1
|
Li W, Xu G, Li M. Diabetic kidney disease: m6A modification as a marker of disease progression and subtype classification. Front Med (Lausanne) 2025; 12:1494162. [PMID: 40103797 PMCID: PMC11914134 DOI: 10.3389/fmed.2025.1494162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
This paper aims to investigate m6A modification during DKD progression. We evaluated m6A regulators expression in peripheral blood mononuclear cells, whole kidney tissue, glomerular, and tubulointerstitial samples. CIBERSORT and single-sample gene set enrichment analysis analyzed glomerular immune characteristics. Logistic-LASSO regression were used to develop the m6A regulators model that can identify early DKD. Consensus clustering algorithms were used to classify DKD in glomerular samples into m6A modified subtypes based on the expression of m6A regulators. Gene set variation analysis algorithm was used to evaluate the functional pathway enrichment of m6A modified subtypes. Weighted gene co-expression network analysis and protein-protein interaction networks identified m6A modified subtype marker genes. The Nephroseq V5 tool was used to evaluate the correlation between m6A modified subtypes marker genes and renal function. DKD patients' m6A regulators expression differed from the control group in various tissue types. DKD stages have various immune characteristics. The m6A regulators model with YTHDC1, METTL3, and ALKBH5 better identified early DKD. DKD was divided into two subtypes based on the expression of 26 m6A regulators. Subtype 1 was enriched in myogenesis, collagen components, and cytokine receptor interaction, while subtype 2 was enriched in protein secretion, proliferation, apoptosis, and various signaling pathways (e.g., TGFβ signaling pathway, PI3K/AKT/mTOR pathway, and etc.). Finally, AXIN1 and GOLGA4 were identified as possible biomarkers associated with glomerular filtration rate. From the viewpoint of m6A modification, the immune characteristics and molecular mechanisms of DKD at various stages are different, and targeted treatment would improve efficacy.
Collapse
Affiliation(s)
- Wenzhe Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Gaosi Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Manna Li
- Department of Nephrology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Yaman T, Akkoyun HT, Bayramoğlu Akkoyun M, Karagözoğlu F, Melek Ş, Keleş ÖF, Bengü AŞ. Assessment of the effect of sodium tetraborate on oxidative stress, inflammation, and apoptosis in lead-induced nephrotoxicity. Drug Chem Toxicol 2025; 48:150-162. [PMID: 38804252 DOI: 10.1080/01480545.2024.2358067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Exposure to Pb, a toxic heavy metal, is a risk factor for renal damage. Borax, an essential trace element in cellular metabolism, is a naturally occurring compound found in many foods. This study investigated the effects of sodium tetraborate (ST), a source of borax, on renal oxidative stress and inflammation in rats exposed to Pb. Wistar Albino rats (n = 24) were divided into four groups: Control (0.5 mL, i.p. isotonic), Pb (50 mg/kg/day/i.p.), ST (4.0 mg/kg/day/oral), and Pb + ST groups. At the end of the five-day experimental period, kidney tissue samples were obtained and analyzed. Histopathologically, the Pb-induced damage observed in the Pb group improved in the Pb + ST group. Immunohistochemically, Pb administration increased the expression of inducible nitric oxide synthase, cyclooxygenase-2, and caspase-3. When evaluated biochemically, Pb application inhibited catalase and glutathione peroxidase (GSH-Px) enzyme activities and activated superoxide dismutase enzyme activity. An increase in malondialdehyde levels was considered an indicator of damage. ST application increases glutathione peroxidase enzyme activity and decreased malondialdehyde levels. These results indicate that ST might play a protective role against Pb-induced renal damage via the upregulation of renal tissue antioxidants and cyclooxygenase-2, inducible nitric oxide synthase, and caspase-3 immunoexpression.
Collapse
Affiliation(s)
- Turan Yaman
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - H Turan Akkoyun
- Department of Physiology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | | | - Fatma Karagözoğlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Şule Melek
- Department of Surgery, Faculty of Veterinary Medicine, Bingol Universıty, Bingöl, Turkey
| | - Ömer Faruk Keleş
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Aydın Şükrü Bengü
- Vocational School of Health Services, Bingöl University, Bingöl, Turkey
| |
Collapse
|
3
|
Hafez SM, Ibrahim HF, Abdelmohsen SR, Yasin NAE, Abouelela YS, Aboelsoud HA. The potential protective effect of propolis on diabetic nephropathy induced by streptozotocin in adult albino rats. Ultrastruct Pathol 2024; 48:338-350. [PMID: 39087752 DOI: 10.1080/01913123.2024.2386009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Diabetes mellitus is a common metabolic disorder. It is associated with serious life-threatening complications if not properly managed. The current study aimed at investigating the possible protective role of propolis on streptozotocin-induced diabetic nephropathy. A diabetic rat model was induced by a single intraperitoneal injection of 55 mg/kg streptozotocin. After 4 days, the diabetic rats received oral propolis (300 mg/kg/day) via gastric gavage for 28 days. Biochemical, histopathological and ultrastructural evaluations were performed. The results showed that: streptozotocin-induced diabetes was associated with a marked decrease in the serum high-density lipoproteins and antioxidant enzymes. However, a significant elevation in the levels of serum creatinine, blood urea nitrogen, uric acid, cholesterol, triglycerides and low-density lipoproteins was detected. Furthermore, streptozotocin treatment induced histopathological alterations of the renal cortex; in the form of distorted glomerular capillaries, widened Bowman's space and signs of epithelial tubular degeneration. Ultra-structurally, thickening and irregularity of the glomerular basement membrane and podocytes foot processes effacement were observed. The tubular epithelial cells showed swollen vacuolated mitochondria, scarce basal infoldings and loss of microvilli. Conversely, propolis partially restored the normal lipid profile, antioxidant biomarkers and renal cortical morphology. Propolis exhibited a sort of renoprotection through hypoglycemic, anti-hyperlipidemic and antioxidant effects.
Collapse
Affiliation(s)
- Shaimaa M Hafez
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Heba F Ibrahim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al- Kharj, Kingdom of Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Noha A E Yasin
- Cytology and Histology, Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yara S Abouelela
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba Abdelnaser Aboelsoud
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al- Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev 2024; 99:102416. [PMID: 39002644 DOI: 10.1016/j.arr.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jingyang Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
5
|
Ojo OA, Ogunlakin AD, Akintayo CO, Olukiran OS, Adetunji JB, Ajayi-Odoko OA, Ogwa TO, Molehin OR, Ojo OO, Mothana RA, Alanzi AR. Spilanthes filicaulis (Schumach. & Thonn.) C.D. Adams leaves protects against streptozotocin-induced diabetic nephropathy. PLoS One 2024; 19:e0301992. [PMID: 38640098 PMCID: PMC11029641 DOI: 10.1371/journal.pone.0301992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic nephropathy remains unclear and may be due to a variety of pathological conditions resulting in kidney failure. This study examines the protective effect of the methanolic extract of Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic nephropathy and the associated pathway. METHODS Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic + MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response element-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined. RESULTS We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid, and creatinine). CONCLUSION Therefore, our results indicate that MESFL alleviates the development of diabetic nephropathy via suppression of the cAMP/PKA/CREB/cFOS pathways.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | | | | | - Theophilus Oghenenyoreme Ogwa
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi, Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi, Arabia
| |
Collapse
|
6
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
7
|
Jandeleit-Dahm KAM, Kankanamalage HR, Dai A, Meister J, Lopez-Trevino S, Cooper ME, Touyz RM, Kennedy CRJ, Jha JC. Endothelial NOX5 Obliterates the Reno-Protective Effect of Nox4 Deletion by Promoting Renal Fibrosis via Activation of EMT and ROS-Sensitive Pathways in Diabetes. Antioxidants (Basel) 2024; 13:396. [PMID: 38671844 PMCID: PMC11047703 DOI: 10.3390/antiox13040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hyperglycemia induces intrarenal oxidative stress due to the excessive production of reactive oxygen species (ROS), leading to a cascade of events that contribute to the development and progression of diabetic kidney disease (DKD). NOX5, a pro-oxidant NADPH oxidase isoform, has been identified as a significant contributor to renal ROS in humans. Elevated levels of renal ROS contribute to endothelial cell dysfunction and associated inflammation, causing increased endothelial permeability, which can disrupt the renal ecosystem, leading to progressive albuminuria and renal fibrosis in DKD. This study specifically examines the contribution of endothelial cell-specific human NOX5 expression in renal pathology in a transgenic mouse model of DKD. This study additionally compares NOX5 with the previously characterized NADPH oxidase, NOX4, in terms of their relative roles in DKD. Regardless of NOX4 pathway, this study found that endothelial cell-specific expression of NOX5 exacerbates renal injury, albuminuria and fibrosis. This is attributed to the activation of the endothelial mesenchymal transition (EMT) pathway via enhanced ROS formation and the modulation of redox-sensitive factors. These findings underscore the potential therapeutic significance of NOX5 inhibition in human DKD. The study proposes that inhibiting NOX5 could be a promising approach for mitigating the progression of DKD and strengthens the case for the development of NOX5-specific inhibitors as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Karin A. M. Jandeleit-Dahm
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Aozhi Dai
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Jaroslawna Meister
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3H 2R9, Canada;
| | - Christopher R. J. Kennedy
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada;
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| |
Collapse
|
8
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
9
|
Cen Y, Feng D, Kowsar R, Cheng Z, Luo Y, Xiao Q. Sex-Specific Variations in the mRNA Levels of Candidate Genes in Peripheral Blood Mononuclear Cells from Patients with Diabetes: A Multistep Study. Endocr Res 2024; 49:59-74. [PMID: 37947760 DOI: 10.1080/07435800.2023.2280571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is one of the most prevalent diseases that also show sexual dimorphism in many different aspects. OBJECTIVES This study aimed to distinguish the mRNA expression of genes in peripheral blood mononuclear cells (PBMCs) in men or women with T2D using a multistep analysis. METHODS A total of 95 patients with T2D were compared based on their sex in terms of clinical variables and mRNA expression in their PBMCs. RESULTS Men with T2D had lower LDLC, HDLC, and HbA1c values in their blood, but greater creatinine levels. In men with T2D, TLR4, CCR2, NOX2, and p67phox mRNA expression was greater, but IL6 and NF-κB mRNA expression was lesser in PBMCs. There was a link between fasting plasma glucose (FPG), triglycerides, and hs-CRP, as well as COX1 mRNA in men with T2D. In women with T2D, FPG was associated with the mRNA expression of THBS1 and p67phox, as well as triglycerides and HDLC levels. We found the exclusive effect of FPG on HDLC, HbA1c, as well as p67phox mRNA in PBMCs of women with T2D. Analysis revealed the exclusive effect of FPG on hs-CRP and PAFR mRNA in PBMCs of men with T2D. FPG was shown to be associated with body mass index, hs-CRP, triglycerides, and COX1 mRNA in men with T2D, and with serum triglycerides, THSB1, and p67phox mRNA in women with T2D, according to network analysis. HbA1c was linked with NF-κB mRNA in women with T2D. CONCLUSIONS Using a multistep analysis, it was shown that network analysis outperformed traditional analytic techniques in identifying sex-specific alterations in mRNA gene expression in PBMCs of T2D patients. The development of sex-specific therapeutic approaches may result from an understanding of these disparities.
Collapse
Affiliation(s)
- Yuzhen Cen
- Department of Blood Transfusion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dana Feng
- Department of Blood Transfusion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rasoul Kowsar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Zhen Cheng
- Guantian Community Healthcare Center, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Yu Luo
- Guantian Community Healthcare Center, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Qingyu Xiao
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| |
Collapse
|
10
|
Shayea AMF, Renno WM, Qabazard B, Masocha W. Neuroprotective Effects of a Hydrogen Sulfide Donor in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 24:16650. [PMID: 38068971 PMCID: PMC10706751 DOI: 10.3390/ijms242316650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic neuropathy is an important long-term complication of diabetes. This study explored the hypothesis that hydrogen sulfide (H2S) ameliorates neuropathic pain by controlling antiapoptotic and pro-apoptotic processes. The effects of a slow-releasing H2S donor, GYY4137, on the expression of antiapoptotic and pro-apoptotic genes and proteins, such as B-cell lymphoma 2 (Bcl2) and Bcl-2-like protein 4 (Bax), as well as caspases, cyclooxygenase (COX)-1 and COX-2, monocytes/macrophages, and endothelial cells, in the spinal cord of male Sprague-Dawley rats with streptozotocin-induced peripheral diabetic neuropathy, were investigated using reverse transcription-PCR, western blot and immunohistochemistry. The antihypoalgesic activities of GYY4137 on diabetic rats were evaluated using the tail flick test. Treatment of diabetic rats with GYY4137 attenuated thermal hypoalgesia and prevented both the diabetes-induced increase in Bax mRNA expression (p = 0.0032) and the diabetes-induced decrease in Bcl2 mRNA expression (p = 0.028). The GYY4137-treated diabetic group had increased COX-1 (p = 0.015), decreased COX-2 (p = 0.002), reduced caspase-7 and caspase-9 protein expression (p < 0.05), and lower numbers of endothelial and monocyte/macrophage cells (p < 0.05) compared to the non-treated diabetic group. In summary, the current study demonstrated the protective properties of H2S, which prevented the development of neuropathy related behavior, and suppressed apoptosis activation pathways and inflammation in the spinal cord. H2S-releasing drugs could be considered as possible treatment options of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Abdulaziz M. F. Shayea
- Department of Occupational Therapy, College of Allied Health Science, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
- Molecular Biology Program, College of Graduate Studies, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Waleed M. Renno
- Department of Anatomy, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Bedoor Qabazard
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait;
| |
Collapse
|
11
|
Villa BR, George AG, Shutt TE, Sullivan PG, Rho JM, Teskey GC. Postictal hypoxia involves reactive oxygen species and is ameliorated by chronic mitochondrial uncoupling. Neuropharmacology 2023; 238:109653. [PMID: 37422182 DOI: 10.1016/j.neuropharm.2023.109653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Prolonged severe hypoxia follows brief seizures and represents a mechanism underlying several negative postictal manifestations without interventions. Approximately 50% of the postictal hypoxia phenomenon can be accounted for by arteriole vasoconstriction. What accounts for the rest of the drop in unbound oxygen is unclear. Here, we determined the effect of pharmacological modulation of mitochondrial function on tissue oxygenation in the hippocampus of rats after repeatedly evoked seizures. Rats were treated with mitochondrial uncoupler 2,4 dinitrophenol (DNP) or antioxidants. Oxygen profiles were recorded using a chronically implanted oxygen-sensing probe, before, during, and after seizure induction. Mitochondrial function and redox tone were measured using in vitro mitochondrial assays and immunohistochemistry. Postictal cognitive impairment was assessed using the novel object recognition task. Mild mitochondrial uncoupling by DNP raised hippocampal oxygen tension and ameliorated postictal hypoxia. Chronic DNP also lowered mitochondrial oxygen-derived reactive species and oxidative stress in the hippocampus during postictal hypoxia. Uncoupling the mitochondria exerts therapeutic benefits on postictal cognitive dysfunction. Finally, antioxidants do not affect postictal hypoxia, but protect the brain from associated cognitive deficits. We provided evidence for a metabolic component of the prolonged oxygen deprivation that follow seizures and its pathological sequelae. Furthermore, we identified a molecular underpinning of this metabolic component, which involves excessive oxygen conversion into reactive species. Mild mitochondrial uncoupling may be a potential therapeutic strategy to treat the postictal state where seizure control is absent or poor.
Collapse
Affiliation(s)
- Bianca R Villa
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Timothy E Shutt
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Departments of Medical Genetics and Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Patrick G Sullivan
- Department of Anatomy and Neurobiology, and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Jong M Rho
- Department of Neurosciences, Pediatrics and Pharmacology, University of California San Diego, Rady Children's Hospital, San Diego, CA, 92037, USA.
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
12
|
Sardelli G, Scali V, Signore G, Balestri F, Cappiello M, Mura U, Del Corso A, Moschini R. Response of a Human Lens Epithelial Cell Line to Hyperglycemic and Oxidative Stress: The Role of Aldose Reductase. Antioxidants (Basel) 2023; 12:antiox12040829. [PMID: 37107204 PMCID: PMC10135174 DOI: 10.3390/antiox12040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
A common feature of different types of diabetes is the high blood glucose levels, which are known to induce a series of metabolic alterations, leading to damaging events in different tissues. Among these alterations, both increased polyol pathway flux and oxidative stress are considered to play relevant roles in the response of different cells. In this work, the effect on a human lens epithelial cell line of stress conditions, consisting of exposure to either high glucose levels or to the lipid peroxidation product 4-hydroxy-2-nonenal, is reported. The occurrence of osmotic imbalance, alterations of glutathione levels, and expression of inflammatory markers was monitored. A common feature of the two stress conditions was the expression of COX-2, which, only in the case of hyperglycemic stress, occurred through NF-κB activation. In our cell model, aldose reductase activity, which is confirmed as the only activity responsible for the osmotic imbalance occurring in hyperglycemic conditions, seemed to have no role in controlling the onset of the inflammatory phenomena. However, it played a relevant role in cellular detoxification against lipid peroxidation products. These results, in confirming the multifactorial nature of the inflammatory phenomena, highlight the dual role of aldose reductase as having both damaging but also protecting activity, depending on stress conditions.
Collapse
Affiliation(s)
- Gemma Sardelli
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Viola Scali
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2211450
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
13
|
Thai PN, Ren L, Xu W, Overton J, Timofeyev V, Nader CE, Haddad M, Yang J, Gomes AV, Hammock BD, Chiamvimonvat N, Sirish P. Chronic Diclofenac Exposure Increases Mitochondrial Oxidative Stress, Inflammatory Mediators, and Cardiac Dysfunction. Cardiovasc Drugs Ther 2023; 37:25-37. [PMID: 34499283 PMCID: PMC8904649 DOI: 10.1007/s10557-021-07253-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) are among one of the most commonly prescribed medications for pain and inflammation. Diclofenac (DIC) is a commonly prescribed NSAID that is known to increase the risk of cardiovascular diseases. However, the mechanisms underlying its cardiotoxic effects remain largely unknown. In this study, we tested the hypothesis that chronic exposure to DIC increases oxidative stress, which ultimately impairs cardiovascular function. METHODS AND RESULTS Mice were treated with DIC for 4 weeks and subsequently subjected to in vivo and in vitro functional assessments. Chronic DIC exposure resulted in not only systolic but also diastolic dysfunction. DIC treatment, however, did not alter blood pressure or electrocardiographic recordings. Importantly, treatment with DIC significantly increased inflammatory cytokines and chemokines as well as cardiac fibroblast activation and proliferation. There was increased reactive oxygen species (ROS) production in cardiomyocytes from DIC-treated mice, which may contribute to the more depolarized mitochondrial membrane potential and reduced energy production, leading to a significant decrease in sarcoplasmic reticulum (SR) Ca2+ load, Ca2+ transients, and sarcomere shortening. Using unbiased metabolomic analyses, we demonstrated significant alterations in oxylipin profiles towards inflammatory features in chronic DIC treatment. CONCLUSIONS Together, chronic treatment with DIC resulted in severe cardiotoxicity, which was mediated, in part, by an increase in mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Lu Ren
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Wilson Xu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - James Overton
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Carol E Nader
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Michael Haddad
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA.
- Department of Pharmacology, University of California, Davis, CA, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| | - Padmini Sirish
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| |
Collapse
|
14
|
Andreadi A, Muscoli S, Tajmir R, Meloni M, Muscoli C, Ilari S, Mollace V, Della Morte D, Bellia A, Di Daniele N, Tesauro M, Lauro D. Recent Pharmacological Options in Type 2 Diabetes and Synergic Mechanism in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24021646. [PMID: 36675160 PMCID: PMC9862607 DOI: 10.3390/ijms24021646] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes Mellitus is a multifactorial disease with a critical impact worldwide. During prediabetes, the presence of various inflammatory cytokines and oxidative stress will lead to the pathogenesis of type 2 diabetes. Furthermore, insulin resistance and chronic hyperglycemia will lead to micro- and macrovascular complications (cardiovascular disease, heart failure, hypertension, chronic kidney disease, and atherosclerosis). The development through the years of pharmacological options allowed us to reduce the persistence of chronic hyperglycemia and reduce diabetic complications. This review aims to highlight the specific mechanisms with which the new treatments for type 2 diabetes reduce oxidative stress and insulin resistance and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| | - Saverio Muscoli
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rojin Tajmir
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Carolina Muscoli
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - David Della Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alfonso Bellia
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| |
Collapse
|
15
|
Ahmed I, Ziab M, Da’as S, Hasan W, Jeya SP, Aliyev E, Nisar S, Bhat AA, Fakhro KA, Alshabeeb Akil AS. Network-based identification and prioritization of key transcriptional factors of diabetic kidney disease. Comput Struct Biotechnol J 2023; 21:716-730. [PMID: 36659918 PMCID: PMC9827363 DOI: 10.1016/j.csbj.2022.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most established microvascular complications of diabetes and a key cause of end-stage renal disease. It is well established that gene susceptibility to DN plays a critical role in disease pathophysiology. Therefore, many genetic studies have been performed to categorize candidate genes in prominent diabetic cohorts, aiming to investigate DN pathogenesis and etiology. In this study, we performed a meta-analysis on the expression profiles of GSE1009, GSE30122, GSE96804, GSE99340, GSE104948, GSE104954, and GSE111154 to identify critical transcriptional factors associated with DN progression. The analysis was conducted for all individual datasets for each kidney tissue (glomerulus, tubules, and kidney cortex). We identified distinct clusters of susceptibility genes that were dysregulated in a renal compartment-specific pattern. Further, we recognized a small but a closely connected set of these susceptibility genes enriched for podocyte differentiation, several of which were characterized as genes encoding critical transcriptional factors (TFs) involved in DN development and podocyte function. To validate the role of identified TFs in DN progression, we functionally validated the three main TFs (DACH1, LMX1B, and WT1) identified through differential gene expression and network analysis using the hyperglycemic zebrafish model. We report that hyperglycemia-induced altered gene expression of the key TF genes leads to morphological abnormalities in zebrafish glomeruli, pronephric tubules, proximal and distal ducts. This study demonstrated that altered expression of these TF genes could be associated with hyperglycemia-induced nephropathy and, thus, aids in understanding the molecular drivers, essential genes, and pathways that trigger DN initiation and development.
Collapse
Affiliation(s)
- Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mubarak Ziab
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Sahar Da’as
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Waseem Hasan
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Sujitha P. Jeya
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Elbay Aliyev
- Human Genetics Department, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Khalid Adnan Fakhro
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
- Human Genetics Department, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Human Genetics Department, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
16
|
Sanaie S, Nikanfar S, Kalekhane ZY, Azizi-Zeinalhajlou A, Sadigh-Eteghad S, Araj-Khodaei M, Ayati MH, Andalib S. Saffron as a promising therapy for diabetes and Alzheimer's disease: mechanistic insights. Metab Brain Dis 2023; 38:137-162. [PMID: 35986812 DOI: 10.1007/s11011-022-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
The prevalence of both Alzheimer's disease (AD) and diabetes mellitus is increasing with the societies' aging and has become an essential social concern worldwide. Accumulation of amyloid plaques and neurofibrillary tangles (NFTs) of tau proteins in the brain are hallmarks of AD. Diabetes is an underlying risk factor for AD. Insulin resistance has been proposed to be involved in amyloid-beta (Aβ) aggregation in the brain. It seems that diabetic conditions can result in AD pathology by setting off a cascade of processes, including inflammation, mitochondrial dysfunction, and ROS and advanced glycation end products (AGEs) synthesis. Due to the several side effects of chemical drugs and their high cost, using herbal medicine has recently attracted attention for the treatment of diabetes and AD. Saffron and its active ingredients have been used for its anti-inflammatory, anti-oxidant, anti-diabetic, and anti-AD properties. Therefore, in the present review paper, we take account of the clinical, in vivo and in vitro evidence regarding the anti-diabetic and anti-AD effects of saffron and discuss the preventive or postponing properties of saffron or its components on AD development via its anti-diabetic effects.
Collapse
Affiliation(s)
- Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yousefi Kalekhane
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Akbar Azizi-Zeinalhajlou
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Ayati
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sasan Andalib
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Chemical inhibition of mitochondrial fission improves insulin signaling and subdues hyperglycemia induced stress in placental trophoblast cells. Mol Biol Rep 2023; 50:493-506. [PMID: 36352179 DOI: 10.1007/s11033-022-07959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a metabolic complication that affects millions of pregnant women in the world. Placental tissue function is endangered by hyperglycemia during GDM, which is correlated to increased incidences of pregnancy complications. Recently we showed that due to a significant decrease in mitochondrial fusion, mitochondrial dynamics equilibrium is altered in placental tissues from GDM patients. Evidence for the role of reduced mitochondrial fusion in the disruption of mitochondrial function in placental cells is limited. METHODS AND RESULTS Here we show that chemical inhibition of mitochondrial fission in cultured placental trophoblast cells leads to an increase in mitochondrial fusion and improves the physiological state of these cells and hence, their capacity to cope in a hyperglycemic environment. Specifically, mitochondrial fission inhibition led to a reduction in reactive oxygen species (ROS) generation, mitochondrial unfolded protein marker expressions, and mitochondrial depolarization. It supported the increase in mitochondrial antioxidant enzyme expressions as well. Mitochondrial fission inhibition also increases the placental cell insulin sensitivity during hyperglycemia. CONCLUSION Our results suggest that mitochondrial fusion/fission equilibrium is critical for placental cell function and signify the therapeutic potential of small molecule inhibitors of fission during GDM.
Collapse
|
18
|
Khalifa AS, Elshebiny A, Eed EM, Elhelbawy MG, Rizk SK. Genetic variations of tumor necrosis factor-α and prostaglandin-endoperoxide synthase 2 genes among Egyptian patients with type 2 diabetes mellitus and diabetic nephropathy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Li Z, Li S, Xiao Y, Zhong T, Yu X, Wang L. Nutritional intervention for diabetes mellitus with Alzheimer's disease. Front Nutr 2022; 9:1046726. [PMID: 36458172 PMCID: PMC9707640 DOI: 10.3389/fnut.2022.1046726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2025] Open
Abstract
The combined disease burden of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing, and the two diseases share some common pathological changes. However, the pharmacotherapeutic approach to this clinical complexity is limited to symptomatic rather than disease-arresting, with the possible exception of metformin. Whether nutritional intervention might extend or synergize with these effects of metformin is of interest. In particular, dietary patterns with an emphasis on dietary diversity shown to affect cognitive function are of growing interest in a range of food cultural settings. This paper presents the association between diabetes and AD. In addition, the cross-cultural nutritional intervention programs with the potential to mitigate both insulin resistance (IR) and hyperglycemia, together with cognitive impairment are also reviewed. Both dietary patterns and nutritional supplementation showed the effects of improving glycemic control and reducing cognitive decline in diabetes associated with AD, but the intervention specificity remained controversial. Multi-nutrient supplements combined with diverse diets may have preventive and therapeutic potential for DM combined with AD, at least as related to the B vitamin group and folate-dependent homocysteine (Hcy). The nutritional intervention has promise in the prevention and management of DM and AD comorbidities, and more clinical studies would be of nutritional scientific merit.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
20
|
Rigazio CS, Mariz-Ponte N, Caballero EP, Penas FN, Goren NB, Santamaría MH, Corral RS. Involvement of glycoinositolphospholipid from Trypanosoma cruzi and macrophage migration inhibitory factor in proinflammatory mechanisms promoting cardiovascular injury mechanisms promoting cardiovascular inflammation tThe combined action of glycoinositolphospholipid from Trypanosoma cruzi and macrophage migration inhibitory factor increases proinflammatory mediator production by cardiomyocytes and vascular endothelial cells. Microb Pathog 2022; 173:105881. [DOI: 10.1016/j.micpath.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
|
21
|
Zhu Y, Yang S, Lv L, Zhai X, Wu G, Qi X, Dong D, Tao X. Research Progress on the Positive and Negative Regulatory Effects of Rhein on the Kidney: A Review of Its Molecular Targets. Molecules 2022; 27:molecules27196572. [PMID: 36235108 PMCID: PMC9573519 DOI: 10.3390/molecules27196572] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, both acute kidney injury (AKI) and chronic kidney disease (CKD) are considered to be the leading public health problems with gradually increasing incidence rates around the world. Rhein is a monomeric component of anthraquinone isolated from rhubarb, a traditional Chinese medicine. It has anti-inflammation, anti-oxidation, anti-apoptosis, anti-bacterial and other pharmacological activities, as well as a renal protective effects. Rhein exerts its nephroprotective effects mainly through decreasing hypoglycemic and hypolipidemic, playing anti-inflammatory, antioxidant and anti-fibrotic effects and regulating drug-transporters. However, the latest studies show that rhein also has potential kidney toxicity in case of large dosages and long use times. The present review highlights rhein's molecular targets and its different effects on the kidney based on the available literature and clarifies that rhein regulates the function of the kidney in a positive and negative way. It will be helpful to conduct further studies on how to make full use of rhein in the kidney and to avoid kidney damage so as to make it an effective kidney protection drug.
Collapse
|
22
|
Li X, Wu J, Xu F, Chu C, Li X, Shi X, Zheng W, Wang Z, Jia Y, Xiao W. Use of Ferulic Acid in the Management of Diabetes Mellitus and Its Complications. Molecules 2022; 27:molecules27186010. [PMID: 36144745 PMCID: PMC9503003 DOI: 10.3390/molecules27186010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes mellitus, a metabolic disease mainly characterized by hyperglycemia, is becoming a serious social health problem worldwide with growing prevalence. Many natural compounds have been found to be effective in the prevention and treatment of diabetes, with negligible toxic effects. Ferulic acid (FA), a phenolic compound commonly found in medicinal herbs and the daily diet, was proved to have several pharmacological effects such as antihyperglycemic, antihyperlipidemic and antioxidant actions, which are beneficial to the management of diabetes and its complications. Data from PubMed, EM-BASE, Web of Science and CNKI were searched with the keywords ferulic acid and diabetes mellitus. Finally, 28 articles were identified after literature screening, and the research progress of FA for the management of DM and its complications was summarized in the review, in order to provide references for further research and medical applications of FA.
Collapse
Affiliation(s)
- Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Jingxian Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fanxing Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Chu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (Y.J.); (W.X.)
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Correspondence: (Y.J.); (W.X.)
| |
Collapse
|
23
|
Mochida N, Matsumura Y, Kitabatake M, Ito T, Kayano SI, Kikuzaki H. Antioxidant Potential of Non-Extractable Fractions of Dried Persimmon (Diospyros kaki Thunb.) in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2022; 11:antiox11081555. [PMID: 36009274 PMCID: PMC9404935 DOI: 10.3390/antiox11081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress causes the progression of diabetes and its complications; thus, maintaining the balance between reactive oxygen species produced by hyperglycemia and the antioxidant defense system is important. We herein examined the antioxidant potential of non-extractable fractions of dried persimmon (NEP) against oxidative stress in diabetic rats. Rats with streptozotocin-induced type 1 diabetes (50 mg/kg body weight) were administered NEP for 9 weeks. Antioxidant enzyme activities and concentration of antioxidants in liver tissues were analyzed with a microplate reader. Extensor digitorum longus (EDL) and soleus muscle fibers were stained with succinate dehydrogenase and muscle fiber sizes were measured. The administration of NEP increased the body weight of diabetes rats. Regarding antioxidant activities, the oxygen radical absorbance capacity and superoxide dismutase activity in liver tissues significantly increased. In addition, increases in glutathione peroxidase activity in liver tissues and reductions in the cross-sectional area of EDL muscle fibers were significantly suppressed. In these results, NEP improved the antioxidant defense system in the liver tissues of diabetic rats, in addition to attenuating of muscle fibers atrophy against oxidative damage induced by hyperglycemia.
Collapse
Affiliation(s)
- Naoko Mochida
- Department of Food Science & Nutrition, School of Humanities & Science, Nara Women’s University, Nara 630-8506, Japan
| | - Yoko Matsumura
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Correspondence: ; Tel.: +81-745-54-1601
| | - Hiroe Kikuzaki
- Department of Food Science & Nutrition, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
24
|
Rico-Fontalvo J, Aroca G, Cabrales J, Daza-Arnedo R, Yánez-Rodríguez T, Martínez-Ávila MC, Uparella-Gulfo I, Raad-Sarabia M. Molecular Mechanisms of Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23158668. [PMID: 35955802 PMCID: PMC9369345 DOI: 10.3390/ijms23158668] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/18/2022] Open
Abstract
The inflammatory component of diabetic kidney disease has become of great interest in recent years, with genetic and epigenetic variants playing a fundamental role in the initiation and progression of the disease. Cells of the innate immune system play a major role in the pathogenesis of diabetic kidney disease, with a lesser contribution from the adaptive immune cells. Other components such as the complement system also play a role, as well as specific cytokines and chemokines. The inflammatory component of diabetic kidney disease is of great interest and is an active research field, with the hope to find potential innovative therapeutic targets.
Collapse
Affiliation(s)
- Jorge Rico-Fontalvo
- Colombian Nephrology Association, Bogotá 110221, Colombia
- Management of Technologies and Innovation, Department of Engineering, Universidad Simón Bolivar, Cl. 58 #55-132, Barranquilla 080002, Colombia
| | - Gustavo Aroca
- Colombian Nephrology Association, Bogotá 110221, Colombia
- Faculty of Medicine, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Jose Cabrales
- Nephrology Fellow, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Correspondence:
| | | | | | | | | | | |
Collapse
|
25
|
Kitsiranuwat S, Suratanee A, Plaimas K. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction. Sci Prog 2022; 105:368504221109215. [PMID: 35801312 PMCID: PMC10358641 DOI: 10.1177/00368504221109215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Identifying new therapeutic indications for existing drugs is a major challenge in drug repositioning. Most computational drug repositioning methods focus on known targets. Analyzing multiple aspects of various protein associations provides an opportunity to discover underlying drug-associated proteins that can be used to improve the performance of the drug repositioning approaches. In this study, machine learning models were developed based on the similarities of diversified biological features, including protein interaction, topological network, sequence alignment, and biological function to predict protein pairs associating with the same drugs. The crucial set of features was identified, and the high performances of protein pair predictions were achieved with an area under the curve (AUC) value of more than 93%. Based on drug chemical structures, the drug similarity levels of the promising protein pairs were used to quantify the inferred drug-associated proteins. Furthermore, these proteins were employed to establish an augmented drug-protein matrix to enhance the efficiency of three existing drug repositioning techniques: a similarity constrained matrix factorization for the drug-disease associations (SCMFDD), an ensemble meta-paths and singular value decomposition (EMP-SVD) model, and a topology similarity and singular value decomposition (TS-SVD) technique. The results showed that the augmented matrix helped to improve the performance up to 4% more in comparison to the original matrix for SCMFDD and EMP-SVD, and about 1% more for TS-SVD. In summary, inferring new protein pairs related to the same drugs increase the opportunity to reveal missing drug-associated proteins that are important for drug development via the drug repositioning technique.
Collapse
Affiliation(s)
- Satanat Kitsiranuwat
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
- Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Lee E, Ahn H, Park S, Kim G, Kim H, Noh MG, Kim Y, Yeon JS, Park H. Staphylococcus epidermidis WF2R11 Suppresses PM 2.5-Mediated Activation of the Aryl Hydrocarbon Receptor in HaCaT Keratinocytes. Probiotics Antimicrob Proteins 2022; 14:915-933. [PMID: 35727505 PMCID: PMC9474527 DOI: 10.1007/s12602-022-09922-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The skin supports a diverse microbiome whose imbalance is related to skin inflammation and diseases. Exposure to fine particulate matter (PM2.5), a major air pollutant, can adversely affect the skin microbiota equilibrium. In this study, the effect and mechanism of PM2.5 exposure in HaCaT keratinocytes were investigated. PM2.5 stimulated the aryl hydrocarbon receptor (AhR) to produce reactive oxygen species (ROS) in HaCaT cells, leading to mitochondrial dysfunction and intrinsic mitochondrial apoptosis. We observed that the culture medium derived from a particular skin microbe, Staphylococcus epidermidis WF2R11, remarkably reduced oxidative stress in HaCaT cells caused by PM2.5-mediated activation of the AhR pathway. Staphylococcus epidermidis WF2R11 also exhibited inhibition of ROS-induced inflammatory cytokine secretion. Herein, we demonstrated that S. epidermidis WF2R11 could act as a suppressor of AhRs, affect cell proliferation, and inhibit apoptosis. Our results highlight the importance of the clinical application of skin microbiome interventions in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shinyoung Park
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae-Sung Yeon
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea. .,Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea.
| |
Collapse
|
27
|
Shan Z, Fa WH, Tian CR, Yuan CS, Jie N. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY) 2022; 14:2902-2919. [PMID: 35332108 PMCID: PMC9004550 DOI: 10.18632/aging.203969] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
The prevalence of type 2 diabetes is associated with inflammatory bowels diseases, nonalcoholic steatohepatitis and even a spectrum of cancer such as colon cancer and liver cancer, resulting in a substantial healthcare burden on our society. Autophagy is a key regulator in metabolic homeostasis such as lipid metabolism, energy management and the balance of cellular mineral substances. Mitophagy is selective autophagy for clearing the damaged mitochondria and dysfunctional mitochondria. A myriad of evidence has demonstrated a major role of mitophagy in the regulation of type 2 diabetes and metabolic homeostasis. It is well established that defective mitophagy has been linked to the development of insulin resistance. Moreover, insulin resistance is further progressed to various diseases such as nephropathy, retinopathy and cardiovascular diseases. Concordantly, restoration of mitophagy will be a reliable and therapeutic target for type 2 diabetes. Recently, various phytochemicals have been proved to prevent dysfunctions of β-cells by mitophagy inductions during diabetes developments. In agreement with the above phenomenon, mitophagy inducers should be warranted as potential and novel therapeutic agents for treating diabetes. This review focuses on the role of mitophagy in type 2 diabetes relevant diseases and the pharmacological basis and therapeutic potential of autophagy regulators in type 2 diabetes.
Collapse
Affiliation(s)
- Zhao Shan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Wei Hong Fa
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Run Tian
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Shi Yuan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Ning Jie
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| |
Collapse
|
28
|
Rabbani N, Xue M, Thornalley PJ. Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis-Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. Int J Mol Sci 2022; 23:ijms23042165. [PMID: 35216280 PMCID: PMC8877341 DOI: 10.3390/ijms23042165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteolysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing to the development of insulin resistance and vascular complications in diabetes. Consequently, the increased flux of glucose metabolism without a change in the expression and activity of glycolytic enzymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled glycolysis. The conditions required to sustain this are GLUT1 and/or GLUT3 glucose uptake and the expression of HK2. A metabolic biomarker of its occurrence is the abnormally increased deposition of glycogen, which is produced by metabolic channeling when HK2 becomes detached from mitochondria. These conditions and metabolic consequences are found in the vasculature, kidneys, retina, peripheral nerves, and early-stage embryo development in diabetes and likely sustain the development of diabetic vascular complications and embryopathy. In insulin resistance, HK2-linked unscheduled glycolysis may also be established in skeletal muscle and adipose tissue. This may explain the increased glucose disposal by skeletal uptake in the fasting phase in patients with type 2 diabetes mellitus, compared to healthy controls, and the presence of insulin resistance in patients with type 1 diabetes mellitus. Importantly, glyoxalase 1 inducer—trans-resveratrol and hesperetin in combination (tRES-HESP)—corrected HK2-linked glycolytic overload and unscheduled glycolysis and reversed insulin resistance and improved vascular inflammation in overweight and obese subjects in clinical trial. Further studies are now required to evaluate tRES-HESP for the prevention and reversal of early-stage type 2 diabetes and for the treatment of the vascular complications of diabetes.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
29
|
Yamaguchi R, Sakamoto A, Yamaguchi R, Haraguchi M, Narahara S, Sugiuchi H, Yamaguch Y. IL-23 production in human macrophages is regulated negatively by tumor necrosis factor α-induced protein 3 and positively by specificity protein 1 after stimulation of the toll-like receptor 7/8 signaling pathway. Heliyon 2022; 8:e08887. [PMID: 35198762 PMCID: PMC8850731 DOI: 10.1016/j.heliyon.2022.e08887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022] Open
Abstract
The IL-23/IL-17 axis plays an important role in the development of autoimmune diseases, but the mechanism regulating IL-23 production is mainly unknown. We investigated how TNFAIP3 and Sp1 affect IL-23 production by human macrophages after exposure to resiquimod, a TLR7/8 agonist. IL-23 production was significantly upregulated by resiquimod but only slightly by LPS (a TLR4 agonist). Interestingly, IL-23 levels were significantly attenuated after sequential stimulation with LPS and resiquimod, but IL-12p40 and IL-18 levels were not. TLR4-related factors induced by LPS may regulate IL-23 expression via TLR7/8 signaling. LPS significantly enhanced TNFAIP3 and IRAK-M levels but reduced Sp1 levels. After exposure to resiquimod, RNA interference of TNFAIP3 upregulated IL-23 significantly more than siRNA transfection of IRAK-M did. In contrast, knockdown of Sp1 by RNA interference significantly attenuated IL-23 production. Transfection with siRNA for TNFAIP3 enhanced IL-23 expression significantly. After stimulation with resiquimod, GW7647—an agonist for PPARα (an inducer of NADHP oxidase)—and siRNA for UCP2 (a negative regulator of mitochondrial ROS generation) enhanced TNFAIP3 and reduced IL-23. siRNA for p22phox and gp91phox slightly increased Sp1 levels. However, after exposure to resiquimod siRNA-mediated knockout of DUOX1/2 significantly enhanced Sp1 and IL-23 levels, and decreased TNFα-dependent COX-2 expression. Concomitantly, TNFAIP3 levels was attenuated by DUOX1/2 siRNA. TNFAIP3 and Sp1 levels are reciprocally regulated through ROS generation. In conclusion, after stimulation of the TLR7/8 signaling pathway IL-23 production in human macrophages is regulated negatively by TNFAIP3.
Collapse
Affiliation(s)
- Rui Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Reona Yamaguchi
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-konoe-cho Sakyo-ku Kyoto 606-8501, Japan
| | - Misa Haraguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Shinji Narahara
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Hiroyuki Sugiuchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Yasuo Yamaguch
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
- Corresponding author.
| |
Collapse
|
30
|
Takahashi P, Xavier DJ, Lima JEBF, Evangelista AF, Collares CVA, Foss-Freitas MC, Rassi DM, Donadi EA, Passos GA, Sakamoto-Hojo ET. Transcript Expression Profiles and MicroRNA Regulation Indicate an Upregulation of Processes Linked to Oxidative Stress, DNA Repair, Cell Death, and Inflammation in Type 1 Diabetes Mellitus Patients. J Diabetes Res 2022; 2022:3511329. [PMID: 35155683 PMCID: PMC8825437 DOI: 10.1155/2022/3511329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing β-cells leading to impaired insulin secretion and hyperglycemia. T1D is accompanied by DNA damage, oxidative stress, and inflammation, although there is still scarce information about the oxidative stress response and DNA repair in T1D pathogenesis. We used the microarray method to assess mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) of 19 T1D patients compared to 11 controls and identify mRNA targets of microRNAs that were previously reported for T1D patients. We found 277 differentially expressed genes (220 upregulated and 57 downregulated) in T1D patients compared to controls. Analysis by gene sets (GSA and GSEA) showed an upregulation of processes linked to ROS generation, oxidative stress, inflammation, cell death, ER stress, and DNA repair in T1D patients. Besides, genes related to oxidative stress responses and DNA repair (PTGS2, ATF3, FOSB, DUSP1, and TNFAIP3) were found to be targets of four microRNAs (hsa-miR-101, hsa-miR148a, hsa-miR-27b, and hsa-miR-424). The expression levels of these mRNAs and microRNAs were confirmed by qRT-PCR. Therefore, the present study on differential expression profiles indicates relevant biological functions related to oxidative stress response, DNA repair, inflammation, and apoptosis in PBMCs of T1D patients relative to controls. We also report new insights regarding microRNA-mRNA interactions, which may play important roles in the T1D pathogenesis.
Collapse
Affiliation(s)
- Paula Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
| | - Danilo J. Xavier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
| | - Jessica E. B. F. Lima
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
| | | | - Cristhianna V. A. Collares
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maria C. Foss-Freitas
- Division of Endocrinology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Diane M. Rassi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A. Donadi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A. Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Elza T. Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
31
|
PP2 Ameliorates Renal Fibrosis by Regulating the NF- κB/COX-2 and PPAR γ/UCP2 Pathway in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7394344. [PMID: 34580604 PMCID: PMC8464423 DOI: 10.1155/2021/7394344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis in diabetic nephropathy (DN). We aimed to evaluate the effects of PP2 on renal fibrosis of DN. GSE33744 and GSE86300 were downloaded from the GEO database. Firstly, 839 DEGs were identified between nondiabetic and diabetic mice renal glomerular samples. COX-2 was selected to assess the effects of PP2 on renal glomerulosclerosis. In db/db mice, PP2 decreased the expression of COX-2, phosphorylated p65, and fibrotic proteins, accompanied with attenuated renal glomerulosclerosis. In cultured glomerular mesangial cells, high glucose- (HG-) induced p65 phosphorylation and COX-2 expression were attenuated by PP2 or NF-κB inhibitor PDTC. PP2, PDTC, or COX-2 inhibitor NS-398 ameliorated abnormal proliferation and expression of fibrotic proteins induced by HG. Secondly, 238 DEGs were identified between nondiabetic and diabetic mice renal cortex samples. UCP2 was selected to assess the effects of PP2 on renal tubulointerstitial fibrosis. In db/db mice, PP2 decreased the expression of PPARγ and UCP2, accompanied with attenuated renal tubulointerstitial fibrosis and EMT. In cultured proximal tubular cells, HG-induced PPARγ and UCP2 expression was inhibited by PP2 or PPARγ antagonist GW9662. PP2, GW9662, or UCP2 shRNA ameliorated HG-induced EMT. These results indicated that PP2 ameliorated renal fibrosis in diabetic mice.
Collapse
|
32
|
Herb M, Gluschko A, Schramm M. Reactive Oxygen Species: Not Omnipresent but Important in Many Locations. Front Cell Dev Biol 2021; 9:716406. [PMID: 34557488 PMCID: PMC8452931 DOI: 10.3389/fcell.2021.716406] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as the superoxide anion or hydrogen peroxide, have been established over decades of research as, on the one hand, important and versatile molecules involved in a plethora of homeostatic processes and, on the other hand, as inducers of damage, pathologies and diseases. Which effects ROS induce, strongly depends on the cell type and the source, amount, duration and location of ROS production. Similar to cellular pH and calcium levels, which are both strictly regulated and only altered by the cell when necessary, the redox balance of the cell is also tightly regulated, not only on the level of the whole cell but in every cellular compartment. However, a still widespread view present in the scientific community is that the location of ROS production is of no major importance and that ROS randomly diffuse from their cellular source of production throughout the whole cell and hit their redox-sensitive targets when passing by. Yet, evidence is growing that cells regulate ROS production and therefore their redox balance by strictly controlling ROS source activation as well as localization, amount and duration of ROS production. Hopefully, future studies in the field of redox biology will consider these factors and analyze cellular ROS more specifically in order to revise the view of ROS as freely flowing through the cell.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| |
Collapse
|
33
|
Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1497449. [PMID: 34307650 PMCID: PMC8285185 DOI: 10.1155/2021/1497449] [Citation(s) in RCA: 421] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Chronic hyperglycemia and high blood pressure are the main risk factors for the development of DN. In general, screening for microalbuminuria should be performed annually, starting 5 years after diagnosis in type 1 diabetes and at diagnosis and annually thereafter in type 2 diabetes. Standard therapy is blood glucose and blood pressure control using the renin-angiotensin system blockade, targeting A1c < 7%, and <130/80 mmHg. Regression of albuminuria remains an important therapeutic goal. However, there are problems in diagnosis and treatment of nonproteinuric DN (NP-DN), which does not follow the classic pattern of DN. In fact, the prevalence of DN continues to increase, and additional therapy is needed to prevent or ameliorate the condition. In addition to conventional therapies, vitamin D receptor activators, incretin-related drugs, and therapies that target inflammation may also be promising for the prevention of DN progression. This review focuses on the role of inflammation and oxidative stress in the pathogenesis of DN, approaches to diagnosis in classic and NP-DN, and current and emerging therapeutic interventions.
Collapse
|
34
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
35
|
Therapeutic Potential of Astaxanthin in Diabetic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1261:239-248. [PMID: 33783747 DOI: 10.1007/978-981-15-7360-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Astaxanthin is a carotenoid that has potent protective effects on diabetic kidney disease (DKD) in diabetic mice models. DNA microarray study clearly demonstrated the involvement of mitochondrial oxidative phosphorylation pathway in the renal glomerular cells of diabetic mice and also showed that the expression of upregulated genes associated with this pathway was decreased by the treatment with astaxanthin. Proteomic analysis confirmed that the increases of 4-hydroxy-2-nonenal (HNE)- and Nε-(hexanonyl)lysine (HEL)-modified proteins were inhibited by the treatment with astaxanthin. These results demonstrated that astaxanthin exerts a protective effect against hyperglycemia-induced DKD by attenuating mitochondrial oxidative stress and subsequent cellular dysfunction.
Collapse
|
36
|
Paul S, Saha D, Bk B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Mol Neurobiol 2021; 58:3677-3691. [PMID: 33797062 DOI: 10.1007/s12035-021-02365-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are known to be correlated in terms of their epidemiology, histopathology, and molecular and biochemical characteristics. The prevalence of T2D leading to AD is approximately 50-70%. Moreover, AD is often considered type III diabetes because of the common risk factors. Uncontrolled T2D may affect the brain, leading to memory and learning deficits in patients. In addition, metabolic disorders and impaired oxidative phosphorylation in AD and T2D patients suggest that mitochondrial dysfunction is involved in both diseases. The dysregulation of pathways involved in maintaining mitochondrial dynamics, biogenesis and mitophagy are responsible for exacerbating the impact of hyperglycemia on the brain and neurodegeneration under T2D conditions. The first section of this review describes the recent views on mitochondrial dysfunction that connect these two disease conditions, as the pathways are observed to overlap. The second section of the review highlights the importance of different mitochondrial miRNAs (mitomiRs) involved in the regulation of mitochondrial dynamics and their association with the pathogenesis of T2D and AD. Therefore, targeting mitochondrial biogenesis and mitophagy pathways, along with the use of mitomiRs, could be a potent therapeutic strategy for T2D-related AD. The last section of the review highlights the known drugs targeting mitochondrial function for the treatment of both disease conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debarpita Saha
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
37
|
MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells. Biosci Rep 2021; 40:222166. [PMID: 32073611 PMCID: PMC7056448 DOI: 10.1042/bsr20192384] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia-induced renal tubular cell injury is thought to play a critical role in the pathogenesis of diabetic nephropathy (DN). However, the role of miRNAs in renal tubular cell injury remains to be fully elucidated. The aim of the present study was to investigate the role and mechanisms of miRNAs protecting against high glucose (HG)-induced apoptosis and inflammation in renal tubular cells. First, we analyzed microRNA (miRNA) expression profiles in kidney tissues from DN patients using miRNA microarray. It was observed that miRNA-140-5p (miR-140-5p) was significantly down-regulated in kidney tissues from patients with DN. An inverse correlation between miR-140-5p expression levels with serum proteinuria was observed in DN patients, suggesting miR-140-5p may be involved in the progression of DN. HG-induced injury in HK-2 cells was used to explore the potential role of miR-140-5p in DN. We found that miR-140-5p overexpression improved HG-induced cell injury, as evidenced by the enhancement of cell viability, and inhibition of the activity of caspase-3 and reactive oxygen species (ROS) generation. It was also observed that up-regulation of miR-140-5p suppressed HG induced the expressions of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in HK-2 cells. In addition, TLR4, one of the upstream molecules of NF-κB signaling pathway, was found to be a direct target of miR-140-5p in the HK-2. Moreover, the HG-induced activation of NF-κB signaling pathway was inhibited by miR-140-5p overexpression. These results indicated that miR-140-5p protected HK-2 cells against HG-induced injury through blocking the TLR4/NF-κB pathway, and miR-140-5p may be considered as a potential prognostic biomarker and therapeutic target in the treatment of DN.
Collapse
|
38
|
Roles of mTOR in Diabetic Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10020321. [PMID: 33671526 PMCID: PMC7926630 DOI: 10.3390/antiox10020321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and the number of patients affected is increasing worldwide. Thus, there is a need to establish a new treatment for DKD to improve the renal prognosis of diabetic patients. Recently, it has shown that intracellular metabolic abnormalities are involved in the pathogenesis of DKD. In particular, the activity of mechanistic target of rapamycin complex 1 (mTORC1), a nutrient-sensing signaling molecule, is hyperactivated in various organs of diabetic patients, which suggests the involvement of excessive mTORC1 activation in the pathogenesis of diabetes. In DKD, hyperactivated mTORC1 may be involved in the pathogenesis of podocyte damage, which causes proteinuria, and tubular cell injury that decreases renal function. Therefore, elucidating the role of mTORC1 in DKD and developing new therapeutic agents that suppress mTORC1 hyperactivity may shed new light on DKD treatments in the future.
Collapse
|
39
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
40
|
Protection of 6-OHDA neurotoxicity by PGF 2α through FP-ERK-Nrf2 signaling in SH-SY5Y cells. Toxicology 2021; 450:152686. [PMID: 33486071 DOI: 10.1016/j.tox.2021.152686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/26/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin that destroy dopaminergic neurons and widely used to establish animal models of Parkinson's disease. Prostaglandins (PGs) are involved in various cellular processes, including the damage and repair of neuronal cells. However, the function of PGF2α in neuronal cells remains unclear. In this study, we investigated the effects of PGF2α against 6-OHDA-mediated toxicity in human neuroblastoma SH-SY5Y cells and elucidated its underlying molecular mechanism. When the cells were treated with 6-OHDA (50 μM) for 6 h, the expression levels of PGF2α synthetic enzymes; cyclooxygenase-2 and aldo-keto reductase 1C3 as PGF2α synthase were enhanced in an incubation-time-dependent manner. In addition, the production of PGF2α was increased in 6-OHDA-treated cells. Fluprostenol, a PGF2α receptor (FP) agonist (500 nM), suppressed 6-OHDA-induced cell death by decreasing the production of reactive oxygen species (ROS) and increasing the expression of the anti-oxidant genes. These fluprostenol-mediated effects were inhibited by co-treatment with AL8810, an FP receptor antagonist (1 μM) or transfection with FP siRNA (20 nM). Moreover, 6-OHDA-induced phosphorylation of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase family, was inhibited by co-incubation with AL8810. Furthermore, fluprostenol itself enhanced ERK phosphorylation and further elevated the 6-OHDA-induced phosphorylation of ERK. In addition, 6-OHDA induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), activating anti-oxidant gene expression, was repressed by co-culturing with AL8810. These results indicate that PGF2α suppressed 6-OHDA-induced neuronal cell death by enhancing anti-oxidant gene expression via the FP receptor-ERK-Nrf2 signaling. Thus, FP receptor is a potential target for inhibition of ROS-mediated neuronal cell death.
Collapse
|
41
|
Samadi M, Aziz SGG, Naderi R. The effect of tropisetron on oxidative stress, SIRT1, FOXO3a, and claudin-1 in the renal tissue of STZ-induced diabetic rats. Cell Stress Chaperones 2021; 26:217-227. [PMID: 33047279 PMCID: PMC7736377 DOI: 10.1007/s12192-020-01170-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022] Open
Abstract
Tropisetron is a 5-HT3 receptor antagonist that exerts protective effect against DN. The aim of this study was to investigate the possible molecular mechanisms associated with the renoprotective effects of tropisetron in STZ-induced diabetic rats. Animals were subdivided into 5 equal groups; control, tropisetron, diabetes, tropisetron + diabetes, and glibenclamide + diabetes (n = 7). For induction of type 1 diabetes, a single injection of STZ (55 mg/kg, i.p.) was administered to the animals. Diabetic rats were treated with tropisetron (3 mg/kg) and glibenclamide (1 mg/kg) for 2 weeks. According to the conducted analysis, diabetes led to renal dysfunction (reduction in glomerular filtration rate and urine urea and creatinine as well as elevation in plasma urea and creatinine) and abnormalities in antioxidant defense system (reduction in TAC and elevation in MDA), compared with the control group, which was prevented by tropisetron treatment. Reverse transcription-quantitative polymerase chain reaction and western blotting analysis demonstrated that SIRT1 gene expression decreased while FOXO3a and NF-κB gene expression as well as phosphorylated FOXO3a/total FOXO3a protein ratios and claudin-1 protein level increased in the kidney of diabetic rats compared with the control group. Herein, the results of this research showed that tropisetron treatment reversed these changes. Besides, all these changes were comparable with those produced by glibenclamide as a positive control. Hence, tropisetron ameliorated renal damage due to diabetic nephropathy possibly by suppressing oxidative stress and alteration of SIRT1, FOXO3a, and claudin-1 levels.
Collapse
Affiliation(s)
- Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
42
|
Abdel-latif RG, Ahmed AF, Heeba GH. Low-dose lixisenatide protects against early-onset nephropathy induced in diabetic rats. Life Sci 2020; 263:118592. [DOI: 10.1016/j.lfs.2020.118592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
|
43
|
Rababa'h AM, Alzoubi KH, Baydoun S, Khabour OF. Levosimendan Prevents Memory Impairment Induced by Diabetes in Rats: Role of Oxidative Stress. Curr Alzheimer Res 2020; 16:1300-1308. [PMID: 31894746 DOI: 10.2174/1567205017666200102153239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/24/2019] [Accepted: 12/29/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Levosimendan is a calcium sensitizer and phosphodiesterase inhibitor that has potent antioxidant and anti-inflammatory activities. OBJECTIVES The aim of the current study is to investigate the potential protective effect of levosimendan on learning and memory impairment induced by diabetes. METHODS Adult Wister rats were randomly divided into four groups (n=15 rats/group): control, levosimendan, streptozotocin (STZ) induced diabetes, and levosimendan-STZ diabetes. Upon confirmation of the success of the STZ diabetic model, intraperitoneal levosimendan (100µg/kg/week) was administrated to the assigned groups for 4 weeks. Then, the radial arm water maze was used to evaluate spatial learning and memory. Oxidative stress biomarkers and brain-derived neurotrophic factor were evaluated in hippocampal tissues. RESULTS The results showed that Diabetes Mellitus (DM) impaired both short- and long- term memory (P<0.01), while levosimendan protected the animals from memory impairment. In addition, levosimendan prevented DM-induced reduction in the hippocampal levels of superoxide dismutase and glutathione peroxidase (P<0.05). Moreover, the administration of levosimendan prevented DM-induced increases in hippocampal thiobarbituric acid reactive substances level (P<0.05). Furthermore, levosimendan restored the ratio of reduced/oxidized glutathione (GSH/GSSG) in DM rats to that observed in the control group (P<0.05). CONCLUSIONS In summary, DM induced learning and memory impairment, and treatment with levosimendan impeded this impairment probably through preventing alterations in the antioxidant system in the hippocampus.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sandy Baydoun
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
44
|
Bedford JG, Heinlein M, Garnham AL, Nguyen THO, Loudovaris T, Ge C, Mannering SI, Elliott M, Tangye SG, Kedzierska K, Gray DHD, Heath WR, Wakim LM. Unresponsiveness to inhaled antigen is governed by conventional dendritic cells and overridden during infection by monocytes. Sci Immunol 2020; 5:5/52/eabb5439. [DOI: 10.1126/sciimmunol.abb5439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The nasal-associated lymphoid tissues (NALTs) are mucosal-associated lymphoid organs embedded in the submucosa of the nasal passage. NALTs represent a known site for the deposition of inhaled antigens, but little is known of the mechanisms involved in the induction of immunity within this lymphoid tissue. We find that during the steady state, conventional dendritic cells (cDCs) within the NALTs suppress T cell responses. These cDCs, which are also prevalent within human NALTs (tonsils/adenoids), express a unique transcriptional profile and inhibit T cell proliferation via contact-independent mechanisms that can be diminished by blocking the actions of reactive oxygen species and prostaglandin E2. Although the prevention of unrestrained immune activation to inhaled antigens appears to be the default function of NALT cDCs, inflammation after localized virus infection recruited monocyte-derived DCs (moDCs) to this region, which diluted out the suppressive DC pool, and permitted local T cell priming. Accommodating for inflammation-induced temporal changes in NALT DC composition and function, we developed an intranasal vaccine delivery system that coupled the recruitment of moDCs with the sustained release of antigen into the NALTs, and we were able to substantially improve T cell responses after intranasal immunization. Thus, homeostasis and immunity to inhaled antigens is tuned by inflammatory signals that regulate the balance between conventional and moDC populations within the NALTs.
Collapse
Affiliation(s)
- James G. Bedford
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Melanie Heinlein
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexandra L. Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tom Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Chenghao Ge
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- School of Medicine, Tsinghua University, Beijing, China
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
- Chris O’Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Stuart G. Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Daniel H. D. Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
45
|
Alaofi AL. Sinapic Acid Ameliorates the Progression of Streptozotocin (STZ)-Induced Diabetic Nephropathy in Rats via NRF2/HO-1 Mediated Pathways. Front Pharmacol 2020; 11:1119. [PMID: 32792955 PMCID: PMC7390867 DOI: 10.3389/fphar.2020.01119] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic neuropathy (DN) is a complicated inauspicious outcome of diabetes, like other abnormalities of diabetes the cause of DN is still vague and it may be the result of various pathological conditions leading up to end-stage renal failure. The present study examines the efficacy of sinapic acid (SA) in streptozotocin (STZ)-induced DN nephropathy and the linked pathway. Twenty-four rats were equally divided randomly into four categories: Normal control (NC), STZ, STZ + SA 20 mg/kg bw, and STZ + SA 40 mg/kg bw. After 8 weeks they were evaluated for ratio of renal index, the fasting blood glucose (FBG), blood urea nitrogen (BUN), 24 h urea protein, serum creatinine (SCr), reduced glutathione peroxidase (GPx), superoxide dismutase (SOD), lipid peroxidation (MDA), tumor necrosis factor α (TNFα), interleukin (IL)-6, as well as lipid profile total cholesterol (TC), total triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) levels. Additionally, histomorphology and ultrastructure of the kidneys were also assessed. Protein expression levels of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), IκBα protein (IkBα), anti-apoptotic protein BCl2, nuclear factor kappa B (NF-kB), and Bax were examined. We observed that SA 20 mg/kg bw and 40 mg/kg bw pretreatment significantly and dose-dependently upregulated the protein expression of HO-1, Nrf2, IKBα, and Bcl-2 but downregulated the protein expression of NF-κB, proposing that the nephroprotective mechanism of SA is due to its antioxidant and anti-inflammatory activity; SA prevents the release of cytokines and inflammatory markers (TNFα and IL-6), upregulates antioxidant defense enzymes, and reduces lipid peroxidation, as well as nitric oxide, and anti-apoptotic activity, which may be influenced by the regulation of TNF-α, IL-6, Bcl-2, NF-kB, and BaX via the Nrf2/HO-1 pathway in STZ induced DN. Thus, our results suggest that SA ameliorates the development of STZ-induced DN in rats via NRF2/HO-1 mediated pathways. Further comprehensive studies are required for complete elucidation of the fundamental mechanisms.
Collapse
Affiliation(s)
- Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 2020; 34:101517. [PMID: 32535544 PMCID: PMC7296337 DOI: 10.1016/j.redox.2020.101517] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a very prevalent, multisystemic, chronic metabolic disorder closely related to atherosclerosis and cardiovascular diseases. It is characterised by mitochondrial dysfunction and the presence of oxidative stress. Metformin is one of the safest and most effective anti-hyperglycaemic agents currently employed as first-line oral therapy for T2D. It has demonstrated additional beneficial effects, unrelated to its hypoglycaemic action, on weight loss and several diseases, such as cancer, cardiovascular disorders and metabolic diseases, including thyroid diseases. Despite the vast clinical experience gained over several decades of use, the mechanism of action of metformin is still not fully understood. This review provides an overview of the existing literature concerning the beneficial mitochondrial and vascular effects of metformin, which it exerts by diminishing oxidative stress and reducing leukocyte-endothelium interactions. Specifically, we describe the molecular mechanisms involved in metformin's effect on gluconeogenesis, its capacity to interfere with major metabolic pathways (AMPK and mTORC1), its action on mitochondria and its antioxidant effects. We also discuss potential targets for therapeutic intervention based on these molecular actions.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain; CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain.
| | - Francesca Iannantuoni
- Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Aleksandra Gruevska
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain
| | - Jordi Muntane
- Institute of Biomedicine of Seville (IBiS), University Hospital "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Milagros Rocha
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Victor M Victor
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
47
|
Orabi SH, Abd Eldaium D, Hassan A, Sabagh HSE, Abd Eldaim MA. Allicin modulates diclofenac sodium induced hepatonephro toxicity in rats via reducing oxidative stress and caspase 3 protein expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103306. [PMID: 31812117 DOI: 10.1016/j.etap.2019.103306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE This study was designed to evaluate the protective effects of allicin against diclofenac sodium induced hepatonephro toxicity in rats. METHODS Sixty male Wister albino rats were assigned into six groups. The control group received calcium carbonate and corn starch. 2nd group received diclofenac sodium (2 mg/kg bw orally) for 30 days. 3rd group received allicin (45 mg/kg bw orally) for 30 days. 4th group administrated diclofenac sodium as in the 2nd group and allicin (15 mg/kg bw orally) for 30 days. 5th group received diclofenac sodium as in the 2nd group and allicin (30 mg/kg bw orally) for 30 days. 6th group received diclofenac sodium as 2nd and allicin (45 mg/kg bw orally) for 30 days. RESULTS Diclofenac sodium significantly elevated activities of serum aspartate aminotransferase and alanine aminotransferase and serum levels of creatinine and urea. In addition, it induced hyperglycemia, lipid peroxidation, pathological alteration and caspase 3 protein expression in hepatic and renal tissues. However, it decreased reduced glutathione concentration and proliferating cell nuclear antigen protein expression in hepatic tissues. In contrast, allicin modulated the diclofenac sodium induced alteration in liver and kidney functions and structures dose dependently. CONCLUSION This study indicated that allicin had potential preventive effects against diclofenac sodium induced hepatonephro toxicity in rats.
Collapse
Affiliation(s)
- Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Doaa Abd Eldaium
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hesham Saad El Sabagh
- Department of Toxicology and Fronsic Medicine, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt; Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, 606-8502, Japan
| |
Collapse
|
48
|
O’Flaherty C, Boisvert A, Manku G, Culty M. Protective Role of Peroxiredoxins against Reactive Oxygen Species in Neonatal Rat Testicular Gonocytes. Antioxidants (Basel) 2019; 9:antiox9010032. [PMID: 31905831 PMCID: PMC7022870 DOI: 10.3390/antiox9010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/27/2022] Open
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes that protect cells from oxidative stress and play a role in reactive oxygen species (ROS)-mediated signaling. We reported that PRDXs are critical for human fertility by maintaining sperm viability and regulating ROS levels during capacitation. Moreover, studies on Prdx6−/− mice revealed the essential role of PRDX6 in the viability, motility, and fertility competence of spermatozoa. Although PRDXs are abundant in the testis and spermatozoa, their potential role at different phases of spermatogenesis and in perinatal germ cells is unknown. Here, we examined the expression and role of PRDXs in isolated rat neonatal gonocytes, the precursors of spermatogonia, including spermatogonial stem cells. Gene array, qPCR analyses showed that PRDX1, 2, 3, 5, and 6 transcripts are among the most abundant antioxidant genes in postnatal day (PND) 3 gonocytes, while immunofluorescence confirmed the expression of PRDX1, 2, and 6 proteins. The role of PRDXs in gonocyte viability was examined using PRDX inhibitors, revealing that the 2-Cys PRDXs and PRDX6 peroxidases activities are critical for gonocytes viability in basal condition, likely preventing an excessive accumulation of endogenous ROS in the cells. In contrast to its crucial role in spermatozoa, PRDX6 independent phospholipase A2 (iPLA2) activity was not critical in gonocytes in basal conditions. However, under conditions of H2O2-induced oxidative stress, all these enzymatic activities were critical to maintain gonocyte viability. The inhibition of PRDXs promoted a two-fold increase in lipid peroxidation and prevented gonocyte differentiation. These results suggest that ROS are produced in neonatal gonocytes, where they are maintained by PRDXs at levels that are non-toxic and permissive for cell differentiation. These findings show that PRDXs play a major role in the antioxidant machinery of gonocytes, to maintain cell viability and allow for differentiation.
Collapse
Affiliation(s)
- Cristian O’Flaherty
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Surgery (Urology Division), McGill University, Montreal, QC H4A 3J1, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
| | - Gurpreet Manku
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (C.O.); (A.B.); (G.M.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-323-865-1677
| |
Collapse
|
49
|
Kuthati Y, Busa P, Goutham Davuluri VN, Wong CS. Manganese Oxide Nanozymes Ameliorate Mechanical Allodynia in a Rat Model of Partial Sciatic Nerve-Transection Induced Neuropathic Pain. Int J Nanomedicine 2019; 14:10105-10117. [PMID: 31920306 PMCID: PMC6938959 DOI: 10.2147/ijn.s225594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) induced oxidative stress is linked to numerous neurological diseases, including neuropathic pain. Natural ROS scavenging enzymes like superoxide dismutase (SOD) and catalase have been found to be efficient in alleviating neuropathic pain. However, their sensitivity towards extreme pH and a short half-life limit their efficacy in vivo. Manganese oxide nanoparticles (MONPs) are recently known to possess ROS scavenging properties. In this study, MONPs were examined for their therapeutic effect on neuropathic pain. METHODS The MONPs were synthesized by a hydrothermal method. The synthesized MONPs were characterized by UV/Vis, TEM, SEM, FTIR, NTA and XRD. The biocompatibility of the nanoparticles is evaluated in neural cells using LDH assay. MONPs were evaluated for their antioxidant activity by DPPH assay. In addition, in vitro ROS scavenging properties were examined in bone marrow-derived macrophage (BMDM) cells using 2',7'-dichlorofluorescin diacetate (DCFDA) assay. To evaluate the in vivo efficacy of nanoparticles, neuropathic pain was induced in Wistar rats by partial sciatic nerve transection (PSNT). On post-transection days 14 to 18, rats were intrathecally injected with MONPs and paw withdrawal threshold was measured. The spinal cords were collected and processed for Western blotting and histological analysis. RESULTS The synthesized MONPs were biocompatible and showed effective antioxidant activity against DPPH free radical scavenging. Further, the nanoparticles scavenged ROS efficiently in vitro in BMDM and their intrathecal administration significantly reduced mechanical allodynia as well as the expression of cyclooxygenase-2 (COX-2), an important mediator of chronic and inflammatory pain in the spinal dorsal horns of PSNT rats. CONCLUSION As ROS play a significant role in neuropathic pain, we expect that MONPs could be a promising tool for the treatment of various inflammatory diseases and might also serve as a potential nanocarrier for the delivery of analgesics.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei, Taiwan
| | - Prabhakar Busa
- Department of Life Sciences, National Dong Hwa University, Hualien, Taiwan
| | | | - Chih Shung Wong
- Department of Anesthesiology, Cathy General Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|