1
|
Beckers KF, Flanagan JP, Sones JL. Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. Int J Obes (Lond) 2024; 48:439-448. [PMID: 38145995 PMCID: PMC10978494 DOI: 10.1038/s41366-023-01438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Obesity is becoming a worldwide pandemic with over one billion people affected. Of women in the United States, who are of childbearing age, two-thirds of them are considered overweight/obese. Offspring of women with obesity have a greater likelihood of developing cardiometabolic disease later in life, therefore making obesity a transgenerational issue. Emerging topics such as maternal microbial dysbiosis with altered levels of bacterial phyla and maternal obesity programming offspring cardiometabolic disease are a novel area of research discussed in this review. In the authors' opinion, beneficial therapeutics will be developed from knowledge of bacterial-host interactions at the most specific level possible. Although there is an abundance of obesity-related microbiome research, it is not concise, readily available, nor easy to interpret at this time. This review details the current knowledge regarding the relationship between obesity and the gut microbiome, with an emphasis on maternal obesity.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Juliet P Flanagan
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
- Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Calazans APCT, Milani TMS, Prata AS, Clerici MTPS, Nicoli JR, Martins FS, Borges MC. A Functional Bread Fermented with Saccharomyces cerevisiae UFMG A-905 Prevents Allergic Asthma in Mice. Curr Dev Nutr 2024; 8:102142. [PMID: 38655128 PMCID: PMC11035053 DOI: 10.1016/j.cdnut.2024.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Background The administration of probiotics has been shown to be beneficial in asthma. The administration of Saccharomyces cerevisiae UFMG A-905 prevented asthma development. Traditionally, probiotics are administered using dairy-based matrices, but other vehicles (e.g., fruit juices, biscuits, candies, and breads) can be used. Objectives This study aimed to assess the effect of bread fermented with S. cerevisiae UFMG A-905 in asthma prevention. Methods Three breads were produced: fermented with commercial yeast, fermented with S. cerevisiae UFMG A-905, and fermented with S. cerevisiae UFMG A-905 with the addition of alginate microcapsules containing live S. cerevisiae UFMG A-905. Characterization of the microbial composition of the breads was performed. Male Balb/c mice were sensitized and challenged with ovalbumin. Breads were administered 10 d before the first sensitization and during sensitization and challenge protocol. Yeast fecal count, in vivo airway hyperresponsiveness, and airway and lung inflammation were assessed. Results In UFMG A-905 bread, there was an increase in yeast number and a decrease in total and lactic acid bacteria. Animals that received S. cerevisiae UFMG A-905 fermented bread with microcapsules had a significant increase in yeast recovery from feces. S. cerevisiae UFMG A-905-fermented breads partially reduced airway inflammation, decreasing eosinophils and IL5 and IL13 concentrations. When adding microcapsules, the bread also diminished airway hyperresponsiveness and increased IL17A concentrations. Conclusions S. cerevisiae UFMG A-905 was able to generate long-fermentation breads. Microcapsules were a safe and viable way to inoculate the live yeast into food. The administration of breads fermented with S. cerevisiae UFMG A-905 prevented asthma-like characteristics, being more pronounced when the breads contained microcapsules with live yeast.
Collapse
Affiliation(s)
| | | | - Ana Silvia Prata
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | - Jacques Robert Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flaviano Santos Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Carvalho Borges
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
3
|
Kalusche W, Case C, Taylor E. Leptin antagonism attenuates hypertension and renal injury in an experimental model of autoimmune disease. Clin Sci (Lond) 2023; 137:1771-1785. [PMID: 38031726 PMCID: PMC10721433 DOI: 10.1042/cs20230924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse. To test this hypothesis, 28-week-old female control and SLE mice were administered 5 mg/kg of murine leptin superantagonist (LA) or vehicle via ip injection every other day for four weeks. Analysis of peripheral blood immune cell populations showed no changes in total CD45R+ B and CD3+ T cell percentages after treatment with LA. However, SLE mice treated with LA had an improved CD4/CD8 ratio and decreased CD3+CD4-CD8- double negative (DN) T cells. Blood pressure was higher in SLE than in control, and treatment with LA decreased blood pressure in SLE mice. Treatment with LA also delayed the onset of albuminuria and decreased glomerulosclerosis in SLE mice. Renal immune cell infiltration was significantly higher in SLE mice as compared with control, but LA treatment was associated with decreased levels of renal CD4+ T cells. In conclusion, these data suggest that leptin plays a pathogenic role in the development of hypertension in SLE, in part, by promoting the expansion of inflammatory DN T cells and the infiltration of T cells into the kidneys.
Collapse
Affiliation(s)
- William J. Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Clinton T. Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
4
|
Hou X, Shi H, Jiang Y, Li X, Chen K, Li Q, Liu R. Transcriptome analysis reveals the neuroactive receptor genes response to Streptococcus agalactiae infection in tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109090. [PMID: 37722443 DOI: 10.1016/j.fsi.2023.109090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
The detailed crosstalk between the neuroendocrine and immune systems in Oreochromis niloticus, an economically important fish, in response to pathogenic infections, remains unclear. This study revealed the head kidney transcriptional profiles of O. niloticus upon infections with Streptococcus agalactiae, a prevalent pathogen known to cause severe meningitis. Twelve cDNA libraries of O. niloticus head kidney, representing four treatment time points (0, 6, 24, and 48 h), were constructed and a total of 2,528 differentially expressed genes were identified based on pairwise comparisons. KEGG pathway analysis revealed a significant enrichment of the 'neuroactive ligand-receptor interaction' pathway (ko04080), with 13 genes exhibiting differential expression during S. agalactiae infection. Among these, six neuroactive receptor genes (lepr, nr3c1, ptger4, thrb, tspo, and β2-ar) were selected, cloned, and characterized. Although these genes are ubiquitously expressed, and in head kidney leukocytes, their expression was mainly observed in T cells, Mo/Mφ, and NCCs, which are characterized by antimicrobial responses. Furthermore, we examined the response patterns of these six neuroactive receptor genes to gram-positive (S. agalactiae) and gram-negative (Aeromonas hydrophila) bacteria in four different tissues. Notably, lepr, ptger4, tspo, and β2-ar were upregulated in all selected tissues in response to S. agalactiae and A. hydrophila infections. However, nr3c1 and thrb were downregulated in response to S. agalactiae infection in the head kidney and spleen, whereas nr3c1 was upregulated, and thrb was unresponsive to A. hydrophila infection. Our findings provide a theoretical foundation for understanding new links between the neuroendocrine and immune systems during bacterial infection in teleost fish.
Collapse
Affiliation(s)
- Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China.
| | - Haokai Shi
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Yan Jiang
- Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China.
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Abdelhafiz AH. Effects of hypoglycaemic therapy on frailty: a multi-dimensional perspective. Expert Rev Endocrinol Metab 2023; 18:53-65. [PMID: 36650694 DOI: 10.1080/17446651.2023.2168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The prevalence of diabetes is increasing in older people. With increasing age, frailty emerges as a new complication leading to disability. Frailty does not only include physical dysfunction but also involves negative impact on cognition and mood. Triad of impairments (TOI) is a new concept that includes physical frailty, dementia and depression to reflect the wider spectrum of frailty. AREAS COVERED Little is known about effects of hypoglycaemic agents on frailty syndrome. A literature search was performed on studies, which reported effects of hypoglycaemic agents on the component of the TOI. EXPERT OPINION It appears that most hypoglycaemic agents have some effects on frailty, although the results of clinical studies are inconsistent. Metformin seems to have a consistent and a positive effect on physical frailty. Its effects on cognitive function, however, are inconclusive but tend to be positive. Metformin appeared to improve depressive symptoms. Other agents such as incretins, thiazolidinediones, and sodium glucose transporter-2 inhibitors have some positive effects on cognition and depression. Sulfonylureas, glinides, or insulin have either negative or neutral effects on TOI components. The negative effects of insulin could be partially explained by the negative psychological factors and the frequent episodes of hypoglycemia associated with such therapy.
Collapse
Affiliation(s)
- Ahmed H Abdelhafiz
- Department of Geriatric Medicine, Rotherham General Hospital, Moorgate Road, Rotherham, UK
| |
Collapse
|
6
|
Kwiat VR, Reis G, Valera IC, Parvatiyar K, Parvatiyar MS. Autoimmunity as a sequela to obesity and systemic inflammation. Front Physiol 2022; 13:887702. [PMID: 36479348 PMCID: PMC9720168 DOI: 10.3389/fphys.2022.887702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/31/2022] [Indexed: 08/10/2023] Open
Abstract
The rising prevalence of obesity presents a world-wide challenge as it is associated with numerous comorbidities including cardiovascular disease, insulin resistance and hypertension. Obesity-associated illnesses are estimated to cause nearly 4 million deaths globally per year, therefore there is a critical need to better understand associated pathogenesis, identify new therapeutic targets, and develop new interventions. Emerging data identify a key role for chronic inflammation in mediating obesity related disease states and reveal higher incidence of autoimmune disease development. Of the multiple potential mechanisms linking obesity and autoimmunity, the strongest link has been shown for leptin, a hormone secreted at high levels from obese white adipose tissue. Numerous studies have demonstrated that leptin enhances activation of both arms of the immune system, while its absence protects against development of autoimmunity. Other potential newly discovered mechanisms that contribute to autoimmune pathogenesis are not directly connected but also associated with obesity including sustained platelet activation, gut dysbiosis, and aging. Here we review how obesity instigates autoimmunity, particularly in the context of immune cell activations and adipokine secretion.
Collapse
Affiliation(s)
- Victoria R. Kwiat
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| | - Gisienne Reis
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| | - Isela C. Valera
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| | - Kislay Parvatiyar
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Michelle S. Parvatiyar
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Vankrunkelsven W, Derde S, Gunst J, Vander Perre S, Declerck E, Pauwels L, Derese I, Van den Berghe G, Langouche L. Obesity attenuates inflammation, protein catabolism, dyslipidaemia, and muscle weakness during sepsis, independent of leptin. J Cachexia Sarcopenia Muscle 2022; 13:418-433. [PMID: 34994068 PMCID: PMC8818596 DOI: 10.1002/jcsm.12904] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Muscle weakness is a frequently occurring complication of sepsis, associated with increased morbidity and mortality. Interestingly, obesity attenuates sepsis-induced muscle wasting and weakness. As the adipokine leptin is strongly elevated in obesity and has been shown to affect muscle homeostasis in non-septic conditions, we aimed to investigate whether leptin mediates the protective effect of obesity on sepsis-induced muscle weakness. METHODS In a mouse model of sepsis, we investigated the effects of genetic leptin inactivation in obese mice (leptin-deficient obese mice vs. diet-induced obese mice) and of leptin supplementation in lean mice (n = 110). We assessed impact on survival, body weight and composition, markers of muscle wasting and weakness, inflammation, and lipid metabolism. In human lean and overweight/obese intensive care unit (ICU) patients, we assessed markers of protein catabolism (n = 1388) and serum leptin (n = 150). RESULTS Sepsis mortality was highest in leptin-deficient obese mice (53% vs. 23% in diet-induced obese mice and 37% in lean mice, P = 0.03). Irrespective of leptin, after 5 days of sepsis, lean mice lost double the amount of lean body mass than obese mice (P < 0.0005). Also, irrespective of leptin, obese mice maintained specific muscle force up to healthy levels (P = 0.3) whereas lean mice suffered from reduced specific muscle force (72% of healthy controls, P < 0.0002). As compared with lean septic mice, both obese septic groups had less muscle atrophy, liver amino acid catabolism, and inflammation with a 50% lower plasma TNFα increase (P < 0.005). Conversely, again mainly irrespective of leptin, obese mice lost double amount of fat mass than lean mice after 5 days of sepsis (P < 0.0001), showed signs of increased lipolysis and ketogenesis, and had higher plasma HDL and LDL lipoprotein concentrations (P ≤ 0.01 for all). Muscle fibre type composition was not altered during sepsis, but a higher atrophy sensitivity of type IIb fibres compared with IIa and IIx fibres was observed, independent of obesity or leptin. After 5 days of critical illness, serum leptin was higher (P < 0.0001) and the net waste of nitrogen (P = 0.006) and plasma urea-to-creatinine ratio (P < 0.0001) was lower in overweight/obese compared with lean ICU human patients. CONCLUSIONS Leptin did not mediate the protective effect of obesity against sepsis-induced muscle wasting and weakness in mice. Instead, obesity-independent of leptin-attenuated inflammation, protein catabolism, and dyslipidaemia, pathways that may play a role in the observed muscle protection.
Collapse
Affiliation(s)
- Wouter Vankrunkelsven
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sarah Vander Perre
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emiel Declerck
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies Pauwels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Maurya R, Sebastian P, Namdeo M, Devender M, Gertler A. COVID-19 Severity in Obesity: Leptin and Inflammatory Cytokine Interplay in the Link Between High Morbidity and Mortality. Front Immunol 2021; 12:649359. [PMID: 34220807 PMCID: PMC8250137 DOI: 10.3389/fimmu.2021.649359] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the foremost risk factors in coronavirus infection resulting in severe illness and mortality as the pandemic progresses. Obesity is a well-known predisposed chronic inflammatory condition. The dynamics of obesity and its impacts on immunity may change the disease severity of pneumonia, especially in acute respiratory distress syndrome, a primary cause of death from SARS-CoV-2 infection. The adipocytes of adipose tissue secret leptin in proportion to individuals’ body fat mass. An increase in circulating plasma leptin is a typical characteristic of obesity and correlates with a leptin-resistant state. Leptin is considered a pleiotropic molecule regulating appetite and immunity. In immunity, leptin functions as a cytokine and coordinates the host’s innate and adaptive responses by promoting the Th1 type of immune response. Leptin induced the proliferation and functions of antigen-presenting cells, monocytes, and T helper cells, subsequently influencing the pro-inflammatory cytokine secretion by these cells, such as TNF-α, IL-2, or IL-6. Leptin scarcity or resistance is linked with dysregulation of cytokine secretion leading to autoimmune disorders, inflammatory responses, and increased susceptibility towards infectious diseases. Therefore, leptin activity by leptin long-lasting super active antagonist’s dysregulation in patients with obesity might contribute to high mortality rates in these patients during SARS-CoV-2 infection. This review systematically discusses the interplay mechanism between leptin and inflammatory cytokines and their contribution to the fatal outcomes in COVID-19 patients with obesity.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Prince Sebastian
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Madhulika Namdeo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Moodu Devender
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arieh Gertler
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Emmerton D, Abdelhafiz A. Newer anti-diabetic therapies with low hypoglycemic risk-potential advantages for frail older people. Hosp Pract (1995) 2021; 49:164-175. [PMID: 33729898 DOI: 10.1080/21548331.2021.1905414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The prevalence of diabetes is increasing due to increasing aging of the population. Hypoglycemia is a common diabetes-related complication in old age especially in patients with multiple comorbidities and frailty. Hypoglycemia and frailty appear to have a bidirectional relationship reenforcing each other in a negative downhill spiral that leads to an increased risk of adverse events including disability and mortality. The incidence of hypoglycemia in this age group is usually underestimated due to its atypical clinical presentation and difficult recognition by health care professionals. Guidelines generally recommend a relaxed glycemic control in frail older people with diabetes mainly due to the fear of anti-diabetic medications-induced hypoglycemia. The new anti-diabetic therapies of sodium-glucose co-transporter-2 (SGLT-2) inhibitors and glucagon like peptide-1 receptor agonists (GLP-1RA) have consistently shown a cardio-renal protective effect independent of their glycemic control. Contrary to the traditional hypoglycemic agents that either increase insulin stimulation or insulin sensitization with a potential hypoglycemic risk especially sulfonylureas, the new therapies have a novel anti-diabetic mechanisms of action that have a negligible risk of hypoglycemia. The new therapies appear to be both effective and well tolerated in old age. With appropriate patients' selection, most older people will be eligible for the new therapies if well tolerated and no contraindications. In frail older people, we suggest a pragmatic approach of the use of the new therapies based on the concept of the weight status rather than the frailty status. Frail patients with normal or excess weight are likely to gain most from the new therapies due to its favorable metabolic properties in this group, while the use in the underweight frail patients should be largely avoided especially in those with persistent anorexia and weight loss.
Collapse
Affiliation(s)
- Demelza Emmerton
- Department of Geriatric Medicine, Rotherham General Hospital, Rotherham, United Kingdom of Great Britain and Northern Ireland
| | - Ahmed Abdelhafiz
- Department of Geriatric Medicine, Rotherham General Hospital, Rotherham, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci 2020; 21:E5887. [PMID: 32824322 PMCID: PMC7460646 DOI: 10.3390/ijms21165887] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is an essential immune response for the maintenance of tissue homeostasis. In a general sense, acute and chronic inflammation are different types of adaptive response that are called into action when other homeostatic mechanisms are insufficient. Although considerable progress has been made in understanding the cellular and molecular events that are involved in the acute inflammatory response to infection and tissue injury, the causes and mechanisms of systemic chronic inflammation are much less known. The pathogenic capacity of this type of inflammation is puzzling and represents a common link of the multifactorial diseases, such as cardiovascular diseases and type 2 diabetes. In recent years, interest has been raised by the discovery of novel mediators of inflammation, such as microRNAs and adipokines, with different effects on target tissues. In the present review, we discuss the data emerged from research of leptin in obesity as an inflammatory mediator sustaining multifactorial diseases and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses. On the other direction, chronic inflammation, either from autoimmune or infectious diseases, or impaired microbiota (dysbiosis) may impair the leptin response inducing resistance to the weight control, and therefore it may be a cause of obesity. Thus, we are reviewing the published data regarding the role of leptin in inflammation, and the other way around, the role of inflammation on the development of leptin resistance and obesity.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| |
Collapse
|
11
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Ishida Y, Kuninaka Y, Nosaka M, Furuta M, Kimura A, Taruya A, Yamamoto H, Shimada E, Akiyama M, Mukaida N, Kondo T. CCL2-Mediated Reversal of Impaired Skin Wound Healing in Diabetic Mice by Normalization of Neovascularization and Collagen Accumulation. J Invest Dermatol 2019; 139:2517-2527.e5. [PMID: 31247201 DOI: 10.1016/j.jid.2019.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022]
Abstract
Patients with diabetes frequently present with complications such as impaired skin wound healing. Skin wound sites display a markedly enhanced expression of CCL2, a potent macrophage chemoattractant, together with macrophage infiltration during the early inflammatory phase in skin wound healing of healthy individuals, but the association of CCL2 with delayed skin wound healing in patients with diabetes remains elusive. In this study, we showed that, compared with control mice, mice with streptozotocin-induced diabetes displayed impaired healing after excisional skin injury, with decreased neovascularization, CCL2 expression, and macrophage infiltration. Compromised skin wound healing in mice with diabetes was reversed by the administration of topical CCL2 immediately after the injury, as evidenced by normalization of wound closure rates, neovascularization, collagen accumulation, and infiltration of macrophages expressing vascular endothelial growth factor, a potent angiogenic factor, and transforming growth factor-β. CCL2 treatment further increased the accumulation of endothelial progenitor cells at the wound sites of mice with diabetes and eventually accelerated neovascularization. Thus, the topical application of CCL2 can be an effective therapeutic option for the treatment of patients with diabetes with defective wound repair, promoting neovascularization and collagen accumulation at skin wound sites.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Machi Furuta
- Clinical Laboratory Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Akira Taruya
- Cardiovascular Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Emi Shimada
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Mariko Akiyama
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan.
| |
Collapse
|
13
|
Moriarty TF, Harris LG, Mooney RA, Wenke JC, Riool M, Zaat SAJ, Moter A, Schaer TP, Khanna N, Kuehl R, Alt V, Montali A, Liu J, Zeiter S, Busscher HJ, Grainger DW, Richards RG. Recommendations for design and conduct of preclinical in vivo studies of orthopedic device-related infection. J Orthop Res 2019; 37:271-287. [PMID: 30667561 DOI: 10.1002/jor.24230] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
Abstract
Orthopedic device-related infection (ODRI), including both fracture-related infection (FRI) and periprosthetic joint infection (PJI), remain among the most challenging complications in orthopedic and musculoskeletal trauma surgery. ODRI has been convincingly shown to delay healing, worsen functional outcome and incur significant socio-economic costs. To address this clinical problem, ever more sophisticated technologies targeting the prevention and/or treatment of ODRI are being developed and tested in vitro and in vivo. Among the most commonly described innovations are antimicrobial-coated orthopedic devices, antimicrobial-loaded bone cements and void fillers, and dual osteo-inductive/antimicrobial biomaterials. Unfortunately, translation of these technologies to the clinic has been limited, at least partially due to the challenging and still evolving regulatory environment for antimicrobial drug-device combination products, and a lack of clarity in the burden of proof required in preclinical studies. Preclinical in vivo testing (i.e. animal studies) represents a critical phase of the multidisciplinary effort to design, produce and reliably test both safety and efficacy of any new antimicrobial device. Nonetheless, current in vivo testing protocols, procedures, models, and assessments are highly disparate, irregularly conducted and reported, and without standardization and validation. The purpose of the present opinion piece is to discuss best practices in preclinical in vivo testing of antimicrobial interventions targeting ODRI. By sharing these experience-driven views, we aim to aid others in conducting such studies both for fundamental biomedical research, but also for regulatory and clinical evaluation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:271-287, 2019.
Collapse
Affiliation(s)
- T Fintan Moriarty
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Robert A Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Texas
| | - Martijn Riool
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sebastian A J Zaat
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Annette Moter
- Institute of Microbiology and Infection Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas P Schaer
- Department of Clinical Studies New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania
| | - Nina Khanna
- Infection Biology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Richard Kuehl
- Infection Biology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Volker Alt
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg, GmbH, Campus Giessen, Germany
| | | | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, P.R. China
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - David W Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| |
Collapse
|
14
|
Vallejos A, Olivares P, Varela D, Echeverria C, Cabello-Verrugio C, Pérez-Leighton C, Simon F. Preventive Leptin Administration Protects Against Sepsis Through Improving Hypotension, Tachycardia, Oxidative Stress Burst, Multiple Organ Dysfunction, and Increasing Survival. Front Physiol 2018; 9:1800. [PMID: 30618812 PMCID: PMC6299116 DOI: 10.3389/fphys.2018.01800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/29/2018] [Indexed: 02/04/2023] Open
Abstract
Sepsis syndrome is the most important cause of mortality in critically ill patients admitted to intensive care units (ICUs). However, current therapies for its prevention and treatment are still unsatisfactory, and the mortality rate is still high. Non-septic ICU patients are vulnerable to acquire sepsis syndrome. Thus, a preventive treatment for this population is needed. During sepsis syndrome and endotoxemia, severe hypotension, tachycardia, oxidative and immune response increase, multiple organ dysfunction syndrome (MODS) and decreased survival are observed. Leptin administration protects against negative effects of sepsis syndrome and endotoxemia. Furthermore, it is has been reported that leptin elevates blood pressure mediated by sympathetic nervous system activation. However, whether leptin administration before sepsis induction mediates its protective effects during sepsis through blood pressure regulation is not known. Therefore, we investigated whether pre-treatment of leptin improves blood pressure and MODS, resulting in survival increase during endotoxemia. The results showed that leptin administration before endotoxemia induction reduced both the hypotension and tachycardia characteristically observed during endotoxemia. Notably, this protective effect was observed early and late in the course of endotoxemia. Endotoxemia-induced MODS decreased in leptin-treated rats, which was reflected in normal values for liver and kidney function, inhibition of muscle mass wasting and maintenance of glycemia. Furthermore, leptin pre-treatment decreased the oxidative stress burst in blood and blunted the increased pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 observed during endotoxemia. Remarkably, according to the leptin-induced increase in survival, leptin pre-administration decreased the risk for death associated with sepsis syndrome at early and late times after endotoxemia induction. These results show a potential preventive therapy against sepsis syndrome and endotoxemia in vulnerable patients, based in the beneficial actions of leptin.
Collapse
Affiliation(s)
- Alejandro Vallejos
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Pedro Olivares
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copiapo, Chile.,Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudio Pérez-Leighton
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
15
|
Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in Infectious Diseases. Front Immunol 2018; 9:2741. [PMID: 30534129 PMCID: PMC6275238 DOI: 10.3389/fimmu.2018.02741] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
16
|
Abstract
Glucose in our body is maintained within a narrow range by the humoral control and a 'lipostat' system regulated by leptin from adipose tissues, which keep our accumulated fat stores in check. Any disturbance in this delicately poised homeostasis could be disastrous as it can lead to obesity and its associated metabolic manifestations. Laboratory animals, especially rodents, have contributed to our knowledge in understanding this physiological mechanism through an array of genetic and non-genetic animals developed over the years. Two rat mutant obese models-Wistar inbred at National Institute of Nutrition (WNIN)/Ob-obese rats with normal glucose levels and WNIN/GR-Ob-obese with impaired glucose tolerance were developed in the National Centre for Laboratory Animal Sciences (Now ICMR-National Animal Resource Facility for Biomedical Research) at Hyderabad, India. These animals are unique, as, unlike the earlier models, they show all types of degenerative disorders associated with obesity, within a single system. Thus they show impairment in all the major organs of the body - liver, pancreas, kidney, bones, muscles, gonads, brain, eyes, and are sensitive to diet manipulations, have compromised immunity, often develop tumours and have reduced life span. One may argue that there are limitations to one's interpretations from animal studies to human application, but then one cannot shut one's eyes to the new lessons they have taught us in modifying our life styles.
Collapse
Affiliation(s)
- N.V. Giridharan
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| |
Collapse
|
17
|
Carlos AR, Weis S, Soares MP. Cross-Talk Between Iron and Glucose Metabolism in the Establishment of Disease Tolerance. Front Immunol 2018; 9:2498. [PMID: 30425714 PMCID: PMC6218924 DOI: 10.3389/fimmu.2018.02498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Infectious diseases are associated with disruption of host homeostasis. This can be triggered directly by pathogens or indirectly by host immune-driven resistance mechanisms. Disease tolerance is a defense strategy against infection that sustains host homeostasis, without exerting a direct negative impact on pathogens. The mechanisms governing disease tolerance encompass host metabolic responses that maintain vital homeostatic parameters within a range compatible with survival. Central to this defense strategy is the host's ability to sense and adapt to variations in nutrients, such as iron and glucose. Here we address how host responses regulating iron and glucose metabolism interact to establish disease tolerance and possibly modulate resistance to infection.
Collapse
Affiliation(s)
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
18
|
Harrison LM, Gaines DW, Babu US, Balan KV, Reimschuessel R, Do AB, Pereira MR, Bigley EC, Ferguson M, Mehta A, Williams KM. Diet-induced obesity precipitates kidney dysfunction and alters inflammatory mediators in mice treated with Shiga Toxin 2. Microb Pathog 2018; 123:250-258. [PMID: 30016681 DOI: 10.1016/j.micpath.2018.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/26/2022]
Abstract
Shiga Toxin (Stx)-producing E. coli (STEC) continue to be a prominent cause of foodborne outbreaks of hemorrhagic colitis worldwide, and can result in life-threatening diseases, including hemolytic uremic syndrome (HUS), in susceptible individuals. Obesity-associated immune dysfunction has been shown to be a risk factor for infectious diseases, although few studies have addressed the role of obesity in foodborne diseases. We hypothesized that obesity may affect the development of HUS through an alteration of immune responses and kidney function. We combined diet-induced obese (DIO) and HUS mouse models to look for differences in disease outcome between DIO and wild-type (WT) male and female C57 B l/6 mice. Following multiple intraperitoneal injections with endotoxin-free saline or sublethal doses of purified Stx2, we examined DIO and WT mice for signs of HUS development. DIO mice receiving Stx2 injections lost more body weight, and had significantly higher (p < 0.001) BUN, serum creatinine, and neutrophil counts compared to WT mice or DIO mice receiving saline injections. Lymphocyte counts were significantly (p < 0.05) lower in Stx2-treated obese mice compared to WT mice or saline-treated DIO mice. In addition to increased Stx2-induced kidney dysfunction, DIO mouse kidneys also had significantly increased expression of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, and KC RNA compared to saline controls (p < 0.05). Serum cytokine levels of IL-6 and KC were also significantly higher in Stx2-treated mice compared to saline controls, but there were no significant differences between the WT and DIO mice. WT and DIO mice treated with Stx2 exhibited significantly higher degrees of kidney tubular dilation and necrosis as well as some signs of tissue repair/regeneration, but did not appear to progress to the full pathology typically associated with human HUS. Although the combined obesity/HUS mouse model did not manifest into HUS symptoms and pathogenesis, these data demonstrate that obesity alters kidney function, inflammatory cells and cytokine production in response to Stx2, and may play a role in HUS severity in a susceptible model of infection.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Dennis W Gaines
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Uma S Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Kannan V Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Renate Reimschuessel
- Office of Research, Center for Veterinary Medicine, Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD, 20708, USA
| | - Andrew B Do
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Marion R Pereira
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Elmer C Bigley
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Martine Ferguson
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Akshita Mehta
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Kristina M Williams
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| |
Collapse
|
19
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
20
|
Wallet SM, Puri V, Gibson FC. Linkage of Infection to Adverse Systemic Complications: Periodontal Disease, Toll-Like Receptors, and Other Pattern Recognition Systems. Vaccines (Basel) 2018; 6:E21. [PMID: 29621153 PMCID: PMC6027258 DOI: 10.3390/vaccines6020021] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that provide innate immune sensing of conserved pathogen-associated molecular patterns (PAMPs) to engage early immune recognition of bacteria, viruses, and protozoa. Furthermore, TLRs provide a conduit for initiation of non-infectious inflammation following the sensing of danger-associated molecular patterns (DAMPs) generated as a consequence of cellular injury. Due to their essential role as DAMP and PAMP sensors, TLR signaling also contributes importantly to several systemic diseases including cardiovascular disease, diabetes, and others. The overlapping participation of TLRs in the control of infection, and pathogenesis of systemic diseases, has served as a starting point for research delving into the poorly defined area of infection leading to increased risk of various systemic diseases. Although conflicting studies exist, cardiovascular disease, diabetes, cancer, rheumatoid arthritis, and obesity/metabolic dysfunction have been associated with differing degrees of strength to infectious diseases. Here we will discuss elements of these connections focusing on the contributions of TLR signaling as a consequence of bacterial exposure in the context of the oral infections leading to periodontal disease, and associations with metabolic diseases including atherosclerosis and type 2 diabetes.
Collapse
Affiliation(s)
- Shannon M Wallet
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Frank C Gibson
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
21
|
Mancuso P, Curtis JL, Freeman CM, Peters-Golden M, Weinberg JB, Myers MG. Ablation of the leptin receptor in myeloid cells impairs pulmonary clearance of Streptococcus pneumoniae and alveolar macrophage bactericidal function. Am J Physiol Lung Cell Mol Physiol 2018; 315:L78-L86. [PMID: 29565180 DOI: 10.1152/ajplung.00447.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leptin is a pleiotropic hormone produced by white adipose tissue that regulates appetite and many physiological functions, including the immune response to infection. Genetic leptin deficiency in humans and mice impairs host defenses against respiratory tract infections. Since leptin deficiency is associated with obesity and other metabolic abnormalities, we generated mice that lack the leptin receptor (LepRb) in cells of the myeloid linage (LysM-LepRb-KO) to evaluate its impact in lean metabolically normal mice in a murine model of pneumococcal pneumonia. We observed higher lung and spleen bacterial burdens in LysM-LepRb-KO mice following an intratracheal challenge with Streptococcus pneumoniae. Although numbers of leukocytes recovered from bronchoalveolar lavage fluid did not differ between groups, we did observe higher levels of pulmonary IL-13 and TNFα in LysM-LepRb-KO mice 48 h post infection. Phagocytosis and killing of ingested S. pneumoniae were also impaired in alveolar macrophages (AMs) from LysM-LepRb-KO mice in vitro and were associated with reduced LTB4 and enhanced PGE2 synthesis in vitro. Pretreatment of AMs with LTB4 and the cyclooxygenase inhibitor, indomethacin, restored phagocytosis but not bacterial killing in vitro. These results confirm our previous observations in leptin-deficient ( ob/ob) and fasted mice and demonstrate that decreased leptin action, as opposed to metabolic irregularities associated with obesity or starvation, is responsible for the defective host defense against pneumococcal pneumonia. They also provide novel targets for therapeutic intervention in humans with bacterial pneumonia.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan.,Department of Nutritional Sciences, School of Public Health, University of Michigan , Ann Arbor, Michigan.,Graduate Program in Immunology, University of Michigan , Ann Arbor, Michigan
| | - Jeffrey L Curtis
- Graduate Program in Immunology, University of Michigan , Ann Arbor, Michigan.,Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan.,Veterans Affairs, Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Christine M Freeman
- Graduate Program in Immunology, University of Michigan , Ann Arbor, Michigan.,Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan.,Veterans Affairs, Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Marc Peters-Golden
- Graduate Program in Immunology, University of Michigan , Ann Arbor, Michigan.,Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan , Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan
| | - Martin G Myers
- Department of Integrative and Molecular Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
22
|
Narita K, Asano K, Nakane A. IL-17A plays an important role in protection induced by vaccination with fibronectin-binding domain of fibronectin-binding protein A against Staphylococcus aureus infection. Med Microbiol Immunol 2017; 206:225-234. [PMID: 28378247 DOI: 10.1007/s00430-017-0499-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Abstract
Fibronectin-binding protein A (FnBPA) of Staphylococcus aureus is a microbial surface component recognizing adhesive matrix molecules and has been known as one of the most important virulence factors involved in the initiation step of S. aureus infection. Therefore, it has been considered as a potential vaccine candidate. Previous studies have reported that vaccination with FnBPA protects animals against S. aureus infection. In this study, we demonstrated that vaccination with fibronectin-binding domain of FnBPA (FnBPA541-870) protects wild-type mice but not interleukin-17A (IL-17A)-deficient mice against S. aureus infection. Moderate levels of antigen-specific immunoglobulins were produced in the sera of vaccinated wild-type and IL-17A-deficient mice. The spleen cells of vaccinated mice produced IL-17A by stimulation with the antigen, and IL-17A mRNA expression was increased in the spleens and livers of vaccinated mice after infection. CXCL1 and CXCL2 mRNA expression was increased in the spleens, and myeloperoxidase (MPO) activity in the spleens and livers was increased in the vaccinated mice after infection. These results suggest that vaccination with FnBPA541-870 induces the IL-17A-producing cells and that IL-17A-mediated cellular immunity is involved in the protective effect on S. aureus infection.
Collapse
Affiliation(s)
- Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8652, Japan.,Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8652, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8652, Japan.
| |
Collapse
|
23
|
Masamoto Y, Arai S, Sato T, Yoshimi A, Kubota N, Takamoto I, Iwakura Y, Yoshimura A, Kadowaki T, Kurokawa M. Adiponectin Enhances Antibacterial Activity of Hematopoietic Cells by Suppressing Bone Marrow Inflammation. Immunity 2016; 44:1422-33. [PMID: 27317261 DOI: 10.1016/j.immuni.2016.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 11/06/2015] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Abstract
Obesity has been shown to increase the morbidity of infections, however, the underlying mechanisms remain largely unknown. Here we demonstrate that obesity caused adiponectin deficiency in the bone marrow (BM), which led to an inflamed BM characterized by increased tumor necrosis factor (TNF) production from bone marrow macrophages. Hematopoietic stem and progenitor cells (HSPCs) chronically exposed to excessive TNF in obese marrow aberrantly expressed cytokine signaling suppressor SOCS3, impairing JAK-STAT mediated signal transduction and cytokine-driven cell proliferation. Accordingly, both obese and adiponectin-deficient mice showed attenuated clearance of infected Listeria monocytogenes, indicating that obesity or loss of adiponectin is critical for exacerbation of infection. Adiponectin treatment restored the defective HSPC proliferation and bacterial clearance of obese and adiponectin-deficient mice, affirming the importance of adiponectin against infection. Taken together, our findings demonstrate that obesity impairs hematopoietic response against infections through a TNF-SOCS3-STAT3 axis, highlighting adiponectin as a legitimate target against obesity-related infections.
Collapse
Affiliation(s)
- Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Akihide Yoshimi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
24
|
Maurya R, Bhattacharya P, Ismail N, Dagur PK, Joshi AB, Razdan K, McCoy JP, Ascher J, Dey R, Nakhasi HL. Differential Role of Leptin as an Immunomodulator in Controlling Visceral Leishmaniasis in Normal and Leptin-Deficient Mice. Am J Trop Med Hyg 2016; 95:109-119. [PMID: 27114296 PMCID: PMC4944674 DOI: 10.4269/ajtmh.15-0804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/07/2016] [Indexed: 02/05/2023] Open
Abstract
Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There are no vaccines and available drugs against leishmaniasis are toxic. Immunomodulators that specifically boost the anti-microbial activities of the immune cells could alleviate several of these limitations. Therefore, finding novel immunomodulators for VL therapy is a pressing need. This study is aimed to evaluate the immunomodulatory role of leptin, an adipocyte-derived hormone capable of regulating the immune response, in L. donovani-infected mice. We observed that recombinant leptin treatment reduced splenic parasite burden compared with non-treated infected normal mice. Decrease in parasite burden correlated with an induction of innate immune response in antigen-presenting cells that showed an increase in nitric oxide, enhanced pro-inflammatory cytokine (interferon gamma [IFNγ], interleukin12 [IL]12, and IL1β) response in the splenocytes, indicating host-protecting Th1 response mediated by leptin. Moreover, in infected normal mice, leptin treatment induced IFNγ production from both CD4+ and CD8+ T cells, compared with non-treated infected mice. Alternatively, leptin-deficient (Ob/Ob) mice had higher splenic and liver parasite burden compared with the infected normal mice. However, leptin treatment failed to reduce the splenic parasite burden and improve a host-protective cytokine response in these mice. In addition, in contrast to dendritic cells (DCs) from a normal mouse, Ob/Ob mouse–derived DCs showed a defect in the induction of innate immune response on Leishmania infection that could not be reversed by leptin treatment. Therefore, our findings reveal that leptin has a differential immunomodulatory effect in controlling VL in normal and Ob/Ob mice.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India.,Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amritanshu B Joshi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kundan Razdan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jill Ascher
- Division of Veterinary Services, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
25
|
Maysami S, Haley MJ, Gorenkova N, Krishnan S, McColl BW, Lawrence CB. Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. J Neuroinflammation 2015; 12:140. [PMID: 26239227 PMCID: PMC4524371 DOI: 10.1186/s12974-015-0359-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/03/2015] [Indexed: 12/05/2022] Open
Abstract
Background Obesity increases the risk for ischaemic stroke and is associated with worse outcome clinically and experimentally. Most experimental studies have used genetic models of obesity. Here, a more clinically relevant model, diet-induced obesity, was used to study the impact of obesity over time on the outcome and inflammatory response after stroke. Methods Male C57BL/6 mice were maintained on a high-fat (60 % fat) or control (12 % fat) diet for 2, 3, 4 and 6 months when experimental stroke was induced by transient occlusion of the middle cerebral artery (MCAo) for either 20 (6-month diet) or 30 min (2-, 3-, 4- and 6-month diet). Ischaemic damage, blood–brain barrier (BBB) integrity, neutrophil number and chemokine expression in the brain were assessed at 24 h. Plasma chemokine levels (at 4 and 24 h) and neutrophil number in the liver (at 24 h) were measured. Physiological parameters (body weight and blood glucose) were measured in naïve control- and high-fat-fed mice at all time points and blood pressure at 3 and 6 months. Blood cell counts were also assessed in naïve 6-month control- and high-fat-fed mice. Results Mice fed a high-fat diet for 6 months had greater body weight, blood glucose and white and red blood cell count but no change in systolic blood pressure. After 4 and 6 months of high-fat feeding, and in the latter group with a 30-min (but not 20-min) occlusion of the MCA, obese mice had greater ischaemic brain damage. An increase in blood–brain barrier permeability, chemokine expression (CXCL-1 and CCL3), neutrophil number and microglia/macrophage cells was observed in the brains of 6-month high-fat-fed mice after 30-min MCAo. In response to stroke, chemokine (CXCL-1) expression in the plasma and liver was significantly different in obese mice (6-month high-fat fed), and a greater number of neutrophils were detected in the liver of control but not obese mice. Conclusions The detrimental effects of diet-induced obesity on stroke were therefore dependent on the severity of obesity and length of ischaemic challenge. The altered inflammatory response in obese mice may play a key role in its negative impact on stroke.
Collapse
Affiliation(s)
- Samaneh Maysami
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Michael J Haley
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Natalia Gorenkova
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Siddharth Krishnan
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Barry W McColl
- The Roslin Institute and R(D)SVS, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, UK
| | - Catherine B Lawrence
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Inafuku M, Matsuzaki G, Oku H. Intravenous Mycobacterium Bovis Bacillus Calmette-Guérin Ameliorates Nonalcoholic Fatty Liver Disease in Obese, Diabetic ob/ob Mice. PLoS One 2015; 10:e0128676. [PMID: 26039731 PMCID: PMC4454685 DOI: 10.1371/journal.pone.0128676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
Inflammation and immune response profoundly influence metabolic syndrome and fatty acid metabolism. To analyze influence of systemic inflammatory response to metabolic syndrome, we inoculated an attenuated vaccine strain of Mycobacterium bovis Bacillus Calmette–Guérin (BCG) into leptin-deficient ob/ob mice. BCG administration significantly decreased epididymal white adipose tissue weight, serum insulin levels, and a homeostasis model assessment of insulin resistance. Serum high molecular weight (HMW) adiponectin level and HMW/total adiponectin ratio of the BCG treated mice were significantly higher than those of control mice. Hepatic triglyceride accumulation and macrovesicular steatosis were markedly alleviated, and the enzymatic activities and mRNA levels of lipogenic-related genes in liver were significantly decreased in the BCG injected mice. We also exposed human hepatocellular carcinoma HepG2 cells to high levels of palmitate, which enhanced endoplasmic reticulum stress-related gene expression and impaired insulin-stimulated Akt phosphorylation (Ser473). BCG treatment ameliorated both of these detrimental events. The present study therefore suggested that BCG administration suppressed development of nonalcoholic fatty liver disease, at least partly, by alleviating fatty acid-induced insulin resistance in the liver.
Collapse
Affiliation(s)
- Masashi Inafuku
- Department of Tropical Bio-resources, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail:
| | - Goro Matsuzaki
- Department of Infectious Diseases, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hirosuke Oku
- Department of Tropical Bio-resources, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
27
|
Narita K, Hu DL, Asano K, Nakane A. Vaccination with non-toxic mutant toxic shock syndrome toxin-1 induces IL-17-dependent protection against Staphylococcus aureus infection. Pathog Dis 2015; 73:ftv023. [PMID: 25857736 DOI: 10.1093/femspd/ftv023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/24/2022] Open
Abstract
Toxic shock syndrome toxin-1 (TSST-1) is one of superantigens produced by Staphylococcus aureus. We have previously demonstrated that vaccination with non-toxic mutant TSST-1 (mTSST-1) develops host protection to lethal S. aureus infection in mice. However, the detailed mechanism underlying this protection is necessary to elucidate because the passive transfer of antibodies against TSST-1 fails to provide complete protection against S. aureus infection. In this study, the results showed that interleukin-17A (IL-17A)-producing cells were increased in the spleen cells of mTSST-1-vaccinated mice. The main source of IL-17A in mTSST-1-vaccinated mice was T-helper 17 (Th17) cells. The protective effect of vaccination was induced when the vaccinated wild type but not IL-17A-deficient mice were challenged with S. aureus. Gene expression of chemokines, CCL2 and CXCL1, and infiltration of neutrophils and macrophages were increased in spleens and livers of vaccinated mice after infection. The IL-17A-dependent immune response was TSST-1 specific because TSST-1-deficient S. aureus failed to induce the response. The present study suggests that mTSST-1 vaccination is able to provide the IL-17A-dependent host defense against S. aureus infection which promotes chemokine-mediated infiltration of phagocytes into the infectious foci.
Collapse
Affiliation(s)
- Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Dong-Liang Hu
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
28
|
Madan R, Petri WA. Role of obesity and adipose tissue-derived cytokine leptin during Clostridium difficile infection. Anaerobe 2015; 34:182-6. [PMID: 25638400 DOI: 10.1016/j.anaerobe.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/30/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Obesity is among the most pressing health concerns in the world since it is increasingly common even in the developing world, and is clearly associated with increased risk for chronic debilitating diseases and death. Furthermore, obesity can influence the pathogenesis of infectious diseases by affecting the balance of pathogen clearance and pathological inflammation. The mechanisms that result in enhanced inflammation in obese individuals are poorly understood. Clostridium difficile is a major cause of nosocomial infections worldwide. Recent studies have shown that obesity is associated with increased risk of C. difficile infections. In this review, we will discuss our current knowledge of the role of obesity in determining risk of C. difficile infections, and focus on the role of the adipose tissue-derived cytokine leptin in C. difficile infections.
Collapse
Affiliation(s)
- Rajat Madan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Charlottesville, VA 22908, USA.
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia, USA; Department of Pathology, University of Virginia, USA.
| |
Collapse
|
29
|
Establishment and characterization of DB-1: a leptin receptor-deficient murine macrophage cell line. Cytotechnology 2015; 68:921-33. [PMID: 25599862 DOI: 10.1007/s10616-015-9843-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/31/2014] [Indexed: 12/14/2022] Open
Abstract
Metabolic and immune mediators activate many of the same signal transduction pathways. Therefore, molecules that regulate metabolism often affect immune responses. Leptin is an adipokine that exemplifies this interplay. Leptin is the body's major nutritional status sensor, but it also plays a key role in immune system regulation. To provide an in vitro tool to investigate the link between leptin and innate immunity, we immortalized and characterized a leptin receptor-deficient macrophage cell line, DB-1. The cell line was created using bone marrow cells from leptin receptor-deficient mice. Bone marrow cells were differentiated into macrophages by culturing them with recombinant mouse macrophage colony stimulating factor, and passaged when confluent for 6 months. The cells spontaneously immortalized at approximately passage 20. Cells were cloned twice by limiting dilution cloning prior to characterization. The macrophage cell line is diploid and grows at a linear rate for 4-5 days before reaching the growth plateau. The cells are MAC-2 and F4/80 positive and have phagocytic activity similar to primary macrophages from wild-type and leptin receptor-deficient mice. DB-1 cells were responsive to stimulation with interferon-γ as measured by increase in Nos2 transcript levels. In addition, DB-1 macrophages are not responsive to the chemotactic signaling of adipocyte conditioned media nor leptin when compared to primary WT macrophages. We believe that DB-1 cells provide a dependable tool to study the role of leptin or the leptin receptor in obesity-associated inflammation and immune system dysregulation.
Collapse
|
30
|
Zigmond E, Tayer-Shifman O, Lalazar G, Ben Ya'acov A, Weksler-Zangen S, Shasha D, Sklair-Levy M, Zolotarov L, Shalev Z, Kalman R, Ziv E, Raz I, Ilan Y. β-glycosphingolipids ameliorated non-alcoholic steatohepatitis in the Psammomys obesus model. J Inflamm Res 2014; 7:151-8. [PMID: 25336983 PMCID: PMC4200037 DOI: 10.2147/jir.s50508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Liver steatosis is a common characteristic of obesity and type 2 diabetes, and fatty liver disease is increasingly recognized as a major health burden. Accumulating evidence suggests that β-glycosphingolipids play an important role in insulin sensitivity and thus could affect hepatic steatosis. To determine the effect associated with β-glycosphingolipid-mediated amelioration of liver injury, seven groups of Psammomys obesus on a high-energy diet were studied. Animals were treated with daily injections of β-glucosylceramide, β-lactosylceramide, or a combination of both. β-glycosphingolipids ameliorated the hepatic injury manifested by decreased liver enzymes, liver weight, and hepatic fat, and improved liver histology. Administration of both β-glucosylceramide and β-lactosylceramide also decreased interferon (IFN)-γ serum levels. These effects were associated with improved serum cholesterol and triglyceride levels. These data suggest that β-glycosphingolipids ameliorate liver injury in an animal model of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ehud Zigmond
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | | - Gadi Lalazar
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ami Ben Ya'acov
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | | - David Shasha
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Miriam Sklair-Levy
- Department of Radiology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Lidya Zolotarov
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Zvi Shalev
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Rony Kalman
- Diabetes Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ehud Ziv
- Diabetes Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Itamar Raz
- Diabetes Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
31
|
Abstract
This article discusses obesity, its contribution to clinical outcomes, and the current literature on nutrition. More than one third of Americans are obese. Literature suggests that, among critically ill patients, the relationship between obesity and outcomes is complex. Obese patients may be at greater risk of developing acute respiratory distress syndrome (ARDS) than normal weight patients. Although obesity may confer greater morbidity in intensive care, it seems to decrease mortality. ARDS is a catabolic state; patients demonstrate a profound inflammatory response, multiple organ dysfunction, and hypermetabolism, often with malnutrition. The concept of pharmaconutrition has emerged.
Collapse
Affiliation(s)
- Renee D Stapleton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Benjamin T Suratt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
32
|
Mancuso P, O′Brien E, Prano J, Goel D, Aronoff DM. No Impairment in host defense against Streptococcus pneumoniae in obese CPEfat/fat mice. PLoS One 2014; 9:e106420. [PMID: 25203099 PMCID: PMC4159279 DOI: 10.1371/journal.pone.0106420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/06/2014] [Indexed: 12/16/2022] Open
Abstract
In the US and globally, dramatic increases in the prevalence of adult and childhood obesity have been reported during the last 30 years. In addition to cardiovascular disease, type II diabetes, and liver disease, obesity has recently been recognized as an important risk factor for influenza pneumonia. During the influenza pandemic of 2009, obese individuals experienced a greater severity of illness from the H1N1 virus. In addition, obese mice have also been shown to exhibit increased lethality and aberrant pulmonary inflammatory responses following influenza infection. In contrast to influenza, the impact of obesity on bacterial pneumonia in human patients is controversial. In this report, we compared the responses of lean WT and obese CPEfat/fat mice following an intratracheal infection with Streptococcus pneumoniae, the leading cause of community-acquired pneumonia. At 16 weeks of age, CPEfat/fat mice develop severe obesity, hyperglycemia, elevated serum triglycerides and leptin, and increased blood neutrophil counts. There were no differences between lean WT and obese CPEfat/fat mice in survival or lung and spleen bacterial burdens following intratracheal infection with S. pneumoniae. Besides a modest increase in TNF-α levels and increased peripheral blood neutrophil counts in CPEfat/fat mice, there were not differences in lung or serum cytokines after infection. These results suggest that obesity, accompanied by hyperglycemia and modestly elevated triglycerides, at least in the case of CPEfat/fat mice, does not impair innate immunity against pneumococcal pneumonia.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Edmund O′Brien
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joseph Prano
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Deepti Goel
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
33
|
Nakane A. [Host responses to bacterial infections]. Nihon Saikingaku Zasshi 2014; 69:479-89. [PMID: 25186639 DOI: 10.3412/jsb.69.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogenic bacteria and host defense system have been evolved by their offense and defense. In vivo research is crucial for elucidation of interactions between them. I have investigated their offence and defense by various standpoints using mouse models of Listeria monocytogenes and Staphylococcus aureus infections. Herein, the results of my research including the roles of endogenous cytokines in host defense, the attenuation of host defense mechanism in obesity and diabetes, the development of vaccines against S. aureus infection by staphylococcal enterotoxin (SE) family molecules, and the emesis-inducing mechanism of SEA are described.
Collapse
Affiliation(s)
- Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine
| |
Collapse
|
34
|
Ramirez O, Garza KM. Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells. Int Immunol 2014; 26:627-36. [PMID: 24966213 DOI: 10.1093/intimm/dxu067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leptin is a pleiotropic adipokine that is critical for regulating food intake and energy expenditure and also participates in functions of the immune system, including those of antigen-presenting cells. Here, we assess the effect of leptin deficiency on the function splenic dendritic cells (sDC). sDC from leptin-deficient mice (Lep(ob)) were evaluated ex vivo for phenotype, ability to respond to inflammatory stimuli, to acquire and process antigens and to activate T cells. The data show that Lep(ob) sDC express activation markers similar to controls and respond similarly to LPS activation or anti-CD40 cross-linking. In addition, antigen acquisition and processing by Lep(ob) sDC was similar to controls. However, Lep(ob) sDC elicited higher production of IFN-γ in mixed lymphocyte reactions and increased production of IL-2 by antigen-specific T-cell hybridoma relative to controls. To assess Lep(ob) sDC activation of T cells in vivo, Lep(ob) and control mice were infected systemically with Mycobacterium avium. Lep(ob) mice were significantly better at neutralizing the infection as measured by splenic bacterial load over time. This was mirrored with an increased percentage of activated T cells in M. avium-infected Lep(ob) mice. Thus, although no changes were detected in sDC phenotype, activation, antigen processing or presentation, these DC surprisingly presented an enhanced ability to activate T cells ex vivo and in vivo. These data demonstrate that leptin can modulate DC function and suggest that leptin may dampen T-cell responsiveness in the physiological setting.
Collapse
Affiliation(s)
- Oscar Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Kristine M Garza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
35
|
Vieira A, Michels M, Florentino D, Lauriano AA, Danielski LG, Fortunato JJ, Barichello T, Felipe DP, Quevedo J, Petronilho F. Increased on oxidative brain injury in the diabetic rats following sepsis. Synapse 2014; 68:410-8. [DOI: 10.1002/syn.21753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/27/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Andriele Vieira
- Clinical and Experimental Pathophysiology Laboratory - FICEXP, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL); Tubarão Santa Catarina Brazil
| | - Monique Michels
- Clinical and Experimental Pathophysiology Laboratory - FICEXP, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL); Tubarão Santa Catarina Brazil
| | - Drielly Florentino
- Clinical and Experimental Pathophysiology Laboratory - FICEXP, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL); Tubarão Santa Catarina Brazil
| | - André Antunes Lauriano
- Clinical and Experimental Pathophysiology Laboratory - FICEXP, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL); Tubarão Santa Catarina Brazil
| | - Lucineia Gainski Danielski
- Clinical and Experimental Pathophysiology Laboratory - FICEXP, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL); Tubarão Santa Catarina Brazil
| | - Jucelia Jeremias Fortunato
- Clinical and Experimental Pathophysiology Laboratory - FICEXP, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL); Tubarão Santa Catarina Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC); Criciúma Santa Catarina Brazil
- Department of Psychiatry and Behavioral Sciences; Center for Experimental Models in Psychiatry, The University of Texas Medical School at Houston; Texas
| | - Dal-Pizzol Felipe
- Experimental Pathophysiology Laboratory - FISIOPAT, Graduate Program in Health Sciences, Universidade do Extremo Sul de Santa Catarina (UNESC); Criciuma Santa Catarina Brazil
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences; Center for Experimental Models in Psychiatry, The University of Texas Medical School at Houston; Texas
- Laboratory of Neurociences, Graduate Program in Health Sciences, Universidade do Extremo Sul de Santa Catarina (UNESC); Criciuma Santa Catarina Brazil
| | - Fabricia Petronilho
- Clinical and Experimental Pathophysiology Laboratory - FICEXP, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL); Tubarão Santa Catarina Brazil
- Department of Psychiatry and Behavioral Sciences; Center for Experimental Models in Psychiatry, The University of Texas Medical School at Houston; Texas
| |
Collapse
|
36
|
Wood S, Jayaraman V, Huelsmann EJ, Bonish B, Burgad D, Sivaramakrishnan G, Qin S, DiPietro LA, Zloza A, Zhang C, Shafikhani SH. Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS One 2014; 9:e91574. [PMID: 24618995 PMCID: PMC3950222 DOI: 10.1371/journal.pone.0091574] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/13/2014] [Indexed: 01/13/2023] Open
Abstract
Prior studies suggest that the impaired healing seen in diabetic wounds derives from a state of persistent hyper-inflammation characterized by harmful increases in inflammatory leukocytes including macrophages. However, such studies have focused on wounds at later time points (day 10 or older), and very little attention has been given to the dynamics of macrophage responses in diabetic wounds early after injury. Given the importance of macrophages for the process of healing, we studied the dynamics of macrophage response during early and late phases of healing in diabetic wounds. Here, we report that early after injury, the diabetic wound exhibits a significant delay in macrophage infiltration. The delay in the macrophage response in diabetic wounds results from reduced Chemokine (C-C motif) ligand 2 (CCL2) expression. Importantly, one-time treatment with chemoattractant CCL2 significantly stimulated healing in diabetic wounds by restoring the macrophage response. Our data demonstrate that, rather than a hyper-inflammatory state; the early diabetic wound exhibits a paradoxical and damaging decrease in essential macrophage response. Our studies suggest that the restoration of the proper kinetics of macrophage response may be able to jumpstart subsequent healing stages. CCL2 chemokine-based therapy may be an attractive strategy to promote healing in diabetic wounds.
Collapse
Affiliation(s)
- Stephen Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Vijayakumar Jayaraman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Erica J. Huelsmann
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- Rush University Cancer Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Developmental Center for AIDS Research, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Brian Bonish
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Dermatology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Derick Burgad
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Gayathri Sivaramakrishnan
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Shanshan Qin
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andrew Zloza
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- Rush University Cancer Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Developmental Center for AIDS Research, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Chunxiang Zhang
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sasha H. Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
- Rush University Cancer Center, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
37
|
Cucak H, Mayer C, Tonnesen M, Thomsen LH, Grunnet LG, Rosendahl A. Macrophage contact dependent and independent TLR4 mechanisms induce β-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PLoS One 2014; 9:e90685. [PMID: 24594974 PMCID: PMC3940939 DOI: 10.1371/journal.pone.0090685] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) is evolving into a global disease and patients have a systemic low-grade inflammation, yet the role of this inflammation is still not established. One plausible mechanism is enhanced expression and activity of the innate immune system. Therefore, we evaluated the expression and the function of the toll-like receptor 4 (TLR4) on pancreatic β-cells in primary mouse islets and on the murine β-cell line MIN6 in the presence or absence of macrophages. Diabetic islets have 40% fewer TLR4 positive β-cells, but twice the number of TLR4 positive macrophages as compared to healthy islets. Healthy and diabetic islets respond to a TLR4 challenge with enhanced production of cytokines (5–10-fold), while the TLR4 negative β-cell line MIN6 fails to produce cytokines. TLR4 stimulation induces β-cell dysfunction in mouse islets, measured as reduced glucose stimulated insulin secretion. Diabetic macrophages from 4-months old mice have acquired a transient enhanced capacity to produce cytokines when stimulated with LPS. Interestingly, this is lost in 6-months old diabetic mice. TLR4 activation alone does not induce apoptosis in islets or MIN-6 cells. In contrast, macrophages mediate TLR4-dependent cell-contact dependent (3-fold) as well as cell-contact independent (2-fold) apoptosis of both islets and MIN-6 cells. Importantly, diabetic macrophages have a significantly enhanced capacity to induce β-cell apoptosis compared to healthy macrophages. Taken together, the TLR4 responsiveness is elevated in the diabetic islets and mainly mediated by newly recruited macrophages. The TLR4 positive macrophages, in both a cell-contact dependent and independent manner, induce apoptosis of β-cells in a TLR4 dependent fashion and TLR4 activation directly induces β-cell dysfunction. Thus, targeting either the TLR4 pathway or the macrophages provides a novel attractive treatment regime for T2D.
Collapse
Affiliation(s)
- Helena Cucak
- Hagedorn Research Institute, Department of Diabetic Complication Biology, Måløv, Denmark
| | - Christopher Mayer
- Hagedorn Research Institute, Department of Diabetic Complication Biology, Måløv, Denmark
| | - Morten Tonnesen
- Hagedorn Research Institute, Department of Diabetic Complication Biology, Måløv, Denmark
| | - Lise Høj Thomsen
- Hagedorn Research Institute, Department of Diabetic Complication Biology, Måløv, Denmark
| | | | - Alexander Rosendahl
- Hagedorn Research Institute, Department of Diabetic Complication Biology, Måløv, Denmark
- * E-mail:
| |
Collapse
|
38
|
Genoni G, Prodam F, Marolda A, Giglione E, Demarchi I, Bellone S, Bona G. Obesity and infection: two sides of one coin. Eur J Pediatr 2014; 173:25-32. [PMID: 24146165 DOI: 10.1007/s00431-013-2178-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity has exponentially risen worldwide. The etiology of obesity is multifactorial, and genetic inheritance and behavioral/environmental causes are considered the main etiological factors. Moreover, evidence that specific infections might promote the development of obesity has steadily accumulated. Only a few works investigate the impact of obesity on the immune response to infections and the risk of infections in the obese population. The aim of this paper was to review the available data regarding the various aspects of the association between obesity and infections and to highlight the possibility that infectious agents may have an etiological role in obesity, an idea known as "infectobesity". Several microbes have been considered as possible promoter of obesity, but most of the data concern adenovirus-36 that exerts an adipogenic action mainly via a direct effect on adipose tissue leading to weight gain, at least in animal models.Obesity affects the immune response leading to an increased susceptibility to infections. Obese adults and children show an increased incidence of both nosocomial and community-acquired infections. Furthermore, obesity may alter the pharmacokinetics of antimicrobial drugs and impact on vaccine response. However, the various aspects of the association of obesity infections remain poorly studied, and a call to research is necessary to better investigate the problem.In conclusion, obesity impacts millions globally, and greater understanding of its etiology and its effects on immunity, infections, and prevention and management strategies is a key public health concern.
Collapse
Affiliation(s)
- Giulia Genoni
- SCDU of Pediatrics, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, Novara, 28100, Italy,
| | | | | | | | | | | | | |
Collapse
|
39
|
van der Burg JW, Allred EN, McElrath TF, Fichorova RN, Kuban K, O'Shea TM, Dammann O, Leviton A. Is maternal obesity associated with sustained inflammation in extremely low gestational age newborns? Early Hum Dev 2013; 89:949-55. [PMID: 24090868 DOI: 10.1016/j.earlhumdev.2013.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/08/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND The offspring of obese women are at increased risk for systemic inflammation. Blood concentrations of inflammatory proteins in preterm newborns of obese women have not been reported. AIM To compare blood concentrations in the highest quartile for gestational age of inflammatory proteins and day of blood specimen collection on two days at least one week apart of newborns of overweight (i.e., BMI 25-29) and obese women (i.e., BMI ≥ 30) with newborns of women with lower BMIs. Because deliveries for spontaneous indications are more likely than those for other indications to be associated with inflammation, we evaluated spontaneous indication deliveries separately from maternal or fetal indications. STUDY DESIGN Prospective cohort study. SUBJECTS AND OUTCOME MEASURES We measured from 939 children born before the 28th week of gestation 25 inflammation-related proteins in blood obtained on postnatal day 1 (range 1-3), day 7 (range 5-8) and day 14 (range 12-15). RESULTS Among infants delivered for spontaneous indications, maternal BMI was not related to elevated concentrations of any protein. Among infants delivered for maternal (i.e., preeclampsia) or fetal indications, those whose mother was overweight or obese were more likely than others to have elevated concentrations of inflammation proteins. CONCLUSIONS Maternal pre-pregnancy overweight and obesity appear to contribute to a pro-inflammatory state in very preterm newborns delivered for maternal or fetal indications. Our failure to see a similar pattern among newborns delivered for spontaneous indications, which often have inflammatory characteristics, might reflect competing risks.
Collapse
Affiliation(s)
- Jelske W van der Burg
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, United States; Department of Health Sciences and the EMGO Institute for Health and Care Research, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dong HY, Xu M, Ji ZY, Wang YX, Dong MQ, Liu ML, Xu DQ, Zhao PT, Liu Y, Luo Y, Niu W, Zhang B, Ye J, Li ZC. Leptin Attenuates Lipopolysaccharide or Oleic Acid-Induced Acute Lung Injury in Mice. Am J Respir Cell Mol Biol 2013; 49:1057-63. [DOI: 10.1165/rcmb.2012-0301oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Role of leptin-mediated colonic inflammation in defense against Clostridium difficile colitis. Infect Immun 2013; 82:341-9. [PMID: 24166957 DOI: 10.1128/iai.00972-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of leptin in the mucosal immune response to Clostridium difficile colitis, a leading cause of nosocomial infection, was studied in humans and in a murine model. Previously, a mutation in the receptor for leptin (LEPR) was shown to be associated with susceptibility to infectious colitis and liver abscess due to Entamoeba histolytica as well as to bacterial peritonitis. Here we discovered that European Americans homozygous for the same LEPR Q223R mutation (rs1137101), known to result in decreased STAT3 signaling, were at increased risk of C. difficile infection (odds ratio, 3.03; P = 0.015). The mechanism of increased susceptibility was studied in a murine model. Mice lacking a functional leptin receptor (db/db) had decreased clearance of C. difficile from the gut lumen and diminished inflammation. Mutation of tyrosine 1138 in the intracellular domain of LepRb that mediates signaling through the STAT3/SOCS3 pathway also resulted in decreased mucosal chemokine and cell recruitment. Collectively, these data support a protective mucosal immune function for leptin in C. difficile colitis partially mediated by a leptin-STAT3 inflammatory pathway that is defective in the LEPR Q223R mutation. Identification of the role of leptin in protection from C. difficile offers the potential for host-directed therapy and demonstrates a connection between metabolism and immunity.
Collapse
|
42
|
Fisher-Hoch SP, Mathews CE, McCormick JB. Obesity, diabetes and pneumonia: the menacing interface of non-communicable and infectious diseases. Trop Med Int Health 2013; 18:1510-9. [PMID: 24237786 DOI: 10.1111/tmi.12206] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To review current knowledge on the epidemiological, clinical and biological impact of the pandemic of obesity and diabetes on pneumonias. METHODS We conducted a literature review using PubMed and EMBASE, supplemented by various sources. Given the disparate and fragmented nature of the literature, a formal systematic review was not possible. RESULTS In 2008, globally 10% of men and 14% of women were obese and an estimated 371 million had diabetes; half undiagnosed and many obese. Numbers are rising rapidly in low- and middle-income countries where the majority reside, but reliable data are lacking. The most frequent pneumonias in obesity and diabetes are tuberculosis, influenza and pneumococcal, staphylococcal and opportunistic pathogens. Diabetes impacts tuberculosis control and increases drug resistance and mortality. Mortality and morbidity from pneumococcal pneumonia and influenza are increased in obesity and diabetes. In addition to mechanical and physiological effects, there are considerable immunological abnormalities characterised by chronic, low-grade inflammation. Simultaneous up-regulation and dysregulation of both innate and adaptive immune responses impair control and killing of invading organisms. Prevention in those at risk is poorly practised, although screening for tuberculosis in diabetes is beginning in high-burden settings. CONCLUSIONS Pneumonia is a threat globally in obesity and diabetes with increased incidence and severity of disease. There is uncertainty about whether vaccines are equally effective in those with obesity and diabetes. Increased epidemiological, clinical and biological knowledge will be crucial to face this 21st century challenge.
Collapse
Affiliation(s)
- Susan P Fisher-Hoch
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Brownsville, TX, USA
| | | | | |
Collapse
|
43
|
Phosphorylated ganciclovir derivatives: design, synthesis and in vitro and in vivo immunomodulatory activity. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0819-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Carlos D, Spiller F, Souto FO, Trevelin SC, Borges VF, de Freitas A, Alves-Filho JC, Silva JS, Ryffel B, Cunha FQ. Histamine h2 receptor signaling in the pathogenesis of sepsis: studies in a murine diabetes model. THE JOURNAL OF IMMUNOLOGY 2013; 191:1373-82. [PMID: 23817413 DOI: 10.4049/jimmunol.1202907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes enhances susceptibility to infection and favors the sepsis development. In addition, diabetic mice produced higher levels of histamine in several tissues and in the blood after LPS stimulation than nondiabetic mice. In this study, we aimed to explore the role of mast cells (MCs) and histamine in neutrophil migration and, consequently, infection control in diabetic mice with mild sepsis (MS) induced by cecum ligation and puncture. We used female BALB/c, MC-sufficient (WB/B6), MC-deficient (W/W(v)), and NOD mice. Diabetic mice given MS displayed 100% mortality within 24 h, whereas all nondiabetic mice survived for at least 5 d. The mortality rate of diabetic mice was reduced to 57% after the depletion of MC granules with compound 48/80. Moreover, this pretreatment increased neutrophil migration to the focus of infection, which reduced systemic inflammatory response and bacteremia. The downregulation of CXCR2 and upregulation of G protein-coupled receptor kinase 2 in neutrophils was prevented by pretreatment of diabetic mice given MS with compound 48/80. In addition, blocking the histamine H2 receptor restored neutrophil migration, enhanced CXCR2 expression, decreased bacteremia, and improved sepsis survival in alloxan-induced diabetic and spontaneous NOD mice. Finally, diabetic W/W(v) mice had neutrophil migration to the peritoneal cavity, increased CXCR2 expression, and reduced bacteremia compared with diabetic WB/B6 mice. These results demonstrate that histamine released by MCs reduces diabetic host resistance to septic peritonitis in mice.
Collapse
Affiliation(s)
- Daniela Carlos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hellmann J, Zhang MJ, Tang Y, Rane M, Bhatnagar A, Spite M. Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production. THE JOURNAL OF IMMUNOLOGY 2013; 191:1383-92. [PMID: 23785121 DOI: 10.4049/jimmunol.1203369] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extensive evidence indicates that nutrient excess associated with obesity and type 2 diabetes activates innate immune responses that lead to chronic, sterile low-grade inflammation, and obese and diabetic humans also have deficits in wound healing and increased susceptibility to infections. Nevertheless, the mechanisms that sustain unresolved inflammation during obesity remain unclear. In this study, we report that saturated free fatty acids that are elevated in obesity alter resolution of acute sterile inflammation by promoting neutrophil survival and decreasing macrophage phagocytosis. Using a targeted mass spectrometry-based lipidomics approach, we found that in db/db mice, PGE2/D2 levels were elevated in inflammatory exudates during the development of acute peritonitis. Moreover, in isolated macrophages, palmitic acid stimulated cyclooxygenase-2 induction and prostanoid production. Defects in macrophage phagocytosis induced by palmitic acid were mimicked by PGE2 and PGD2 and were reversed by cyclooxygenase inhibition or prostanoid receptor antagonism. Macrophages isolated from obese-diabetic mice expressed prostanoid receptors, EP2 and DP1, and contained significantly higher levels of downstream effector, cAMP, compared with wild-type mice. Therapeutic administration of EP2/DP1 dual receptor antagonist, AH6809, decreased neutrophil accumulation in the peritoneum of db/db mice, as well as the accumulation of apoptotic cells in the thymus. Taken together, these studies provide new insights into the mechanisms underlying altered innate immune responses in obesity and suggest that targeting specific prostanoid receptors may represent a novel strategy for resolving inflammation and restoring phagocyte defects in obese and diabetic individuals.
Collapse
Affiliation(s)
- Jason Hellmann
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hegde V, Dhurandhar N. Microbes and obesity—interrelationship between infection, adipose tissue and the immune system. Clin Microbiol Infect 2013; 19:314-20. [DOI: 10.1111/1469-0691.12157] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 01/16/2023]
|
47
|
Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion. PLoS Pathog 2013; 9:e1003122. [PMID: 23349631 PMCID: PMC3547840 DOI: 10.1371/journal.ppat.1003122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/26/2012] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection. Infection with intestinal parasites often results in a period of reduced appetite which can result in weight loss; however the factors which control these feeding alterations and the reason why they occur is unknown. We used the nematode parasite Trichinella spiralis, which during its life cycle causes intestinal and muscular inflammation, as a mouse infection model to study the factors which alter feeding during infection. We found that the mouse immune response to the parasite was driving two periods of reduced feeding by two distinct immune mediators during the intestinal and muscular periods of infection. Interestingly, the immune system was utilizing a hormone which usually terminates feeding during our daily meals to cause a reduction in weight and fat deposits. Furthermore, we found that a reduction in these fat deposits and their associated hormones actually helped the mouse expel the parasite from the intestine. Hence the immune driven weight loss was actually beneficial to the mouse's ability to resolve an infection. Our study provides novel insights into how the immune system interacts with feeding pathways during intestinal inflammation and may help us design new strategies for helping people with parasitic infections of the gut.
Collapse
|
48
|
Tilton SC, Waters KM, Karin NJ, Webb-Robertson BJM, Zangar RC, Lee KM, Bigelow DJ, Pounds JG, Corley RA. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin. Toxicol Appl Pharmacol 2013; 267:137-48. [PMID: 23306164 DOI: 10.1016/j.taap.2012.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023]
Abstract
The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.
Collapse
Affiliation(s)
- Susan C Tilton
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu HY, Chung CY, Yang WC, Liang CL, Wang CY, Chang CY, Chang CLT. Exendin-4 improves resistance to Listeria monocytogenes infection in diabetic db/db mice. J Vet Sci 2012; 13:245-52. [PMID: 23000581 PMCID: PMC3467399 DOI: 10.4142/jvs.2012.13.3.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of diabetes mellitus is increasing among companion animals. This disease has similar characteristics in both humans and animals. Diabetes is frequently identified as an independent risk factor for infections associated with increased mortality. In the present study, homozygous diabetic (db/db) mice were infected with Listeria (L.) monocytogenes and then treated with the anti-diabetic drug exendin-4, a glucagon-like peptide 1 analogue. In aged db/db mice, decreased CD11b(+) macrophage populations with higher lipid content and lower phagocytic activity were observed. Exendin-4 lowered high lipid levels and enhanced phagocytosis in macrophages from db/db mice infected with L. monocytogenes. Exendin-4 also ameliorated obesity and hyperglycemia, and improved ex vivo bacteria clearance by macrophages in the animals. Liver histology examined during L. monocytogenes infection indicated that abscess formation was much milder in exendin-4-treated db/db mice than in the control animals. Moreover, mechanistic studies demonstrated that expression of ATP binding cassette transporter 1, a sterol transporter, was higher in macrophages isolated from the exendin-4-treated db/db mice. Overall, our results suggest that exendin-4 decreases the risk of infection in diabetic animals by modifying the interaction between intracellular lipids and phagocytic macrophages.
Collapse
Affiliation(s)
- Hsien Yueh Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
Kumar M, Roe K, Nerurkar PV, Namekar M, Orillo B, Verma S, Nerurkar VR. Impaired virus clearance, compromised immune response and increased mortality in type 2 diabetic mice infected with West Nile virus. PLoS One 2012; 7:e44682. [PMID: 22953001 PMCID: PMC3432127 DOI: 10.1371/journal.pone.0044682] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/06/2012] [Indexed: 12/13/2022] Open
Abstract
Clinicoepidemiological data suggest that type 2 diabetes is associated with increased risk of West Nile virus encephalitis (WNVE). However, no experimental studies have elucidated the role of diabetes in WNV neuropathogenesis. Herein, we employed the db/db mouse model to understand WNV immunopathogenesis in diabetics. Nine-week old C57BL/6 WT and db/db mice were inoculated with WNV and mortality, virus burden in the periphery and brain, and antiviral defense responses were analyzed. db/db mice were highly susceptible to WNV disease, exhibited increased tissue tropism and mortality than the wild-type mice, and were unable to clear the infection. Increased and sustained WNV replication was observed in the serum, peripheral tissues and brain of db/db mice, and heightened virus replication in the periphery was correlated with enhanced neuroinvasion and replication of WNV in the brain. WNV infection in db/db mice was associated with enhanced inflammatory response and compromised antiviral immune response characterized by delayed induction of IFN-α, and significantly reduced concentrations of WNV-specific IgM and IgG antibodies. The compromised immune response in db/db mice correlated with increased viremia. These data suggest that delayed immune response coupled with failure to clear the virus leads to increased mortality in db/db mice. In conclusion, this study provides unique mechanistic insight into the immunopathogenesis of WNVE observed in diabetics and can be used to develop therapeutics for the management of WNVE among diabetic patients.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Kelsey Roe
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Pratibha V. Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Beverly Orillo
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|