1
|
Feng Z, Fang C, Ma Y, Chang J. Obesity-induced blood-brain barrier dysfunction: phenotypes and mechanisms. J Neuroinflammation 2024; 21:110. [PMID: 38678254 PMCID: PMC11056074 DOI: 10.1186/s12974-024-03104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.
Collapse
Affiliation(s)
- Ziying Feng
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yinzhong Ma
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Jensen SB, Sheikh MA, Akkouh IA, Szabo A, O’Connell KS, Lekva T, Engh JA, Agartz I, Elvsåshagen T, Ormerod MBEG, Weibell MA, Johnsen E, Kroken RA, Melle I, Drange OK, Nærland T, Vaaler AE, Westlye LT, Aukrust P, Djurovic S, Eiel Steen N, Andreassen OA, Ueland T. Elevated Systemic Levels of Markers Reflecting Intestinal Barrier Dysfunction and Inflammasome Activation Are Correlated in Severe Mental Illness. Schizophr Bull 2023; 49:635-645. [PMID: 36462169 PMCID: PMC10154716 DOI: 10.1093/schbul/sbac191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND AND HYPOTHESIS Gut microbiota alterations have been reported in severe mental illness (SMI) but fewer studies have probed for signs of gut barrier disruption and inflammation. We hypothesized that gut leakage of microbial products due to intestinal inflammation could contribute to systemic inflammasome activation in SMI. STUDY DESIGN We measured plasma levels of the chemokine CCL25 and soluble mucosal vascular addressin cell adhesion molecule-1 (sMAdCAM-1) as markers of T cell homing, adhesion and inflammation in the gut, lipopolysaccharide binding protein (LBP) and intestinal fatty acid binding protein (I-FABP) as markers of bacterial translocation and gut barrier dysfunction, in a large SMI cohort (n = 567) including schizophrenia (SCZ, n = 389) and affective disorder (AFF, n = 178), relative to healthy controls (HC, n = 418). We assessed associations with plasma IL-18 and IL-18BPa and leukocyte mRNA expression of NLRP3 and NLRC4 as markers of inflammasome activation. STUDY RESULTS Our main findings were: (1) higher levels of sMAdCAM-1 (P = .002), I-FABP (P = 7.6E-11), CCL25 (P = 9.6E-05) and LBP (P = 2.6E-04) in SMI compared to HC in age, sex, BMI, CRP and freezer storage time adjusted analysis; (2) the highest levels of sMAdCAM-1 and CCL25 (both P = 2.6E-04) were observed in SCZ and I-FABP (P = 2.5E-10) and LBP (3) in AFF; and (3), I-FABP correlated with IL-18BPa levels and LBP correlated with NLRC4. CONCLUSIONS Our findings support that intestinal barrier inflammation and dysfunction in SMI could contribute to systemic inflammation through inflammasome activation.
Collapse
Affiliation(s)
- Søren B Jensen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - John A Engh
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Division of Mental health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ingrid Agartz
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Monica B E G Ormerod
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Melissa A Weibell
- Division of Psychiatry, Network for Clinical Psychosis Research, Stavanger University Hospital, Stavanger, Norway
- Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole K Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
- Department of Psychiatry, Sørlandet Hospital, Kristiansand, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Rare Disorders, Division of Child and Adolescent medicine, Oslo University Hospital, Oslo, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
| | - Lars T Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, NORMENT, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
3
|
Zhang XL, Wang F, Zhou G. Altered Expression of Vascular Cell Adhesion Molecule-1 in Oral Lichen Planus. J Interferon Cytokine Res 2023; 43:133-139. [PMID: 36939812 DOI: 10.1089/jir.2022.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory mucocutaneous disease affected by the interaction between keratinocytes and T cells. Recent evidence indicates that vascular cell adhesion molecule-1 (VCAM1) plays a vital role in mediating immune and inflammatory responses. In this study, the expression of VCAM1 in OLP was detected by immunohistochemical staining and its correlations with clinical features were analyzed. The disease severity of OLP was assessed by the reticular, atrophic, and erosive scoring system. We found that VCAM1 was generally localized in the cytoplasm of epithelial cells, and in nucleus, cytoplasm, and extracellular matrix of subepithelial infiltrated cells in superficial layer of lamina propria. Moreover, VCAM1 levels in epithelium and lamina propria of OLP were significantly higher than that in controls, respectively. In addition, VCAM1 level in epithelium was increased compared with that of lamina propria. There were no significant differences for VCAM1 expression between nonerosive and erosive forms of OLP. The expression of VCAM1 in OLP was not associated with the severity of disease, gender, and age. Thus, we speculated that spatial expression differences of VCAM1 in local lesions of OLP may involve the pathogenesis of OLP.
Collapse
Affiliation(s)
- Xiu-Li Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction contribute to multiple sclerosis? Neurobiol Dis 2023; 178:106028. [PMID: 36736923 DOI: 10.1016/j.nbd.2023.106028] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) and the most common non-traumatic cause of neurological disability in young adults. Multiple sclerosis clinical care has improved considerably due to the development of disease-modifying therapies that effectively modulate the peripheral immune response and reduce relapse frequency. However, current treatments do not prevent neurodegeneration and disease progression, and efforts to prevent multiple sclerosis will be hampered so long as the cause of this disease remains unknown. Risk factors for multiple sclerosis development or severity include vitamin D deficiency, cigarette smoking and youth obesity, which also impact vascular health. People with multiple sclerosis frequently experience blood-brain barrier breakdown, microbleeds, reduced cerebral blood flow and diminished neurovascular reactivity, and it is possible that these vascular pathologies are tied to multiple sclerosis development. The neurovascular unit is a cellular network that controls neuroinflammation, maintains blood-brain barrier integrity, and tightly regulates cerebral blood flow, matching energy supply to neuronal demand. The neurovascular unit is composed of vessel-associated cells such as endothelial cells, pericytes and astrocytes, however neuronal and other glial cell types also comprise the neurovascular niche. Recent single-cell transcriptomics data, indicate that neurovascular cells, particular cells of the microvasculature, are compromised within multiple sclerosis lesions. Large-scale genetic and small-scale cell biology studies also suggest that neurovascular dysfunction could be a primary pathology contributing to multiple sclerosis development. Herein we revisit multiple sclerosis risk factors and multiple sclerosis pathophysiology and highlight the known and potential roles of neurovascular unit dysfunction in multiple sclerosis development and disease progression. We also evaluate the suitability of the neurovascular unit as a potential target for future disease modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
5
|
Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules 2022; 12:biom12060800. [PMID: 35740925 PMCID: PMC9221446 DOI: 10.3390/biom12060800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) known for the manifestation of demyelinated lesions throughout the CNS, leading to neurodegeneration. To date, not all pathological mechanisms that drive disease progression are known, but the clinical benefits of anti-CD20 therapies have put B cells in the spotlight of MS research. Besides their pathological effects in the periphery in MS, B cells gain access to the CNS where they can contribute to disease pathogenesis. Specifically, B cells accumulate in perivascular infiltrates in the brain parenchyma and the subarachnoid spaces of the meninges, but are virtually absent from the choroid plexus. Hence, the possible migration of B cells over the blood-brain-, blood-meningeal-, and blood-cerebrospinal fluid (CSF) barriers appears to be a crucial step to understanding B cell-mediated pathology. To gain more insight into the molecular mechanisms that regulate B cell trafficking into the brain, we here provide a comprehensive overview of the different CNS barriers in health and in MS and how they translate into different routes for B cell migration. In addition, we review the mechanisms of action of diverse therapies that deplete peripheral B cells and/or block B cell migration into the CNS. Importantly, this review shows that studying the different routes of how B cells enter the inflamed CNS should be the next step to understanding this disease.
Collapse
|
6
|
Xia F, Zeng Q, Chen J. Circulating brain-derived neurotrophic factor dysregulation and its linkage with lipid level, stenosis degree, and inflammatory cytokines in coronary heart disease. J Clin Lab Anal 2022; 36:e24546. [PMID: 35666604 PMCID: PMC9279961 DOI: 10.1002/jcla.24546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Background Brain‐derived neurotrophic factor (BDNF) regulates the lipid metabolism, atherosclerosis plaque formation, and inflammatory process, while the study about its clinical role in coronary heart disease (CHD) is few. The present study intended to explore the expression of BDNF and its relationship with stenosis, inflammation, and adhesion molecules in CHD patients. Methods After serum samples were obtained from 207 CHD patients, BDNF, tumor necrosis factor‐alpha (TNF‐α), interleukin (IL)‐1β, IL‐6, IL‐8, IL‐17A, vascular cell adhesion molecule‐1 (VCAM‐1), and intercellular adhesion molecule‐1 (ICAM‐1) levels were determined using ELISA. Then, the BDNF level was also examined in 40 disease controls (DCs) and 40 healthy controls (HCs), separately. Results BDNF was lower in CHD patients than in DCs and HCs (median (95% confidential interval) value: 5.6 (3.5–9.6) ng/mL vs. 10.7 (6.1–17.0) ng/mL and 12.6 (9.4–18.2) ng/mL, both p < 0.001). BDNF could well distinguish CHD patients from DCs (area under the curve [AUC]: 0.739) and HCs (AUC: 0.857). BDNF was negatively associated with triglyceride (p = 0.014), total cholesterol (p = 0.037), and low‐density lipoprotein cholesterol (p = 0.008). BDNF was negatively associated with CRP (p < 0.001), TNF‐α (p < 0.001), IL‐1β (p = 0.008), and IL‐8 (p < 0.001). BDNF was negatively related to VCAM‐1 (p < 0.001) and ICAM‐1 (p = 0.003). BDNF was negatively linked with the Gensini score (p < 0.001). Conclusion BDNF reflects the lipid dysregulation, inflammatory status, and stenosis degree in CHD patients.
Collapse
Affiliation(s)
- Feng Xia
- Department of Cardiology, Wuhan Asia General Hospital, Wuhan, China
| | - Qingrong Zeng
- Department of Cardiology, Wuhan Asia General Hospital, Wuhan, China
| | - Jing Chen
- Department of Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, China
| |
Collapse
|
7
|
Local autoimmune encephalomyelitis model in a rat brain with precise control over lesion placement. PLoS One 2022; 17:e0262677. [PMID: 35061807 PMCID: PMC8782401 DOI: 10.1371/journal.pone.0262677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Development of a novel, animal model for multiple sclerosis (MS) with reproducible and predictable lesion placement would enhance the discovery of effective treatments. Therefore, we would like to combine the advantages of the demyelination model with experimental autoimmune encephalomyelitis (EAE) to provide a local autoimmune encephalomyelitis (LAE) inside rat brain. We induced a demyelinating lesion by immunizing male Wistar rats, followed by blood-brain barrier opening protein (vascular endothelial growth factor) by stereotactic injection. We confirmed the immunization against myelin epitopes and minor neurological impairment. Histological assessment confirmed the lesion development after both 3- and 7 days post-injection. Our approach was sufficient to develop a demyelinating lesion with high reproducibility and low morbidity.
Collapse
|
8
|
Kata F, Alsulaitti SW, Adlan MM. Leptin and Vascular Cell Adhesion Protein 1 as Physiological Biomarkers in Serum of Women Suffering from Rheumatoid Arthritis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Rheumatoid arthritis is defining as a common chronic and inflammatory disorder of systematic autoimmune disease. Leptin is a small peptide hormone involved in the inflammatory and immunomodulators processes of several diseases.
AIM: The study aimed at evaluating the level of leptin and Vascular Cell Adhesion Protein 1 (VCAM-1) and proves that they act as vital markers in the serum of rheumatoid arthritis.
MATERIALS AND METHODS: In this study, 80 serum samples from women were obtains (56 serum samples were distributing for women with rheumatoid arthritis and 24 serum samples for uninfected women who were considered a healthy group).
RESULTS: There are no significant difference in the concentration of the leptin hormone in the serum of both patients and healthy women, and that age, period, and severity of the disease had no effect on the level of leptin hormone. However, the results confirmed that at the probability level p < 0.05 the VCAM-1 concentration increased significantly in patients’ serum when compared with the healthy group, and demonstrated that age groups only affected the VCAM-1 biomarker level.
CONCLUSIONS: Our current study concludes that leptin levels in the serum were not impacts by the inflammatory state in patients with rheumatism, whereas VCAM-1 level in rheumatic patients may be associate with inflammatory reactions.
Collapse
|
9
|
Solitano V, Parigi TL, Ragaini E, Danese S. Anti-integrin drugs in clinical trials for inflammatory bowel disease (IBD): insights into promising agents. Expert Opin Investig Drugs 2021; 30:1037-1046. [PMID: 34449288 DOI: 10.1080/13543784.2021.1974396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Despite huge and increasing developments in the treatment of inflammatory bowel disease (IBD), a significant percentage of patients with Crohn's disease (CD) and ulcerative colitis (UC) is still in need of an effective and safe therapeutic option. Tackling the trafficking of leukocytes specifically within or directed to the inflamed gut appears to be a particularly promising strategy, and several new anti-integrin agents are currently under investigation in clinical trials. AREAS COVERED This review summarizes efficacy and safety data from phase 1, 2 and 3 clinical trials on investigational drugs, including monoclonal antibodies (etrolizumab, abrilumab, ontamalimab) and oral small molecules (AJM300, PTG-100). It also discusses the future perspectives for the treatment of IBD patients with this class of agents. EXPERT OPINION The pipeline of anti-integrin agents is well assorted, and it is reasonable to expect that some will be introduced in the market soon. Among the most exciting features of this class are the gut selectivity, the convenient subcutaneous and oral administrations and the reassuring safety profiles. Most of the new anti-integrins seem to improve outcomes in UC but not in CD, however these data are far from definitive and several pivotal trials are still under way.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Elisa Ragaini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
10
|
D’Haens GR, Reinisch W, Lee SD, Tarabar D, Louis E, Kłopocka M, Klaus J, Schreiber S, Il Park D, Hébuterne X, Nagy P, Cataldi F, Martin SW, Nayak S, Banerjee A, Gorelick KJ, Sandborn WJ. Long-Term Safety and Efficacy of the Anti-Mucosal Addressin Cell Adhesion Molecule-1 Monoclonal Antibody Ontamalimab (SHP647) for the Treatment of Crohn's Disease: The OPERA II Study. Inflamm Bowel Dis 2021; 28:1034-1044. [PMID: 34427633 PMCID: PMC9247846 DOI: 10.1093/ibd/izab215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Patients with Crohn's disease (CD) experience intestinal inflammation. Ontamalimab (SHP647), a fully human immunoglobulin G2 monoclonal antibody against mucosal addressin cell adhesion molecule-1, is a potential novel CD treatment. OPERA II, a multicenter, open-label, phase 2 extension study, assessed the long-term safety and efficacy of ontamalimab in patients with moderate-to-severe CD. METHODS Patients had completed 12 weeks of blinded treatment (placebo or ontamalimab at 22.5, 75, or 225 mg subcutaneously) in OPERA (NCT01276509) or had a clinical response to ontamalimab 225 mg in TOSCA (NCT01387594). Participants received ontamalimab at 75 mg every 4 weeks (weeks 0-72), then were followed up every 4 weeks for 24 weeks. One-time dose reduction to 22.5 mg or escalation to 225 mg was permitted at the investigator's discretion. The primary end points were safety and tolerability outcomes. Secondary end points included changes in serum drug and biomarker concentrations. Efficacy end points were exploratory, and used non-responder imputation methods. RESULTS Overall, 149/268 patients completed the study. The most common adverse event leading to study discontinuation was CD flare (19.8%). Two patients died; neither death was considered to be drug related. No dose reductions occurred; 157 patients had their dose escalated. Inflammatory biomarker concentrations decreased. Serum ontamalimab levels were consistent with known pharmacokinetics. Remission rates (Harvey-Bradshaw Index [HBI] ≤ 5; baseline, 48.1%; week 72, 37.3%) and response rates (baseline [decrease in Crohn's Disease Activity Index ≥ 70 points], 63.1%; week 72 [decrease in HBI ≥ 3], 42.5%) decreased gradually. CONCLUSIONS Ontamalimab was well tolerated; treatment responses appeared to be sustained over 72 weeks.ClinicalTrials.gov ID: NCT01298492.
Collapse
Affiliation(s)
- Geert R D’Haens
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Walter Reinisch
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Scott D Lee
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - Dino Tarabar
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Belgrade, Serbia
| | - Edouard Louis
- Department of Clinical Sciences, University Hospital Centre Hospitalier Universitaire of Liège, Liège, Belgium
| | - Maria Kłopocka
- Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Jochen Klaus
- Clinic for Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Stefan Schreiber
- Clinic for Internal Medicine I, University Hospital Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dong Il Park
- Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, South Korea
| | - Xavier Hébuterne
- University Côte d’Azur, Centre Hospitalier Universitaire of Nice, Nice, France
| | - Peter Nagy
- Address correspondence to: Peter Nagy, MD, Takeda Pharmaceuticals International AG, Thurgauerstrasse 130, 8152 Glattpark-Opfikon, Switzerland ()
| | | | | | | | | | | | | |
Collapse
|
11
|
B Cell Adhesion to Fibroblast-Like Synoviocytes Is Up-Regulated by Tumor Necrosis Factor-Alpha via Expression of Human Vascular Cell Adhesion Molecule-1 Mediated by B Cell-Activating Factor. Int J Mol Sci 2021; 22:ijms22137166. [PMID: 34281218 PMCID: PMC8267633 DOI: 10.3390/ijms22137166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a key role in the pathogenesis of rheumatoid arthritis (RA) by producing inflammatory cytokines and interacting with various immune cells, which contribute to cartilage destruction. RA-FLSs activated by tumor necrosis factor alpha (TNF-α), exacerbate joint damage by triggering the expression of various inflammatory molecules, including human vascular cell adhesion molecule-1 (hVCAM1) and B cell-activating factor (hBAFF), with a role in maturation and maintenance of B cells. Here, we investigated whether B cell interaction with FLSs could be associated with hVCAM1 expression by TNF-α through hBAFF, using WiL2-NS B cells and MH7A synovial cells. TNF-α enhanced the expression of hVCAM1 and hBAFF. B cell adhesion to FLSs was increased by treatment with TNF-α or hBAFF protein. hVCAM expression was up-regulated by transcriptional activation of the hVCAM1 promoter(−1549 to −54) in MH7A cells treated with hBAFF protein or overexpressed with hBAFF gene. In contrast, hVCAM1 expression was down-regulated by treatment with hBAFF-siRNA. JNK was activated by TNF-α treatment. Then, hVCAM1 expression and B cell adhesion to FLSs were reduced by the treatment with JNK inhibitor SP600125. Transcriptional activity of hVCAM1 by the stimulation with TNF-α was inhibited by the deletion of −1549 to −229 from the hVCAM1 promoter. hVCAM1 expression and B cell adhesion to FLSs were reduced by treatment with hVCAM1-siRNA. Taken together, these results suggest that B cell adhesion to FLSs is associated with TNF-α-induced up-regulation of hVCAM1 expression via hBAFF expression. Thus, the pathological progression of RA may be associated with hVCAM1-mediated interaction of synovial cells with B lymphocytes.
Collapse
|
12
|
Maglinger B, Sands M, Frank JA, McLouth CJ, Trout AL, Roberts JM, Grupke S, Turchan-Cholewo J, Stowe AM, Fraser JF, Pennypacker KR. Intracranial VCAM1 at time of mechanical thrombectomy predicts ischemic stroke severity. J Neuroinflammation 2021; 18:109. [PMID: 33971895 PMCID: PMC8111916 DOI: 10.1186/s12974-021-02157-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background Emergent large vessel occlusion (ELVO) strokes are devastating ischemic vascular events for which novel treatment options are needed. Using vascular cell adhesion molecule 1 (VCAM1) as a prototype, the objective of this study was to identify proteomic biomarkers and network signaling functions that are potential therapeutic targets for adjuvant treatment for mechanical thrombectomy. Methods The blood and clot thrombectomy and collaboration (BACTRAC) study is a continually enrolling tissue bank and registry from stroke patients undergoing mechanical thrombectomy. Plasma proteins from intracranial (distal to clot) and systemic arterial blood (carotid) were analyzed by Olink Proteomics for N=42 subjects. Statistical analysis of plasma proteomics used independent sample t tests, correlations, linear regression, and robust regression models to determine network signaling and predictors of clinical outcomes. Data and network analyses were performed using IBM SPSS Statistics, SAS v 9.4, and STRING V11. Results Increased systemic (p<0.001) and intracranial (p=0.013) levels of VCAM1 were associated with the presence of hypertension. Intracranial VCAM1 was positively correlated to both infarct volume (p=0.032; r=0.34) and edema volume (p=0.026; r=0.35). The %∆ in NIHSS from admittance to discharge was found to be significantly correlated to both systemic (p=0.013; r = −0.409) and intracranial (p=0.011; r = −0.421) VCAM1 levels indicating elevated levels of systemic and intracranial VCAM1 are associated with reduced improvement of stroke severity based on NIHSS from admittance to discharge. STRING-generated analyses identified biologic functional descriptions as well as function-associated proteins from the predictive models of infarct and edema volume. Conclusions The current study provides novel data on systemic and intracranial VCAM1 in relation to stroke comorbidities, stroke severity, functional outcomes, and the role VCAM1 plays in complex protein-protein signaling pathways. These data will allow future studies to develop predictive biomarkers and proteomic targets for drug development to improve our ability to treat a devastating pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02157-4.
Collapse
Affiliation(s)
- Benton Maglinger
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Madison Sands
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Jill M Roberts
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Stephen Grupke
- Department of Neurosurgery and Neuroendovascular Surgery, Covenant Medical Center, Lubbock, TX, USA
| | - Jadwiga Turchan-Cholewo
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA.,Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA. .,Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
13
|
Reinisch W, Sandborn WJ, Danese S, Hébuterne X, Kłopocka M, Tarabar D, Vaňásek T, Greguš M, Hellstern PA, Kim JS, Sparrow MP, Gorelick KJ, Hoy M, Goetsch M, Bliss C, Gupta C, Cataldi F, Vermeire S. Long-term Safety and Efficacy of the Anti-MAdCAM-1 Monoclonal Antibody Ontamalimab [SHP647] for the Treatment of Ulcerative Colitis: The Open-label Study TURANDOT II. J Crohns Colitis 2021; 15:938-949. [PMID: 33599720 PMCID: PMC8218706 DOI: 10.1093/ecco-jcc/jjab023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Ontamalimab, a fully-human monoclonal antibody targeting MAdCAM-1, induced remission in patients with moderate-to-severe ulcerative colitis [UC] in the TURANDOT study. We aimed to assess long-term safety, tolerability, and efficacy of ontamalimab in TURANDOT II. METHODS TURANDOT II was a phase 2, multicentre, open-label [OL] study in patients with moderate-to-severe UC who completed TURANDOT on placebo or ontamalimab (NCT01771809). Patients were randomised to 75 mg or 225 mg ontamalimab every 4 weeks for 72 weeks [OL1]. The dosage could be increased to 225 mg from Week 8 at the investigator's discretion. All patients then received 75 mg every 4 weeks for 72 weeks [OL2], followed by 6-month safety follow-up. The primary objective was safety, measured by adverse events [AEs], serious AEs [SAEs], and AEs leading to withdrawal. Mucosal healing [MH; centrally read endoscopy] was assessed. RESULTS Of 330 patients, 180 completed OL1; 94 escalated to 225 mg; 127 completed OL2. Overall, 36.1% experienced drug-related AEs. The most common SAE [10.0%] was worsening/ongoing UC; 5.5% of patients had serious infections, the most common being gastroenteritis [0.9%]. One death and four cancers [all unrelated to ontamalimab] occurred. No PML [progressive multifocal leukoencephalopathy]/lymphoproliferative disorders occurred. Geometric mean high-sensitivity C-reactive protein [hsCRP] and faecal calprotectin decreased across OL1 in both dose groups. The proportion of patients assigned to placebo in TURANDOT achieving MH increased from 8.8% [6/68] at baseline to 35.3% at Week 16 [24/68; non-responder imputation]. The corresponding increase in the ontamalimab group was from 23.3% [61/262] to 26.7% [70/262]. CONCLUSIONS Ontamalimab was well tolerated up to 144 weeks in patients with moderate-to-severe UC, with good safety and efficacy.
Collapse
Affiliation(s)
- Walter Reinisch
- Department of Internal Medicine, Medical University of Vienna, Vienna, Austria,Corresponding author: Professor Walter Reinisch, MD, PhD , Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria. Tel.: +43 699 1952 7983;
| | - William J Sandborn
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Silvio Danese
- Inflammatory Bowel Diseases Center, Humanitas University, Milan, Italy
| | | | - Maria Kłopocka
- Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Dino Tarabar
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Belgrade, Serbia
| | - Tomáš Vaňásek
- Faculty of Medicine, Charles University Hospital, Hradec Králové, Czech Republic
| | | | - Paul A Hellstern
- Gastroenterology, Nature Coast Clinical Research, Inverness, FL, USA
| | - Joo Sung Kim
- Seoul National University College of Medicine, Seoul, South Korea
| | - Miles P Sparrow
- Inflammatory Bowel Disease Clinic, Alfred Hospital, Melbourne, VIC, Australia
| | | | | | | | | | | | | | - Séverine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Duc D, Vigne S, Bernier-Latmani J, Yersin Y, Ruiz F, Gaïa N, Leo S, Lazarevic V, Schrenzel J, Petrova TV, Pot C. Disrupting Myelin-Specific Th17 Cell Gut Homing Confers Protection in an Adoptive Transfer Experimental Autoimmune Encephalomyelitis. Cell Rep 2020; 29:378-390.e4. [PMID: 31597098 DOI: 10.1016/j.celrep.2019.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a common autoimmune disease of the CNS. Although an association between MS and inflammatory bowel diseases is observed, the link connecting intestinal immune responses and neuroinflammation remains unclear. Here we show that encephalitogenic Th17 cells infiltrate the colonic lamina propria before neurological symptom development in two murine MS models, active and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Specifically targeting Th17 cell intestinal homing by blocking the α4β7-integrin and its ligand MAdCAM-1 pathway impairs T cell migration to the large intestine and dampens EAE severity in the Th17 cell adoptive transfer model. Mechanistically, myelin-specific Th17 cells proliferate in the colon and affect gut microbiota composition. The beneficial effect of blocking the α4β7-integrin and its ligand MAdCAM-1 pathway on EAE is interdependent with gut microbiota. Those results show that disrupting myelin-specific Th17 cell trafficking to the large intestine harnesses neuroinflammation and suggests that the gut environment and microbiota catalyze the encephalitogenic properties of Th17 cells.
Collapse
Affiliation(s)
- Donovan Duc
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, and Ludwig Institute for Cancer Research Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Yannick Yersin
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Stefano Leo
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, and Ludwig Institute for Cancer Research Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
15
|
Vascular Inflammation Is a Risk Factor Associated with Brain Atrophy and Disease Severity in Parkinson's Disease: A Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2591248. [PMID: 32733633 PMCID: PMC7376437 DOI: 10.1155/2020/2591248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Introduction Systemic inflammation with elevated oxidative stress causing neuroinflammation is considered a major factor in the pathogenesis of Parkinson's disease (PD). The interface between systemic circulation and the brain parenchyma is the blood-brain barrier (BBB), which also plays a role in maintaining neurovascular homeostasis. Vascular cell adhesion molecule-1 (VCAM-1) and microRNAs (miRNAs) regulate brain vessel endothelial function, neoangiogenesis, and, in turn, neuronal homeostasis regulation, such that their dysregulation can result in neurodegeneration, such as gray matter atrophy, in PD. Objective Our aim was to evaluate the associations among specific levels of gray matter atrophy, peripheral vascular adhesion molecules, miRNAs, and clinical disease severity in order to achieve a clearer understanding of PD pathogenesis. Methods Blood samples were collected from 33 patients with PD and 27 healthy volunteers, and the levels of VCAM-1 and several miRNAs in those samples were measured. Voxel-based morphometry (VBM) analysis was performed using 3 T magnetic resonance imaging (MRI) and SPM (Statistical Parametric Mapping software program). The associations among the vascular parameter, miRNAs, gray matter volume, and clinical disease severity measurements were evaluated by partial correlation analysis. Results The levels of VCAM-1, miRNA-22, and miRNA-29a expression were significantly elevated in the PD patients. The gray matter volume atrophy in the left parahippocampus, bilateral posterior cingulate gyrus, fusiform gyrus, left temporal gyrus, and cerebellum was significantly correlated with increased clinical disease severity, the upregulation of miRNA levels, and increased vascular inflammation. Conclusion Patients with PD seem to have abnormal levels of vascular inflammatory markers and miRNAs in the peripheral circulation, and these levels are correlated with specific brain volume changes. This study reinforces the associations among peripheral inflammation, the BBB interface, and gray matter atrophy in PD and further demonstrates that BBB dysfunction with neurovascular impairment may play an important role in PD progression.
Collapse
|
16
|
Dotan I, Allez M, Danese S, Keir M, Tole S, McBride J. The role of integrins in the pathogenesis of inflammatory bowel disease: Approved and investigational anti-integrin therapies. Med Res Rev 2019; 40:245-262. [PMID: 31215680 PMCID: PMC6973243 DOI: 10.1002/med.21601] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation in the gastrointestinal tract. The underlying pathobiology of IBD includes an increase in infiltrating gut-homing lymphocytes. Although lymphocyte homing is typically a tightly regulated and stepwise process involving multiple integrins and adhesion molecules expressed on endothelial cells, the distinct roles of integrin-expressing immune cells is not fully understood in the pathology of IBD. In this review, we detail the involvement of integrins expressed on specific lymphocyte subsets in the pathogenesis of IBD and discuss the current status of approved and investigational integrin-targeted therapies.
Collapse
Affiliation(s)
- Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, University Denis Diderot, Paris, France
| | - Silvio Danese
- Gastrointestinal Immunopathology Laboratory and IBD Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Mary Keir
- Department of Research and Early Development, Genentech, South San Francisco, California
| | - Swati Tole
- Department of Product Development, Genentech, South San Francisco, California
| | - Jacqueline McBride
- Department of Research and Early Development, Genentech, South San Francisco, California
| |
Collapse
|
17
|
Kuhbandner K, Hammer A, Haase S, Terbrack E, Hoffmann A, Schippers A, Wagner N, Hussain RZ, Miller-Little WA, Koh AY, Stoolman JS, Segal BM, Linker RA, Stüve O. MAdCAM-1-Mediated Intestinal Lymphocyte Homing Is Critical for the Development of Active Experimental Autoimmune Encephalomyelitis. Front Immunol 2019; 10:903. [PMID: 31114574 PMCID: PMC6503766 DOI: 10.3389/fimmu.2019.00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/08/2019] [Indexed: 01/28/2023] Open
Abstract
Lymphocyte homing into the intestine is mediated by binding of leukocytes to mucosal addressin cell adhesion molecule 1 (MAdCAM-1), expressed on endothelial cells. Currently, the immune system of the gut is considered a major modulator not only of inflammatory bowel disease, but also of extra-intestinal autoimmune disorders, including multiple sclerosis (MS). Despite intense research in this field, the exact role of the intestine in the pathogenesis of (neuro-)inflammatory disease conditions remains to be clarified. This prompted us to investigate the role of MAdCAM-1 in immunological processes in the intestine during T cell-mediated autoimmunity of the central nervous system (CNS). Using the experimental autoimmune encephalomyelitis model of MS, we show that MAdCAM-1-deficient (MAdCAM-1-KO) mice are less susceptible to actively MOG35−55-induced disease. Protection from disease was accompanied by decreased numbers of immune cells in the lamina propria and Peyer's patches as well as reduced immune cell infiltration into the spinal cord. MOG35−55-recall responses were intact in other secondary lymphoid organs of MAdCAM-1-KO mice. The composition of specific bacterial groups within the microbiome did not differ between MAdCAM-1-KO mice and controls, while MAdCAM-1-deficiency severely impaired migration of MOG35−55-activated lymphocytes to the gut. Our data indicate a critical role of MAdCAM-1 in the development of CNS inflammation by regulating lymphocyte homing to the intestine, and may suggest a role for the intestinal tract in educating lymphocytes to become encephalitogenic.
Collapse
Affiliation(s)
- Kristina Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Hammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Haase
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Elisa Terbrack
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Angela Schippers
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William A Miller-Little
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew Y Koh
- Department of Pediatrics, Microbiology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joshua S Stoolman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Benjamin M Segal
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
| |
Collapse
|
18
|
Inflammatory Markers in Anorexia Nervosa: An Exploratory Study. Nutrients 2018; 10:nu10111573. [PMID: 30355978 PMCID: PMC6266841 DOI: 10.3390/nu10111573] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammation has been suggested to play a pathophysiological role in anorexia nervosa (AN). In this exploratory cross-sectional study, we measured serum concentrations of 40 inflammatory markers (including cytokines, chemokines, and adhesion molecules) and brain-derived neurotrophic factor (BDNF) in people with AN (n = 27) and healthy controls (HCs) (n = 13). Many of these inflammatory markers had not been previously quantified in people with AN. Eating disorder (ED) and general psychopathology symptoms were assessed. Body mass index (BMI) and body composition data were obtained. Interleukin (IL)-6, IL-15, and vascular cell adhesion molecule (VCAM)-1 concentrations were significantly elevated and concentrations of BDNF, tumor necrosis factor (TNF)-β, and vascular endothelial growth factor (VEGF)-A were significantly lower in AN participants compared to HCs. Age, BMI, and percentage body fat mass were identified as potential confounding variables for several of these inflammatory markers. Of particular interest is that most of the quantified markers were unchanged in people with AN, despite them being severely underweight with evident body fat loss, and having clinically significant ED symptoms and severe depression and anxiety symptoms. Future research should examine the replicability of our findings and consider the effect of additional potential confounding variables, such as smoking and physical activity, on the relationship between AN and inflammation.
Collapse
|
19
|
Sandborn WJ, Lee SD, Tarabar D, Louis E, Klopocka M, Klaus J, Reinisch W, Hébuterne X, Park DI, Schreiber S, Nayak S, Ahmad A, Banerjee A, Brown LS, Cataldi F, Gorelick KJ, Cheng JB, Hassan-Zahraee M, Clare R, D'Haens GR. Phase II evaluation of anti-MAdCAM antibody PF-00547659 in the treatment of Crohn's disease: report of the OPERA study. Gut 2018; 67:1824-1835. [PMID: 28982740 PMCID: PMC6145284 DOI: 10.1136/gutjnl-2016-313457] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This phase II, randomised, double-blind, placebo-controlled clinical trial was designed to evaluate the efficacy and safety of PF-00547659, a fully human monoclonal antibody that binds to human mucosal addressin cell adhesion molecule (MAdCAM) to selectively reduce lymphocyte homing to the intestinal tract, in patients with moderate-to-severe Crohn's disease (CD). DESIGN Eligible adults were aged 18-75 years, with active moderate-to-severe CD (Crohn's Disease Activity Index (CDAI) 220-450), a history of failure or intolerance to antitumour necrosis factor and/or immunosuppressive agents, high-sensitivity C reactive protein >3.0 mg/L and ulcers on colonoscopy. Patients were randomised to PF-00547659 22.5 mg, 75 mg or 225 mg or placebo. The primary endpoint was CDAI 70-point decrease from baseline (CDAI-70) at week 8 or 12. RESULTS In all, 265 patients were eligible for study entry. Although CDAI-70 response was not significantly different with placebo versus PF-00547659 treatment at weeks 8 or 12, remission rate was greater in patients with higher baseline C reactive protein (>5 mg/L vs >18.8 mg/L, respectively). Soluble MAdCAM decreased significantly from baseline to week 2 in a dose-related manner and remained low during the study in PF-00547659-treated patients. Circulating β7+ CD4+ central memory T-lymphocytes increased at weeks 8 and 12 with PF-00547659 treatment. No safety signal was seen. CONCLUSIONS Clinical endpoint differences between PF-00547659 and placebo did not reach statistical significance in patients with moderate-to-severe CD. PF-00547659 was pharmacologically active, as shown by a sustained dose-related decrease in soluble MAdCAM and a dose-related increase in circulating β7+ central memory T cells. TRIAL REGISTRATION NUMBER NCT01276509; Results.
Collapse
Affiliation(s)
- William J Sandborn
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Scott D Lee
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Dino Tarabar
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Belgrade, Serbia
| | - Edouard Louis
- Department of Gastroenterology, University Hospital CHU of Liege, Liège, Belgium
| | - Maria Klopocka
- Department of Vascular Diseases and Internal Medicine, Nicolaus Copernicus University, Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Jochen Klaus
- Department of Medicine, Universitatsklinikum Ulm, Ulm, Germany
| | - Walter Reinisch
- Department of Medicine, Division of Gastroenterology, Medical University of Vienna, Vienna, Austria
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Xavier Hébuterne
- Department of Medicine, Université de Nice Sophia Antipolis, Hôpital de l'Archet, Nice, France
| | - Dong-Il Park
- Department of Internal Medicine, Division of Gastroenterology, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, South Korea
| | | | | | - Alaa Ahmad
- Department of Gastroenterology, Pfizer, Cambridge, Massachusetts, USA
| | - Anindita Banerjee
- Department of Gastroenterology, Pfizer, Cambridge, Massachusetts, USA
| | - Lisa S Brown
- Department of Gastroenterology, Pfizer, Cambridge, Massachusetts, USA
| | - Fabio Cataldi
- Department of Gastroenterology, Pfizer, Cambridge, Massachusetts, USA
| | | | - John B Cheng
- Department of Gastroenterology, Pfizer, Cambridge, Massachusetts, USA
| | | | - Robert Clare
- Department of Gastroenterology, Pfizer, Cambridge, Massachusetts, USA
| | - Geert R D'Haens
- IBD Unit, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Lamb CA, O'Byrne S, Keir ME, Butcher EC. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:S653-S668. [PMID: 29767705 DOI: 10.1093/ecco-jcc/jjy060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are cell surface receptors with bidirectional signalling capabilities that can bind to adhesion molecules in order to mediate homing of leukocytes to peripheral tissues. Gut-selective leukocyte homing is facilitated by interactions between α4β7 and its ligand, mucosal addressin cellular adhesion molecule-1 [MAdCAM-1], while retention of lymphocytes in mucosal tissues is mediated by αEβ7 binding to its ligand E-cadherin. Therapies targeting gut-selective trafficking have shown efficacy in inflammatory bowel disease [IBD], confirming the importance of leukocyte trafficking in disease pathobiology. This review will provide an overview of integrin structure, function and signalling, and highlight the role that these molecules play in leukocyte homing and retention. Anti-integrin therapeutics, including gut-selective antibodies against the β7 integrin subunit [etrolizumab] and the α4β7 integrin heterodimer [vedolizumab and abrilumab], and the non-gut selective anti-α4 integrin [natalizumab], will be discussed, as well as novel targeting approaches using small molecules.
Collapse
Affiliation(s)
- Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sharon O'Byrne
- Global Medical Affairs, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Mary E Keir
- Genentech Research & Early Development, South San Francisco, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
21
|
Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018; 15:19. [PMID: 29960602 PMCID: PMC6026502 DOI: 10.1186/s12987-018-0104-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous, nano-sized vesicles that are shed into the blood and other body fluids, which disperse a variety of bioactive molecules (e.g., protein, mRNA, miRNA, DNA and lipids) to cellular targets over long and short distances. EVs are thought to be produced by nearly every cell type, however this review will focus specifically on EVs that originate from cells at the interface of CNS barriers. Highlighted topics include, EV biogenesis, the production of EVs in response to neuroinflammation, role in intercellular communication and their utility as a therapeutic platform. In this review, novel concepts regarding the use of EVs as biomarkers for BBB status and as facilitators for immune neuroinvasion are also discussed. Future directions and prospective are covered along with important unanswered questions in the field of CNS endothelial EV biology.
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Debayon Paul
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA
| | - Joel S Pachter
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA.
| |
Collapse
|
22
|
Tang MT, Keir ME, Erickson R, Stefanich EG, Fuh FK, Ramirez‐Montagut T, McBride JM, Danilenko DM. Review article: nonclinical and clinical pharmacology, pharmacokinetics and pharmacodynamics of etrolizumab, an anti-β7 integrin therapy for inflammatory bowel disease. Aliment Pharmacol Ther 2018; 47:1440-1452. [PMID: 29601644 PMCID: PMC6001693 DOI: 10.1111/apt.14631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/07/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Novel treatments with superior benefit-risk profiles are needed to improve the long-term prognosis of patients with inflammatory bowel disease (IBD). Etrolizumab-a monoclonal antibody that specifically targets β7 integrins-is currently under phase III clinical evaluation in IBD. AIM This review summarises the available pharmacological and pharmacokinetic/pharmacodynamic data for etrolizumab to provide a comprehensive understanding of its mechanism of action (MOA) and pharmacological effects. METHODS Published and internal unpublished data from nonclinical and clinical studies with etrolizumab are reviewed. RESULTS Etrolizumab exerts its effect via a unique dual MOA that inhibits both leucocyte trafficking to the intestinal mucosa and retention within the intestinal epithelial layer. The gut-selectivity of etrolizumab results from its specific targeting of the β7 subunit of α4β7 and αEβ7 integrins. Etrolizumab does not bind to α4β1 integrin, which mediates lymphocyte trafficking to tissues including the central nervous system, a characteristic underlying its favourable safety with regard to progressive multifocal leucoencephalopathy. Phase I/II studies in patients with ulcerative colitis (UC) showed linear pharmacokinetics when etrolizumab was administered subcutaneously at 100 mg or higher once every 4 weeks. This dose was sufficient to enable full β7 receptor occupancy in both blood and intestinal tissues of patients with moderate to severe UC. The phase II study results also suggested that patients with elevated intestinal expression of αE integrin may have an increased likelihood of clinical remission in response to etrolizumab treatment. CONCLUSION Etrolizumab is a gut-selective, anti-β7 integrin monoclonal antibody that may have therapeutic potential for the treatment of IBD.
Collapse
Affiliation(s)
- M. T. Tang
- Research and Early DevelopmentGenentech, Inc.South San FranciscoCAUSA
| | - M. E. Keir
- Research and Early DevelopmentGenentech, Inc.South San FranciscoCAUSA
| | - R. Erickson
- Research and Early DevelopmentGenentech, Inc.South San FranciscoCAUSA
| | - E. G. Stefanich
- Research and Early DevelopmentGenentech, Inc.South San FranciscoCAUSA
| | - F. K. Fuh
- Research and Early DevelopmentGenentech, Inc.South San FranciscoCAUSA
| | | | - J. M. McBride
- Research and Early DevelopmentGenentech, Inc.South San FranciscoCAUSA
| | - D. M. Danilenko
- Research and Early DevelopmentGenentech, Inc.South San FranciscoCAUSA
| |
Collapse
|
23
|
D’Haens G, Vermeire S, Vogelsang H, Allez M, Desreumaux P, Van Gossum A, Sandborn WJ, Baumgart DC, Ransohoff RM, Comer GM, Ahmad A, Cataldi F, Cheng J, Clare R, Gorelick KJ, Kaminski A, Pradhan V, Rivers S, Sikpi MO, Zhang Y, Hassan-Zahraee M, Reinisch W, Stuve O. Effect of PF-00547659 on Central Nervous System Immune Surveillance and Circulating β7+ T Cells in Crohn's Disease: Report of the TOSCA Study. J Crohns Colitis 2018; 12:188-196. [PMID: 28961770 PMCID: PMC5881743 DOI: 10.1093/ecco-jcc/jjx128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Progressive multifocal leukoencephalopathy [PML], a brain infection associated with anti-integrin drugs that inhibit lymphocyte translocation from bloodstream to tissue, can be fatal. Decreased central nervous system [CNS] immune surveillance leading to this infection has been reported in patients with multiple sclerosis or Crohn's disease treated with anti-integrin antibody natalizumab. PF-00547659 is an investigational human monoclonal antibody for inflammatory bowel disease, targeted against α4β7-mucosal addressin cell-adhesion molecule-1 [the integrin ligand selectively expressed in the gut]. We hypothesised that this selective agent would not affect central nervous system immune surveillance. METHODS Cerebrospinal fluid from five healthy volunteers, and from 10 patients with Crohn's disease previously treated with immunosuppressants, was evaluated to assess the feasibility of the study. Subsequently, 39 patients with active Crohn's disease and previous immunosuppression were evaluated over 12 weeks of PF-00547659-induction therapy. We measured total lymphocytes, T cell subsets in cerebrospinal fluid, and circulating β7+ memory cells. Disease activity was assessed using the Harvey-Bradshaw Index. RESULTS Patients treated with PF-00547659 had no reduction of cerebrospinal fluid lymphocytes, T-lymphocyte subsets, or CD4:CD8 ratio, whereas circulating β7+ memory cells increased significantly. A total of 28/35 [80%] patients had a clinical response and 27/34 [79%] had disease remission. Treatment-related adverse events, none serious, were reported in 23/49 [47%] patients. CONCLUSIONS In patients with active Crohn's disease, natalizumab therapy increases the risk for PML, and the increased risk is thought to be associated with iatrogenic leukopenia within the CNS. PML under PF-00547659 may be a lesser concern, as this agent did not reduce lymphocytes or T cell subsets in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Geert D’Haens
- Academic Medical Center, Amsterdam, The Netherlands,Corresponding author: Geert D’Haens, MD, PhD, Inflammatory Bowel Disease Centre, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands. Tel.: +31-20-5663632;
| | | | | | - Matthieu Allez
- Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | | | | | | | - Daniel C Baumgart
- Charité Medical School, Humboldt-University of Berlin, Berlin, Germany
| | - Richard M Ransohoff
- Mellen Center for MS Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Gail M Comer
- Kimberton Drug Development Consulting, Phoenixville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Walter Reinisch
- Medical University of Vienna, Vienna, Austria,McMaster University, Hamilton, ON, Canada
| | - Olaf Stuve
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA,Southwestern Medical Center, University of Texas, Dallas, TX, USA,Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany
| |
Collapse
|
24
|
Wyant T, Fedyk E, Abhyankar B. An Overview of the Mechanism of Action of the Monoclonal Antibody Vedolizumab. J Crohns Colitis 2016; 10:1437-1444. [PMID: 27252400 DOI: 10.1093/ecco-jcc/jjw092] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vedolizumab is a novel therapeutic monoclonal antibody recently approved for the treatment of moderately to severely active ulcerative colitis and Crohn's disease in adults who have failed at least one conventional therapy. An integrin antagonist, vedolizumab binds to the α4β7 integrin which is expressed specifically by a subset of gastrointestinal-homing T lymphocytes. The binding of α4β7 integrin to mucosal addressin cell adhesion molecule-1 expressed on the surface of mucosal endothelial cells is a crucial component of the gut-selective homing mechanism for lymphocytes.In contrast, other monoclonal antibodies approved for the treatment of inflammatory bowel diseases, such as tumour necrosis factor α antagonists and the integrin antagonist natalizumab, act systemically or on multiple targets to reduce inflammation.The unique gut selectivity of vedolizumab may contribute to the favourable benefit-risk profile observed in vedolizumab clinical trials. In this review, we summarise data from the preclinical development of vedolizumab and describe the current understanding of the mechanism of action as it relates to other biological therapies for inflammatory bowel disease.
Collapse
Affiliation(s)
- Tim Wyant
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Eric Fedyk
- Takeda Pharmaceuticals International Inc., Deerfield, IL, USA
| | | |
Collapse
|
25
|
Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol 2015; 129:639-52. [PMID: 25814153 PMCID: PMC4405352 DOI: 10.1007/s00401-015-1417-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/10/2015] [Accepted: 03/21/2015] [Indexed: 01/17/2023]
Abstract
Human brain microvascular endothelial cells forming the blood–brain barrier (BBB) release soluble vascular cell adhesion molecule-1 (sVCAM-1) under inflammatory conditions. Furthermore, sVCAM-1 serum levels in untreated patients with multiple sclerosis (MS) correlate with a breakdown of the BBB as measured by gadolinium-enhanced MRI. To date, it is unknown whether sVCAM-1 itself modulates BBB permeability. Here, we provide evidence that human brain endothelium expresses integrin α-4/β-1, the molecular binding partner of sVCAM-1, and that sVCAM-1 directly impairs BBB function by inducing intracellular signalling events through integrin α-4. Primary human brain microvascular endothelial cells showed low to moderate integrin α-4 and strong β-1 but no definite β-7 expression in vitro and in situ. Increased brain endothelial integrin α-4 expression was observed in active MS lesions in situ and after angiogenic stimulation in vitro. Exposure of cultured primary brain endothelial cells to recombinant sVCAM-1 significantly increased their permeability to the soluble tracer dextran, which was paralleled by formation of actin stress fibres and reduced staining of tight junction-associated molecules. Soluble VCAM-1 was also found to activate Rho GTPase and p38 MAP kinase. Chemical inhibition of these signalling pathways partially prevented sVCAM-1-induced changes of tight junction arrangement. Importantly, natalizumab, a neutralising recombinant monoclonal antibody against integrin α-4 approved for the treatment of patients with relapsing–remitting MS, partially antagonised the barrier-disturbing effect of sVCAM-1. In summary, we newly characterised sVCAM-1 as a compromising factor of brain endothelial barrier function that may be partially blocked by the MS therapeutic natalizumab.
Collapse
|
26
|
Bonnan M. [Meningeal tertiary lymphoid organs: Major actors in intrathecal autoimmunity]. Rev Neurol (Paris) 2014; 171:65-74. [PMID: 25555848 DOI: 10.1016/j.neurol.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/24/2014] [Accepted: 08/29/2014] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is characterized by an intrathecal synthesis of immunoglobulins synthesized by B-cell clones and by a brain infiltrate of clonal T-cells. The clonal maturation of these lymphocytes takes place in tertiary lymphoid organs (TLO) developed in the intrathecal compartment. TLO are acquired lymphoid organs able to develop in the vicinity of the inflammatory sites, where they mount a complete antigen-driven immune response. We here review TLO pathophysiology in animal models of MS and human MS. Several pieces of evidence suggest that intrathecal TLO may play a major role in the clinical impairment. Potential therapeutic applications are examined.
Collapse
Affiliation(s)
- M Bonnan
- Service de neurologie, hôpital F.-Mitterrand, 4, boulevard Hauterive, 64000 Pau, France.
| |
Collapse
|
27
|
Abstract
TNF antagonists have revolutionized the treatment of IBD. Nevertheless, between 30 and 45% of patients discontinue infliximab and other TNF antagonists over a 2- to 6-year period due to nonresponse, loss of response, or adverse events. Accordingly, the need for novel therapies grows each year. Recent studies have demonstrated the promise of new drugs with distinct modes of action for the treatment of ulcerative colitis (UC) and Crohn's disease (CD). These include agents targeting leukocyte trafficking, therapies directed against IL-12/23 and Janus kinases (JAK), and antibodies against the classic inflammatory cytokine, IL-6. The anti-α4-integrin antibody, natalizumab, was the first effective antitrafficking agent for CD; however, its use has been greatly limited by the risk of progressive multifocal leukoencephalopathy. Therefore, second-generation antitrafficking agents have focused on restricting leukocyte blockade to the intestine through mechanisms interfering with α4β7-integrin and its interaction with mucosal addressin cellular adhesion molecule 1. IL-23 is a cytokine central to the adaptive immune responses that characterize IBD. Ustekinumab, targeting the p40 subunit of IL-12 and IL-23, and the oral JAK inhibitor tofacitinib have proven to be effective in phase 2 trials in CD and UC, respectively. In addition, antibodies targeting the proinflammatory cytokine IL-6 are being studied in CD. Each of the approaches described have promise as well as limitations, so it is likely that the search for novel agents in IBD will continue.
Collapse
Affiliation(s)
- Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, N.Y., USA
| |
Collapse
|
28
|
Wang Y, Yao WR, Duan JZ, Xu W, Yang GB. Mucosal addressin cell adhesion molecule-1 of rhesus macaques: molecular cloning, expression, and alteration after viral infection. Dig Dis Sci 2014; 59:2433-43. [PMID: 24828920 DOI: 10.1007/s10620-014-3209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mucosal addressin cell adhesion molecule-1 (MAdCAM-1), a member of the immunoglobulin superfamily, is essential for gut-specific homing of leukocytes; however, it has not been well characterized in rhesus macaques. AIMS To obtain the complete nucleotide sequence of rhesus macaque MAdCAM-1 cDNA and determine its distribution in gut-associated lymphoid tissues (GALT) and its alteration in duodenal mucosa after simian/human immunodeficiency virus (SHIV) infection. METHODS MAdCAM-1 cDNA was cloned from the colon mucosa of a rhesus macaque by 3'- and 5'-RACE. The distribution and abundance of MAdCAM-1 mRNA in the GALT were examined by nested and real-time RT-PCR. The alterations of MAdCAM-1 mRNA levels in SHIV-infected duodenal mucosa were determined by real-time RT-PCR. RESULTS The nucleotide sequence of rhesus macaque MAdCAM-1 cDNA (1,503 bp nucleotides) including the 5'- and 3'-untranslated regions was obtained. The coding region (1,086 bp) showed 87.56% and the Ig-like domain 1, 2 and TM + cytoplasmic domains showed >93% nucleotide sequence identity to that of humans. Like humans, rhesus macaques lacked MAdCAM-1 IgA1-like domain, which could be a common feature for all primates appeared later during vertebrate evolution. Two species of MAdCAM-1 mRNA were detected and high-level transcripts were observed primarily in the GALT. The full-length MAdCAM-1 expressed in vitro could bind to human α4β7. MAdCAM-1 mRNA levels were statistically significantly reduced in SHIV-infected duodenal mucosa. CONCLUSIONS These data provided a basis for using rhesus macaques in pathological and therapeutic studies on leukocyte homing related diseases such as inflammatory bowel disease and HIV/AIDS.
Collapse
Affiliation(s)
- Yue Wang
- National Center for AIDS/STD Control and Prevention, China-CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Pathology of multiple sclerosis and related inflammatory demyelinating diseases. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:15-58. [PMID: 24507512 DOI: 10.1016/b978-0-444-52001-2.00002-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article provides a comprehensive overview of the pathology of multiple sclerosis (MS), including recent insights into its molecular neuropathology and immunology. It shows that all clinical manifestations of relapsing and progressive MS display the same basic features of pathology, such as chronic inflammation, demyelination in the white and gray matter, and diffuse neurodegeneration within the entire central nervous system. However, the individual components of the pathological spectrum vary quantitatively between early relapsing and late progressive MS. Widespread confluent and plaque-like demyelination with oligodendrocyte destruction is the unique pathological hallmark of the disease, but axonal injury and neurodegeneration are additionally present and in part extensive. Remyelination of existing lesions may occur in MS brains; it is extensive in a subset of patients, while it fails in others. Active tissue injury in MS is always associated with inflammation, consistent with T-cell and macrophage infiltration and microglia activation. Recent data suggest that oxidative injury and subsequent mitochondrial damage play a major pathogenetic role in neurodegeneration. Finally we discuss similarities and differences of the pathology between classical MS and other inflammatory demyelinating diseases, such as neuromyelitis optica, concentric sclerosis, or acute disseminated encephalomyelitis.
Collapse
|
30
|
Allocca M, Fiorino G, Vermeire S, Reinisch W, Cataldi F, Danese S. Blockade of lymphocyte trafficking in inflammatory bowel diseases therapy: importance of specificity of endothelial target. Expert Rev Clin Immunol 2014; 10:885-95. [DOI: 10.1586/1744666x.2014.917962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)--an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer 2014; 136:2504-14. [PMID: 24771582 DOI: 10.1002/ijc.28927] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/16/2014] [Indexed: 12/14/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) first attracted attention more than two decades ago as endothelial adhesion receptor with key function for leukocyte recruitment in term of cellular immune response. The early finding of VCAM-1 binding to melanoma cells, and thus a suggested mechanistic contribution to metastatic spread, was the first and for a long time the only link of VCAM-1 to cancer sciences. In the last few years, hallmarked by a growing insight into the molecular understanding of tumorigenicity and metastasis, an impressive variety of VCAM-1 functionalities in cancer have been elucidated. The present review aims to provide a current overview of VCAM-1 relevance for tumor growth, metastasis, angiogenesis, and related processes. By illustrating the intriguing role of VCAM-1 in cancer disease, VCAM-1 is suggested as a new and up to now underestimated target in cancer treatment and in clinical diagnosis of malignancies.
Collapse
Affiliation(s)
- Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | | |
Collapse
|
32
|
Abstract
The approved treatment options for patients with ulcerative colitis (UC) are currently limited to mesalamine or immunosuppressants. Patients who do not respond to mesalamine-based therapy can be treated with immunomodulators or anti-TNF antibody therapy. Failure or adverse reactions to these medications leaves the patient with little choice other than colectomy. However, novel insights into the pathogenic drivers of UC have led to new developments in drugs that promise clinical efficacy via modulation of targeted pathways. Given the impending expansion of therapeutic options for patients with UC, clinicians and researchers should be familiar with these mechanisms of action. In addition, the typical 'step-up' treatment paradigm for UC will likely need to be reshaped to allow for a more personalized approach to treating UC.
Collapse
|
33
|
Sanadgol N, Sanchooli J, Nikravesh A, Momeni R, Khajeh H, Safari M, Radpour M. Association of VCAM-1 Gene Polymorphisms with Multiple Sclerosis Susceptibility in the Southeast of Iran. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajbmb.2013.329.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Grove RA, Shackelford S, Sopper S, Pirruccello S, Horrigan J, Havrdova E, Gold M, Graff O. Leukocyte counts in cerebrospinal fluid and blood following firategrast treatment in subjects with relapsing forms of multiple sclerosis. Eur J Neurol 2013; 20:1032-42. [DOI: 10.1111/ene.12097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 12/11/2012] [Indexed: 01/21/2023]
Affiliation(s)
- R. A. Grove
- Neurosciences Clinical Statistics; GlaxoSmithKline; Uxbridge UK
| | - S. Shackelford
- Neurosciences Clinical Development; GlaxoSmithKline, Research Triangle Park; NC USA
| | - S. Sopper
- Flow Cytometry Unit; Hämatologie und Onkologie; IHK; Medizinische Universität Innsbruck; Austria
| | - S. Pirruccello
- Department of Pathology and Microbiology; 983135 Nebraska Medical Center; USA
| | - J. Horrigan
- Neurosciences Clinical Development; GlaxoSmithKline, Research Triangle Park; NC USA
| | - E. Havrdova
- Department of Neurology; Charles University, Prague, Czech Republic
| | - M. Gold
- Neurosciences Clinical Development; GlaxoSmithKline, Research Triangle Park; NC USA
| | - O. Graff
- Neurosciences Clinical Development; GlaxoSmithKline, Research Triangle Park; NC USA
| |
Collapse
|
35
|
Cook-Mills JM. Isoforms of Vitamin E Differentially Regulate PKC α and Inflammation: A Review. ACTA ACUST UNITED AC 2013; 4. [PMID: 23977443 DOI: 10.4172/2155-9899.1000137] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin E regulation of disease has been extensively studied but most studies focus on the α-tocopherol isoform of vitamin E. These reports indicate contradictory outcomes for anti-inflammatory functions of the α-tocopherol isoform of vitamin E with regards to animal and clinical studies. These seemingly disparate results are consistent with our recent studies demonstrating that purified natural forms of vitamin E have opposing regulatory functions during inflammation. In this review, we discuss that α-tocopherol inhibits whereas γ-tocopherol elevates allergic inflammation, airway hyperresponsiveness, leukocyte transendothelial migration, and endothelial cell adhesion molecule signaling through protein kinase Cα. Moreover, we have demonstrated that α-tocopherol is an antagonist and γ-tocopherol is an agonist of PKCα through direct binding to a regulatory domain of PKCα. In summary, we have determined mechanisms for opposing regulatory functions of α-tocopherol and γ-tocopherol on inflammation. Information from our studies will have significant impact on the design of clinical studies and on vitamin E consumption.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Marchese ME, Berdnikovs S, Cook-Mills JM. Distinct sites within the vascular cell adhesion molecule-1 (VCAM-1) cytoplasmic domain regulate VCAM-1 activation of calcium fluxes versus Rac1 during leukocyte transendothelial migration. Biochemistry 2012; 51:8235-46. [PMID: 22970700 DOI: 10.1021/bi300925r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular adhesion molecules regulate the migration of leukocytes from the blood into tissue during inflammation. Binding of leukocytes to vascular cell adhesion molecule-1 (VCAM-1) activates signals in endothelial cells, including Rac1 and calcium fluxes. These VCAM-1 signals are required for leukocyte transendothelial migration on VCAM-1. However, it has not been reported whether the cytoplasmic domain of VCAM-1 is necessary for these signals. Interestingly, the 19-amino acid sequence of the VCAM-1 cytoplasmic domain is 100% conserved among many mammalian species, suggesting an important functional role for the domain. To examine the function of the VCAM-1 cytoplasmic domain, we deleted the VCAM-1 cytoplasmic domain or mutated the cytoplasmic domain at amino acid N724, S728, Y729, S730, or S737. The cytoplasmic domain and S728, Y729, S730, or S737 were necessary for leukocyte transendothelial migration. S728 and Y729, but not S730 or S737, were necessary for VCAM-1 activation of calcium fluxes. In contrast, S730 and S737, but not S728 or Y729, were necessary for VCAM-1 activation of Rac1. These functional data are consistent with our computational model of the structure of the VCAM-1 cytoplasmic domain as an α-helix with S728 and Y729, and S730 and S737, on opposite sides of the α-helix. Together, these data indicate that S728 and Y729, and S730 and S737, are distinct functional sites that coordinate VCAM-1 activation of calcium fluxes and Rac1 during leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Michelle E Marchese
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
37
|
Abstract
Multiple sclerosis (MS) is a chronic, complex neurological disease with a variable clinical course in which several pathophysiological mechanisms such as axonal/ neuronal damage, demyelination, inflammation, gliosis, remyelination and repair, oxidative injury and excitotoxicity, alteration of the immune system as well as biochemical disturbances and disruption of blood-brain barrier are involved.(1,2) Exacerbations of MS symptoms reflect inflammatory episodes, while the neurodegenerative aspects of gliosis and axonal loss result in the progression of disability. The precise aetiology of MS is not yet known, although epidemiological data indicate that it arises from a complex interactions between genetic susceptibility and environmental factors.(3) In this chapter the brain structures and processes involved in immunopathogenesis of MS are presented. Additionally, clinical phenotypes and biomarkers of MS are showed.
Collapse
|
38
|
Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal 2011; 15:1607-38. [PMID: 21050132 PMCID: PMC3151426 DOI: 10.1089/ars.2010.3522] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, 240 E Huron, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
39
|
Serres S, Mardiguian S, Campbell SJ, McAteer MA, Akhtar A, Krapitchev A, Choudhury RP, Anthony DC, Sibson NR. VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J 2011; 25:4415-22. [PMID: 21908714 DOI: 10.1096/fj.11-183772] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diagnosis of multiple sclerosis (MS) currently requires lesion identification by gadolinium (Gd)-enhanced or T(2)-weighted magnetic resonance imaging (MRI). However, these methods only identify late-stage pathology associated with blood-brain barrier breakdown. There is a growing belief that more widespread, but currently undetectable, pathology is present in the MS brain. We have previously demonstrated that an anti-VCAM-1 antibody conjugated to microparticles of iron oxide (VCAM-MPIO) enables in vivo detection of VCAM-1 by MRI. Here, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, we have shown that presymptomatic lesions can be quantified using VCAM-MPIO when they are undetectable by Gd-enhancing MRI. Moreover, in symptomatic animals VCAM-MPIO binding was present in all regions showing Gd-DTPA enhancement and also in areas of no Gd-DTPA enhancement, which were confirmed histologically to be regions of leukocyte infiltration. VCAM-MPIO binding correlated significantly with increasing disability. Negligible MPIO-induced contrast was found in either EAE animals injected with an equivalent nontargeted contrast agent (IgG-MPIO) or in control animals injected with the VCAM-MPIO. These findings describe a highly sensitive molecular imaging tool that may enable detection of currently invisible pathology in MS, thus accelerating diagnosis, guiding treatment, and enabling quantitative disease assessment.
Collapse
Affiliation(s)
- Sébastien Serres
- Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, Department of Oncology, Churchill Hospital, Oxford, OX3 7LJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alexander JS, Zivadinov R, Maghzi AH, Ganta VC, Harris MK, Minagar A. Multiple sclerosis and cerebral endothelial dysfunction: Mechanisms. ACTA ACUST UNITED AC 2011; 18:3-12. [PMID: 20663648 DOI: 10.1016/j.pathophys.2010.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 03/30/2010] [Accepted: 04/08/2010] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is believed to be an immune-mediated neurodegenerative disorder of the human central nervous system which usually affects younger adults with certain genetic backgrounds. The causes and cure for MS remain elusive. Based on the recent advances in our understanding of the pathogenic mechanisms of MS, it appears to represents a heterogeneous group of disorders with dissimilar pathophysiology and neuropathology. Currently, there is no unifying hypothesis to explain the pathogenesis of this complex disease. The three prevailing concepts on the pathogenesis of MS include viral, immunological, and vascular hypotheses. This review presents MS as a neuroinflammatory disease with a significant vascular component and examines the existing evidence for the role of cerebral endothelial cell dysfunction in the pathogenesis of this progressive central nervous system (CNS) inflammatory disorder.
Collapse
Affiliation(s)
- J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sasaki H, Emi M, Iijima H, Ito N, Sato H, Yabe I, Kato T, Utsumi J, Matsubara K. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol Brain 2011; 4:24. [PMID: 21658278 PMCID: PMC3141657 DOI: 10.1186/1756-6606-4-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/10/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a sporadic disease. Its pathogenesis may involve multiple genetic and nongenetic factors, but its etiology remains largely unknown. We hypothesized that the genome of a patient with MSA would demonstrate copy number variations (CNVs) in the genes or genomic regions of interest. To identify genomic alterations increasing the risk for MSA, we examined a pair of monozygotic (MZ) twins discordant for the MSA phenotype and 32 patients with MSA. RESULTS By whole-genome CNV analysis using a combination of CNV beadchip and comparative genomic hybridization (CGH)-based CNV microarrays followed by region-targeting, high-density, custom-made oligonucleotide tiling microarray analysis, we identified disease-specific copy number loss of the (Src homology 2 domain containing)-transforming protein 2 (SHC2) gene in the distal 350-kb subtelomeric region of 19p13.3 in the affected MZ twin and 10 of the 31 patients with MSA but not in 2 independent control populations (p = 1.04 × 10-8, odds ratio = 89.8, Pearson's chi-square test). CONCLUSIONS Copy number loss of SHC2 strongly indicates a causal link to MSA. CNV analysis of phenotypically discordant MZ twins is a powerful tool for identifying disease-predisposing loci. Our results would enable the identification of novel diagnostic measure, therapeutic targets and better understanding of the etiology of MSA.
Collapse
Affiliation(s)
- Hidenao Sasaki
- Department of Neurology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Mitsuru Emi
- CNV Laboratory, DNA Chip Research Institute, 1-1-43 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Iijima
- CNV Laboratory, DNA Chip Research Institute, 1-1-43 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Noriko Ito
- CNV Laboratory, DNA Chip Research Institute, 1-1-43 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hidenori Sato
- CNV Laboratory, DNA Chip Research Institute, 1-1-43 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ichiro Yabe
- Department of Neurology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Takeo Kato
- Department of Neurology, Haematology, Metabolism, Endocrinology, and Diabetology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Jun Utsumi
- Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenichi Matsubara
- CNV Laboratory, DNA Chip Research Institute, 1-1-43 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
42
|
Cook-Mills JM, McCary CA. Isoforms of vitamin E differentially regulate inflammation. Endocr Metab Immune Disord Drug Targets 2011; 10:348-66. [PMID: 20923401 DOI: 10.2174/1871530311006040348] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/16/2010] [Indexed: 02/06/2023]
Abstract
Vitamin E regulation of disease has been extensively studied in humans, animal models and cell systems. Most of these studies focus on the α-tocopherol isoform of vitamin E. These reports indicate contradictory outcomes for anti-inflammatory functions of the α-tocopherol isoform of vitamin E, especially with regards to clinical studies of asthma and atherosclerosis. These seemingly disparate clinical results are consistent with recently reported unrecognized properties of isoforms of vitamin E. Recently, it has been reported that physiological levels of purified natural forms of vitamin E have opposing regulatory functions during inflammation. These opposing regulatory functions by physiological levels of vitamin E isoforms impact interpretations of previous studies on vitamin E. Moreover, additional recent studies also indicate that the effects of vitamin E isoforms on inflammation are only partially reversible using physiological levels of a vitamin E isoform with opposing immunoregulatory function. Thus, this further influences interpretations of previous studies with vitamin E in which there was inflammation and substantial vitamin E isoforms present before the initiation of the study. In summary, this review will discuss regulation of inflammation by vitamin E, including alternative interpretations of previous studies in the literature with regards to vitamin E isoforms.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|