1
|
Vilas-Boas EA, Kowaltowski AJ. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus. Free Radic Biol Med 2024; 219:195-214. [PMID: 38677486 DOI: 10.1016/j.freeradbiomed.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria congregate central reactions in energy metabolism, many of which involve electron transfer. As such, they are expected to both respond to changes in nutrient supply and demand and also provide signals that integrate energy metabolism intracellularly. In this review, we discuss how mitochondrial bioenergetics and reactive oxygen species production is impacted by dietary interventions that change nutrient availability and impact on aging, such as calorie restriction. We also discuss how dietary interventions alter mitochondrial Ca2+ transport, regulating both mitochondrial and cytosolic processes modulated by this ion. Overall, a plethora of literature data support the idea that mitochondrial oxidants and calcium transport act as integrating signals coordinating the response to changes in nutritional supply and demand in cells, tissues, and animals.
Collapse
Affiliation(s)
- Eloisa A Vilas-Boas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
2
|
de los Ríos C, Viejo L, Carretero VJ, Juárez NH, Cruz-Martins N, Hernández-Guijo JM. Promising Molecular Targets in Pharmacological Therapy for Neuronal Damage in Brain Injury. Antioxidants (Basel) 2023; 12:118. [PMID: 36670980 PMCID: PMC9854812 DOI: 10.3390/antiox12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The complex etiopathogenesis of brain injury associated with neurodegeneration has sparked a lot of studies in the last century. These clinical situations are incurable, and the currently available therapies merely act on symptoms or slow down the course of the diseases. Effective methods are being sought with an intent to modify the disease, directly acting on the properly studied targets, as well as to contribute to the development of effective therapeutic strategies, opening the possibility of refocusing on drug development for disease management. In this sense, this review discusses the available evidence for mitochondrial dysfunction induced by Ca2+ miscommunication in neurons, as well as how targeting phosphorylation events may be used to modulate protein phosphatase 2A (PP2A) activity in the treatment of neuronal damage. Ca2+ tends to be the catalyst for mitochondrial dysfunction, contributing to the synaptic deficiency seen in brain injury. Additionally, emerging data have shown that PP2A-activating drugs (PADs) suppress inflammatory responses by inhibiting different signaling pathways, indicating that PADs may be beneficial for the management of neuronal damage. In addition, a few bioactive compounds have also triggered the activation of PP2A-targeted drugs for this treatment, and clinical studies will help in the authentication of these compounds. If the safety profiles of PADs are proven to be satisfactory, there is a case to be made for starting clinical studies in the setting of neurological diseases as quickly as possible.
Collapse
Affiliation(s)
- Cristóbal de los Ríos
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, University Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Lucía Viejo
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natalia Hernández Juárez
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natália Cruz-Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Advanced Training in Health Sciences and Technologies, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029 Madrid, Spain
| |
Collapse
|
3
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Vishnu N, Hamilton A, Bagge A, Wernersson A, Cowan E, Barnard H, Sancak Y, Kamer KJ, Spégel P, Fex M, Tengholm A, Mootha VK, Nicholls DG, Mulder H. Mitochondrial clearance of calcium facilitated by MICU2 controls insulin secretion. Mol Metab 2021; 51:101239. [PMID: 33932586 PMCID: PMC8163986 DOI: 10.1016/j.molmet.2021.101239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Transport of Ca2+ into pancreatic β cell mitochondria facilitates nutrient-mediated insulin secretion. However, the underlying mechanism is unclear. Recent establishment of the molecular identity of the mitochondrial Ca2+ uniporter (MCU) and associated proteins allows modification of mitochondrial Ca2+ transport in intact cells. We examined the consequences of deficiency of the accessory protein MICU2 in rat and human insulin-secreting cells and mouse islets. METHODS siRNA silencing of Micu2 in the INS-1 832/13 and EndoC-βH1 cell lines was performed; Micu2-/- mice were also studied. Insulin secretion and mechanistic analyses utilizing live confocal imaging to assess mitochondrial function and intracellular Ca2+ dynamics were performed. RESULTS Silencing of Micu2 abrogated GSIS in the INS-1 832/13 and EndoC-βH1 cells. The Micu2-/- mice also displayed attenuated GSIS. Mitochondrial Ca2+ uptake declined in MICU2-deficient INS-1 832/13 and EndoC-βH1 cells in response to high glucose and high K+. MICU2 silencing in INS-1 832/13 cells, presumably through its effects on mitochondrial Ca2+ uptake, perturbed mitochondrial function illustrated by absent mitochondrial membrane hyperpolarization and lowering of the ATP/ADP ratio in response to elevated glucose. Despite the loss of mitochondrial Ca2+ uptake, cytosolic Ca2+ was lower in siMICU2-treated INS-1 832/13 cells in response to high K+. It was hypothesized that Ca2+ accumulated in the submembrane compartment in MICU2-deficient cells, resulting in desensitization of voltage-dependent Ca2+ channels, lowering total cytosolic Ca2+. Upon high K+ stimulation, MICU2-silenced cells showed higher and prolonged increases in submembrane Ca2+ levels. CONCLUSIONS MICU2 plays a critical role in β cell mitochondrial Ca2+ uptake. β cell mitochondria sequestered Ca2+ from the submembrane compartment, preventing desensitization of voltage-dependent Ca2+ channels and facilitating GSIS.
Collapse
Affiliation(s)
- N Vishnu
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Hamilton
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Bagge
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Wernersson
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - E Cowan
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - H Barnard
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - Y Sancak
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - K J Kamer
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - P Spégel
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - M Fex
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden
| | - A Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala SE-751 23, Sweden
| | - V K Mootha
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - D G Nicholls
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - H Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Center, Lund University, Malmö SE-205 02, Sweden.
| |
Collapse
|
5
|
Mitochondrial Calcium Signaling in Pancreatic β-Cell. Int J Mol Sci 2021; 22:ijms22052515. [PMID: 33802289 PMCID: PMC7959128 DOI: 10.3390/ijms22052515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulation of calcium in energized mitochondria of pancreatic β-cells is emerging as a crucial process for pancreatic β-cell function. β-cell mitochondria sense and shape calcium signals, linking the metabolism of glucose and other secretagogues to the generation of signals that promote insulin secretion during nutrient stimulation. Here, we describe the role of mitochondrial calcium signaling in pancreatic β-cell function. We report the latest pharmacological and genetic findings, including the first mitochondrial calcium-targeted intervention strategies developed to modulate pancreatic β-cell function and their potential relevance in the context of diabetes.
Collapse
|
6
|
Mitochondrial Carriers Regulating Insulin Secretion Profiled in Human Islets upon Metabolic Stress. Biomolecules 2020; 10:biom10111543. [PMID: 33198243 PMCID: PMC7697104 DOI: 10.3390/biom10111543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic exposure of β-cells to nutrient-rich metabolic stress impairs mitochondrial metabolism and its coupling to insulin secretion. We exposed isolated human islets to different metabolic stresses for 3 days: 0.4 mM oleate or 0.4 mM palmitate at physiological 5.5 mM glucose (lipotoxicity), high 25 mM glucose (glucotoxicity), and high 25 mM glucose combined with 0.4 mM oleate and/or palmitate (glucolipotoxicity). Then, we profiled the mitochondrial carriers and associated genes with RNA-Seq. Diabetogenic conditions, and in particular glucotoxicity, increased expression of several mitochondrial solute carriers in human islets, such as the malate carrier DIC, the α-ketoglutarate-malate exchanger OGC, and the glutamate carrier GC1. Glucotoxicity also induced a general upregulation of the electron transport chain machinery, while palmitate largely counteracted this effect. Expression of different components of the TOM/TIM mitochondrial protein import system was increased by glucotoxicity, whereas glucolipotoxicity strongly upregulated its receptor subunit TOM70. Expression of the mitochondrial calcium uniporter MCU was essentially preserved by metabolic stresses. However, glucotoxicity altered expression of regulatory elements of calcium influx as well as the Na+/Ca2+ exchanger NCLX, which mediates calcium efflux. Overall, the expression profile of mitochondrial carriers and associated genes was modified by the different metabolic stresses exhibiting nutrient-specific signatures.
Collapse
|
7
|
De Marchi U, Fernandez-Martinez S, de la Fuente S, Wiederkehr A, Santo-Domingo J. Mitochondrial ion channels in pancreatic β-cells: Novel pharmacological targets for the treatment of Type 2 diabetes. Br J Pharmacol 2020; 178:2077-2095. [PMID: 32056196 PMCID: PMC8246559 DOI: 10.1111/bph.15018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic beta‐cells are central regulators of glucose homeostasis. By tightly coupling nutrient sensing and granule exocytosis, beta‐cells adjust the secretion of insulin to the circulating blood glucose levels. Failure of beta‐cells to augment insulin secretion in insulin‐resistant individuals leads progressively to impaired glucose tolerance, Type 2 diabetes, and diabetes‐related diseases. Mitochondria play a crucial role in β‐cells during nutrient stimulation, linking the metabolism of glucose and other secretagogues to the generation of signals that promote insulin secretion. Mitochondria are double‐membrane organelles containing numerous channels allowing the transport of ions across both membranes. These channels regulate mitochondrial energy production, signalling, and cell death. The mitochondria of β‐cells express ion channels whose physio/pathological role is underappreciated. Here, we describe the mitochondrial ion channels identified in pancreatic β‐cells, we further discuss the possibility of targeting specific β‐cell mitochondrial channels for the treatment of Type 2 diabetes, and we finally highlight the evidence from clinical studies. LINKED ARTICLES This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc
Collapse
Affiliation(s)
| | - Silvia Fernandez-Martinez
- Division of Clinical Pharmacology and Toxicology, Centre de Recherche Clinique, HUG, Genève, Switzerland
| | - Sergio de la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
8
|
Magi S, Piccirillo S, Preziuso A, Amoroso S, Lariccia V. Mitochondrial localization of NCXs: Balancing calcium and energy homeostasis. Cell Calcium 2020; 86:102162. [DOI: 10.1016/j.ceca.2020.102162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/04/2023]
|
9
|
Functional properties and mode of regulation of the mitochondrial Na +/Ca 2+ exchanger, NCLX. Semin Cell Dev Biol 2019; 94:59-65. [PMID: 30658153 DOI: 10.1016/j.semcdb.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
Mitochondrial Ca2+ transient is the earliest discovered organellar Ca2+ signaling pathway. It consist of a Ca2+ influx, mediated by mitochondrial Ca2+ uniporter (MCU), and mitochondrial Ca2+ efflux mediated by a Na+/Ca2+ exchanger (NCLX). Mitochondrial Ca2+ signaling machinery plays a fundamental role in linking metabolic activity to cellular Ca2+ signaling, and in controlling local Ca2+ concertation in distinct cellular compartments. Impaired balance between mitochondrial Ca2+ influx and efflux leads to mitochondrial Ca2+ overload, an early and key event in ischemic or neurodegenerative syndromes. Molecular identification of NCLX and MCU happened only recently. Surprisingly, MCU knockout yielded a relatively mild phenotype while conditional knockout of NCLX led to a rapid fatal heart failure. Here we will focus on recent functional and molecular studies on NCLX structure and its mode of regulation. We will describe the unique crosstalk of this exchanger with Na+ and Ca2+ signaling pathways in the cell membrane and the endoplasmic reticulum, and with protein kinases that posttranslationally modulate NCLX activity. We will critically compare selectivity of pharmacological blockers versus molecular control of NCLX expression and activity. Finally we will discuss why this exchanger is essential for survival and can serve as an attractive therapeutic target.
Collapse
|
10
|
Function, regulation and physiological role of the mitochondrial Na + /Ca 2+ exchanger, NCLX. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Arduino DM, Perocchi F. Pharmacological modulation of mitochondrial calcium homeostasis. J Physiol 2018; 596:2717-2733. [PMID: 29319185 DOI: 10.1113/jp274959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are pivotal organelles in calcium (Ca2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Daniela M Arduino
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| | - Fabiana Perocchi
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| |
Collapse
|
12
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
13
|
Shoshan-Barmatz V, De S, Meir A. The Mitochondrial Voltage-Dependent Anion Channel 1, Ca 2+ Transport, Apoptosis, and Their Regulation. Front Oncol 2017; 7:60. [PMID: 28443244 PMCID: PMC5385329 DOI: 10.3389/fonc.2017.00060] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023] Open
Abstract
In the outer mitochondrial membrane, the voltage-dependent anion channel 1 (VDAC1) functions in cellular Ca2+ homeostasis by mediating the transport of Ca2+ in and out of mitochondria. VDAC1 is highly Ca2+-permeable and modulates Ca2+ access to the mitochondrial intermembrane space. Intramitochondrial Ca2+ controls energy metabolism by enhancing the rate of NADH production via modulating critical enzymes in the tricarboxylic acid cycle and fatty acid oxidation. Mitochondrial [Ca2+] is regarded as an important determinant of cell sensitivity to apoptotic stimuli and was proposed to act as a "priming signal," sensitizing the organelle and promoting the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ ([Ca2+]i) mediates apoptosis is not known. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis and in apoptosis. Accumulated evidence shows that apoptosis-inducing agents act by increasing [Ca2+]i and that this, in turn, augments VDAC1 expression levels. Thus, a new concept of how increased [Ca2+]i activates apoptosis is postulated. Specifically, increased [Ca2+]i enhances VDAC1 expression levels, followed by VDAC1 oligomerization, cytochrome c release, and subsequently apoptosis. Evidence supporting this new model suggesting that upregulation of VDAC1 expression constitutes a major mechanism by which apoptotic stimuli induce apoptosis with VDAC1 oligomerization being a molecular focal point in apoptosis regulation is presented. A new proposed mechanism of pro-apoptotic drug action, namely Ca2+-dependent enhancement of VDAC1 expression, provides a platform for developing a new class of anticancer drugs modulating VDAC1 levels via the promoter and for overcoming the resistance of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumasree De
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Meir
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
14
|
López-Gil A, Nanclares C, Méndez-López I, Martínez-Ramírez C, de Los Rios C, Padín-Nogueira JF, Montero M, Gandía L, García AG. The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na + /Ca 2+ exchanger. J Physiol 2017; 595:2129-2146. [PMID: 27982456 DOI: 10.1113/jp273339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Upon repeated application of short ACh pulses to C57BL6J mouse chromaffin cells, the amperometrically monitored secretory responses promptly decayed to a steady-state level of around 25% of the initial response. A subsequent K+ pulse, however, overcame such decay. These data suggest that mouse chromaffin cells have a ready release-vesicle pool that is selectively recruited by the physiological neurotransmitter ACh. The ACh-sensitive vesicle pool is refilled and maintained by the rate of Ca2+ delivery from mitochondria to the cytosol, through the mitochondrial Na+ /Ca2+ exchanger (mNCX). ITH12662, a novel blocker of the mNCX, prevented the decay of secretion elicited by ACh pulses and delayed the rate of [Ca2+ ]c clearance. This regulatory pathway may be physiologically relevant in situations of prolonged stressful conflicts where a sustained catecholamine release is regulated by mitochondrial Ca2+ circulation through the mNCX, which couples respiration and ATP synthesis to long-term stimulation of chromaffin cells by endogenously released ACh. ABSTRACT Using caged-Ca2+ photorelease or paired depolarising pulses in voltage-clamped chromaffin cells (CCs), various pools of secretory vesicles with different readiness to undergo exocytosis have been identified. Whether these pools are present in unclamped CCs challenged with ACh, the physiological neurotransmitter at the splanchnic nerve-CC synapse, is unknown. We have explored here whether an ACh-sensitive ready-release vesicle pool (ASP) is present in C57BL6J mouse chromaffin cells (MCCs). Single cells were fast perfused with a Tyrode solution at 37°C, and challenged with 12 sequential ACh pulses (100 μm, 2 s, every 30 s) plus a K+ pulse given at the end (75 mm K+ ). After the first 2-3 ACh pulses the amperometrically monitored secretory responses promptly decayed to a steady-state level of around 25% of the initial response. The last K+ pulse, however, overcame such decay. Repeated ACh pulses to voltage-clamped cells elicited non-desensitising nicotinic currents. Also, the [Ca2+ ]c transients elicited by repeated ACh pulses that were superimposed on a stable baseline elevation did not undergo decay. The novel blocker of the mitochondrial Na+ /Ca2+ exchanger (mNCX) ITH12662 prevented the decay of secretion elicited by ACh pulses and delayed the rate of [Ca2+ ]c clearance. The experiments are compatible with the idea that C57BL6J MCCs have an ASP vesicle pool that is selectively recruited by the physiological neurotransmitter ACh and is regulated by the rate of Ca2+ delivery from mitochondria to the cytosol, through the mNCX.
Collapse
Affiliation(s)
- Angela López-Gil
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Carmen Nanclares
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Iago Méndez-López
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Carmen Martínez-Ramírez
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Cristóbal de Los Rios
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, c/ Diego de León, 62, 28006, Madrid, Spain
| | - J Fernando Padín-Nogueira
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Mayte Montero
- Instituto de Biologia y Genética Molecular, Universidad de Valladolid, c/ Sanz y Forés, 3, 47003, Valladolid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, c/ Diego de León, 62, 28006, Madrid, Spain
| |
Collapse
|
15
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
16
|
Shoshan-Barmatz V, De S. Mitochondrial VDAC, the Na +/Ca 2+ Exchanger, and the Ca 2+ Uniporter in Ca 2+ Dynamics and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:323-347. [PMID: 29594867 DOI: 10.1007/978-3-319-55858-5_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca2+ uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca2+ signaling, energy metabolism, and cell death. Ca2+ transport across the inner and outer mitochondrial membranes (IMM, OMM, respectively), is mediated by several proteins, including the voltage-dependent anion channel 1 (VDAC1) in the OMM, and the mitochondrial Ca2+ uniporter (MCU) and Na+-dependent mitochondrial Ca2+ efflux transporter, (the NCLX), both in the IMM. By transporting Ca2+ across the OMM to the mitochondrial inner-membrane space (IMS), VDAC1 allows Ca2+ access to the MCU, facilitating transport of Ca2+ to the matrix, and also from the IMS to the cytosol. Intra-mitochondrial Ca2+ controls energy production and metabolism by modulating critical enzymes in the tricarboxylic acid (TCA) cycle and fatty acid oxidation. Thus, by transporting Ca2+, VDAC1 plays a fundamental role in regulating mitochondrial Ca2+ homeostasis, oxidative phosphorylation, and Ca2+ crosstalk among mitochondria, cytoplasm, and the endoplasmic reticulum (ER). VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, and apoptosis stimuli induce overexpression of the protein in a Ca2+-dependent manner. The overexpressed VDAC1 undergoes oligomerization leading to the formation of a channel, through which apoptogenic agents can be released. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis, in apoptosis, and in diseases associated with mitochondria dysfunction.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Soumasree De
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
17
|
Roles of the mitochondrial Na(+)-Ca(2+) exchanger, NCLX, in B lymphocyte chemotaxis. Sci Rep 2016; 6:28378. [PMID: 27328625 PMCID: PMC4916421 DOI: 10.1038/srep28378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Lymphocyte chemotaxis plays important roles in immunological reactions, although the mechanism of its regulation is still unclear. We found that the cytosolic Na(+)-dependent mitochondrial Ca(2+) efflux transporter, NCLX, regulates B lymphocyte chemotaxis. Inhibiting or silencing NCLX in A20 and DT40 B lymphocytes markedly increased random migration and suppressed the chemotactic response to CXCL12. In contrast to control cells, cytosolic Ca(2+) was higher and was not increased further by CXCL12 in NCLX-knockdown A20 B lymphocytes. Chelating intracellular Ca(2+) with BAPTA-AM disturbed CXCL12-induced chemotaxis, suggesting that modulation of cytosolic Ca(2+) via NCLX, and thereby Rac1 activation and F-actin polymerization, is essential for B lymphocyte motility and chemotaxis. Mitochondrial polarization, which is necessary for directional movement, was unaltered in NCLX-knockdown cells, although CXCL12 application failed to induce enhancement of mitochondrial polarization, in contrast to control cells. Mouse spleen B lymphocytes were similar to the cell lines, in that pharmacological inhibition of NCLX by CGP-37157 diminished CXCL12-induced chemotaxis. Unexpectedly, spleen T lymphocyte chemotaxis was unaffected by CGP-37157 treatment, indicating that NCLX-mediated regulation of chemotaxis is B lymphocyte-specific, and mitochondria-endoplasmic reticulum Ca(2+) dynamics are more important in B lymphocytes than in T lymphocytes. We conclude that NCLX is pivotal for B lymphocyte motility and chemotaxis.
Collapse
|
18
|
Brun T, Maechler P. Beta-cell mitochondrial carriers and the diabetogenic stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2540-9. [PMID: 26979549 DOI: 10.1016/j.bbamcr.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria play a central role in pancreatic beta-cells by coupling metabolism of the secretagogue glucose to distal events of regulated insulin exocytosis. This process requires transports of both metabolites and nucleotides in and out of the mitochondria. The molecular identification of mitochondrial carriers and their respective contribution to beta-cell function have been uncovered only recently. In type 2 diabetes, mitochondrial dysfunction is an early event and may precipitate beta-cell loss. Under diabetogenic conditions, characterized by glucotoxicity and lipotoxicity, the expression profile of mitochondrial carriers is selectively modified. This review describes the role of mitochondrial carriers in beta-cells and the selective changes in response to glucolipotoxicity. In particular, we discuss the importance of the transfer of metabolites (pyruvate, citrate, malate, and glutamate) and nucleotides (ATP, NADH, NADPH) for beta-cell function and dysfunction. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Thierry Brun
- Department of Cell Physiology and Metabolism, Faculty Diabetes Center, Geneva University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Faculty Diabetes Center, Geneva University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
19
|
Martínez-Sanz FJ, Lajarín-Cuesta R, Moreno-Ortega AJ, González-Lafuente L, Fernández-Morales JC, López-Arribas R, Cano-Abad MF, Ríos CDL. Benzothiazepine CGP37157 Analogues Exert Cytoprotection in Various in Vitro Models of Neurodegeneration. ACS Chem Neurosci 2015; 6:1626-36. [PMID: 26192029 DOI: 10.1021/acschemneuro.5b00161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria regulate cellular Ca(2+) oscillations, taking up Ca(2+) through its uniporter and releasing it through the mitochondrial sodium/calcium exchanger. The role of mitochondria in the regulation of Ca(2+) cycle has received much attention recently, as it is a central stage in neuronal survival and death processes. Over the last decades, the 4,1-benzothiazepine CGP37157 has been the only available blocker of the mitochondrial sodium/calcium exchanger, although it targets several other calcium transporters. We report the synthesis of 4,1-benzothiazepine derivatives with the goal of enhancing mitochondrial sodium/calcium exchanger blockade and selectivity, and the evaluation of their cytoprotective effect. The compound 4c presented an interesting neuroprotective profile in addition to an important blockade of the mitochondrial sodium/calcium exchanger. The use of this benzothiazepine could help to understand the physiological functions of the mitochondrial sodium/calcium exchanger. In addition, we hypothesize that a moderate blockade of the mitochondrial sodium/calcium exchanger would provide enhanced neuroprotection in neurons.
Collapse
Affiliation(s)
- Francisco J. Martínez-Sanz
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
- Servicio
de Farmacología Clínica, Instituto de Investigación
Sanitaria, Hospital Universitario de la Princesa, C/Diego de
León, 62, 28006 Madrid, Spain
| | - Rocío Lajarín-Cuesta
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Ana J. Moreno-Ortega
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
- Servicio
de Farmacología Clínica, Instituto de Investigación
Sanitaria, Hospital Universitario de la Princesa, C/Diego de
León, 62, 28006 Madrid, Spain
| | - Laura González-Lafuente
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
- Servicio
de Farmacología Clínica, Instituto de Investigación
Sanitaria, Hospital Universitario de la Princesa, C/Diego de
León, 62, 28006 Madrid, Spain
| | - Jose C. Fernández-Morales
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Raquel López-Arribas
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - María F. Cano-Abad
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
- Servicio
de Farmacología Clínica, Instituto de Investigación
Sanitaria, Hospital Universitario de la Princesa, C/Diego de
León, 62, 28006 Madrid, Spain
| | - Cristóbal de los Ríos
- Instituto
Teófilo Hernando and Departamento de Farmacología y
Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
- Servicio
de Farmacología Clínica, Instituto de Investigación
Sanitaria, Hospital Universitario de la Princesa, C/Diego de
León, 62, 28006 Madrid, Spain
| |
Collapse
|
20
|
Sekler I. Standing of giants shoulders the story of the mitochondrial Na(+)Ca(2+) exchanger. Biochem Biophys Res Commun 2015; 460:50-2. [PMID: 25998733 DOI: 10.1016/j.bbrc.2015.02.170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/23/2023]
Abstract
It is now the 40th anniversary of the Journal of Molecular and Cellular Cardiology paper by Ernesto Carafoli and colleagues. This seminal study described for the first time mitochondrial Ca(2+) extrusion and its coupling to Na(+). This short review will describe the profound impact that this work had on mitochondrial signaling and the cross talk between the mitochondria, the ER, and the plasma membrane. It will further tell how the functional identification and in particular its unique cation selectivity to both Li(+) and Na(+) eventually contributed to the identification of the mitochondrial Na(+)/Ca(2+) exchanger gene NCLX many years later. The last part will describe how molecular tools derived from NCLX identification are used to study the novel physiological aspects of Ca(2+) signaling.
Collapse
|
21
|
Life after the birth of the mitochondrial Na+/Ca2+ exchanger, NCLX. SCIENCE CHINA-LIFE SCIENCES 2015; 58:59-65. [DOI: 10.1007/s11427-014-4789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/17/2014] [Indexed: 02/07/2023]
|
22
|
Quan X, Nguyen TT, Choi SK, Xu S, Das R, Cha SK, Kim N, Han J, Wiederkehr A, Wollheim CB, Park KS. Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. J Biol Chem 2014; 290:4086-96. [PMID: 25548283 DOI: 10.1074/jbc.m114.632547] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In pancreatic β-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca(2+) influx, which triggers insulin exocytosis. The mitochondrial Ca(2+) uniporter (MCU) mediates Ca(2+) uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal β-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca(2+) rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca(2+). Suppression of the putative Ca(2+)/H(+) antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca(2+)-induced matrix acidification. These results demonstrate that MCU-mediated Ca(2+) uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells.
Collapse
Affiliation(s)
- Xianglan Quan
- From the Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Korea
| | - Tuyet Thi Nguyen
- From the Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Korea
| | - Seong-Kyung Choi
- From the Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Korea
| | - Shanhua Xu
- From the Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Korea
| | - Ranjan Das
- From the Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Korea
| | - Seung-Kuy Cha
- From the Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Korea
| | - Nari Kim
- Department of Physiology, College of Medicine, Inje University, Busan 614-735, Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Inje University, Busan 614-735, Korea
| | | | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
| | - Kyu-Sang Park
- From the Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Korea,
| |
Collapse
|
23
|
Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2547-75. [PMID: 25448878 DOI: 10.1016/j.bbamem.2014.10.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 02/06/2023]
Abstract
VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Danya Ben-Hail
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lee Admoni
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shambhoo Sharan Tripathi
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
24
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
25
|
CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis 2014; 5:e1156. [PMID: 24722281 PMCID: PMC5424111 DOI: 10.1038/cddis.2014.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 01/15/2023]
Abstract
Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+]i) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca2]i concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+]i increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.
Collapse
|
26
|
Nita II, Hershfinkel M, Kantor C, Rutter GA, Lewis EC, Sekler I. Pancreatic β-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria. FASEB J 2014; 28:3301-12. [PMID: 24719357 DOI: 10.1096/fj.13-248161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Communication between the plasma membrane and mitochondria is essential for initiating the Ca(2+) and metabolic signals required for secretion in β cells. Although voltage-dependent Na(+) channels are abundantly expressed in β cells and activated by glucose, their role in communicating with mitochondria is unresolved. Here, we combined fluorescent Na(+), Ca(2+), and ATP imaging, electrophysiological analysis with tetrodotoxin (TTX)-dependent block of the Na(+) channel, and molecular manipulation of mitochondrial Ca(2+) transporters to study the communication between Na(+) channels and mitochondria. We show that TTX inhibits glucose-dependent depolarization and blocks cytosolic Na(+) and Ca(2+) responses and their propagation into mitochondria. TTX-sensitive mitochondrial Ca(2+) influx was largely blocked by knockdown of the mitochondrial Ca(2+) uniporter (MCU) expression. Knockdown of the mitochondrial Na(+)/Ca(2+) exchanger (NCLX) and Na(+) dose response analysis demonstrated that NCLX mediates the mitochondrial Na(+) influx and is tuned to sense the TTX-sensitive cytosolic Na(+) responses. Finally, TTX blocked glucose-dependent mitochondrial Ca(2+) rise, mitochondrial metabolic activity, and ATP production. Our results show that communication of the Na(+) channels with mitochondria shape both global Ca(2+) and metabolism signals linked to insulin secretion in β cells.- Nita, I. I., Hershfinkel, M., Kantor, C., Rutter, G. A., Lewis, E. C., Sekler, I. Pancreatic β-cell Na(+) channels control global Ca(2+) signaling and oxidative metabolism by inducing Na(+) and Ca(2+) responses that are propagated into mitochondria.
Collapse
Affiliation(s)
| | | | - Chase Kantor
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Eli C Lewis
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and
| | | |
Collapse
|
27
|
Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter. Cold Spring Harb Protoc 2014; 2014:161-6. [PMID: 24492769 DOI: 10.1101/pdb.top066241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.
Collapse
|
28
|
Groschner LN, Alam MR, Graier WF. Metabolism-secretion coupling and mitochondrial calcium activities in clonal pancreatic β-cells. VITAMINS AND HORMONES 2014; 95:63-86. [PMID: 24559914 DOI: 10.1016/b978-0-12-800174-5.00003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic β-cells are the only cells capable of lowering blood glucose by secreting insulin. The β-cell continuously adjusts its secretory activity to substrate availability in order to keep blood glucose levels within the physiological range--a process called metabolism-secretion coupling. Glucose is readily taken up by the β-cell and broken down into intermediates that fuel oxidative metabolism inside the mitochondria to generate ATP. The resulting increase in the ATP/ADP ratio causes closure of plasma membrane KATP channels, thereby depolarizing the cell and triggering the opening of voltage-gated Ca²⁺ channels. Consequential oscillations of cytosolic Ca²⁺ not only mediate the exocytosis of insulin granules but are also relayed to other subcellular compartments including the mitochondria, where Ca²⁺ is required to accelerate mitochondrial metabolism in response to nutrient stimulation. The mitochondrial Ca²⁺ uptake machinery plays a fundamental role in this feed-forward mechanism that guarantees sustained insulin secretion and, thus, represents a promising therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Lukas N Groschner
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Rizwan Alam
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
29
|
Maechler P. Mitochondrial function and insulin secretion. Mol Cell Endocrinol 2013; 379:12-8. [PMID: 23792187 DOI: 10.1016/j.mce.2013.06.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
In the endocrine fraction of the pancreas, the β-cell rapidly reacts to fluctuations in blood glucose concentrations by adjusting the rate of insulin secretion. Glucose-sensing coupled to insulin exocytosis depends on transduction of metabolic signals into intracellular messengers recognized by the secretory machinery. Mitochondria play a central role in this process by connecting glucose metabolism to insulin release. Mitochondrial activity is primarily regulated by metabolic fluxes, but also by dynamic morphology changes and free Ca(2+) concentrations. Recent advances of mitochondrial Ca(2+) homeostasis are discussed; in particular the roles of the newly-identified mitochondrial Ca(2+) uniporter MCU and its regulatory partner MICU1, as well as the mitochondrial Na(+)-Ca(2+) exchanger. This review describes how mitochondria function both as sensors and generators of metabolic signals; such as NADPH, long chain acyl-CoA, glutamate. The coupling factors are additive to the Ca(2+) signal and participate to the amplifying pathway of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Pierre Maechler
- Department of Cell Physiology and Metabolism, Geneva University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
30
|
Abstract
Mitochondria not only govern energy production, but are also involved in crucial cellular signalling processes. They are one of the most important organelles determining the Ca(2+) regulatory pathway in the cell. Several mathematical models explaining these mechanisms were constructed, but only few of them describe interplay between calcium concentrations in endoplasmic reticulum (ER), cytoplasm and mitochondria. Experiments measuring calcium concentrations in mitochondria and ER suggested the existence of cytosolic microdomains with locally elevated calcium concentration in the nearest vicinity of the outer mitochondrial membrane. These intermediate physical connections between ER and mitochondria are called MAM (mitochondria-associated ER membrane) complexes. We propose a model with a direct calcium flow from ER to mitochondria, which may be justified by the existence of MAMs, and perform detailed numerical analysis of the effect of this flow on the type and shape of calcium oscillations. The model is partially based on the Marhl et al model. We have numerically found that the stable oscillations exist for a considerable set of parameter values. However, for some parameter sets the oscillations disappear and the trajectories of the model tend to a steady state with very high calcium level in mitochondria. This can be interpreted as an early step in an apoptotic pathway.
Collapse
Affiliation(s)
- Piotr Szopa
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
31
|
Keinan N, Pahima H, Ben-Hail D, Shoshan-Barmatz V. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1745-54. [PMID: 23542128 DOI: 10.1016/j.bbamcr.2013.03.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/17/2022]
Abstract
The voltage-dependent anion channel (VDAC), located at the outer mitochondria membrane (OMM), mediates interactions between mitochondria and other parts of the cell by transporting anions, cations, ATP, Ca(2+), and metabolites. Substantial evidence points to VDAC1 as being a key player in apoptosis, regulating the release of apoptogenic proteins from mitochondria, such as cytochrome c, and interacting with anti-apoptotic proteins. Recently, we demonstrated that VDAC1 oligomerization is a general mechanism common to numerous apoptogens acting via different initiating cascades and proposed that a protein-conducting channel formed within a VDAC1 homo/hetero oligomer mediates cytochrome c release. However, the molecular mechanism responsible for VDAC1 oligomerization remains unclear. Several studies have shown that mitochondrial Ca(2+) is involved in apoptosis induction and that VDAC1 possesses Ca(2+)-binding sites and mediates Ca(2+) transport across the OMM. Here, the relationship between the cellular Ca(2+) level, [Ca(2+)]i, VDAC1 oligomerization and apoptosis was studied. Decreasing [Ca(2+)]i using the cell-permeable Ca(2+) chelating reagent BAPTA-AM was found to inhibit VDAC1 oligomerization and apoptosis, while increasing [Ca(2+)]i using Ca(2+) ionophore resulted in VDAC1 oligomerization and apoptosis induction in the absence of apoptotic stimuli. Moreover, induction of apoptosis elevated [Ca(2+)]i, concomitantly with VDAC1 oligomerization. AzRu-mediated inhibition of mitochondrial Ca(2+) transport decreased VDAC1 oligomerization, suggesting that mitochondrial Ca(2+) is required for VDAC1 oligomerization. In addition, increased [Ca(2+)]i levels up-regulate VDAC1 expression. These results suggest that Ca(2+) promotes VDAC1 oligomerization via activation of a yet unknown signaling pathway or by increasing VDAC1 expression, leading to apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Nurit Keinan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
32
|
Shoshan-Barmatz V, Mizrachi D. VDAC1: from structure to cancer therapy. Front Oncol 2012; 2:164. [PMID: 23233904 PMCID: PMC3516065 DOI: 10.3389/fonc.2012.00164] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/24/2012] [Indexed: 12/14/2022] Open
Abstract
Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to cancer. Found at the outer mitochondrial membrane, VDAC1 assumes a crucial position in the cell, controlling the metabolic cross-talk between mitochondria and the rest of the cell. Moreover, its location at the boundary between the mitochondria and the cytosol enables VDAC1 to interact with proteins that mediate and regulate the integration of mitochondrial functions with other cellular activities. As a metabolite transporter, VDAC1 contributes to the metabolic phenotype of cancer cells. This is reflected by VDAC1 over-expression in many cancer types, and by inhibition of tumor development upon silencing VDAC1 expression. Along with regulating cellular energy production and metabolism, VDAC1 is also a key protein in mitochondria-mediated apoptosis, participating in the release of apoptotic proteins and interacting with anti-apoptotic proteins. The involvement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space is discussed, as is VDAC1 oligomerization as an important step in apoptosis induction. VDAC also serves as an anchor point for mitochondria-interacting proteins, some of which are also highly expressed in many cancers, such as hexokinase (HK), Bcl2, and Bcl-xL. By binding to VDAC, HK provides both metabolic benefit and apoptosis-suppressive capacity that offers the cell a proliferative advantage and increases its resistance to chemotherapy. VDAC1-based peptides that bind specifically to HK, Bcl2, or Bcl-xL abolished the cell’s abilities to bypass the apoptotic pathway. Moreover, these peptides promote cell death in a panel of genetically characterized cell lines derived from different human cancers. These and other functions point to VDAC1 as a rational target for the development of a new generation of therapeutics.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel ; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | |
Collapse
|
33
|
The mitochondrial Na+/Ca2+ exchanger upregulates glucose dependent Ca2+ signalling linked to insulin secretion. PLoS One 2012; 7:e46649. [PMID: 23056385 PMCID: PMC3466326 DOI: 10.1371/journal.pone.0046649] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/03/2012] [Indexed: 11/25/2022] Open
Abstract
Mitochondria mediate dual metabolic and Ca2+ shuttling activities. While the former is required for Ca2+ signalling linked to insulin secretion, the role of the latter in β cell function has not been well understood, primarily because the molecular identity of the mitochondrial Ca2+ transporters were elusive and the selectivity of their inhibitors was questionable. This study focuses on NCLX, the recently discovered mitochondrial Na+/Ca2+ exchanger that is linked to Ca2+ signalling in MIN6 and primary β cells. Suppression either of NCLX expression, using a siRNA construct (siNCLX) or of its activity, by a dominant negative construct (dnNCLX), enhanced mitochondrial Ca2+ influx and blocked efflux induced by glucose or by cell depolarization. In addition, NCLX regulated basal, but not glucose-dependent changes, in metabolic rate, mitochondrial membrane potential and mitochondrial resting Ca2+. Importantly, NCLX controlled the rate and amplitude of cytosolic Ca2+ changes induced by depolarization or high glucose, indicating that NCLX is a critical and rate limiting component in the cross talk between mitochondrial and plasma membrane Ca2+ signalling. Finally, knockdown of NCLX expression was followed by a delay in glucose-dependent insulin secretion. These findings suggest that the mitochondrial Na+/Ca2+ exchanger, NCLX, shapes glucose-dependent mitochondrial and cytosolic Ca2+ signals thereby regulating the temporal pattern of insulin secretion in β cells.
Collapse
|
34
|
Palty R, Hershfinkel M, Sekler I. Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger. J Biol Chem 2012; 287:31650-7. [PMID: 22822063 DOI: 10.1074/jbc.r112.355867] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial membrane potential that powers the generation of ATP also facilitates mitochondrial Ca(2+) shuttling. This process is fundamental to a wide range of cellular activities, as it regulates ATP production, shapes cytosolic and endoplasmic recticulum Ca(2+) signaling, and determines cell fate. Mitochondrial Ca(2+) transport is mediated primarily by two major transporters: a Ca(2+) uniporter that mediates Ca(2+) uptake and a Na(+)/Ca(2+) exchanger that subsequently extrudes mitochondrial Ca(2+). In this minireview, we focus on the specific role of the mitochondrial Na(+)/Ca(2+) exchanger and describe its ion exchange mechanism, regulation by ions, and putative partner proteins. We discuss the recent molecular identification of the mitochondrial exchanger and how its activity is linked to physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Raz Palty
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. palty35@berkeley
| | | | | |
Collapse
|
35
|
Tarasov AI, Semplici F, Ravier MA, Bellomo EA, Pullen TJ, Gilon P, Sekler I, Rizzuto R, Rutter GA. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS One 2012; 7:e39722. [PMID: 22829870 PMCID: PMC3400633 DOI: 10.1371/journal.pone.0039722] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023] Open
Abstract
Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca2+ influx. As well as activating ATP-consuming processes, cytosolic Ca2+ increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca2+ transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca2+ uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca2+ and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca2+ uniporter, MCU, is required for depolarisation-induced mitochondrial Ca2+ increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na+-Ca2+ exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca2+ uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca2+ accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.
Collapse
Affiliation(s)
- Andrei I. Tarasov
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesca Semplici
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Magalie A. Ravier
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Institut de Génomique Fonctionnelle, INSERM U661, CNRS UMR5203, Université Montpellier I et II, Montpellier, France
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Timothy J. Pullen
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | - Israel Sekler
- Department of Physiology, Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Wiederkehr A, Wollheim CB. Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 2012; 353:128-37. [PMID: 21784130 DOI: 10.1016/j.mce.2011.07.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022]
Abstract
β-Cell nutrient sensing depends on mitochondrial function. Oxidation of nutrient-derived metabolites in the mitochondria leads to plasma membrane depolarization, Ca(2+) influx and insulin granule exocytosis. Subsequent mitochondrial Ca(2+) uptake further accelerates metabolism and oxidative phosphorylation. Nutrient activation also increases the mitochondrial matrix pH. This alkalinization is required to maintain elevated insulin secretion during prolonged nutrient stimulation. Together the mitochondrial Ca(2+) rise and matrix alkalinization assure optimal ATP synthesis necessary for efficient activation of the triggering pathway of insulin secretion. The sustained, amplifying pathway of insulin release also depends on mitochondrial Ca(2+) signals, which likely influence the generation of glucose-derived metabolites serving as coupling factors. Therefore, mitochondria are both recipients and generators of signals essential for metabolism-secretion coupling. Activation of these signaling pathways would be an attractive target for the improvement of β-cell function and the treatment of type 2 diabetes.
Collapse
|
37
|
Palty R, Sekler I. The mitochondrial Na(+)/Ca(2+) exchanger. Cell Calcium 2012; 52:9-15. [PMID: 22430014 DOI: 10.1016/j.ceca.2012.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 01/20/2023]
Abstract
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.
Collapse
Affiliation(s)
- Raz Palty
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
38
|
Griffiths EJ. Mitochondria and heart disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:249-67. [PMID: 22399426 DOI: 10.1007/978-94-007-2869-1_11] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria play a key role in the normal functioning of the heart, and in the pathogenesis and development of various types of heart disease. Physiologically, mitochondrial ATP supply needs to be matched to the often sudden changes in ATP demand of the heart, and this is mediated to a large extent by the mitochondrial Ca(2+) transport pathways allowing elevation of mitochondrial [Ca(2+)] ([Ca(2+)](m)). In turn this activates dehydrogenase enzymes to increase NADH and hence ATP supply. Pathologically, [Ca(2+)](m) is also important in generation of reactive oxygen species, and in opening of the mitochondrial permeability transition pore (MPTP); factors involved in both ischaemia-reperfusion injury and in heart failure. The MPTP has proved a promising target for protective strategies, with inhibitors widely used to show cardioprotection in experimental, and very recently human, studies. Similarly mitochondrially-targeted antioxidants have proved protective in various animal models of disease and await clinical trials. The mitochondrial Ca(2+) transport pathways, although in theory promising therapeutic targets, cannot yet be targeted in human studies due to non-specific effects of drugs used experimentally to inhibit them. Finally, specific mitochondrial cardiomyopathies due to mutations in mtDNA have been identified, usually in a gene for a tRNA, which, although rare, are almost always very severe once the mutation has exceeded its threshold.
Collapse
|
39
|
Ramadan JW, Steiner SR, O'Neill CM, Nunemaker CS. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes. Cell Calcium 2011; 50:481-90. [PMID: 21944825 DOI: 10.1016/j.ceca.2011.08.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/20/2011] [Accepted: 08/16/2011] [Indexed: 12/29/2022]
Abstract
The appropriate regulation of intracellular calcium is a requirement for proper cell function and survival. This review focuses on the effects of proinflammatory cytokines on calcium regulation in the insulin-producing pancreatic beta-cell and how normal stimulus-secretion coupling, organelle function, and overall beta-cell viability are impacted. Proinflammatory cytokines are increasingly thought to contribute to beta-cell dysfunction not only in type 1 diabetes (T1D), but also in the progression of type 2 diabetes (T2D). Cytokine-induced disruptions in calcium handling result in reduced insulin release in response to glucose stimulation. Cytokines can alter intracellular calcium levels by depleting calcium from the endoplasmic reticulum (ER) and by increasing calcium influx from the extracellular space. Depleting ER calcium leads to protein misfolding and activation of the ER stress response. Disrupting intracellular calcium may also affect organelles, including the mitochondria and the nucleus. As a chronic condition, cytokine-induced calcium disruptions may lead to beta-cell death in T1D and T2D, although possible protective effects are also discussed. Calcium is thus central to both normal and pathological cell processes. Because the tight regulation of intracellular calcium is crucial to homeostasis, measuring the dynamics of calcium may serve as a good indicator of overall beta-cell function.
Collapse
Affiliation(s)
- James W Ramadan
- Department of Medicine, University of Virginia, Charlottesville, United States
| | | | | | | |
Collapse
|
40
|
Fridlyand LE, Phillipson LH. Mechanisms of glucose sensing in the pancreatic β-cell: A computational systems-based analysis. Islets 2011; 3:224-30. [PMID: 21814042 PMCID: PMC3219158 DOI: 10.4161/isl.3.5.16409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pancreatic β-cells respond to rising blood glucose by increasing oxidative metabolism, leading to an increased ATP/ADP ratio in the cytoplasm with a subsequent influx of calcium and the eventual secretion of insulin. The mechanisms of glucose sensing in the pancreatic β-cell involve the coupling of cytoplasmic and mitochondrial processes. Our analysis, based on mathematical models of data from multiple sources has implications for β-cell function and the treatment of type 2 diabetes (Fridlyand and Philipson, 2010). This β-cell glucose response model correctly predicts changes in the ATP/ADP ratio, cytoplasmic and mitochondrial calcium levels, and other metabolic parameters in response to alterations in substrate delivery at steady-state and during cytoplasmic calcium oscillations. Here we consider how peculiarities of β-cell pathways that result in dysfunction can be a consequence of specific mechanisms of glucose sensitivity, using our computational systems-based analysis. We found that the mitochondrial membrane potential must be relatively low in β-cells compared with other cell types to permit precise mitochondrial regulation of the cytoplasmic ATP/ADP ratio. This key difference may follow from a relative reduction in cellular respiratory activity. Our analysis additionally demonstrates how activity of lactate dehydrogenase, uncoupling proteins, and the redox shuttles all working in concert can regulate β-cell function. We further show that a decreased mitochondrial membrane potential may lead to a low rate of production of reactive oxygen species in β-cells under physiological conditions. This computational systems analysis aids in providing a more complete understanding of the complex process of β-cell glucose sensing.
Collapse
|
41
|
Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2011; 12:77-85. [PMID: 21798374 PMCID: PMC3281195 DOI: 10.1016/j.mito.2011.07.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 06/10/2011] [Accepted: 07/11/2011] [Indexed: 11/28/2022]
Abstract
Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca2+) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca2+ homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca2+ traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Angela Bononi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Federica Poletti
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Jan M. Suski
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Corresponding author at: Department of Experimental and Diagnostic Medicine, Section of General Pathology, Via Borsari, 46 44100 Ferrara, Italy.
| |
Collapse
|
42
|
Fridlyand LE, Philipson LH. Glucose sensing in the pancreatic beta cell: a computational systems analysis. Theor Biol Med Model 2010; 7:15. [PMID: 20497556 PMCID: PMC2896931 DOI: 10.1186/1742-4682-7-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 05/24/2010] [Indexed: 12/29/2022] Open
Abstract
Background Pancreatic beta-cells respond to rising blood glucose by increasing oxidative metabolism, leading to an increased ATP/ADP ratio in the cytoplasm. This leads to a closure of KATP channels, depolarization of the plasma membrane, influx of calcium and the eventual secretion of insulin. Such mechanism suggests that beta-cell metabolism should have a functional regulation specific to secretion, as opposed to coupling to contraction. The goal of this work is to uncover contributions of the cytoplasmic and mitochondrial processes in this secretory coupling mechanism using mathematical modeling in a systems biology approach. Methods We describe a mathematical model of beta-cell sensitivity to glucose. The cytoplasmic part of the model includes equations describing glucokinase, glycolysis, pyruvate reduction, NADH and ATP production and consumption. The mitochondrial part begins with production of NADH, which is regulated by pyruvate dehydrogenase. NADH is used in the electron transport chain to establish a proton motive force, driving the F1F0 ATPase. Redox shuttles and mitochondrial Ca2+ handling were also modeled. Results The model correctly predicts changes in the ATP/ADP ratio, Ca2+ and other metabolic parameters in response to changes in substrate delivery at steady-state and during cytoplasmic Ca2+ oscillations. Our analysis of the model simulations suggests that the mitochondrial membrane potential should be relatively lower in beta cells compared with other cell types to permit precise mitochondrial regulation of the cytoplasmic ATP/ADP ratio. This key difference may follow from a relative reduction in respiratory activity. The model demonstrates how activity of lactate dehydrogenase, uncoupling proteins and the redox shuttles can regulate beta-cell function in concert; that independent oscillations of cytoplasmic Ca2+ can lead to slow coupled metabolic oscillations; and that the relatively low production rate of reactive oxygen species in beta-cells under physiological conditions is a consequence of the relatively decreased mitochondrial membrane potential. Conclusion This comprehensive model predicts a special role for mitochondrial control mechanisms in insulin secretion and ROS generation in the beta cell. The model can be used for testing and generating control hypotheses and will help to provide a more complete understanding of beta-cell glucose-sensing central to the physiology and pathology of pancreatic β-cells.
Collapse
Affiliation(s)
- Leonid E Fridlyand
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
43
|
Abstract
Mitochondrial Ca(2+) efflux is linked to numerous cellular activities and pathophysiological processes. Although it is established that an Na(+)-dependent mechanism mediates mitochondrial Ca(2+) efflux, the molecular identity of this transporter has remained elusive. Here we show that the Na(+)/Ca(2+) exchanger NCLX is enriched in mitochondria, where it is localized to the cristae. Employing Ca(2+) and Na(+) fluorescent imaging, we demonstrate that mitochondrial Na(+)-dependent Ca(2+) efflux is enhanced upon overexpression of NCLX, is reduced by silencing of NCLX expression by siRNA, and is fully rescued by the concomitant expression of heterologous NCLX. NCLX-mediated mitochondrial Ca(2+) transport was inhibited, moreover, by CGP-37157 and exhibited Li(+) dependence, both hallmarks of mitochondrial Na(+)-dependent Ca(2+) efflux. Finally, NCLX-mediated mitochondrial Ca(2+) exchange is blocked in cells expressing a catalytically inactive NCLX mutant. Taken together, our results converge to the conclusion that NCLX is the long-sought mitochondrial Na(+)/Ca(2+) exchanger.
Collapse
|
44
|
Gauthier BR, Wiederkehr A, Baquié M, Dai C, Powers AC, Kerr-Conte J, Pattou F, MacDonald RJ, Ferrer J, Wollheim CB. PDX1 deficiency causes mitochondrial dysfunction and defective insulin secretion through TFAM suppression. Cell Metab 2009; 10:110-8. [PMID: 19656489 PMCID: PMC4012862 DOI: 10.1016/j.cmet.2009.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/22/2009] [Accepted: 07/01/2009] [Indexed: 01/23/2023]
Abstract
Mutations in the transcription factor Pdx1 cause maturity-onset diabetes of the young 4 (MODY4). Islet transduction with dominant-negative Pdx1 (RIPDN79PDX1) impairs mitochondrial metabolism and glucose-stimulated insulin secretion (GSIS). Transcript profiling revealed suppression of nuclear-encoded mitochondrial factor A (TFAM). Herein, we show that Pdx1 suppression in adult mice reduces islet TFAM expression coinciding with hyperglycemia. We define TFAM as a direct target of Pdx1 both in rat INS1 cells and human islets. Adenoviral overexpression of TFAM along with RIPDN79PDX1 in isolated rat islets rescued mitochondrial DNA (mtDNA) copy number and restored respiratory chain activity as well as glucose-induced ATP synthesis and insulin secretion. CGP37157, which blocks the mitochondrial Na(+)/Ca(2+) exchanger, restored ATP generation and GSIS in RIPDN79PDX1 islets, thereby bypassing the transcriptional defect. Thus, the genetic control by the beta cell-specific factor Pdx1 of the ubiquitous gene TFAM maintains beta cell mtDNA vital for ATP production and normal GSIS.
Collapse
Affiliation(s)
- Benoit R Gauthier
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chalmers S, McCarron JG. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors. Cell Calcium 2009; 46:107-13. [PMID: 19577805 DOI: 10.1016/j.ceca.2009.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 05/07/2009] [Accepted: 05/31/2009] [Indexed: 10/20/2022]
Abstract
Mitochondria modulate cellular Ca2+ signals by accumulating the ion via a uniporter and releasing it via Na+- or H+-exchange. In smooth muscle, inhibition of mitochondrial Ca2+ uptake inhibits Ca2+ release from the sarcoplasmic reticulum (SR) via inositol-1,4,5-trisphosphate-sensitive receptors (IP(3)R). At least two mechanisms may explain this effect. First, localised uptake of Ca2+ by mitochondria may prevent negative feedback by cytosolic Ca2+ on IP(3)R activity, or secondly localised provision of Ca2+ by mitochondrial efflux may maintain IP(3)R function or SR Ca2+ content. To distinguish between these possibilities the role of mitochondrial Ca2+ efflux on IP(3)R function was examined. IP(3) was liberated in freshly isolated single colonic smooth muscle cells and mitochondrial Na+-Ca2+ exchanger inhibited with CGP-37157 (10microM). Mitochondria accumulated Ca2+ during IP(3)-evoked [Ca2+](c) rises and released the ion back to the cytosol (within approximately 15s) when mitochondrial Ca2+ efflux was active. When mitochondrial Ca2+ efflux was inhibited by CGP-37157, an extensive and sustained loading of mitochondria with Ca2+ occurred after IP(3)-evoked Ca2+ release. IP(3)-evoked [Ca2+](c) rises were initially unaffected, then only slowly inhibited by CGP-37157. IP(3)R activity was required for inhibition to occur; incubation with CGP-37157 for the same duration without IP(3) release did not inhibit IP(3)R. CGP-37157 directly inhibited voltage-gated Ca2+ channel activity, however SR Ca2+ content was unaltered by the drug. Thus, the gradual decline of IP(3)R function that followed mitochondrial Na+-Ca2+ exchanger inhibition resulted from a gradual overload of mitochondria with Ca2+, leading to a reduced capacity for Ca2+ uptake. Localised uptake of Ca2+ by mitochondria, rather than mitochondrial Ca2+ efflux, appears critical for maintaining IP(3)R activity.
Collapse
Affiliation(s)
- Susan Chalmers
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR, UK
| | | |
Collapse
|
46
|
Mitochondrial calcium transport in the heart: Physiological and pathological roles. J Mol Cell Cardiol 2009; 46:789-803. [DOI: 10.1016/j.yjmcc.2009.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
|
47
|
Hynes J, O'Riordan TC, Zhdanov AV, Uray G, Will Y, Papkovsky DB. In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay. Anal Biochem 2009; 390:21-8. [PMID: 19379702 DOI: 10.1016/j.ab.2009.04.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/31/2009] [Accepted: 04/11/2009] [Indexed: 10/20/2022]
Abstract
Metabolic perturbations play a critical role in a variety of disease states and toxicities. Therefore, knowledge of the interplay between the two main cellular ATP generating pathways, glycolysis and oxidative phosphorylation, is particularly informative when examining such perturbations. Here we describe a new fluorescence-based screening assay for the assessment of glycolytic flux and demonstrate the value of such analysis in assessing the cellular "energy budget." The assay employs a long-decay pH-sensitive lanthanide probe to monitor extracellular acidification (ECA) in standard 96- or 384-well plates on a time-resolved fluorescence plate reader. The simple mix-and-measure procedure and fluorescence lifetime-based pH sensing allow the use of standard adherent cell culture techniques, providing high sample throughput and excellent assay performance. The assay also facilitates multiplexed or parallel analysis with existing oxygen consumption and ATP assays, thereby providing a detailed multiparametric assessment of cell metabolism. Data on cellular CO(2) production can also be obtained by comparing sealed and unsealed samples. The utility of the approach in assessing perturbed cell metabolism is demonstrated using a panel of metabolic effectors with known mechanisms of action. More complex metabolic stimuli, such as G protein-coupled receptor (GPCR) activation and perturbed ion homeostasis, are also examined.
Collapse
Affiliation(s)
- James Hynes
- Luxcel Biosciences, BioInnovation Center, University College Cork, Ireland
| | | | | | | | | | | |
Collapse
|
48
|
Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1324-33. [PMID: 19366607 DOI: 10.1016/j.bbabio.2009.01.019] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 12/30/2022]
Abstract
Mitochondrial Ca(2+) transport was initially considered important only in buffering of cytosolic Ca(2+) by acting as a "sink" under conditions of Ca(2+) overload. The main regulator of ATP production was considered to be the relative concentrations of high energy phosphates. However, work by Denton and McCormack in the 1970s and 1980s showed that free intramitochondrial Ca(2+) ([Ca(2+)](m)) activated dehydrogenase enzymes in mitochondria, leading to increased NADH and hence ATP production. This leads them to propose a scheme, subsequently termed a "parallel activation model" whereby increases in energy demand, such as hormonal stimulation or increased workload in muscle, produced an increase in cytosolic [Ca(2+)] that was relayed by the mitochondrial Ca(2+) transporters into the matrix to give an increase in [Ca(2+)](m). This then stimulated energy production to meet the increased energy demand. With the development of methods for measuring [Ca(2+)](m) in living cells that proved [Ca(2+)](m) changed over a dynamic physiological range rather than simply soaking up excess cytosolic [Ca(2+)], this model has now gained widespread acceptance. However, work by ourselves and others using targeted probes to measure changes in both [Ca(2+)] and [ATP] in different cell compartments has revealed variations in the interrelationships between these two in different tissues, suggesting that metabolic regulation by Ca(2+) is finely tuned to the demands and function of the individual organ.
Collapse
Affiliation(s)
- Elinor J Griffiths
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
49
|
Luciani DS, Ao P, Hu X, Warnock GL, Johnson JD. Voltage-gated Ca2+ influx and insulin secretion in human and mouse β-cells are impaired by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157. Eur J Pharmacol 2007; 576:18-25. [PMID: 17719029 DOI: 10.1016/j.ejphar.2007.07.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/20/2022]
Abstract
Glucose-induced insulin release from pancreatic beta-cells relies largely on glucose metabolism and mitochondrial ATP synthesis. Inhibiting the mitochondrial Na(+)/Ca(2+) exchanger (mNCE) using 7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) has been suggested to enhance ATP synthesis and insulin secretion from rat islets by promoting mitochondrial Ca(2+) accumulation. In this study we examined the effects of CGP-37157 on human and mouse islet cells. Surprisingly, we found that insulin secretion from perifused islets was reduced by CGP-37157. Cytosolic Ca(2+) measurements revealed that CGP-37157 dose-dependently blocked glucose- and KCl-stimulated Ca(2+) signals in both human and mouse beta-cells. Conversely, CGP-37157 induced mitochondrial hyperpolarization, NAD(P)H rises, and triggered diazoxide- and nifedipine-sensitive cytosolic Ca(2+) transients in a subset of quiescent cells bathed in sub-stimulatory glucose, which is in accord with metabolic activation by the compound. Hence, while blocking mNCE with CGP-37157 may augment metabolism of human and mouse beta-cells, the propagation of metabolic signals is hampered by simultaneous inhibition of voltage-gated Ca(2+) influx, and ultimately insulin secretion. Efforts to use CGP-37157 or design related compounds for therapeutic purposes should take these competing effects into account.
Collapse
Affiliation(s)
- Dan S Luciani
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
50
|
Turkseven S, Drummond G, Rezzani R, Rodella L, Quan S, Ikehara S, Abraham NG. Impact of silencing HO-2 on EC-SOD and the mitochondrial signaling pathway. J Cell Biochem 2007; 100:815-23. [PMID: 17131376 DOI: 10.1002/jcb.21138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contribution of heme oxygenase HO-2, the primary source of bilirubin and carbon monoxide (CO) under physiological conditions, to the regulation of vascular function has remained largely unexplored. Using siRNA HO-2, we examined the effect of suppressed levels of HO-2 on vascular antioxidant and survival proteins. In vivo HO-2 siRNA treatment decreased the basal levels of EC-SOD, pAKT proteins (serine-473 and threonine-308), without changing Akt protein expression. HO-2 siRNA treatment increased 3-nitrotyrosine (3-NT) and apoptotic signaling kinase-1 (ASK-1) (P < 0.01). HO activity was decreased by the use of siRNA HO-2. We extended these studies to the mitochondria, examining for the presence of HO-1 and its role in the regulation of pro- and anti-apoptotic proteins. HO activity was increased by the administration of CoPP resulting in the translocation of HO-1 into the mitochondria, mainly to the inner face of the mitochondrial inner membrane. These findings suggest that HO-2 is critical in the maintenance of heme homeostasis and also the regulation of apoptosis by controlling levels of EC-SOD, Akt, 3-NT, and ASK-1. In addition, localization of HO-1 in the mitochondrial compartment plays a critical role in mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- S Turkseven
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|