1
|
Mahú I, Barateiro A, Rial-Pensado E, Martinéz-Sánchez N, Vaz SH, Cal PMSD, Jenkins B, Rodrigues T, Cordeiro C, Costa MF, Mendes R, Seixas E, Pereira MMA, Kubasova N, Gres V, Morris I, Temporão C, Olivares M, Sanz Y, Koulman A, Corzana F, Sebastião AM, López M, Bernardes GJL, Domingos AI. Brain-Sparing Sympathofacilitators Mitigate Obesity without Adverse Cardiovascular Effects. Cell Metab 2020; 31:1120-1135.e7. [PMID: 32402266 PMCID: PMC7671941 DOI: 10.1016/j.cmet.2020.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 03/03/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
Anti-obesity drugs in the amphetamine (AMPH) class act in the brain to reduce appetite and increase locomotion. They are also characterized by adverse cardiovascular effects with origin that, despite absence of any in vivo evidence, is attributed to a direct sympathomimetic action in the heart. Here, we show that the cardiac side effects of AMPH originate from the brain and can be circumvented by PEGylation (PEGyAMPH) to exclude its central action. PEGyAMPH does not enter the brain and facilitates SNS activity via theβ2-adrenoceptor, protecting mice against obesity by increasing lipolysis and thermogenesis, coupled to higher heat dissipation, which acts as an energy sink to increase energy expenditure without altering food intake or locomotor activity. Thus, we provide proof-of-principle for a novel class of exclusively peripheral anti-obesity sympathofacilitators that are devoid of any cardiovascular and brain-related side effects.
Collapse
Affiliation(s)
- Inês Mahú
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Andreia Barateiro
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal; Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Eva Rial-Pensado
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, A Coruña 15782, Spain
| | - Noelia Martinéz-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Sandra H Vaz
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Pedro M S D Cal
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal
| | - Benjamin Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, Wellcome Trust, MRL Institute of Metabolic Science, University of Cambridge, Pathology building Level 4, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon 1749-016, Portugal
| | - Miguel F Costa
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Raquel Mendes
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Elsa Seixas
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Mafalda M A Pereira
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Nadiya Kubasova
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Vitka Gres
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Imogen Morris
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Carolina Temporão
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Marta Olivares
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council, Valencia (IATA-CSIC), Catedratico Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council, Valencia (IATA-CSIC), Catedratico Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, Wellcome Trust, MRL Institute of Metabolic Science, University of Cambridge, Pathology building Level 4, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Ana M Sebastião
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, A Coruña 15782, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof., Egas Moniz, Lisbon 1649-028, Portugal; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal; Howard Hughes Medical Institute, IGC, Oeiras, Portugal.
| |
Collapse
|
2
|
Liew CW, Xu S, Wang X, McCann M, Whang Kong H, Carley AC, Pang J, Fantuzzi G, O'Donnell JM, Lewandowski ED. Multiphasic Regulation of Systemic and Peripheral Organ Metabolic Responses to Cardiac Hypertrophy. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.003864. [PMID: 28404627 DOI: 10.1161/circheartfailure.117.003864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/22/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Reduced fat oxidation in hypertrophied hearts coincides with a shift of carnitine palmitoyl transferase I from muscle to increased liver isoforms. Acutely increased carnitine palmitoyl transferase I in normal rodent hearts has been shown to recapitulate the reduced fat oxidation and elevated atrial natriuretic peptide message of cardiac hypertrophy. METHODS AND RESULTS Because of the potential for reduced fat oxidation to affect cardiac atrial natriuretic peptide, and thus, induce adipose lipolysis, we studied peripheral and systemic metabolism in male C57BL/6 mice model of transverse aortic constriction in which left ventricular hypertrophy occurred by 2 weeks without functional decline until 16 weeks (ejection fraction, -45.6%; fractional shortening, -22.6%). We report the first evidence for initially improved glucose tolerance and insulin sensitivity in response to 2 weeks transverse aortic constriction versus sham, linked to enhanced insulin signaling in liver and visceral adipose tissue (epididymal white adipose tissue [WAT]), reduced WAT inflammation, elevated adiponectin, mulitilocular subcutaneous adipose tissue (inguinal WAT) with upregulated oxidative/thermogenic gene expression, and downregulated lipolysis and lipogenesis genes in epididymal WAT. By 6 weeks transverse aortic constriction, the metabolic profile reversed with impaired insulin sensitivity and glucose tolerance, reduced insulin signaling in liver, epididymal WAT and heart, and downregulation of oxidative enzymes in brown adipose tissue and oxidative and lipogenic genes in inguinal WAT. CONCLUSIONS Changes in insulin signaling, circulating natriuretic peptides and adipokines, and varied expression of adipose genes associated with altered insulin response/glucose handling and thermogenesis occurred prior to any functional decline in transverse aortic constriction hearts. The findings demonstrate multiphasic responses in extracardiac metabolism to pathogenic cardiac stress, with early iWAT browning providing potential metabolic benefits.
Collapse
Affiliation(s)
- Chong Wee Liew
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - Shanshan Xu
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - Xuerong Wang
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - Maximilian McCann
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - Hyerim Whang Kong
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - Andrew C Carley
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - Jingbo Pang
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - Giamila Fantuzzi
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - J Michael O'Donnell
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.)
| | - E Douglas Lewandowski
- From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.).
| |
Collapse
|
3
|
Hazell TJ, Islam H, Townsend LK, Schmale MS, Copeland JL. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite 2016; 98:80-8. [DOI: 10.1016/j.appet.2015.12.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
|
4
|
Diong C, Jones PP, Tsuchimochi H, Gray EA, Hughes G, Inagaki T, Bussey CT, Fujii Y, Umetani K, Shirai M, Schwenke DO. Sympathetic hyper-excitation in obesity and pulmonary hypertension: physiological relevance to the 'obesity paradox'. Int J Obes (Lond) 2016; 40:938-46. [PMID: 27001546 DOI: 10.1038/ijo.2016.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/10/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Within the lung, sympathetic nerve activity (SNA) has an important role in facilitating pulmonary vasodilation. As SNA is elevated in obesity, we aimed to assess the impact of sympathetic hyper-excitation on pulmonary vascular homeostasis in obesity, and its potential role in ameliorating the severity of pulmonary hypertension (PH); the well-documented 'obesity paradox' phenomenon. METHODS Zucker obese and lean rats were exposed to normoxia or chronic hypoxia (CH-10% O2) for 2 weeks. Subsequently, pulmonary SNA (pSNA) was recorded (electrophysiology), or the pulmonary microcirculation was visualized using Synchrotron microangiography. Acute hypoxic pulmonary vasoconstriction (HPV) was assessed before and after blockade of β1-adrenergic receptors (ARs) (atenolol, 3 mg kg(-1)) and β1+β2-adrenergic (propranolol, 2 mg kg(-1)). RESULTS pSNA of normoxic obese rats was higher than lean counterparts (2.4 and 0.5 μV s, respectively). SNA was enhanced following the development of PH in lean rats, but more so in obese rats (1.7 and 6.8 μV s, respectively). The magnitude of HPV was similar for all groups (for example, ~20% constriction of the 200-300 μm vessels). Although β-blockade did not modify HPV in lean rats, it significantly augmented the HPV in normoxic obese rats (β1 and β2 blockade), and more so in obese rats with PH (β2-blockade alone). Western blots showed, while the expression of pulmonary β1-ARs was similar for all rats, the expression of β2-ARs was downregulated in obesity and PH. CONCLUSIONS This study suggests that sympathetic hyper-excitation in obesity may have an important role in constraining the severity of PH and, thus, contribute in part to the 'obesity paradox' in PH.
Collapse
Affiliation(s)
- C Diong
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - P P Jones
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - H Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - E A Gray
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - G Hughes
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - T Inagaki
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - C T Bussey
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Y Fujii
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - K Umetani
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - M Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - D O Schwenke
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Liu X, Huh JY, Gong H, Chamberland JP, Brinkoetter MT, Hamnvik OPR, Mantzoros CS. Lack of mature lymphocytes results in obese but metabolically healthy mice when fed a high-fat diet. Int J Obes (Lond) 2015; 39:1548-57. [PMID: 25994806 DOI: 10.1038/ijo.2015.93] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity is characterized by chronic inflammation and immune dysregulation, as well as insulin resistance, but the link between obesity and adaptive immunity remains to be fully studied. METHODS To elucidate the role of adaptive immunity on body composition, glucose homeostasis and inflammation, recombination-activating gene 1 knockout (Rag1-/-) mice, without mature T-lymphocytes or B-lymphocytes, were maintained on a low- or high-fat diet (LFD and HFD, respectively) for 11 weeks. RESULTS Rag1-/- mice fed HFD gained significantly more weight and had increased body fat compared with wild type. Downregulation of energy expenditure as well as brown fat uncoupling protein UCP-1 and UCP-3 gene expression were noticed in HFD-fed Rag1-/- mice compared with LFD. HFD mice had significantly decreased energy intake compared with LFD mice, consistent with decreased agouti-related protein and increased pro-opiomelanocortin gene expression levels in the hypothalamus. Moreover, compared with wild type, Rag1-/- mice had lower interleukin (IL)-4 levels, a cytokine recently found to induce browning in white adipocytes, and higher IL-12 levels in HFD-fed Rag1-/- mice. Despite that HFD Rag1-/- mice were more obese, they had similar glucose, insulin and adiponectin levels, while leptin was marginally increased. CONCLUSIONS Mice with deficiency in adaptive immunity are obese, partly owing to decreased energy expenditure, but are metabolically normal, suggesting that mature lymphocytes have necessary roles in the development of obesity-related metabolic dysregulation.
Collapse
Affiliation(s)
- X Liu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J Y Huh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - H Gong
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J P Chamberland
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - M T Brinkoetter
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - O-P R Hamnvik
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - C S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Garner M, Alshameeri Z, Khanduja V. Osteoarthritis: genes, nature-nurture interaction and the role of leptin. INTERNATIONAL ORTHOPAEDICS 2013; 37:2499-505. [PMID: 24036528 DOI: 10.1007/s00264-013-2088-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a common disease affecting patients at different ages regardless of gender or ethnicity. As with many chronic diseases, OA is thought to have a multifactorial aetiology, which is not fully understood. Whereas the pathophysiological process of OA can be analysed at a cellular and molecular level, the interaction between genes and lifestyle remains an important factor in the development of this disease. The expanding awareness of different genes that may play a role in OA, together with many chemical mediators thought to be associated with the progression of the disease, will help in better management of this condition. Some of the chemical mediators recently implicated in this condition are the adipokines (leptin, adiponectin and resistin). Few but consistent studies suggest that leptin in association with obesity could be an important factor in OA aetiology. Hence, this could establish a strong and direct molecular link between patient life style (nurture) and the pathological process of OA (nature). However, neither a clear mechanism nor a direct clinical association linking leptin to OA has yet been established. In this article, we explore some of the genetic and environmental factors in OA aetiology. We discuss leptin in obesity and assess its possible association with OA aetiology. This should emphasise the important role of health professionals in treating obesity in order to control OA symptoms and possibly progression.
Collapse
Affiliation(s)
- Malgorzata Garner
- Department of Trauma & Orthopaedics, Addenbrooke's - Cambridge University Hospitals NHS Foundation Trust, Box 37, Hills Road, Cambridge, CB2 0QQ, UK
| | | | | |
Collapse
|
7
|
Abstract
In addition to effects on appetite and metabolism, leptin influences many neuroendocrine and physiological systems, including the sympathetic nervous system. Building on my Carl Ludwig Lecture of the American Physiological Society, I review the sympathetic and cardiovascular actions of leptin. The review focuses on a critical analysis of the concept of selective leptin resistance (SLR) and the role of leptin in the pathogenesis of obesity-induced hypertension in both experimental animals and humans. We introduced the concept of SLR in 2002 to explain how leptin might increase blood pressure (BP) in obese states, such as diet-induced obesity (DIO), that are accompanied by partial leptin resistance. This concept, analogous to selective insulin resistance in the metabolic syndrome, holds that in several genetic and acquired models of obesity, there is preservation of the renal sympathetic and pressor actions of leptin despite attenuation of the appetite and weight-reducing actions. Two potential overlapping mechanisms of SLR are reviewed: 1) differential leptin molecular signaling pathways that mediate selective as opposed to universal leptin action and 2) brain site-specific leptin action and resistance. Although the phenomenon of SLR in DIO has so far focused on preservation of sympathetic and BP actions of leptin, consideration should be given to the possibility that this concept may extend to preservation of other actions of leptin. Finally, I review perplexing data on the effects of leptin on sympathetic activity and BP in humans and its role in human obesity-induced hypertension.
Collapse
Affiliation(s)
- Allyn L Mark
- Department of Internal Medicine and the Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
8
|
Kontos A, de Menezes RC, Ootsuka Y, Blessing W. Brown adipose tissue thermogenesis precedes food intake in genetically obese Zucker (fa/fa) rats. Physiol Behav 2013; 118:129-37. [PMID: 23685234 DOI: 10.1016/j.physbeh.2013.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 03/22/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
In Sprague-Dawley rats, brown adipose tissue (BAT) thermogenesis occurs in an episodic ultradian manner (BAT on-periods) as part of the basic rest-activity cycle (BRAC). Eating occurs approximately 15min after the onset of BAT on-periods. Zucker obese (fa/fa) rats eat larger less frequent meals than control rats. In chronically instrumented conscious unrestrained Zucker obese rats we examined ultradian fluctuations in BAT, body and brain temperatures, and the relation between BAT temperature and eating. The interval between BAT temperature peaks for the 12hour dark phase was 121±3 (mean±SE) min for Zucker obese rats and 91±3min for control lean rats (p<0.01). Corresponding values for the light phase were 148±6 and 118±4min (p<0.01). Mean BAT and body temperatures were lower in Zucker obese rats, in comparison with lean controls, during both BAT on-periods and BAT off-periods. Mean brain temperatures were lower during BAT off-periods. Amplitudes of the BRAC-related increases in all 3 temperatures were greater in the Zucker obese rats. Meal onset in Zucker obese rats commenced 15±1min after the onset of a BAT on-period, not significantly different for the delay observed in lean control rats (18±1min, p>0.05). Thus periods between eating are increased in the Zucker obese rats, but the action of leptin, absent in these animals, is not crucial for the timing of eating in relation to increases in BAT and body temperature. Lack of the normal excitatory action of leptin on brain-regulated BAT sympathetic discharge could also contribute to lower BAT thermogenesis in Zucker obese rats.
Collapse
Affiliation(s)
- Anna Kontos
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA 5042, Australia
| | | | | | | |
Collapse
|
9
|
Allison MA, Ix JH, Morgan C, McClelland RL, Rifkin D, Shimbo D, Criqui MH. Higher leptin is associated with hypertension: the Multi-Ethnic Study of Atherosclerosis. J Hum Hypertens 2013; 27:617-22. [PMID: 23535989 PMCID: PMC3735864 DOI: 10.1038/jhh.2013.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 12/27/2022]
Abstract
Adipokines are secreted from adipose tissue, influence energy homeostasis and may contribute to the association between obesity and hypertension. Among 1897 participants enrolled in the Multi-Ethnic Study of Atherosclerosis, we examined associations between blood pressure and leptin, tumor necrosis factor-α (TNFα), resistin and total adiponectin. The mean age and body mass index (BMI) was 64.7 years and 28.1, respectively, and 50% were female. After adjustment for risk factors, a 1-s.d.-increment higher leptin level was significantly associated with higher systolic (5.0 mm Hg), diastolic (1.9), mean arterial (2.8) and pulse pressures (3.6), as well as a 34% higher odds for being hypertensive (P<0.01 for all). These associations were not materially different when the other adipokines, as well as BMI, waist circumference or waist-to-hip ratio, were additionally added to the model. Notably, the associations between leptin and hypertension were stronger in men, but were not different by race/ethnic group, BMI or smoking status. Adiponectin, resistin and TNFα were not independently associated with blood pressure or hypertension. Higher serum leptin, but not adiponectin, resistin or TNFα, is associated with higher levels of all measures of blood pressure, as well as a higher odds of hypertension, independent of risk factors, anthropometric measures and other selected adipokines.
Collapse
Affiliation(s)
- M A Allison
- 1] Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA, USA [2] Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Dutra SCP, de Moura EG, Lisboa PC, Trevenzoli IH, Passos MCF. Leptin-programmed rats respond to cold exposure changing hypothalamic leptin receptor and thyroid function differently from cold-exposed controls. ACTA ACUST UNITED AC 2011; 171:58-64. [PMID: 21803077 DOI: 10.1016/j.regpep.2011.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/29/2011] [Accepted: 07/14/2011] [Indexed: 11/17/2022]
Abstract
We showed that neonatal leptin treatment programmes for hyperleptinemia and central leptin resistance both at 30days-old and adulthood, while programmes for lower serum T3 at 30days-old, but higher thyroid hormones (TH) at adulthood. As in these animals, acute cold at 30days-old normalized leptinemia and restored the expression of hypothalamic leptin receptor (OBR), here we evaluate the effect of cold exposure on the thyroid function and OBR in adult rats programmed by neonatal hyperleptinemia. Pups were divided into 2 groups: Lep-injected with leptin (8μg/100g/BW, sc) for the first 10days of lactation, and C-injected with saline. At 150days, both groups were subdivided into: LepC and CC, which were exposed to 8°C for 12h. Serum leptin, TH, TSH, liver type I and brown adipose tissue (BAT) type II deiodinases (D1 and D2) activities, liver mitochondrial alpha-glycerol-3-phosphate dehydrogenase (mGPD) activity and adrenal catecholamine content were measured. Hypothalamic and thyroid OBR protein contents were evaluated. Differences were significant when p<0.05. Lep group had hyperleptinemia (+19%), higher T4 (+20%) and T3 (+30%) with lower TSH (-55%), higher liver D1 (1.4 fold-increase), lower BAT D2 (-44%) and liver mGPD activities (-55%), higher adrenal catecholamines (+44%), lower hypothalamic OBR (-51%) and normal thyroid OBR. Cold exposure normalized leptinemia, D1, mGPD, catecholamine and hypothalamic OBR. However, cold exposure further increased TH and decreased D2. Thus, cold exposure normalizes most of the changes programmed by neonatal hyperleptinemia, at the expense of worsening the hyperthyroidism and BAT thermogenesis.
Collapse
|
11
|
Kosari S, Rathner JA, Chen F, Kosari S, Badoer E. Centrally administered resistin enhances sympathetic nerve activity to the hindlimb but attenuates the activity to brown adipose tissue. Endocrinology 2011; 152:2626-33. [PMID: 21586564 DOI: 10.1210/en.2010-1492] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resistin, an adipokine, is believed to act in the brain to influence energy homeostasis. Plasma resistin levels are elevated in obesity and are associated with metabolic and cardiovascular disease. Increased muscle sympathetic nerve activity (SNA) is a characteristic of obesity, a risk factor for diabetes and cardiovascular disease. We hypothesized that resistin affects SNA, which contributes to metabolic and cardiovascular dysfunction. Here we investigated the effects of centrally administered resistin on SNA to muscle (lumbar) and brown adipose tissue (BAT), outputs that influence cardiovascular and energy homeostasis. Overnight-fasted rats were anesthetized, and resistin (7 μg) was administered into the lateral cerebral ventricle (intracerebroventricular). The lumbar sympathetic nerve trunk or sympathetic nerves supplying BAT were dissected free, and nerve activity was recorded. Arterial blood pressure, heart rate, body core temperature, and BAT temperature were also recorded. Responses to resistin or vehicle were monitored for 4 h after intracerebroventricular administration. Acutely administered resistin increased lumbar SNA but decreased BAT SNA. Mean arterial pressure and heart rate, however, were not significantly affected by resistin. BAT temperature was significantly reduced by resistin, and there was a concomitant fall in body temperature. The findings indicate that resistin has differential effects on SNA to tissues involved in metabolic and cardiovascular regulation. The decreased BAT SNA and the increased lumbar SNA elicited by resistin suggest that it may contribute to the increased muscle SNA and reduced energy expenditure observed in obesity and diabetes.
Collapse
Affiliation(s)
- S Kosari
- School of Medical Sciences, Royal Melbourne Institute of Technology University, P.O. Box 71, Bundoora 3083, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
12
|
Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest 2011; 121:2087-93. [PMID: 21633176 DOI: 10.1172/jci45888] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cloned in 1994, the ob gene encodes the protein hormone leptin, which is produced and secreted by white adipose tissue. Since its discovery, leptin has been found to have profound effects on behavior, metabolic rate, endocrine axes, and glucose fluxes. Leptin deficiency in mice and humans causes morbid obesity, diabetes, and various neuroendocrine anomalies, and replacement leads to decreased food intake, normalized glucose homeostasis, and increased energy expenditure. Here, we provide an update on the most current understanding of leptin-sensitive neural pathways in terms of both anatomical organization and physiological roles.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
13
|
Rogers RC, McDougal DH, Hermann GE. Leptin amplifies the action of thyrotropin-releasing hormone in the solitary nucleus: an in vitro calcium imaging study. Brain Res 2011; 1385:47-55. [PMID: 21334313 DOI: 10.1016/j.brainres.2011.02.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/11/2011] [Accepted: 02/11/2011] [Indexed: 12/28/2022]
Abstract
Leptin exerts a powerful permissive influence on neurogenic thermogenesis. During starvation and an absence of leptin, animals cannot produce thermogenic reactions to cold stress. However, thermogenesis is rescued by restoring leptin. We have previously observed a highly cooperative interaction between leptin and thyrotropin-releasing hormone [TRH] to activate hindbrain-generated thermogenic responses (Hermann et al., 2006). In vivo physiological studies (Rogers et al., 2009) suggested that the thermogenic impact of TRH in the hindbrain is amplified by the action of leptin through a leptin receptor-mediated production of phosphoinositol-trisphosphate [PIP3]. In turn, PIP3 can activate a tyrosine kinase whose target is the Src-SH2 regulatory site on the phospholipase C [PLC] complex. The TRH receptor signals through the PLC complex. Our immunohistochemical studies (Barnes et al., 2010) suggest that this transduction interaction between leptin and TRH occurs within neurons of the solitary nucleus [NST], though this interaction had not been verified. The present in vitro live cell calcium imaging study shows that while medial NST neurons are rarely activated by leptin alone, leptin pre-treatment significantly augments NST neurons' responsiveness to TRH. This leptin-mediated priming of NST neurons was uncoupled by pre-treatment with the phosphoinositide 3-kinase [PI3K] inhibitor [wortmannin], the phospholipase C inhibitor [U73122] and the Src-SH2 antagonist [PP2]. TTX did not eliminate the synergistic response of the agonists, thus the sensitization cannot be attributed to pre-synaptic mechanisms. It seems likely that NST neurons are involved in the leptin-mediated increase in BAT temperature by sensitizing the TRH-PLC-IP3-calcium release mechanism.
Collapse
Affiliation(s)
- Richard C Rogers
- Laboratory of Autonomic Neurosciences, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
14
|
Zhang Y, Kerman IA, Laque A, Nguyen P, Faouzi M, Louis GW, Jones JC, Rhodes C, Münzberg H. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 2011; 31:1873-84. [PMID: 21289197 PMCID: PMC3069639 DOI: 10.1523/jneurosci.3223-10.2011] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/20/2010] [Accepted: 11/22/2010] [Indexed: 12/18/2022] Open
Abstract
Brown adipose tissue (BAT) thermogenesis is critical to maintain homoeothermia and is centrally controlled via sympathetic outputs. Body temperature and BAT activity also impact energy expenditure, and obesity is commonly associated with decreased BAT capacity and sympathetic tone. Severely obese mice that lack leptin or its receptor (LepRb) show decreased BAT capacity, sympathetic tone, and body temperature and thus are unable to adapt to acute cold exposure (Trayhurn et al., 1976). LepRb-expressing neurons are found in several hypothalamic sites, including the dorsomedial hypothalamus (DMH) and median preoptic area (mPOA), both critical sites to regulate sympathetic, thermoregulatory BAT circuits. Specifically, a subpopulation in the DMH/dorsal hypothalamic area (DHA) is stimulated by fever-inducing endotoxins or cold exposure (Dimicco and Zaretsky, 2007; Morrison et al., 2008). Using the retrograde, transsynaptic tracer pseudorabies virus (PRV) injected into the BAT of mice, we identified PRV-labeled LepRb neurons in the DMH/DHA and mPOA (and other sites), thus indicating their involvement in the regulation of sympathetic BAT circuits. Indeed, acute cold exposure induced c-Fos (as a surrogate for neuronal activity) in DMH/DHA LepRb neurons, and a large number of mPOA LepRb neurons project to the DMH/DHA. Furthermore, DMH/DHA LepRb neurons (and a subpopulation of LepRb mPOA neurons) project and synaptically couple to rostral raphe pallidus neurons, consistent with the current understanding of BAT thermoregulatory circuits from the DMH/DHA and mPOA (Dimicco and Zaretsky, 2007; Morrison et al., 2008). Thus, these data present strong evidence that LepRb neurons in the DMH/DHA and mPOA mediate thermoregulatory leptin action.
Collapse
Affiliation(s)
- Yan Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - Ilan A. Kerman
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda Laque
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - Phillip Nguyen
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - Miro Faouzi
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - Gwendolyn W. Louis
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - Justin C. Jones
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - Chris Rhodes
- Kovler Diabetes Center, University of Chicago, Chicago, Illinois 60637
| | - Heike Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| |
Collapse
|
15
|
Harlan SM, Morgan DA, Dellsperger DJ, Myers MG, Mark AL, Rahmouni K. Cardiovascular and sympathetic effects of disrupting tyrosine 985 of the leptin receptor. Hypertension 2011; 57:627-32. [PMID: 21263121 DOI: 10.1161/hypertensionaha.110.166538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Leptin acts in the brain to regulate food intake and energy expenditure. Leptin also increases renal sympathetic nerve activity and arterial pressure. The divergent signaling capacities of the leptin receptor (ObRb) mediate the stimulation of various intracellular pathways that are important for leptin control of physiological processes. We evaluated the cardiovascular and sympathetic consequences of disrupting the signal emanating from tyrosine985 of ObRb. For this, we used Lepr(L985) (l/l) mice, which carry a loss of function mutation replacing tyrosine985 of ObRb with leucine. Body weight of l/l mice was not significantly different from wild-type controls. In contrast, radiotelemetry measurements revealed that the l/l mice had higher arterial pressure and heart rate as compared with controls. Ganglionic blockade caused a greater arterial pressure fall in the l/l mice relative to controls. In addition, leptin treatment induced a larger increase in arterial pressure and heart rate in the l/l versus wild-type mice. Finally, we compared the response of renal and brown adipose tissue sympathetic nerve activity to intracerebroventricular injection of leptin (2 μg) between l/l and control mice. Leptin-induced increase in renal sympathetic nerve activity was greater in l/l mice relative to controls. In contrast, the brown adipose tissue sympathetic nerve activity response to leptin was attenuated in the l/l mice relative to controls. These data indicate that selective loss of leptin receptor signaling emanating from tyrosine985 enhances the cardiovascular and renal sympathetic effects of leptin. These findings provide important insight into the molecular mechanisms underlying leptin's effects on the sympathetic cardiovascular function and arterial pressure.
Collapse
Affiliation(s)
- Shannon M Harlan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
16
|
Mounien L, Marty N, Tarussio D, Metref S, Genoux D, Preitner F, Foretz M, Thorens B. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J 2010; 24:1747-58. [PMID: 20097878 DOI: 10.1096/fj.09-144923] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.
Collapse
Affiliation(s)
- Lourdes Mounien
- Department of Physiology and Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rahmouni K. Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity. Curr Hypertens Rev 2010; 6:104-209. [PMID: 21562617 DOI: 10.2174/157340210791170994] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity increases cardiovascular morbidity and mortality in part by inducing hypertension. One factor linking excess fat mass to cardiovascular diseases may be the sympathetic cardiovascular actions of leptin. Initial studies of leptin showed it regulates appetite and enhances energy expenditure by activating sympathetic nerve activity (SNA) to thermogenic brown adipose tissue. Further study, however, demonstrated leptin also causes sympathetic excitation to the kidney that, in turn, increases arterial pressure. In animal studies, elevating circulating leptin levels increased arterial pressure. Moreover, mice with diet-induced obesity have a preserved arterial pressure response to leptin despite the resistance to the metabolic action of leptin and these mice have elevated baseline arterial pressure. Conversely, severely obese, but leptin-deficient, mice and humans display low sympathetic tone and decreased blood pressure. Together, these findings demonstrate that leptin plays a physiological role in maintaining sympathetic tone and blood pressure, and further suggest that hyperleptinemia may contribute to the elevated blood pressure associated with obesity. Consistent with this selectivity in leptin resistance, mounting evidence suggests that the sympathetic nervous system subserving different tissues is differentially controlled by leptin. For instance, different molecular signaling mechanisms are engaged by the leptin receptor to control the regional sympathetic nerve activity. Understanding the mechanisms by which leptin controls the sympathetic nervous system will provide insight into the cardiovascular complications of obesity.
Collapse
Affiliation(s)
- Kamal Rahmouni
- Center on Functional Genomics of Hypertension, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Arch JRS. The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from beta3-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:225-40. [PMID: 18612674 DOI: 10.1007/s00210-008-0271-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 02/05/2008] [Indexed: 12/12/2022]
Abstract
Although beta3-adrenoceptor (beta3AR) agonists have not become drugs for the treatment of obesity or diabetes, they offer perspectives on obesity drug discovery, the physiology of energy expenditure and receptor pharmacology. beta3AR agonists, some of which also stimulate other betaARs in humans, selectively stimulate fat oxidation in rodents and humans. This appears to be why they improve insulin sensitivity and reduce body fat whilst preserving lean body mass. Regulatory authorities ask that novel anti-obesity drugs improve insulin sensitivity and reduce mainly body fat. Drugs that act on different targets to stimulate fat oxidation may also offer these benefits. Stimulation of energy expenditure may be easy to detect only when the sympathetic nervous system is activated. Leptin resembles beta3AR agonists in that it increases fat oxidation, energy expenditure and insulin sensitivity. This is partly because it raises sympathetic activity, but it may also promote fat oxidation by directly stimulating muscle leptin receptors. The beta1AR and beta2AR can, like the beta3AR, display atypical pharmacologies. Moreover, the beta3AR can display variable pharmacologies of its own, depending on the radioligand used in binding studies or the functional response measured. Studies on the beta3AR demonstrate both the difficulties of predicting the in vivo effects of agonist drugs from in vitro data and that there may be opportunities for identifying drugs that act at a single receptor but have different profiles in vivo.
Collapse
Affiliation(s)
- Jonathan R S Arch
- Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK.
| |
Collapse
|
19
|
Abstract
Metabolic syndrome is a combination of metabolic-related health issues such as hypertension, hyperlipidaemia and hyperinsulinaemia that together increase significantly the risk of cardiovascular disease and type 2 diabetes. Its prevalence has dramatically increased over the last several decades throughout the world following that of obesity. Insulin resistance and abdominal obesity are considered its core, while the latter may generate via complex metabolic and biochemical pathways the rest parameters of metabolic syndrome. The current approach of treatment is based on treating the chronic cardiovascular malfunctions but there is increasing interest in approaches to managing abdominal obesity as the underlying cause.
Collapse
Affiliation(s)
- K Lois
- Warwickshire Institute of Diabetes Endocrinology and Metabolism (WISDEM), University Hospital (Walsgrave site), Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | |
Collapse
|
20
|
Xiao XQ, Williams SM, Grayson BE, Glavas MM, Cowley MA, Smith MS, Grove KL. Excess weight gain during the early postnatal period is associated with permanent reprogramming of brown adipose tissue adaptive thermogenesis. Endocrinology 2007; 148:4150-9. [PMID: 17525123 DOI: 10.1210/en.2007-0373] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Excess weight gain during the early postnatal period increases the risk of persistent obesity into adulthood and impacts on the subsequent risk for metabolic and cardiovascular diseases. The current study investigated the long-term effect of early excess weight gain, through reduced nursing litter size, on body weight regulation and its relation to brown adipose tissue (BAT) thermogenesis. Animals raised in a small litter (SL, three pups per litter) were compared with those raised in a normal litter size (NL, eight pups per litter). BAT from young adult NL and SL rats, maintained under either ambient or cold conditions, were used for gene expression, morphological, and functional analysis. Compared with NL, SL rats showed excess weight gain, and adult SL animals had a reduced thermogenic capacity as displayed by lower levels of uncoupling protein 1 (UCP1). When exposed to cold, BAT from SL rats was less active and demonstrated reduced responsiveness to cold. Furthermore, reduction in transcript abundance of several lipid lipases and transcriptional regulators was observed in SL rats either at ambient temperature or under cold conditions. Finally, the expression of sympathetic beta 3-adrenergic receptor and the response to the sympathetic receptor agonist isoproterenol were decreased in SL rats. Overall, these observations provide the first evidence that postnatal excess weight gain results in abnormalities in BAT thermogenesis and sympathetic outflow, which likely increases susceptibility to obesity in adulthood.
Collapse
Affiliation(s)
- Xiao Qiu Xiao
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu X, Stancliffe D, Lee S, Mathur S, Gershenfeld HK. Genetic dissection of the tail suspension test: a mouse model of stress vulnerability and antidepressant response. Biol Psychiatry 2007; 62:81-91. [PMID: 17125744 DOI: 10.1016/j.biopsych.2006.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/17/2006] [Accepted: 08/19/2006] [Indexed: 12/20/2022]
Abstract
BACKGROUND The tail suspension test (TST) is a mouse screening test for antidepressants. METHODS An F2 intercross was derived from NMRI and 129S6 inbred strains (n = 747). Mice underwent standardized TST with 2 sessions: (1) baseline and (2) imipramine (30 mg/kg, intraperitoneally) TST. RESULTS A whole genome scan of this intercross mapped significant basal TST quantitative trait loci (QTL) on chromosomes (chr) 5 (peak 61 cM, Lod 5.7), 12 (peak 43 cM, Lod 5.2), and 18 (peak 51 cM, Lod 3.0). A suggestive QTL on chr 4 (peak 62 cM; Lod 3.1) overlapped regions containing previously mapped QTLs. For TST imipramine response, QTL were mapped on chr 1, 4, and 5. The chromosome 5 locus affected basal TST, antidepressant immobility response, and tail suspension-induced hyperthermia (TSIH) behaviors. An outbred NMRI F2 population provided further evidence for a chr 5 QTL. This chr 5 region harbors a cluster of gamma aminobutyric acid (GABA)-A receptor subunits and the human syntenic region includes chr 4p, 1p11, 12q24, and 22q11.24. A significant TSIH QTL (Tsih1) mapped on chr 4 near the Leptin receptor (Lepr). CONCLUSIONS These QTL provide potential regions of interest for human genetic studies in stress-diathesis models of psychiatric illness and antidepressant responsiveness.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Chromosome Mapping
- Chromosomes, Mammalian/genetics
- Crosses, Genetic
- Disease Models, Animal
- Fever/genetics
- Genetic Predisposition to Disease/genetics
- Hindlimb Suspension/physiology
- Imipramine/pharmacology
- Imipramine/therapeutic use
- Immobilization/physiology
- Immobilization/psychology
- Immunohistochemistry
- Injections, Intraperitoneal
- Lod Score
- Mice
- Mice, Inbred Strains
- Quantitative Trait Loci/genetics
- Receptors, Cell Surface/genetics
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, Leptin
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/genetics
- Terminology as Topic
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Psychiatry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Leptin is a 16-kDa protein secreted by white adipose tissue that is primarily involved in the regulation of food intake and energy expenditure. Plasma leptin concentration is proportional to the amount of adipose tissue and is markedly increased in obese individuals. Recent studies suggest that leptin is involved in cardiovascular complications of obesity, including arterial hypertension. Acutely administered leptin has no effect on blood pressure, probably because it concomitantly stimulates the sympathetic nervous system and counteracting depressor mechanisms such as natriuresis and nitric oxide (NO)-dependent vasorelaxation. By contrast, chronic hyperleptinemia increases blood pressure because these acute depressor effects are impaired and/or additional sympathetic nervous system-independent pressor effects appear, such as oxidative stress, NO deficiency, enhanced renal Na reabsorption and overproduction of endothelin. Although the cause-effect relationship between leptin and high blood pressure in humans has not been demonstrated directly, many clinical studies have shown elevated plasma leptin in patients with essential hypertension and a significant positive correlation between leptin and blood pressure independent of body adiposity both in normotensive and in hypertensive individuals. In addition, leptin may contribute to end-organ damage in hypertensive individuals such as left ventricular hypertrophy, retinopathy and nephropathy, independent of regulating blood pressure. Here, current knowledge about the role of leptin in the regulation of blood pressure and in the pathogenesis of arterial hypertension is presented.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, Lublin, Poland.
| |
Collapse
|
23
|
Lin HY, Xu Q, Yeh S, Wang RS, Sparks JD, Chang C. Insulin and leptin resistance with hyperleptinemia in mice lacking androgen receptor. Diabetes 2005; 54:1717-25. [PMID: 15919793 DOI: 10.2337/diabetes.54.6.1717] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epidemiological evidence suggests that sex differences exist in type 2 diabetes. Men seem to be more susceptible than women to the consequences of obesity and sedentary lifestyle, possibly because of differences in insulin sensitivity and regional body fat deposition. Thus, lacking androgen receptor (AR) in male individuals may promote insulin resistance. To determine whether lacking AR in male individuals contributes to in vivo insulin resistance, an AR knockout model (AR(-/y)) was used to study the correlation between AR and insulin resistance. Progressive reduced insulin sensitivity and impaired glucose tolerance were seen in AR(-/y) mice with advancing age. Aging AR(-/y) mice displayed accelerated weight gain, hyperinsulinemia, and hyperglycemia, and loss of AR contributes to increased triglyceride content in skeletal muscle and liver. Leptin is higher in serum of AR(-/y) mice. Treatment with exogenous leptin fails to stimulate weight loss in AR(-/y) mice in advanced age, suggesting leptin resistance in the AR(-/y/) mice. Exogenous dihydrotestosterone replacement fails to reverse the metabolic abnormalities and insulin resistance in AR(-/y) mice. Our in vivo studies demonstrate that androgen-AR plays key roles in the development of insulin and leptin resistance, which may contribute to the development of type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Pathology, Urology, Radiation Oncology, and the Cancer Center, 601 Elmwood Ave., Box 626, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ota M, Mori K, Nakashima A, Kaneko YS, Takahashi H, Ota A. RESISTANCE TO EXCESSIVE BODYWEIGHT GAIN IN RISPERIDONE-INJECTED RATS. Clin Exp Pharmacol Physiol 2005; 32:279-87. [PMID: 15810992 DOI: 10.1111/j.1440-1681.2005.04184.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The present study was carried out to explain the resistance of rats injected subcutaneously with risperidone, the atypical antipsychotic drug, for 21 consecutive days at 0.1 mg/kg per day (a dose equivalent to the one used for patients) to result in an excessive bodyweight despite the increase in diet-uptake in rats against risperidone-induced decrease in body temperature. 2. Rectal temperature measurements were made in 8-week-old male Sprague-Dawley rats maintained under standard laboratory conditions using a 12 h daylight cycle. A s.c. injection of risperidone (0.05 mg/kg) produced hypothermia in rats, which was observed during the daily injection for 21 consecutive days. 3. Sera, white and brown adipose tissues, skeletal muscle and liver were extracted from 8-week-old male Sprague-Dawley rats injected subcutaneously with risperidone (0.01 or 0.1 mg/kg per day) or a vehicle for 21 consecutive days. Serum levels of lipids, ketones and thyroid hormone were measured. The mRNA expression levels in these tissues and organs of the genes encoding the substances involved in heat production and/or lipid metabolism were investigated by using quantitative real-time polymerase chain reaction amplification. 4. Serum nonesterified fatty acid levels in risperidone 0.1 mg/kg per day s.c. injected rats were significantly lower than those in vehicle-injected ones. Serum beta-hydroxybutyrate levels in risperidone-injected rats tended to decrease compared with those in vehicle-injected ones. The serum level of neither triiodothyronine nor thyroxine was affected by risperidone s.c. injection at the doses examined, although their values were within normal limits. 5. Risperidone injection (0.1 mg/kg per day) for 21 consecutive days upregulated mRNA expressions in white adipose tissue of uncoupling protein 3 which dissipates energy as heat; peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1alpha which activates mitochondrial biogenesis to expand the oxidative machinery; and PPARalpha which is necessary for the fat-depletion of adipocytes for thermogenesis. The mRNA of lipogenic enzymes (acetyl-CoA carboxylase alpha, fatty-acid synthase and glycerol-3-phosphate acyltransferase), hormone sensitive lipase and beta1-adrenoceptor were also enhanced in white adipose tissue by the injection of 0.1 mg/kg per day risperidone. 6. These findings suggest that the materials for heat generation in white adipose tissue would be readily supplied, which in turn would reduce a storage of lipids in white adipose tissue resulting in the lower rate of bodyweight gain of rats.
Collapse
Affiliation(s)
- Miyuki Ota
- Department of Neuropsychiatry, Tosei General Hospital, Seto, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Lin J, Yan GT, Hao XH, Wang LH, Zhang K, Xue H. Effect of intestinal ischemia-reperfusion injury on protein levels of leptin and orexin-A in peripheral blood and central secretory tissues. World J Gastroenterol 2005; 11:1000-4. [PMID: 15742403 PMCID: PMC4250760 DOI: 10.3748/wjg.v11.i7.1000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of intestinal ischemia-reperfusion injury on protein levels of leptin and orexin-A in peripheral blood and their central secretory tissues and to find out the role leptin and orexin-A play in acute inflammatory responses.
METHODS: An intestinal ischemia-reperfusion (I/R) injury model of rats was established and rats were divided randomly into six groups: sham-operation group, 60 min ischemia/30 min reperfusion group (I60’R30’), I60’R90’, I60’R150’, I60’R240’ and I60’R360’, 9 rats each group. Two highly-sensitive radioimmunoassays for leptin and orexin-A were established and used to check the change of their concentrations in peripheral blood and central secretory tissues before and after intestinal I/R injury.
RESULTS: Compared with the serum leptin level before injury, it decreased significantly in I60’R30’ group and increased significantly in I60’R360’ group; compared to sham-operation group after injury, serum leptin level increased significantly in I60’R360’ group; compared to sham-operation group after injury, adipose leptin levels decreased significantly in I60’R30’ and I60’R90’ groups, while increased significantly in I60’R360’ group. There was no significant difference between the expression levels of orexin-A before and after I/R injury.
CONCLUSION: Leptin has a time-dependent response and orexin-A has a delayed response to acute inflammatory stimuli such as intestinal I/R injury and they may participate in metabolic disorders in injury as inflammatory cytokines.
Collapse
Affiliation(s)
- Ji Lin
- Research Laboratory of Biochemistry, Basic Medical Institute, General Hospital of PLA, 28 Fuxing Road, Beijing 100853, China
| | | | | | | | | | | |
Collapse
|
26
|
Lin J, Yan GT, Wang LH, Hao XH, Zhang K, Xue H. Leptin fluctuates in intestinal ischemia-reperfusion injury as inflammatory cytokine. Peptides 2004; 25:2187-93. [PMID: 15572209 DOI: 10.1016/j.peptides.2004.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 01/02/2023]
Abstract
As leptin is an active mediator mainly secreted by adipose tissue and is closely related with energy metabolism, we evaluate both the changes of leptin levels in serum and adipose tissue with a concise radioimmunoassay and the changes of leptin mRNA expression in adipose tissue with RT-PCR, during the severe metabolic impediment in rat intestinal ischemia-reperfusion (I/R) injury. Results show that not only leptin levels in serum and adipose tissue but also its mRNA expression in adipose tissue undergo a fluctuation according to different injury times. Therefore, we conclude that leptin has a time-dependent response to acute inflammatory stimuli and acts as an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- Ji Lin
- Research Laboratory of Biochemistry, Basic Medical Institute, General Hospital of PLA, 28 Fuxing Road, Beijing 100853, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Collins S, Cao W, Robidoux J. Learning new tricks from old dogs: beta-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 2004; 18:2123-31. [PMID: 15243132 DOI: 10.1210/me.2004-0193] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The three beta AR (beta-adrenergic receptor) subtypes (beta(1)AR, beta(2)AR, and beta(3)AR) are members of the large family of G protein-coupled receptors, each of which is coupled to G alpha s and increases in intracellular cAMP levels. In white adipose tissues, catecholamine activation of the beta ARs leads to the mobilization of stored fatty acids and regulates release of several adipokines, whereas in brown adipose tissue they stimulate the specialized process of adaptive nonshivering thermogenesis. Noteworthy, in most models of obesity the beta AR system is dysfunctional, and its ability to stimulate lipolysis and thermogenesis are both impaired. Nevertheless, selective agonists for the beta(3)AR, a subtype that is found predominantly in adipocytes, have been able to prevent or reverse obesity and accompanying insulin resistance in animal models. Whether this is a viable therapeutic option for human obesity is much debated with regard to the existence of brown adipocytes in humans or their ability to be recruited. Nevertheless, probing the physiological changes in adrenoceptor function in rodent obesity, as well as the process by which beta(3)AR agonists promote a thermogenic shift in fuel use, have yielded unexpected new insights into beta AR signaling and adipocyte physiology. These include the recent discovery of an essential role of p38 MAPK in mediating adaptive thermogenesis, as well as the accessory role of the ERK MAPK pathway for the control of lipolysis. Because these metabolic events were traditionally ascribed solely to the cAMP/protein kinase A system, the integration of these signaling mechanisms may pose new therapeutic directions in the quest to counter the obesity epidemic in our midst.
Collapse
Affiliation(s)
- Sheila Collins
- CIIT Centers for Health Research, Six Davis Drive, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
28
|
|
29
|
Affiliation(s)
- Scott T Weiss
- Channing Laboratory, Brigham and Women's Hospital, and Harvard School of Public Health, 181 Longwood Avenue, Boston, MA 02110, USA.
| | | |
Collapse
|
30
|
Levin BE, Dunn-Meynell AA, Banks WA. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol 2004; 286:R143-50. [PMID: 12958061 DOI: 10.1152/ajpregu.00393.2003] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats selectively bred to develop diet-induced obesity (DIO) were compared with those bred to be diet resistant (DR) on a 31% fat high-energy diet with regard to their central leptin signaling and blood-brain barrier (BBB) transport. Peripheral leptin injection (15 mg/kg ip) into lean 4- to 5-wk-old rats produced 54% less anorexia in DIO than DR rats. DIO rats also had 21, 63, and 64% less leptin-induced immunoreactive phosphorylated signal transducer and activator of transcription 3 (pSTAT3) expression in the hypothalamic arcuate, ventromedial, and dorsomedial nuclei, respectively. However, hindbrain leptin-induced nucleus tractus solitarius pSTAT3 and generalized sympathetic (24-h urine norepinephrine) activation were comparable. Reduced central leptin signaling was not due to defective BBB transport since transport did not differ between lean 4- to 5-wk-old DIO and DR rats. Conversely, DIO leptin BBB transport was reduced when they became obese at 23 wk of age on low-fat chow or after 6 wk on high-energy diet. In addition, leptin receptor mRNA expression was 23% lower in the arcuate nuclei of 4- to 5-wk-old DIO compared with DR rats. Thus a preexisting reduction in hypothalamic but not brain stem leptin signaling might contribute to the development of DIO when dietary fat and caloric density are increased. Defects in leptin transport appear to be an acquired defect associated with the development of obesity and possibly age.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service, Veterans Affairs Memorial Center, E. Orange, NJ 07018-1095, USA.
| | | | | |
Collapse
|
31
|
Tentolouris N, Tsigos C, Perea D, Koukou E, Kyriaki D, Kitsou E, Daskas S, Daifotis Z, Makrilakis K, Raptis SA, Katsilambros N. Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women. Metabolism 2003; 52:1426-32. [PMID: 14624401 DOI: 10.1016/s0026-0495(03)00322-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food ingestion can influence autonomic nervous system activity. This study compares the effects of 2 different isoenergetic meals on sympathetic nervous system (SNS) activity, assessed by heart rate variability (HRV) and plasma norepinephrine (NE) levels, in lean and obese women. Fifteen lean and 15 obese healthy women were examined on 2 occasions: after a carbohydrate (CHO)-rich and after a fat-rich test meal. Measurements of blood pressure, heart rate, resting energy expenditure, plasma glucose, lipids, insulin, leptin, and NE, as well as spectral analysis of the HRV, were performed at baseline and every 1 hour for 3 hours after meals. At baseline, obese women had higher SNS activity than lean controls (higher values of low-to-high frequency ratio [LF/HF], 1.52 +/- 0.31 v 0.78 +/- 0.13, P=.04; and plasma NE levels, 405.6 +/- 197.9 v 240.5 +/- 95.8 pg/mL, P<.0001). After the CHO-rich meal a greater increase in LF/HF and in plasma NE levels was observed in lean, compared to obese women (1.21 +/- 0.6 v 0.32 +/- 0.06, P=.04; and 102.9 +/- 35.4 v 38.7 +/- 12.3 pg/mL, P=.01, respectively), while no differences were observed after the fat-rich meal. Meal-induced thermogenesis was higher after the CHO-rich as compared to the fat-rich meal and was comparable between lean and obese women. Changes in HRV were not associated with the thermogenic response to the test meals. In conclusion, consumption of a CHO-rich meal causes greater cardiac SNS activation in lean than in obese women, while fat ingestion does not result in any appreciable change in either group. SNS activation does not appear to influence the thermic effect of the food in either lean or obese women.
Collapse
Affiliation(s)
- N Tentolouris
- First Department of Propaedeutic Medicine, Athens University Medical School, Laiko Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Current literature in diabetes. Diabetes Metab Res Rev 2002; 18:491-8. [PMID: 12469363 DOI: 10.1002/dmrr.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|