1
|
Cui D, Feng X, Lei S, Zhang H, Hu W, Yang S, Yu X, Su Z. Pancreatic β-cell failure, clinical implications, and therapeutic strategies in type 2 diabetes. Chin Med J (Engl) 2024; 137:791-805. [PMID: 38479993 PMCID: PMC10997226 DOI: 10.1097/cm9.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Pancreatic β-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing β-cells and hence restoring insulin production are gaining attention in translational diabetes research, and β-cell replenishment has been the main focus for diabetes treatment. Significant findings in β-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate β-cells. In this review, we summarize current knowledge on the mechanisms implicated in β-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to β-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting β-cell proliferation, inducing non-β-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for β-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous β-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.
Collapse
Affiliation(s)
- Daxin Cui
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingrong Feng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siman Lei
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanxin Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Wang Y, Liu Z, Li S, Su X, Lai KP, Li R. Biochemical pancreatic β-cell lineage reprogramming: Various cell fate shifts. Curr Res Transl Med 2024; 72:103412. [PMID: 38246021 DOI: 10.1016/j.retram.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 01/23/2024]
Abstract
The incidence of pancreatic diseases has been continuously rising in recent years. Thus, research on pancreatic regeneration is becoming more popular. Chronic hyperglycemia is detrimental to pancreatic β-cells, leading to impairment of insulin secretion which is the main hallmark of pancreatic diseases. Obtaining plenty of functional pancreatic β-cells is the most crucial aspect when studying pancreatic biology and treating diabetes. According to the International Diabetes Federation, diabetes has become a global epidemic, with about 3 million people suffering from diabetes worldwide. Hyperglycemia can lead to many dangerous diseases, including amputation, blindness, neuropathy, stroke, and cardiovascular and kidney diseases. Insulin is widely used in the treatment of diabetes; however, innovative approaches are needed in the academic and preclinical stages. A new approach aims at synthesizing patient-specific functional pancreatic β-cells. The present article focuses on how cells from different tissues can be transformed into pancreatic β-cells.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Zhuoqing Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shengren Li
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Xuejuan Su
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China.
| |
Collapse
|
3
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
4
|
Habeeb MA, Vishwakarma SK, Habeeb S, Khan AA. Current progress and emerging technologies for generating extrapancreatic functional insulin-producing cells. World J Transl Med 2022; 10:1-13. [DOI: 10.5528/wjtm.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes has been one of the major concerns in recent years, due to the increasing rate of morbidity and mortality worldwide. The available treatment strategies for uncontrolled diabetes mellitus (DM) are pancreas or islet transplantation. However, these strategies are limited due to unavailability of quality pancreas/ islet donors, life-long need of immunosuppression, and associated complications. Cell therapy has emerged as a promising alternative options to achieve the clinical benefits in the management of uncontrolled DM. Since the last few years, various sources of cells have been used to convert into insulin-producing β-like cells. These extrapancreatic sources of cells may play a significant role in β-cell turnover and insulin secretion in response to environmental stimuli. Stem/progenitor cells from liver have been proposed as an alternative choice that respond well to glucose stimuli under strong transcriptional control. The liver is one of the largest organs in the human body and has a common endodermal origin with pancreatic lineages. Hence, liver has been proposed as a source of a large number of insulin-producing cells. The merging of nanotechnology and 3D tissue bioengineering has opened a new direction for producing islet-like cells suitable for in vivo transplantation in a cordial microenvironment. This review summarizes extrapancreatic sources for insulin-secreting cells with reference to emerging technologies to fulfill the future clinical need.
Collapse
Affiliation(s)
- Md Aejaz Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Safwaan Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
5
|
Rao P, Deo D, Marchioni M. Differentiation of Human Deceased Donor, Adipose-Derived, Mesenchymal Stem Cells into Functional Beta Cells. J Stem Cells Regen Med 2021; 16:63-72. [PMID: 33414582 DOI: 10.46582/jsrm.1602010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022]
Abstract
There is an emerging need for the rapid generation of functional beta cells that can be used in cell replacement therapy for the treatment of type 1 diabetes (T1D). Differentiation of stem cells into insulin-producing cells provides a promising strategy to restore pancreatic endocrine function. Stem cells can be isolated from various human tissues including adipose tissue (AT). Our study outlines a novel, non-enzymatic process to harvest mesenchymal stem cells (MSC) from research-consented, deceased donor AT. Following their expansion, MSC were characterised morphologically and phenotypically by flow cytometry to establish their use for downstream differentiation studies. MSC were induced to differentiate into insulin-producing beta cells using a step-wise differentiation medium. The differentiation was evaluated by analysing the morphology, dithizone staining, immunocytochemistry, and expression of pancreatic beta cell marker genes. We stimulated the beta cells with different concentrations of glucose and observed a dose-dependent increase in gene expression. In addition, an increase in insulin and c-Peptide secretion as a function of glucose challenge confirmed the functionality of the differentiated beta cells. The differentiation of adipose-derived MSC into beta cells has been well established. However, our data demonstrates, for the first time, that the ready availability and properties of MSC isolated from deceased donor adipose tissue render them well-suited as a source for increased production of functional beta cells. Consequently, these cells can be a promising therapeutic approach for cell replacement therapy to treat patients with T1D.
Collapse
Affiliation(s)
- Prakash Rao
- Personalized Transplant Medicine Institute at NJ Sharing Network, New Providence, NJ, USA
| | - Dayanand Deo
- Personalized Transplant Medicine Institute at NJ Sharing Network, New Providence, NJ, USA
| | - Misty Marchioni
- Personalized Transplant Medicine Institute at NJ Sharing Network, New Providence, NJ, USA
| |
Collapse
|
6
|
Liu J, Lang G, Shi J. Epigenetic Regulation of PDX-1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:431-442. [PMID: 33564250 PMCID: PMC7866918 DOI: 10.2147/dmso.s291932] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia which is caused by insufficient insulin secretion or insulin resistance. Interaction of genetic, epigenetic and environmental factors plays a significant role in the development of T2DM. Several environmental factors including diet and lifestyle, as well as age have been associated with an increased risk for T2DM. It has been demonstrated that these environmental factors may affect global epigenetic status, and alter the expression of susceptible genes, thereby contributing to the pathogenesis of T2DM. In recent years, a growing body of molecular and genetic studies in diabetes have been focused on the ways to restore the numbers or function of β-cells in order to reverse a range of metabolic consequences of insulin deficiency. The pancreatic duodenal homeobox 1 (PDX-1) is a transcriptional factor that is essential for the development and function of islet cells. A number of studies have shown that there is a significant increase in the level of DNA methylation of PDX-1 resulting in reduced activity in T2DM islets. The decrease in PDX-1 activity may be a critical mediator causing dysregulation of pancreatic β cells in T2DM. This article reviews the epigenetic mechanisms of PDX-1 involved in T2DM, focusing on diabetes and DNA methylation, and discusses some potential strategies for the application of PDX-1 in the treatment of diabetes.
Collapse
Affiliation(s)
- Jiangman Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Correspondence: Jingshan Shi Tel +86-851-286-436-66Fax +86-851-286-423-03 Email
| |
Collapse
|
7
|
Generation of iPSC-derived insulin-producing cells from patients with type 1 and type 2 diabetes compared with healthy control. Stem Cell Res 2020; 48:101958. [PMID: 32882526 DOI: 10.1016/j.scr.2020.101958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
For alternative sources of β cells, patient-specific induced pluripotent stem cells (iPSCs) could be promising, as cells derived from the "self" allow autologous transplantation. However, only a few studies have investigated insulin-producing cells (IPCs) using iPSCs of patients with type 1 diabetes (T1D). In this study, we generated IPCs using iPSCs derived from patients with T1D and type 2 diabetes (T2D) and compared them with IPCs from a non-diabetic (ND) individual. To facilitate differentiation of human iPSCs into IPCs, we induced PDX-1 gene expression using Ad-PDX-1/VP16. IPCs derived from T1D- and T2D-specific iPSCs expressed islet-specific markers such as Pdx-1, MafA, Beta2/NeuroD, and insulin, similar to IPCs derived from ND-specific iPSCs. In addition, IPCs derived from T1D- and T2D-specific iPSCs showed comparable glucose-stimulated insulin secretion as IPCs derived from ND-specific iPSCs. These results suggest the potential for autologous transplantation using patient-specific iPSCs in patients with T1D and T2D. This study was clinically significant because the majority of people with diabetes have T2D and insulin secretion declines over time in T2D. To the best of our knowledge, this is the first study to generate and simultaneously compare IPCs from ND-, T1D-, and T2D-specific iPSCs.
Collapse
|
8
|
Zhang J, Liu F. The De-, Re-, and trans-differentiation of β-cells: Regulation and function. Semin Cell Dev Biol 2020; 103:68-75. [DOI: 10.1016/j.semcdb.2020.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
9
|
Ruzittu S, Willnow D, Spagnoli FM. Direct Lineage Reprogramming: Harnessing Cell Plasticity between Liver and Pancreas. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035626. [PMID: 31767653 DOI: 10.1101/cshperspect.a035626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct lineage reprogramming of abundant and accessible cells into therapeutically useful cell types holds tremendous potential in regenerative medicine. To date, a number of different cell types have been generated by lineage reprogramming methods, including cells from the neural, cardiac, hepatic, and pancreatic lineages. The success of this strategy relies on developmental biology and the knowledge of cell-fate-defining transcriptional networks. Hepatocytes represent a prime target for β cell conversion for numerous reasons, including close developmental origin, accessibility, and regenerative potential. We present here an overview of pancreatic and hepatic development, with a particular focus on the mechanisms underlying the divergence between the two cell lineages. Additionally, we discuss to what extent this lineage relationship can be exploited in efforts to reprogram one cell type into the other and whether such an approach may provide a suitable strategy for regenerative therapies of diabetes.
Collapse
Affiliation(s)
- Silvia Ruzittu
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom.,Max Delbrück Center for Molecular Medicine (MDC), D-13125 Berlin, Germany
| | - David Willnow
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Francesca M Spagnoli
- Centre for Stem Cell and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
10
|
Vishwakarma SK, Jaiswal J, Park K, Lakkireddy C, Raju N, Bardia A, Habeeb MA, Paspala SAB, Khan AA, Dhayal M. TiO
2
Nanoflowers on Conducting Substrates Ameliorate Effective Transdifferentiation of Human Hepatic Progenitor Cells for Long‐Term Hyperglycemia Reversal in Diabetic Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Juhi Jaiswal
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| | - Kyung‐Hee Park
- Department of Dental Materials and Hard‐tissue Biointerface Research Center, School of DentistryChonnam National University Gwangju 61186 Republic of Korea
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Md. Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Marshal Dhayal
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
11
|
Chen L, Forsyth NR, Wu P. Chorionic and amniotic placental membrane-derived stem cells, from gestational diabetic women, have distinct insulin secreting cell differentiation capacities. J Tissue Eng Regen Med 2019; 14:243-256. [PMID: 31701635 DOI: 10.1002/term.2988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
Women with gestational diabetes mellitus (GDM), and their offspring, are at high risk of developing type 2 diabetes. Chorionic (CMSCs) and amniotic mesenchymal stem cells (AMSCs) derived from placental membranes provide a source of autologous stem cells for potential diabetes therapy. We established an approach for the CMSC/AMSC-based generation of functional insulin-producing cells (IPCs). CMSCs/AMSCs displayed significantly elevated levels of NANOG and OCT4 versus bone marrow-derived MSCs, indicating a potentially broad differentiation capacity. Exposure of Healthy- and GDM-CMSCs/AMSCs to long-term high-glucose culture resulted in significant declines in viability accompanied by elevation, markedly so in GDM-CMSCs/AMSCs, of senescence/stress markers. Short-term high-glucose culture promoted pancreatic transcription factor expression when coupled to a 16-day step-wise differentiation protocol; activin A, retinoic acid, epidermal growth factor, glucagon-like peptide-1 and other chemical components, generated functional IPCs from both Healthy- and GDM-CMSCs. Healthy-/GDM-AMSCs displayed betacellulin-sensitive insulin expression, which was not secreted upon glucose challenge. The pathophysiological state accompanying GDM may cause irreversible impairment to endogenous AMSCs; however, GDM-CMSCs possess comparable therapeutic potential with Healthy-CMSCs and can be effectively reprogrammed into insulin-secreting cells.
Collapse
Affiliation(s)
- Liyun Chen
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University Stoke-on-Trent, U.K.,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas R Forsyth
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University Stoke-on-Trent, U.K
| | - Pensee Wu
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University Stoke-on-Trent, U.K.,Academic Unit of Obstetrics and Gynaecology, University Hospital of North Midlands Stoke-on-Trent, U.K.,Keele Cardiovascular Research Group, Institute for Applied Clinical Sciences and Centre for Prognosis Research, Institute of Primary Care and Health Sciences, Keele University Stoke-on-Trent, U.K
| |
Collapse
|
12
|
Wang Q, Donelan W, Ye H, Jin Y, Lin Y, Wu X, Wang Y, Xi Y. Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells. Am J Transl Res 2019; 11:3490-3504. [PMID: 31312361 PMCID: PMC6614661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/01/2019] [Indexed: 06/10/2023]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into functional insulin-producing cells (IPCs) holds great promise for cell therapy for diabetic patients. Despite recent advances in developing beta cell differentiation protocols, it is becoming clear that the hPSC-derived beta-like cells are functionally immature, and the efficiencies of differentiation can be variable depending on the hPSC lines used. Therefore, advanced methodologies are highly desirable for the development and refinement of beta cell differentiation protocols from hPSCs. In this report, we first derived and validated a Pdx1-mRFP/insulin-hrGFP dual-reporter cell line from MRC5-iPSCs. Then, using this dual-reporter cell line, we developed and optimized an in vitro beta cell differentiation protocol through real-time monitoring expression of Pdx1 and insulin. We demonstrated that DNA demethylation could increase the efficiency of beta cell differentiation. Furthermore, three-dimensional induction not only significantly increased the efficiency of pancreatic progenitor specification and the yield of IPCs, but also produced more mature IPCs. The current study indicates that this dual-reporter cell line is of great value for developing and optimizing the beta cell differentiation protocols. It will facilitate the development of novel protocols for generating IPCs from hPSCs and the investigation of beta cell differentiation mechanisms.
Collapse
Affiliation(s)
- Qiwei Wang
- Cell Engineering Laboratory, Beijing Institute of Biotechnology20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - William Donelan
- Department of Urology, University of FloridaGainesville, Florida 32610, USA
| | - Huahu Ye
- Cell Engineering Laboratory, Beijing Institute of Biotechnology20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Yulan Jin
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing 100006, P. R. China
| | - Yanli Lin
- Cell Engineering Laboratory, Beijing Institute of Biotechnology20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Xiaojie Wu
- Cell Engineering Laboratory, Beijing Institute of Biotechnology20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Youliang Wang
- Cell Engineering Laboratory, Beijing Institute of Biotechnology20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Yongyi Xi
- Cell Engineering Laboratory, Beijing Institute of Biotechnology20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| |
Collapse
|
13
|
Abstract
Type 1 diabetes is a disease characterized by the destruction of insulin-secreting β-cells in the pancreas. Individuals are treated for this disease with lifelong insulin replacement. However, one attractive treatment possibility is to reprogram an individual’s endogenous cells to acquire the ability to secrete insulin, essentially replacing destroyed β-cells. Herein, we review the literature on the topic of reprogramming endodermal cells to produce insulin.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| | - Domenico Accili
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| |
Collapse
|
14
|
Hashemi Tabar M, Tabandeh MR, Moghimipour E, Dayer D, Ghadiri AA, Allah Bakhshi E, Orazizadeh M, Ghafari MA. The combined effect of Pdx1 overexpression and Shh manipulation on the function of insulin-producing cells derived from adipose-tissue stem cells. FEBS Open Bio 2018; 8:372-382. [PMID: 29511614 PMCID: PMC5832980 DOI: 10.1002/2211-5463.12378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic and duodenal homeobox 1 (Pdx1) and Sonic hedgehog (Shh) are the key regulators of beta-cell function. In vitro experiments have shown that there is significant cooperation between Pdx1 and Shh with regard to the production and maintenance of insulin-producing cells (IPCs). In this study, the combined effect of Pdx1 overexpression and Shh manipulation on the function of adipose tissue-derived IPCs was determined. A eukaryotic expression vector (Pdx1- pCDNA3.1(+)) was constructed and transfected into a Chinese hamster ovary (CHO) cell line. Adipose tissue-derived mesenchymal stem cells (ADMSCs) obtained from rats were assigned to two groups [control (C) and manipulated (M)] and differentiated into IPCs. Manipulated cells were treated with a mixture of FGF-β and cyclopamine and recombinant Shh protein at days 3 and 11, respectively, and transfected with Pdx1- pCDNA3.1(+) at day 10. The expression of multiple genes related to function of beta cells was analyzed using real-time PCR. The functionality of IPCs in vitro was analyzed through dithizone (DTZ) staining and ELISA. IPCs were injected into the tail vein of diabetic rats, and blood glucose and insulin concentrations were measured. CHO cells transfected with Pdx1- pCDNA3.1(+) showed a significantly higher expression of Pdx1 compared with nontransfected cells. Manipulated IPCs exhibited a significantly higher expression of MafA, Nkx2.2, Nkx6.1, Ngn3, insulin, and Isl1 and a higher insulin secretion in response to glucose challenge in relation to control cells. Rats that received manipulated IPCs exhibited a higher ability to normalize blood glucose and insulin secretion when compared to controls. Our protocol might be used for more efficient cell therapy of patients with diabetes in the future.
Collapse
Affiliation(s)
- Mahmoud Hashemi Tabar
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Anatomy Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology Faculty of Veterinary Medicine Shahid Chamran University of Ahvaz Iran.,Stem Cells and Transgenic Technology Research Center Shahid Chamran University of Ahvaz Iran
| | - Eskandar Moghimipour
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of pharmaceutics Faculty of Pharmacy Ahvaz Jundishapur University of Medical Sciences Iran
| | - Dian Dayer
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran
| | - Ata A Ghadiri
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Immunology Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| | - Elham Allah Bakhshi
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Anatomy Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| | - Mohammad Ali Ghafari
- Cellular and Molecular Research center Ahvaz Jundishapur University of Medical Sciences Iran.,Department of Biochemistry Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Iran
| |
Collapse
|
15
|
Amer MG, Embaby AS, Karam RA, Amer MG. Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus. Gene 2018; 654:87-94. [PMID: 29452233 DOI: 10.1016/j.gene.2018.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Generation of new β cells is an important approach in the treatment of type 1 diabetes mellitus (type 1 DM). Adipose tissue-derived stem cells (ADSCs) might be one of the best sources for cell replacement therapy for diabetes. Therefore, this work aimed to test the possible role of transplanted insulin-producing cells (IPCs) differentiated from ADSCs in treatment of streptozotocin (STZ) induced type I DM in rats. Type 1 DM was induced by single intra peritoneal injection with STZ (50 mg/kg BW). Half of the diabetic rats were left without treatment and the other half were injected with differentiated IPCs directly into the pancreas. ADSCs were harvested, cultured and identified by testing their phenotypes through flow cytometry. They were further subjected to differentiation into IPCs using differentiation medium. mRNA expression of pancreatic transcription factors (pdx1), insulin and glucose transporter-2 genes by real time PCR was done to detect the cellular differentiation and confirmed by stimulated insulin secretion. The pancreatic tissues from all groups were examined 2 months after IPC transplantation and were subjected to histological, Immunohistochemical and morphometric study. The differentiated IPCs showed significant expression of pancreatic β cell markers and insulin secretion in glucose dependent manner. Treatment with IPCs induced apparent regeneration, diffused proliferated islet cells and significant increase in C-peptide immune reaction. We concluded that transplantation of differentiated IPCs improved function and morphology of Islet cells in diabetic rats. Consequently, this therapy option may be a promising therapeutic approach to patient with type 1 DM if proven to be effective and safe.
Collapse
Affiliation(s)
- Mona G Amer
- Histology & Cell Biology, Faculty of Medicine, Zagazig University, Egypt; Anatomy and histology department, College of medicine, Taif University, Saudi Arabia
| | - Azza S Embaby
- Histology & Cell Biology, Faculty of Medicine, Beni-Sueif University, Egypt
| | - Rehab A Karam
- Medical Biochemistry, Faculty of Medicine, Zagazig University, Egypt.
| | - Marwa G Amer
- Clinical pathology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
16
|
Peng BY, Dubey NK, Mishra VK, Tsai FC, Dubey R, Deng WP, Wei HJ. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res 2018; 2018:7806435. [PMID: 30046616 PMCID: PMC6036791 DOI: 10.1155/2018/7806435] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.
Collapse
Affiliation(s)
- Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei City 110, Taiwan
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala, India
| | - Feng-Chou Tsai
- Department of Stem Cell Research, Cosmetic Clinic Group, Taipei City 110, Taiwan
| | - Rajni Dubey
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
17
|
Hani H, Allaudin ZN, Mohd-Lila MA, Sarsaifi K, Rasouli M, Tam YJ, Tengku-Ibrahim TA, Othman AM. Improvement of isolated caprine islet survival and functionality in vitro by enhancing of PDX1 gene expression. Xenotransplantation 2017; 24. [PMID: 28397308 DOI: 10.1111/xen.12302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dead islets replaced with viable islets are a promising offer to restore normal insulin production to a person with diabetes. The main reason for establishing a new islet source for transplantation is the insufficiency of human donor pancreas while using xenogeneic islets perhaps assists this problem. The expression of PDX1 is essential for the pancreas expansion. In mature β-cells, PDX1 has several critical roles such as glucose sensing, insulin synthesis, and insulin secretion. In this study, we aimed to evaluate the expression of pancreatic duodenal homeobox-1 (PDX1) in treated caprine islets in culture and to assess the protective effects of antioxidant factors on the PDX1 gene in cultured caprine islets. MATERIALS AND METHODS Purified islets were treated with serum-free, serum, IBMX, tocopherol, or IBMX and tocopherol media. Quantitative polymerase chain reaction and Western blotting were carried out to compare the expression levels of PDX1 in treated purified islets cultured with different media. RESULTS Islets treated with IBMX/tocopherol exhibited the highest fold change in the relative expression of PDX1 on day 5 post-treatment (relative expression: 6.80±2.08), whereas serum-treated islets showed the lowest fold changes in PDX1 expression on day 5 post-treatment (0.67±0.36), as compared with the expression on day 1 post-treatment. Insulin production and viability tests of purified islets showed superiority of islet at supplemented serum-free media with IBMX/tocopherol compared to other cultures (53.875%±1.59%). CONCLUSIONS Our results indicated that supplemented serum-free medium with tocopherol and IBMX enhances viability and PDX1 gene expression compared to serum-added and serum-free media.
Collapse
Affiliation(s)
- Homayoun Hani
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zeenathul Nazariah Allaudin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd-Azmi Mohd-Lila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kazhal Sarsaifi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mina Rasouli
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yew Joon Tam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tengku-Azmi Tengku-Ibrahim
- Department of Veterinary Preclinical, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abas Mazni Othman
- Department of Animal Reproduction, Agro-Biotechnology Institute Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Walczak MP, Drozd AM, Stoczynska-Fidelus E, Rieske P, Grzela DP. Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors. J Transl Med 2016; 14:341. [PMID: 27998294 PMCID: PMC5168869 DOI: 10.1186/s12967-016-1097-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background Induced pluripotent stem cells (iPSC) possess an enormous potential as both, scientific and therapeutic tools. Their application in the regenerative medicine provides new treatment opportunities for numerous diseases, including type 1 diabetes. In this work we aimed to derive insulin producing cells (IPC) from iPS cells established in defined conditions. Methods We optimized iPSC generation protocol and created pluripotent cell lines with stably integrated PDX1 and NKX6.1 transgenes under the transcriptional control of doxycycline-inducible promoter. These cells were differentiated using small chemical molecules and recombinant Activin A in the sequential process through the definitive endoderm, pancreatic progenitor cells and insulin producing cells. Efficiency of the procedure was assessed by quantitative gene expression measurements, immunocytochemical stainings and functional assays for insulin secretion. Results Generated cells displayed molecular markers characteristic for respective steps of the differentiation. The obtained IPC secreted insulin and produced C-peptide with significantly higher hormone release level in case of the combined expression of PDX1 and NKX6.1 induced at the last stage of the differentiation. Conclusions Efficiency of differentiation of iPSC to IPC can be increased by concurrent expression of PDX1 and NKX6.1 during progenitor cells maturation. Protocols established in our study allow for iPSC generation and derivation of IPC in chemically defined conditions free from animal-derived components, which is of the utmost importance in the light of their prospective applications in the field of regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1097-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej P Walczak
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland
| | - Anna M Drozd
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.,Department of Tumor Biology, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.,Department of Tumor Biology, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland.,Research and Development Unit, Personather Ltd., Milionowa 23, 93-193, Łódź, Poland
| | - Dawid P Grzela
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.
| |
Collapse
|
19
|
Abstract
Tissue replacement is a promising direction for the treatment of diabetes, which will become widely available only when islets or insulin-producing cells that will not be rejected by the diabetic recipients are available in unlimited amounts. The present review addresses the research in the field of generating functional insulin-producing cells by transdifferentiation of adult liver cells both in vitro and in vivo. It presents recent knowledge of the mechanisms which underlie the process and assesses the challenges which should be addressed for its efficient implementation as a cell based replacement therapy for diabetics.
Collapse
Affiliation(s)
- Irit Meivar-Levy
- Sheba Regenerative Medicine, Stem Cells and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | - Sarah Ferber
- Sheba Regenerative Medicine, Stem Cells and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer 52621, Israel; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, 69978, Israel.
| |
Collapse
|
20
|
Okere B, Alviano F, Costa R, Quaglino D, Ricci F, Dominici M, Paolucci P, Bonsi L, Iughetti L. In vitro differentiation of human amniotic epithelial cells into insulin-producing 3D spheroids. Int J Immunopathol Pharmacol 2015. [PMID: 26216908 DOI: 10.1177/0394632015588439] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and stem cell therapy may represent the solution for the treatment of non-curable human diseases such as type 1 diabetes. In this context of growing demand for functional and safe stem cells, human amniotic epithelial cells (hAECs) from term placenta have attracted increasing interest for their wide availability, stem cell properties, and differentiation plasticity, which make them a promising tool for stem cell-based therapeutic applications. We initially assayed the stemness characteristics of hAECs in serum-free conditions. Subsequently we developed a culture procedure on extracellular matrix for the formation of three-dimensional (3D) spheroids. Finally, we tested the immunomodulation and differentiation potential of hAEC spheroids: the presence of pancreatic endocrine hormones was revealed with transmission electron microscopy and immunofluorescence analyses; the release of C-peptide in hyperglycemic conditions was assayed with ELISA. The serum-free culture conditions we applied proved to maintain the basic stemness characteristics of hAECs. We also demonstrated that 3D spheroids formed by hAECs in extracellular matrix can be induced to differentiate into insulin-producing cells. Finally, we proved that control and induced cells equally inhibit the proliferation of activated mononuclear cells. The results of this study highlight the properties of amnion derived epithelial cells as promising and abundant source for cell-based therapies. In particular we are the first group to show the in vitro pancreatic induction of hAECs cultured on extracellular matrix in a 3D fashion. We accordingly propose the outcomes of this study as a novel contribution to the development of future cell replacement therapies involving placenta-derived cells.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberta Costa
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ricci
- Immunohematology and Transfusion Medicine Service, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Paolo Paolucci
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| |
Collapse
|
21
|
Donelan W, Li S, Wang H, Lu S, Xie C, Tang D, Chang LJ, Yang LJ. Pancreatic and duodenal homeobox gene 1 (Pdx1) down-regulates hepatic transcription factor 1 alpha (HNF1α) expression during reprogramming of human hepatic cells into insulin-producing cells. Am J Transl Res 2015; 7:995-1008. [PMID: 26279745 PMCID: PMC4532734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Ectopic expression of Pdx1 triggers rapid hepatocyte dedifferentiation by down-regulating liver-enriched transcription factors and liver-specific functional genes such as hepatic nuclear factor-1α (HNF1α), albumin, and AAT. However, the links between Pdx1 over-expression and hepatic gene down-regulation are incompletely understood. HNF1α and HNF4α are important transcription factors that establish and maintain the hepatocyte phenotype. The human HNF4α gene contains two promoters (P1 and P2) that drive expression of P1-(HNF4α 1-6) or P2-(HNF4α 7-9)-derived isoforms, which are used in different tissues and at different times during development. We hypothesized that the relative expression of HNF1α and HNF4α following ectopic Pdx1 expression may promote hepatic cell dedifferentiation and transdifferentiation toward pancreatic beta-cells. We produced lentiviruses expressing Pdx1, Pdx1-VP16, and Ngn3, along with dual-color reporter genes to indicate hepatic and pancreatic beta-cell phenotype changes. Using these PTF alone or in combinations, we demonstrated that Pdx1 not only activates specific beta-cell genes but down-regulates HNF1α. Pdx1-mediated reduction of HNF1α is accompanied by altered expression of its major activator, HNF4α isoforms, down-regulating hepatic genes ALB and AAT. Pdx1 up-regulates HNF4α via the P2 promoter. These P2-driven isoforms compete with P1-driven isoforms to suppress target gene transcription. In Huh7 cells, the AF-1 activation domain is more important for transactivation, whereas in INS1 cells, the F inhibitory domain is more important. The loss and gain of functional activity strongly suggests that Pdx1 plays a central role in reprogramming hepatocytes into beta-cells by suppressing the hepatic phenotype.
Collapse
Affiliation(s)
- William Donelan
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shiwu Li
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Hai Wang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shun Lu
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Chao Xie
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Dongqi Tang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Lung-Ji Chang
- Department of Molecular Genetics & Microbiology, University of Florida College of MedicineGainesville, Florida 32610
| | - Li-Jun Yang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| |
Collapse
|
22
|
Kaneto H, Matsuoka TA. Role of pancreatic transcription factors in maintenance of mature β-cell function. Int J Mol Sci 2015; 16:6281-97. [PMID: 25794287 PMCID: PMC4394532 DOI: 10.3390/ijms16036281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
A variety of pancreatic transcription factors including PDX-1 and MafA play crucial roles in the pancreas and function for the maintenance of mature β-cell function. However, when β-cells are chronically exposed to hyperglycemia, expression and/or activities of such transcription factors are reduced, which leads to deterioration of β-cell function. These phenomena are well known as β-cell glucose toxicity in practical medicine as well as in the islet biology research area. Here we describe the possible mechanism for β-cell glucose toxicity found in type 2 diabetes. It is likely that reduced expression levels of PDX-1 and MafA lead to suppression of insulin biosynthesis and secretion. In addition, expression levels of incretin receptors (GLP-1 and GIP receptors) in β-cells are decreased, which likely contributes to the impaired incretin effects found in diabetes. Taken together, down-regulation of insulin gene transcription factors and incretin receptors explains, at least in part, the molecular mechanism for β-cell glucose toxicity.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577, Matsushima, Kurashiki 701-0192, Japan.
| | - Taka-aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Jiménez-Amilburu V, Jong-Raadsen S, Bakkers J, Spaink HP, Marín-Juez R. GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. J Endocrinol 2015; 224:1-15. [PMID: 25326603 DOI: 10.1530/joe-14-0539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiomyopathies-associated metabolic pathologies (e.g., type 2 diabetes and insulin resistance) are a leading cause of mortality. It is known that the association between these pathologies works in both directions, for which heart failure can lead to metabolic derangements such as insulin resistance. This intricate crosstalk exemplifies the importance of a fine coordination between one of the most energy-demanding organs and an equilibrated carbohydrate metabolism. In this light, to assist in the understanding of the role of insulin-regulated glucose transporters (GLUTs) and the development of cardiomyopathies, we have developed a model for glut12 deficiency in zebrafish. GLUT12 is a novel insulin-regulated GLUT expressed in the main insulin-sensitive tissues, such as cardiac muscle, skeletal muscle, and adipose tissue. In this study, we show that glut12 knockdown impacts the development of the embryonic heart resulting in abnormal valve formation. Moreover, glut12-deficient embryos also exhibited poor glycemic control. Glucose measurements showed that these larvae were hyperglycemic and resistant to insulin administration. Transcriptome analysis demonstrated that a number of genes known to be important in cardiac development and function as well as metabolic mediators were dysregulated in these larvae. These results indicate that glut12 is an essential GLUT in the heart where the reduction in glucose uptake due to glut12 deficiency leads to heart failure presumably due to the lack of glucose as energy substrate. In addition, the diabetic phenotype displayed by these larvae after glut12 abrogation highlights the importance of this GLUT during early developmental stages.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Susanne Jong-Raadsen
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Jeroen Bakkers
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Herman P Spaink
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Rubén Marín-Juez
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| |
Collapse
|
24
|
Gerace D, Ren B, Hawthorne WJ, Byrne MR, Phillips PM, O'Brien BA, Nassif N, Alexander IE, Simpson AM. Pancreatic transdifferentiation in porcine liver following lentiviral delivery of human furin-cleavable insulin. Transplant Proc 2014; 45:1869-74. [PMID: 23769060 DOI: 10.1016/j.transproceed.2013.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022]
Abstract
Type I diabetes mellitus (TID) results from the autoimmune destruction of the insulin-producing pancreatic β-cells. Gene therapy is one strategy being actively explored to cure TID by affording non-β-cells the ability to secrete insulin in response to physiologic stimuli. In previous studies, we used a novel surgical technique to express furin-cleavable human insulin (INS-FUR) in the livers of streptozotocin (STZ)-diabetic Wistar rats and nonobese diabetic (NOD) mice with the use of the HMD lentiviral vector. Normoglycemia was observed for 500 and 150 days, respectively (experimental end points). Additionally, some endocrine transdifferentiation of the liver, with storage of insulin in granules, and expression of some β-cell transcription factors (eg, Pdx1, Neurod1, Neurog3, Nkx2-2, Pax4) and pancreatic hormones in both studies. The aim of this study was to determine if this novel approach could induce liver to pancreatic transdifferentiation to reverse diabetes in pancreatectomized Westran pigs. Nine pigs were used in the study, however only one pig maintained normal fasting blood glucose levels for the period from 10 to 44 days (experimental end point). This animal was given 2.8 × 10(9) transducing units/kg of the lentiviral vector expressing INS-FUR. A normal intravenous glucose tolerance test was achieved at 30 days. Reverse-transcription polymerase chain reaction analysis of the liver tissue revealed expression of several β-cell transcription factors, including the key factors, Pdx-1 and Neurod1, pancreatic hormones, glucagon, and somatostatin; however, endogenous pig insulin was not expressed. Triple immunofluorescence showed extensive insulin expression, as was previously observed in our studies with rodents. Additionally, a small amount of glucagon and somatostatin protein expression was seen. Collectively, these data indicate that pancreatic transdifferentiation of the liver tissue had occurred. Our data suggest that this regimen may ultimately be used clinically to cure TID, however more work is required to replicate the successful reversal of diabetes in increased numbers of pigs.
Collapse
Affiliation(s)
- D Gerace
- School of Medical & Molecular Biosciences, University of Technology Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schweicher J, Nyitray C, Desai TA. Membranes to achieve immunoprotection of transplanted islets. FRONT BIOSCI-LANDMRK 2014; 19:49-76. [PMID: 24389172 PMCID: PMC4230297 DOI: 10.2741/4195] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transplantation of islet or beta cells is seen as the cure for type 1 diabetes since it allows physiological regulation of blood glucose levels without requiring any compliance from the patients. In order to circumvent the use of immunosuppressive drugs (and their side effects), semipermeable membranes have been developed to encapsulate and immunoprotect transplanted cells. This review presents the historical developments of immunoisolation and provides an update on the current research in this field. A particular emphasis is laid on the fabrication, characterization and performance of membranes developed for immunoisolation applications.
Collapse
Affiliation(s)
- Julien Schweicher
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Crystal Nyitray
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| | - Tejal A. Desai
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), 1700 4 Street, Box 2520, San Francisco, CA, 94158, USA
| |
Collapse
|
26
|
Li S, Du L, Zhang L, Hu Y, Xia W, Wu J, Zhu J, Chen L, Zhu F, Li C, Yang S. Cathepsin B contributes to autophagy-related 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line. J Biol Chem 2013; 288:30094-30104. [PMID: 23986436 DOI: 10.1074/jbc.m113.494286] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line.
Collapse
Affiliation(s)
- Shali Li
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Leilei Du
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Lu Zhang
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Yue Hu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Wenchun Xia
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Jia Wu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Jing Zhu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Lingling Chen
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Fengqi Zhu
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - Chunxian Li
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China
| | - SiJun Yang
- From the Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu Province 210046, China.
| |
Collapse
|
27
|
Ren B, O'Brien BA, Byrne MR, Ch'ng E, Gatt PN, Swan MA, Nassif NT, Wei MQ, Gijsbers R, Debyser Z, Simpson AM. Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene therapy. J Gene Med 2013; 15:28-41. [PMID: 23293075 DOI: 10.1002/jgm.2692] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/01/2012] [Accepted: 12/20/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from an autoimmune attack against the insulin-producing β-cells of the pancreas. The present study aimed to reverse T1D by gene therapy. METHODS We used a novel surgical technique, which involves isolating the liver from the circulation before the delivery of a lentiviral vector carrying furin-cleavable human insulin (INS-FUR) or empty vector to the livers of diabetic non-obese diabetic mice (NOD). This was compared with the direct injection of the vector into the portal circulation. Mice were monitored for body weight and blood glucose. Intravenous glucose tolerance tests were performed. Expression of insulin and pancreatic transcription factors was determined by the reverse transcriptase-polymerase chain reaction and immunohistochemistry and immunoelectron microscopy was used to localise insulin. RESULTS Using the novel surgical technique, we achieved long-term transduction (42% efficiency) of hepatocytes, restored normoglycaemia for 150 days (experimental endpoint) and re-established normal glucose tolerance. We showed the expression of β-cell transcription factors, murine insulin, glucagon and somatostatin, and hepatic storage of insulin in granules. The expression of hepatic markers, C/EBP-β, G6PC, AAT and GLUI was down-regulated in INS-FUR-treated livers. Liver function tests remained normal, with no evidence of intrahepatic inflammation or autoimmune destruction of the insulin-secreting liver tissue. By comparison, direct injection of INS-FUR reduced blood glucose levels, and no pancreatic transdifferentiation or normal glucose tolerance was observed. CONCLUSIONS This gene therapy protocol has, for the first time, permanently reversed T1D with normal glucose tolerance in NOD mice and, as such, represents a novel therapeutic strategy for the treatment of T1D.
Collapse
Affiliation(s)
- Binhai Ren
- School of Medical & Molecular Biosciences, University of Technology Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Q, Wang H, Sun Y, Li SW, Donelan W, Chang LJ, Jin S, Terada N, Cheng H, Reeves WH, Yang LJ. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation. J Cell Sci 2013; 126:3638-48. [PMID: 23750005 DOI: 10.1242/jcs.124925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tang DQ, Shun L, Koya V, Sun Y, Wang Q, Wang H, Li SW, Sun Y, Purich DL, Zhang C, Hansen B, Qian K, Atkinson M, Phillips MI, Yang LJ. Genetically reprogrammed, liver-derived insulin-producing cells are glucose-responsive, but susceptible to autoimmune destruction in settings of murine model of type 1 diabetes. Am J Transl Res 2013; 5:184-199. [PMID: 23573363 PMCID: PMC3612514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Many previous studies demonstrate that hepatocytes can be reprogrammed into insulin-producing cells (IPCs) utilizing viral vector-mediated delivery of pancreatic transcription factors (PTFs). However, whether these liver-derived IPCs are susceptible to autoimmune attack in animal models of type 1 diabetes remains unclear, in part due to the immunogenicity of the viral vectors used to introduce PTF genes. Adeno-associated virus serotype 2 vector-expressing Pdx1-VP16 (Pdx1) and Ngn3 were prepared and injected into the portal vein of streptozotocin (Stz)/diabetic NOD/SCID mice. The presence of glucose-responsive liver-IPCs and their susceptibility to anti-beta cell autoimmunity were assessed by blood glucose levels, insulin content, IPC cell distribution, and intraperitoneal glucose tolerance test following subtotal pancreatectomy (Px) and passive transfer of diabetogenic splenocytes isolated from diabetic female NOD mice. A combination of two PTF genes (Pdx1/Ngn3) effectively reprogrammed liver cells into glucose-responsive IPCs. These IPCs corrected hyperglycemia in Stz/diabetic NOD/SCID mice and maintained normoglycemia following subtotal Px, indicating that liver-derived IPCs could maintain glucose homeostasis. Importantly, we also demonstrated that the glucose-responsive liver-derived IPCs were susceptible to autoimmune destruction by diabetogenic splenocytes, as indicated by progressive elevation in blood glucose levels as well as mixed T-, and B-lymphocytic infiltrates surrounding liver-IPCs 2~3 weeks following transferring of diabetogenic splenocytes into NOD/SCID mice, and confirmed by immunohistochemical studies. In conclusion, genetically reprogrammed liver-IPCs, like pancreatic islet beta-cells, are susceptible to autoimmune attack, suggesting that for cell-replacement therapy of treating type 1 diabetes, beta-cell surrogates may require concomitant immunotherapy to avoid autoimmune destruction.
Collapse
Affiliation(s)
- Dong-Qi Tang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Lu Shun
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Vijay Koya
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Yuping Sun
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Qiwei Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Hai Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Shi-Wu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Yu Sun
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Daniel L Purich
- Department of Biochemistry & Molecular Biology, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Clare Zhang
- Obesity, Diabetes and Aging Research Center and Departments of Internal Medicine and Pediatrics, College of Medicine, University of South FloridaTampa, FL 33612, USA
| | - Barbara Hansen
- Obesity, Diabetes and Aging Research Center and Departments of Internal Medicine and Pediatrics, College of Medicine, University of South FloridaTampa, FL 33612, USA
| | - Keping Qian
- Center for Rare Disease Therapies, Keck Graduate InstituteClaremont, California, 91711, USA
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - M Ian Phillips
- Center for Rare Disease Therapies, Keck Graduate InstituteClaremont, California, 91711, USA
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| |
Collapse
|
30
|
Liang QL, Mo Z, Li XF, Wang XX, Li RM. Pdx1 protein induces human embryonic stem cells into the pancreatic endocrine lineage. Cell Biol Int 2012; 37:2-10. [PMID: 23339089 DOI: 10.1002/cbin.10001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/05/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Qing Le Liang
- Hubei Key Laboratory of Clinic Centre, Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Zhengying Mo
- Oncology Department of Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Xue Feng Li
- Endocrine Department of Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Xiao Xun Wang
- Hubei Key Laboratory of Clinic Centre, Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Rui Ming Li
- Hubei Key Laboratory of Clinic Centre, Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| |
Collapse
|
31
|
Wang H, Jiang Z, Li A, Gao Y. Characterization of insulin-producing cells derived from PDX-1-transfected neural stem cells. Mol Med Rep 2012; 6:1428-32. [PMID: 23008108 DOI: 10.3892/mmr.2012.1089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/20/2012] [Indexed: 11/06/2022] Open
Abstract
Islet cell transplantation is a promising treatment strategy for type-1 diabetes. However, functional islet cells are hard to obtain for transplantation and are in short supply. Directing the differentiation of stem cells into insulin‑producing cells, which serve as islet cells, would overcome this shortage. Bone marrow contains hematopoietic stem cells and mesenchymal stem cells. The present study used bone marrow cells isolated from rats and neural stem cells (NSCs) that were derived from bone marrow cells in culture. Strong nestin staining was detected in NSCs, but not in bone marrow stromal cells (BMSCs). In vitro transfection of the pancreatic duodenal homeobox-1 (PDX-1) gene into NSCs generated insulin‑producing cells. Reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed that PDX-1-transfected NSCs expressed insulin mRNA and released insulin protein. However, insulin release from PDX-1-transfected NSCs did not respond to the challenge of glucose and glucagon-like peptide-1. These results support the use of bone marrow-derived NSCs as a renewable source of insulin-producing cells for autologous transplantation to treat type-1 diabetes.
Collapse
Affiliation(s)
- Hailan Wang
- Department of Endocrinology, Shenzhen Longgang Central Hospital, Shenzhen 518000, P.R. China
| | | | | | | |
Collapse
|
32
|
Tang DQ, Wang Q, Burkhardt BR, Litherland SA, Atkinson MA, Yang LJ. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. AMERICAN JOURNAL OF STEM CELLS 2012; 1:114-127. [PMID: 22833839 PMCID: PMC3402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/23/2012] [Indexed: 06/01/2023]
Abstract
Efforts involving therapeutic islet cell transplantation have been hampered by limited islet availability and immune rejection. In vitro transdifferentiation of human bone marrow-derived stem (hBMDS) cells into functional insulin-producing cells promises to provide a tissue source for autologous cell transplantation. In this study, we isolated hBMDS cells, developed a single-cell-derived stem cell line, and induced the cells to differentiate into islet-like clusters. These islet-like cells expressed multiple genes related to islet development and beta cell function (e.g., Pdx-1, Ngn-3, Islet-1, Neuro-D, Pax4, IAPP, and insulin) and produced insulin and C-peptide within these cells. These islet-like cells demonstrated time-dependent glucose-stimulated insulin release, and the ability to ameliorate hyperglycemia in chemically induced diabetic mice. However, these transplanted differentiated cells became tumorigenic in diabetic immunocompromised mice and their spontaneous transformation was confirmed by a marked increase in growth rate and inactivation of tumor suppressor genes (P21 and P16) by promoter hypermethylation. In conclusion, while hBMDS cells can be transdifferentiated into competent insulin-producing cells, and while such cell might be a potential source for autologous cell therapy for type 1 diabetes, caution is strongly advised in view of the neoplastic propensity of hBMDS cells, especially after a long-term culture in vitro.
Collapse
Affiliation(s)
- Dong-Qi Tang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| | - Qiwei Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| | - Brant R. Burkhardt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South FloridaFlorida
| | | | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of MedicineGainesville, Florida, 32610
| |
Collapse
|
33
|
Blyth NJ. Mechanisms and techniques of reprogramming: using PDX-1 homeobox protein as a novel treatment of insulin dependent diabetes mellitus. Diabetes Metab Syndr 2012; 6:113-119. [PMID: 23153982 DOI: 10.1016/j.dsx.2012.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Homeobox proteins are key regulators of stem cell proliferation and differentiation which function as transcription factors and regulate cell fate decisions. Pancreatic Duodenal Homeobox-1 (PDX-1) is a homeobox protein which acts as a key regulator in the development of b cells in the Islets of Langerhans. It plays an important role in maintaining the identity and function of the Islets of Langerhans, and in the development of the pancreas. There is strong evidence that PDX-1 plays a role in activating the insulin promoter and increasing insulin levels in response to glucose. PDX-1 also binds to sequences within β cells and regulates the promoter activity of a number of islet genes including insulin, glut-2 and neurogenin 3. When fused with the VP16 activation sequence, transfection of the PDX-1 gene has been shown to transform liver cells into insulin producing cells. Because homeobox proteins are able to passively translocate through cell membranes, due to an intrinsic transduction domain (penetratin), the use of these proteins to reprogram target cells may help overcome the limiting supply of β cells and be a potential future treatment for Type 1 diabetes.
Collapse
Affiliation(s)
- Nadine J Blyth
- Barwon Biomedical Research, The University of Melbourne, Barwon Health, Geelong, Victoria, Australia.
| |
Collapse
|
34
|
Abstract
OBJECTIVE The objective of the study was to induce transdifferentiation of human hepatoma HepG2 cells into pancreatic-like cells without direct genetic intervention. METHODS HepG2 cells were transfected with plasmids for the hepatocyte marker protein green fluorescent protein (albumin-GFP) and the pancreatic cell marker Discosoma spp red fluorescent protein (elastase-DsRed) to create FAE-HepG2 cells. Fluorescent marker expression was used to monitor in vitro transdifferentiation stimulated 100 mM CCl₄, 2 mM D-galactosamine, or 200 μM ZnCl₂. Concentrations were selected for optimal cell survival rate. Transdifferentiation was also characterized by immunohistochemical detection of amylase, glucagon, and insulin and by polymerase change reaction analysis of amylase and insulin mRNA production. RESULTS Control cells expressed albumin-GFP but no elastase-DsRed. By 30 days of culture, all 3 agents induced expression of pancreatic-like cell marker elastase-DsRed. ZnCl₂ was the most effective as most cells expressed elastase-DsRed in the absence of simultaneous expression of albumin-GFP. For CCl₄ and D-galactosamine, elastase-DsRed was expressed in the same cells as albumin-GFP. Cells treated by each agent also expressed amylase, insulin, and glucagon proteins and mRNAs. CONCLUSIONS Without direct genetic intervention, select low small molecules can induce in vitro transformation of hepatoma cells into pancreatic-like cells.
Collapse
|
35
|
Cheng H, Zhang YC, Wolfe S, Valencia V, Qian K, Shen L, Tang YL, Hsu WH, Atkinson MA, Phillips MI. Combinatorial treatment of bone marrow stem cells and stromal cell-derived factor 1 improves glycemia and insulin production in diabetic mice. Mol Cell Endocrinol 2011; 345:88-96. [PMID: 21801807 PMCID: PMC3171644 DOI: 10.1016/j.mce.2011.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 01/16/2023]
Abstract
Transdifferentiation of stem cells into insulin-producing cells for the treatment of diabetes have shown promising but inconsistent results. We examined the potential for attracting bone marrow stem cells (BMSCs) to the pancreas using a chemokine, stromal cell-derived factor 1 (SDF-1). SDF-1 treatment markedly increased the number of GFP labeled BMSCs in the pancreas, but surprisingly, the majority was observed in liver. The liver cells had typical pancreatic endocrine cell gene expression including insulin I, insulin II, PDX-1, somatostatin, and glucagon. Combined treatment with SDF-1 and BMSC transplant reduced hyperglycemia and prolonged the long-term survival of diabetic mice, and a sub group had complete normoglycemia (<150 mg/dl), restored blood insulin levels, and normal glucose tolerance. Our results suggest that SDF-1 could potentially be used to improve the homing of stem cells and β-cell regeneration. The mechanism appears to involve an increase in insulin producing cells mainly in the liver.
Collapse
Affiliation(s)
- H Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Human liver cells expressing albumin and mesenchymal characteristics give rise to insulin-producing cells. J Transplant 2011; 2011:252387. [PMID: 21876779 PMCID: PMC3163017 DOI: 10.1155/2011/252387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/05/2011] [Indexed: 01/28/2023] Open
Abstract
Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.
Collapse
|
37
|
Boroujeni NB, Hashemi SM, Khaki Z, Soleimani M. The reversal of hyperglycemia after transplantation of mouse embryonic stem cells induced into early hepatocyte-like cells in streptozotocin-induced diabetic mice. Tissue Cell 2011; 43:75-82. [DOI: 10.1016/j.tice.2010.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/12/2010] [Accepted: 12/17/2010] [Indexed: 01/26/2023]
|
38
|
Gefen-Halevi S, Rachmut IH, Molakandov K, Berneman D, Mor E, Meivar-Levy I, Ferber S. NKX6.1 promotes PDX-1-induced liver to pancreatic β-cells reprogramming. Cell Reprogram 2011; 12:655-64. [PMID: 21108535 DOI: 10.1089/cell.2010.0030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reprogramming adult mammalian cells is an attractive approach for generating cell-based therapies for degenerative diseases, such as diabetes. Adult human liver cells exhibit a high level of developmental plasticity and have been suggested as a potential source of pancreatic progenitor tissue. An instructive role for dominant pancreatic transcription factors in altering the hepatic developmental fate along the pancreatic lineage and function has been demonstrated. Here we analyze whether transcription factors expressed in mature pancreatic β-cells preferentially activate β-cell lineage differentiation in liver. NKX6.1 is a transcription factor uniquely expressed in β-cells of the adult pancreas, its potential role in reprogramming liver cells to pancreatic lineages has never been analyzed. Our results suggest that NKX6.1 activates immature pancreatic markers such as NGN-3 and ISL-1 but not pancreatic hormones gene expression in human liver cells. We hypothesized that its restricted capacity to activate a wide pancreatic repertoire in liver could be related to its incapacity to activate endogenous PDX-1 expression in liver cells. Indeed, the complementation of NKX6.1 by ectopic PDX-1 expression substantially and specifically promoted insulin expression and glucose regulated processed hormone secretion to a higher extent than that of PDX-1 alone, without increasing the reprogrammed cells. This may suggest a potential role for NKX6.1 in promoting PDX-1 reprogrammed cells maturation along the β-cell-like lineage. By contrast, NKX6.1 repressed PDX-1 induced proglucagon gene expression. The individual and concerted effects of pancreatic transcription factors in adult extra-pancreatic cells, is expected to facilitate developing regenerative medicine approaches for cell replacement therapy in diabetics.
Collapse
Affiliation(s)
- Shiraz Gefen-Halevi
- Sheba Regenerative Medicine, Stem cells and Tissue engineering Center , Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The ability of some organisms to regenerate parts of their body has fascinated scientists for decades. The process of regeneration depends on the potential of certain cells to proliferate and contribute to the formation of new tissue. Organisms have evolved two strategies by which to achieve this: the maintenance of adult stem cells and the induction of stem-cell properties in differentiated cells. In both cases, cells must undergo extensive epigenetic reprogramming to attain the specialized functions of the new tissue. Ultimately, the regenerative capacity of a tissue might depend on the plasticity of the cellular epigenome, which determines the ability of the cell to respond to injury-related signals. Understanding this epigenetic plasticity will allow the development of strategies to stimulate the regeneration of damaged tissues and organs in humans.
Collapse
|
40
|
Perán M, Sánchez-Ferrero A, Tosh D, Marchal JA, Lopez E, Alvarez P, Boulaiz H, Rodríguez-Serrano F, Aranega A. Ultrastructural and molecular analyzes of insulin-producing cells induced from human hepatoma cells. Cytotherapy 2011; 13:193-200. [DOI: 10.3109/14653249.2010.501791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Jurczyk A, Roy N, Bajwa R, Gut P, Lipson K, Yang C, Covassin L, Racki WJ, Rossini AA, Phillips N, Stainier DYR, Greiner DL, Brehm MA, Bortell R, diIorio P. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 2011; 170:334-45. [PMID: 20965191 PMCID: PMC3014420 DOI: 10.1016/j.ygcen.2010.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022]
Abstract
Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not a genetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nicole Roy
- Sacred Heart University, Department of Biology, 5151 Park Ave, Fairfield, CT 06825 USA
| | - Rabia Bajwa
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philipp Gut
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Kathryn Lipson
- Western New England College, Department of Physical and Biological Sciences, Springfield, MA 01119
| | - Chaoxing Yang
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Laurence Covassin
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Waldemar J. Racki
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Aldo A. Rossini
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nancy Phillips
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Didier Y. R. Stainier
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Dale L. Greiner
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Michael A. Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Rita Bortell
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philip diIorio
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
- Corresponding author. Address: University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, Worcester, MA 01605, United States. Fax: 508-856-4093. Phone: 508-856-3679
| |
Collapse
|
42
|
Rashid MA, Lee S, Tak E, Lee J, Choi TG, Lee JW, Kim JB, Youn JH, Kang I, Ha J, Kim SS. Carbonyl reductase 1 protects pancreatic β-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity. Free Radic Biol Med 2010; 49:1522-33. [PMID: 20728534 DOI: 10.1016/j.freeradbiomed.2010.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 08/05/2010] [Accepted: 08/12/2010] [Indexed: 01/02/2023]
Abstract
Carbonyl reductase 1 (CBR1) plays an important role in the detoxification of reactive lipid aldehydes. Oxidative stress has been implicated in the pathogenesis of pancreatic β-cell failure. However, the functional role of CBR1 in pancreatic β-cell failure has not been studied yet. Therefore, we investigated the role of CBR1 in pancreatic β-cell failure under glucotoxic and glucolipotoxic conditions. Under both conditions, knockdown of CBR1 by specific siRNA increased β-cell apoptosis, expression of lipogenic enzymes (such as ACC, FAS, and ABCA1), intracellular lipid accumulation, oxidative stress, ER stress, and nuclear SREBP1c, but decreased glucose-stimulated insulin secretion. In contrast, overexpression of CBR1 showed the opposite effects. The antioxidants N-acetyl-l-cysteine and Tiron, as well as the FAS inhibitor cerulenin, reversed the effects of CBR1 knockdown. Interestingly, the expression level and enzyme activity of CBR1 were significantly decreased in pancreatic islets of db/db mice, compared with those of wild-type mice. In conclusion, CBR1 protects pancreatic β-cells against oxidative stress and promotes their survival in glucotoxicity and glucolipotoxicity.
Collapse
Affiliation(s)
- M A Rashid
- Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute (BK-21), Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li G, Huang LS, Jiang MH, Wu HL, Chen J, Huang Y, Shen Y, He-Xi-Ge S, Fan WW, Lu ZQ, Lu DR. Implantation of bFGF-treated islet progenitor cells ameliorates streptozotocin-induced diabetes in rats. Acta Pharmacol Sin 2010; 31:1454-63. [PMID: 20953209 DOI: 10.1038/aps.2010.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM To examine whether implantation of islet preparation-derived proliferating islet cells (PIC) could ameliorate diabetes in rats. METHODS PIC were expanded from rat islet preparation by supplementation of basic fibroblast growth factor (bFGF) and implanted into rats with streptozotocin (STZ)-induced diabetes through the portal vein. Body weight and blood glucose levels were measured. Serum insulin levels were measured by radioimmunoassay. The presence of insulin-positive cells was determined by hematoxylin and immunohistochemical staining. RESULTS Cultured islet cells (CIC) were demonstrated to dedifferentiate in vitro, and the apoptosis ratios reached more than 50% by the 15th day post-isolation. PIC cells treated with bFGF (20 ng/mL) continued growing within 30 days after isolation, and no apoptotic cells were detected. Implantation of PIC into diabetic rats was capable of ameliorating diabetes, in terms of the restoration of euglycemia, weight gain, improved glucose response and elevated serum insulin levels for up to 130 days. Livers derived from PIC-implanted rats were examined for insulin expression and single insulin-positive cells. In addition, most islets of PIC-implanted STZ-induced diabetic rats were intact at 130 days post-transplantation and comparable to those of normal rats. CONCLUSION Implantation of bFGF-treated proliferating islet cells is a promising cellular therapeutic approach for diabetes.
Collapse
|
44
|
Abstract
Regenerative medicine aims at producing new cells for repair or replacement of diseased and damaged tissues. Embryonic and adult stem cells have been suggested as attractive sources of cells for generating the new cells needed. The leading dogma was that adult cells in mammals, once committed to a specific lineage, become "terminally differentiated" and can no longer change their fate. However, in recent years increasing evidence has accumulated demonstrating the remarkable ability of some differentiated cells to be converted into a different cell type via a process termed developmental redirection or adult cells reprogramming. For example, abundant human cell types, such as dermal fibroblasts and adipocytes, could potentially be harvested and converted into other, medically important cell types, such as neurons, cardiomyocytes, or pancreatic beta cells. In this chapter, we describe a method of activating the pancreatic lineage and beta-cells function in adult human liver cells by ectopic expression of pancreatic transcription factors. This approach aims to generate custom-made autologous surrogate beta cells for treatment of diabetes, and possibly bypass both the shortage of cadaveric human donor tissues and the need for life-long immune-suppression.
Collapse
|
45
|
Pancreatic duodenal homeobox 1 protein is a novel beta-cell-specific autoantigen for type I diabetes. J Transl Med 2010; 90:31-9. [PMID: 19901909 PMCID: PMC3408089 DOI: 10.1038/labinvest.2009.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic duodenal homeobox 1 (Pdx1) protein is a key transcription factor involved in the regulation of insulin gene expression that is expressed at high levels in the beta-cells of the pancreatic islets. We asked whether Pdx1 is a target of anti-islet autoimmunity in type I diabetes (T1D). Pdx1 autoantibodies (PAAs) were detected in non-obese diabetic (NOD) mice using ELISA, western blotting, and radioimmunoprecipitation of [(35)S]-labeled insulinoma cell line-derived Pdx1 protein. PAAs were detected as early as at 5 weeks of age, and generally peaked before the onset of clinically overt diabetes in diabetes-prone female NOD mice. Levels declined substantially after the onset of diabetes. PAAs were not detected in the sera of NOD-scid, C57BL/6, or BALB/c mice. The titers of PAAs in NOD mouse sera were as high as 1/93 750 by ELISA. The fine specificity of PAAs was determined by western blotting using a series of truncated recombinant Pdx1 proteins. The immunodominant epitopes were located to the C-terminus of the Pdx1 (p200-283) in NOD mice. PAAs also were detected in sera from human T1D patients, but the major epitopes were localized to amino acids 159-200 as well as the same region (p200-283) recognized by PAAs from NOD mice. Using [(3)H]thymidine incorporation, the p83 fragment of Pdx1 specifically stimulated proliferation of splenic T cells from recent-onset diabetic NOD mice. The presence of PAAs in prediabetic NOD mice and human T1D patients, and Pdx1-specific T-cell proliferation in NOD mice provide a strong rationale for further investigation of the pathogenic role of immune responses against Pdx1 in T1D.
Collapse
|
46
|
Abstract
With the already heightened demand placed on organ donation, stem cell therapy has become a tantalizing idea to provide glucose-responsive insulin-producing cells to Type 1 diabetic patients as an alternative to islet transplantation. Multiple groups have developed varied approaches to create a population of cells with the appropriate characteristics. Both adult and embryonic stem cells have received an enormous amount of attention as possible sources of insulin-producing cells. Although adult stem cells lack the pluripotent nature of their embryonic counterparts, they appear to avoid the ethical debate that has centred around the latter. This may limit the eventual application of embryonic stem cells, which have already shown promise in early mouse models. One must also consider the potential of stem cells to form teratomas, a complication which would prove devastating in an immunologically compromised transplant recipient. The present review looks at the progress to date in both the adult and embryonic stem cells fields as potential treatments for diabetes. We also consider some of the limitations of stem cell therapy and the potential complications that may develop with their use.
Collapse
|
47
|
Pearl EJ, Bilogan CK, Mukhi S, Brown DD, Horb ME. Xenopus pancreas development. Dev Dyn 2009; 238:1271-86. [PMID: 19334283 DOI: 10.1002/dvdy.21935] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Understanding how the pancreas develops is vital to finding new treatments for a range of pancreatic diseases, including diabetes and pancreatic cancer. Xenopus is a relatively new model organism for the elucidation of pancreas development, and has already made contributions to the field. Recent studies have shown benefits of using Xenopus for understanding both early patterning and lineage specification aspects of pancreas organogenesis. This review focuses specifically on Xenopus pancreas development, and covers events from the end of gastrulation, when regional specification of the endoderm is occurring, right through metamorphosis, when the mature pancreas is fully formed. We have attempted to cover pancreas development in Xenopus comprehensively enough to assist newcomers to the field and also to enable those studying pancreas development in other model organisms to better place the results from Xenopus research into the context of the field in general and their studies specifically. Developmental Dynamics 238:1271-1286, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Esther J Pearl
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montréal, Montréal, QC Canada
| | | | | | | | | |
Collapse
|
48
|
Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 2009; 61:489-96. [PMID: 19393272 DOI: 10.1016/j.addr.2008.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/15/2008] [Indexed: 01/01/2023]
Abstract
Pancreatic beta-cell-specific insulin gene expression is regulated by a variety of pancreatic transcription factors and the conserved A3, C1 and E1 elements in the insulin gene enhancer region are very important for activation of insulin gene. Indeed, PDX-1 binding to the A3 element and NeuroD binding to the E1 element are crucial for insulin gene transcription. Recently, C1 element-binding transcription factor was identified as MafA, which is a basic-leucine zipper transcription factor and functions as a potent transactivator for the insulin gene. Under diabetic conditions, chronic hyperglycemia gradually deteriorates pancreatic beta-cell function, which is accompanied by decreased expression and/or DNA binding activities of MafA and PDX-1. Furthermore, MafA overexpression, together with PDX-1 and NeuroD, markedly induces insulin biosynthesis in various non-beta-cells and thereby is a useful tool to efficiently induce insulin-producing surrogate beta-cells. These results suggest that MafA plays a crucial role in pancreatic beta-cells and could be a novel therapeutic target for diabetes.
Collapse
|
49
|
Delisle JC, Martignat L, Dubreil L, Saï P, Bach JM, Louzier V, Bösch S. Pdx-1 or Pdx-1-VP16 protein transduction induces beta-cell gene expression in liver-stem WB cells. BMC Res Notes 2009; 2:3. [PMID: 19134185 PMCID: PMC2637887 DOI: 10.1186/1756-0500-2-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 01/09/2009] [Indexed: 12/21/2022] Open
Abstract
Background Pancreatic duodenal homeobox-1 (Pdx-1) or Pdx-1-VP16 gene transfer has been shown to induce in vitro rat liver-stem WB cell conversion into pancreatic endocrine precursor cells. High glucose conditions were necessary for further differentiation into functional insulin-producing cells. Pdx-1 has the ability to permeate different cell types due to an inherent protein transduction domain (PTD). In this study, we evaluated liver-to-pancreas conversion of WB cells following Pdx-1 or Pdx-1-VP16 protein transduction. Findings WB cells were grown in high glucose medium containing Pdx-1 or Pdx-1-VP16 recombinant proteins for two weeks. β-like cell commitment was analysed by RT-PCR of pancreatic endocrine genes. We found that WB cells in high glucose culture spontaneously express pancreatic endocrine genes (Pdx-1, Ngn3, Nkx2.2, Kir6.2). Their further differentiation into β-like cells expressing genes related to endocrine pancreas development (Ngn3, NeuroD, Pax4, Nkx2.2, Nkx6.1, Pdx-1) and β-cell function (Glut-2, Kir6.2, insulin) was achieved only in the presence of Pdx-1(-VP16) protein. Conclusion These results demonstrate that Pdx-1(-VP16) protein transduction is instrumental for in vitro liver-to-pancreas conversion and is an alternative to gene therapy for β-cell engineering for diabetes cell therapy.
Collapse
|
50
|
Miyatsuka T, Matsuoka TA, Kaneto H. Transcription factors as therapeutic targets for diabetes. Expert Opin Ther Targets 2009; 12:1431-42. [PMID: 18851698 DOI: 10.1517/14728222.12.11.1431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Islet cell implantation and pancreas transplantation have been used as treatments for diabetes but are limited by the shortage of donors and the requirement for lifelong immunosuppression. As an alternative, the generation of surrogate insulin-producing cells has been an area of interest for many researchers. Understanding how pancreatic beta-cells are generated during pancreas development will provide information that can be applied to generating surrogate beta-cells. OBJECTIVE To outline the current knowledge of pancreas development and differentiation, with a focus on the regulatory network of pancreas-enriched transcription factors and their targets. METHODS A review of relevant literature. CONCLUSIONS Pancreatic and duodenal homeobox 1 (Pdx1), Neurogenin 3 (Ngn3), and musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) have been shown to play essential roles in pancreas development and beta-cell differentiation, and gain-of-function approaches indicate the potency of these factors for inducing differentiation of non-beta-cells into insulin-producing cells, which could lead to a novel therapy to cure diabetes.
Collapse
Affiliation(s)
- Takeshi Miyatsuka
- Osaka University Graduate School of Medicine, Department of Internal Medicine and Therapeutics, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | |
Collapse
|