95%CI=1.9; 1.1-3.3). Moreover, carriers of the mutant (G) allele were by 1.8 fold more prevalent in MDD group (P=0.013; OR;95%CI=1.8; 1.1-2.8). Conclusion Specific carriers of rs41423247 might be more susceptible to developing MDD. This supports the hypothesis of the involvement of GCRs in pathophysiology of MDD.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Nouraei
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
42
|
Olczak E, Kuryłowicz A, Wicik Z, Kołodziej P, Cąkała-Jakimowicz M, Buyanovskaya O, Ślusarczyk P, Mossakowska M, Puzianowska-Kuźnicka M. Glucocorticoid receptor (NR3C1) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians. Exp Gerontol 2018; 116:20-24. [PMID: 30553025 DOI: 10.1016/j.exger.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Polymorphism of the glucocorticoid receptor gene (NR3C1) may modify protein abundance or function and therefore disturb human homeostasis. METHODS Variant frequencies of the three NR3C1 polymorphisms, rs2963154, rs10515522 and rs2918418, selected in silico as associated with longevity, was analyzed in 552 DNA samples from 95 to 106-year-old individuals and in 284 samples of cord blood DNA from newborns. RESULTS Frequencies of the TT genotypes of rs2963154 and rs10515522, and of the rs291841 CC genotype, were higher in the long-lived study subjects (p = 0.002, p = 0.016 and p = 0.028, respectively). In the long-lived cohort, the rs2963154 CC genotype was associated with higher concentrations of total (p = 0.007) and high-density cholesterol (p = 0.039). The rs10515522 CC genotype was associated with a higher concentration of total cholesterol (p = 0.049). The rs2918418 GG genotype was associated with higher concentrations of total (p = 0.03) and low-density cholesterol (p = 0.03). None of the polymorphisms was associated with fasting glucose, C-reactive protein levels and white blood count, prevalence of diabetes, stroke, myocardial infarction, or cognitive function. However, carriers of the rs10515522 minor allele had significantly better survival rates than carriers of other genotypes. CONCLUSION NR3C1 polymorphisms modify cholesterol levels, and may affect the survival rates of individuals in their tenth and eleventh decades of life.
Collapse
Affiliation(s)
- Elżbieta Olczak
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-776 Warsaw, Poland
| | - Alina Kuryłowicz
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Zofia Wicik
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Paulina Kołodziej
- Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | | | - Olga Buyanovskaya
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Przemyslaw Ślusarczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland..
| | - Malgorzata Mossakowska
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland..
| | - Monika Puzianowska-Kuźnicka
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland; Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
43
|
Lucafò M, Franca R, Selvestrel D, Curci D, Pugnetti L, Decorti G, Stocco G. Pharmacogenetics of treatments for inflammatory bowel disease. Expert Opin Drug Metab Toxicol 2018; 14:1209-1223. [PMID: 30465611 DOI: 10.1080/17425255.2018.1551876] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Inflammatory bowel disease is a chronic inflammation of the gut whose pathogenesis is still unclear. Although no curative therapy is currently available, a number of drugs are used in induction and maintenance therapy; however, for most of these drugs, a high inter-individual variability in response is observed. Among the factors of this variability, genetics plays an important role. Areas covered: This review summarizes the results of pharmacogenetic studies, considering the most important drugs used and in particular aminosalycilates, glucocorticoids, thiopurines, monoclonal antibodies and thalidomide. Most studies used a candidate gene approach, even if significant breakthroughs have been obtained recently from applying genome-wide studies. When available, also investigations considering epigenetics and pharmacogenetic dosing guidelines have been included. Expert opinion: Only for thiopurines, genetic markers identified as predictors of efficacy or adverse events have allowed the development of dosing guidelines. For the other drugs, encouraging results are available and great expectations rely on the study of epigenetics and integration with pharmacokinetic information, especially useful for biologics. However, to improve therapy of IBD patients with these drugs, for implementation in the clinics of pharmacogenetics, informatic clinical decision support systems and training about pharmacogenetics of health providers are needed.
Collapse
Affiliation(s)
- Marianna Lucafò
- a Experimental and Clinical Pharmacology Unit , National Cancer Institute - Centro di Riferimento Oncologico , Aviano , Italy.,b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy
| | - Raffaella Franca
- b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy.,c Department of Medical, Surgical and Health Sciences , University of Trieste , Trieste , Italy
| | - Davide Selvestrel
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Debora Curci
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Letizia Pugnetti
- d PhD School in Science of Reproduction and Development , University of Trieste , Trieste , Italy
| | - Giuliana Decorti
- b Institute for Maternal and Child Health IRCCS Burlo Garofolo , Diagnostics Department Trieste , Italy.,c Department of Medical, Surgical and Health Sciences , University of Trieste , Trieste , Italy
| | - Gabriele Stocco
- e Department of Life Sciences , University of Trieste , Trieste , Italy
| |
Collapse
|
44
|
Hessels AC, Tuin J, Sanders JSF, Huitema MG, van Rossum EFC, Koper JW, van Beek AP, Stegeman CA, Rutgers A. Clinical outcome in anti-neutrophil cytoplasmic antibody–associated vasculitis and gene variants of 11β-hydroxysteroid dehydrogenase type 1 and the glucocorticoid receptor. Rheumatology (Oxford) 2018; 58:447-454. [DOI: 10.1093/rheumatology/key319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Arno C Hessels
- Department of Internal Medicine/Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janneke Tuin
- Department of Internal Medicine/Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Stephan F Sanders
- Department of Internal Medicine/Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Minke G Huitema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth F C van Rossum
- Department of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan W Koper
- Department of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine/Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Penninx BWJH, Lange SMM. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 29946213 PMCID: PMC6016046 DOI: 10.31887/dcns.2018.20.1/bpenninx] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Psychiatric patients have a greater risk of premature mortality, predominantly due to cardiovascular diseases (CVDs). Convincing evidence shows that psychiatric conditions are characterized by an increased risk of metabolic syndrome (MetS), a clustering of cardiovascular risk factors including dyslipidemia, abdominal obesity, hypertension, and hyperglycemia. This increased risk is present for a range of psychiatric conditions, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, anxiety disorder, attention-deficit/hyperactivity disorder (ADHD), and posttraumatic stress disorder (PTSD). There is some evidence for a dose-response association with the severity and duration of symptoms and for a bidirectional longitudinal impact between psychiatric disorders and MetS. Associations generally seem stronger with abdominal obesity and dyslipidemia dysregulations than with hypertension. Contributing mechanisms are an unhealthy lifestyle and a poor adherence to medical regimen, which are prevalent among psychiatric patients. Specific psychotropic medications have also shown a profound impact in increasing MetS dysregulations. Finally, pleiotropy in genetic vulnerability and pathophysiological mechanisms, such as those leading to the increased central and peripheral activation of immunometabolic or endocrine systems, plays a role in both MetS and psychiatric disorder development. The excess risk of MetS and its unfavorable somatic health consequences justifies a high priority for future research, prevention, close monitoring, and treatment to reduce MetS in the vulnerable psychiatric patient.
Collapse
Affiliation(s)
- Brenda W J H Penninx
- Department of Psychiatry, VU University Medical Center & GGZ InGeest, Amsterdam, The Netherlands
| | - Sjors M M Lange
- Department of Psychiatry, VU University Medical Center & GGZ InGeest, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Watkeys OJ, Kremerskothen K, Quidé Y, Fullerton JM, Green MJ. Glucocorticoid receptor gene (NR3C1) DNA methylation in association with trauma, psychopathology, transcript expression, or genotypic variation: A systematic review. Neurosci Biobehav Rev 2018; 95:85-122. [PMID: 30176278 DOI: 10.1016/j.neubiorev.2018.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
The glucocorticoid receptor gene (NR3C1) is a critical component of the stress response system. Cytosine methylation of NR3C1 has been repeatedly associated with trauma and mental disorders, including major depression, post-traumatic stress disorder, anxiety, and personality disorders, suggesting that NR3C1 methylation may play a role in stress-related psychopathology. We systematically reviewed 55 studies examining NR3C1 DNA methylation in association with trauma exposure, psychopathology, gene expression, and/or common genetic variants. Overall, a number of NR3C1 CpG sites were significantly associated with trauma or psychopathology, but significant findings were often inconsistent across studies. This lack of consistency is likely influenced by significant methodological variability - experimentally and analytically - across studies. Selected common genetic variants show no significant effect on NR3C1 CpG methylation. In contrast, there was ample evidence linking increased methylation of NR3C1 to reduced expression of this gene. The inverse association between methylation and gene expression shown across eight out of ten studies supports the notion that methylation in the promoter region of NR3C1 is associated with transcriptional silencing.
Collapse
Affiliation(s)
- Oliver J Watkeys
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia
| | - Kyle Kremerskothen
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia; School of Medical Sciences, University of New South Wales (UNSW), Wallace Wurth Building, 18 High Street, Kensington, NSW, 2052, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW), Black Dog Institute, Hospital Road, Randwick, NSW, 2031, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
47
|
Kino T. Single Nucleotide Variations of the Human GR Gene Manifested as Pathologic Mutations or Polymorphisms. Endocrinology 2018; 159:2506-2519. [PMID: 29762667 DOI: 10.1210/en.2017-03254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
The human genome contains numerous single nucleotide variations, and the human glucocorticoid receptor (GR) gene harbors ∼450 of these genetic changes. Among them, extremely rare, nonsynonymous variants, known as pathologic GR gene mutations, develop a characteristic pathologic condition, familial/sporadic generalized glucocorticoid resistance syndrome, by replacing the amino acids critical for GR protein structure and functions, whereas others, known as pathologic polymorphisms, develop mild manifestations recognized mainly at population bases by changing the GR activities slightly. Recent progress on the structural analysis to the GR protein and subsequent computer-based structural simulation revealed details of the molecular defects caused by such pathologic GR gene mutations, including their impact on the receptor interaction to ligands, nuclear receptor coactivators (NCoAs) or DNA glucocorticoid response elements (GREs). Indeed, those found in the GR ligand-binding domain significantly damage protein structure of the ligand-binding pocket and/or the activation function-2 transactivation domain and change their molecular interaction to glucocorticoids or the LxxLL signature motif of NCoAs. Two mutations found in GR DNA-binding domain also affect interaction of the mutant receptors to GRE DNA by affecting the critical amino acid for the interaction or changing local hydrophobic circumstance. In this review, I discuss recent findings on the structural simulation of the pathologic GR mutants in connection to their functional and clinical impacts, along with a brief explanation to recent research achievement on the GR polymorphisms.
Collapse
Affiliation(s)
- Tomoshige Kino
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Stress has long been suspected to be interrelated to (abdominal) obesity. However, interindividual differences in this complex relationship exist. We suggest that the extent of glucocorticoid action partly explains these interindividual differences. We provide latest insights with respect to multiple types of stressors. RECENT FINDINGS Increased long-term cortisol levels, as measured in scalp hair, are strongly related to abdominal obesity and to specific mental disorders. However, not all obese patients have elevated cortisol levels. Possibly, the interindividual variation in glucocorticoid sensitivity, which is partly genetically determined, may lead to higher vulnerability to mental or physical stressors. Other evidence for the important role for increased glucocorticoid action is provided by recent studies investigating associations between body composition and local and systemic corticosteroids. Stress may play a major role in the development and maintenance of obesity in individuals who have an increased glucocorticoid exposure or sensitivity. These insights may lead to more effective and individualized obesity treatment strategies.
Collapse
Affiliation(s)
- Eline S van der Valk
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Room D-428, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mesut Savas
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Room D-428, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Room D-428, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Internal Medicine, division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
El-Fayoumi R, Hagras M, Abozenadaha A, Bawazir W, Shinawi T. Association Between NR3C1 Gene Polymorphisms and Toxicity Induced by Glucocorticoids Therapy in Saudi Children with Acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 2018; 19:1415-1423. [PMID: 29802709 PMCID: PMC6031821 DOI: 10.22034/apjcp.2018.19.5.1415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Glucocorticoids (GCs) are key hormones used for the treatment of acute lymphoblastic leukemia (ALL) in children, but their cytotoxic effects are not well defined. The aim of this study was to evaluate the association between polymorphisms in NR3C1 encoding for protein involved in the GCs metabolism and its role in the development of ALL and the toxicity outcome, in terms of liver toxicity, glucose abnormality and infections, in ALL Saudi children. Methods: The following polymorphisms BCII rs41423247, ER22/23 EK rs6189 and rs6190 and N363S rs6195 in NR3C1 were analyzed in 70 children with ALL treated according to the ALL 2000 study protocol in comparison to 60 control subjects. Treatment toxicities and their association with genotypes were evaluated according to Common Toxicity Criteria (NCI-CTC). Results: This study demonstrated that the NR3C1 did not contribute to the development of childhood ALL. Homozygous ER22/23EK polymorphism was not found in both ALL patients and in control group whereas the heterozygous polymorphism was only observed in the control group (6.66%). The toxicology data in this study showed a significant difference between ALL patients carrying N363S polymorphism and wild type (40% and 6.51% respectively, P= 0.009) and a high-risk factor in the toxicity of glucose abnormality (OR=10.167; 1.302-79.339).BCII shows increased risk factors towards the liver toxicity (OR=2.667; 0.526-7.330) as well as the glucose abnormality (OR=7.5; 1.039-54.116). Conclusion: This study suggested that the polymorphisms in NR3C1 were not associated with the development of ALL in children. N363S polymorphism was sensitive to glucocorticoids and it may contribute to the glucose abnormality for these patients.
Collapse
Affiliation(s)
- Refaat El-Fayoumi
- Medical laboratory Technology Department, Faculty of Applied medical Science, King Abdulaziz University, Jeddah , Saudi Arabi.
| | | | | | | | | |
Collapse
|
50
|
Xu D, Luo HW, Hu W, Hu SW, Yuan C, Wang GH, Zhang L, Yu H, Magdalou J, Chen LB, Wang H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring. FASEB J 2018; 32:5563-5576. [PMID: 29718709 DOI: 10.1096/fj.201701557r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hanwen W Luo
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Shuwei W Hu
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Chao Yuan
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Guihua H Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jacques Magdalou
- Unité Mixte de Recherche (UMR) 7365, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Liaobin B Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Department of Orthopedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|