1
|
Garrett S, Zhang Y, Xia Y, Sun J. Intestinal Epithelial Axin1 Deficiency Protects Against Colitis via Altered Gut Microbiota. ENGINEERING (BEIJING, CHINA) 2024; 35:241-256. [PMID: 38911180 PMCID: PMC11192507 DOI: 10.1016/j.eng.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Intestinal homeostasis is maintained by specialized host cells and the gut microbiota. Wnt/β-catenin signaling is essential for gastrointestinal development and homeostasis, and its dysregulation has been implicated in inflammation and colorectal cancer. Axin1 negatively regulates activated Wnt/β-catenin signaling, but little is known regarding its role in regulating host-microbial interactions in health and disease. Here, we aim to demonstrate that intestinal Axin1 determines gut homeostasis and host response to inflammation. Axin1 expression was analyzed in human inflammatory bowel disease datasets. To explore the effects and mechanism of intestinal Axin1 in regulating intestinal homeostasis and colitis, we generated new mouse models with Axin1 conditional knockout in intestinal epithelial cell (IEC; Axin1 ΔIEC) and Paneth cell (PC; Axin1 ΔPC) to compare with control (Axin1 LoxP; LoxP: locus of X-over, P1) mice. We found increased Axin1 expression in the colonic epithelium of human inflammatory bowel disease (IBD). Axin1 ΔIEC mice exhibited altered goblet cell spatial distribution, PC morphology, reduced lysozyme expression, and enriched Akkermansia muciniphila (A. muciniphila). The absence of intestinal epithelial and PC Axin1 decreased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vivo. Axin1 ΔIEC and Axin1 ΔPC mice became more susceptible to DSS-colitis after cohousing with control mice. Treatment with A. muciniphila reduced DSS-colitis severity. Antibiotic treatment did not change the IEC proliferation in the Axin1 Loxp mice. However, the intestinal proliferative cells in Axin1 ΔIEC mice with antibiotic treatment were reduced compared with those in Axin1 ΔIEC mice without treatment. These data suggest non-colitogenic effects driven by the gut microbiome. In conclusion, we found that the loss of intestinal Axin1 protects against colitis, likely driven by epithelial Axin1 and Axin1-associated A. muciniphila. Our study demonstrates a novel role of Axin1 in mediating intestinal homeostasis and the microbiota. Further mechanistic studies using specific Axin1 mutations elucidating how Axin1 modulates the microbiome and host inflammatory response will provide new therapeutic strategies for human IBD.
Collapse
Affiliation(s)
- Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Li B, Zheng S, Yin S, Chen J, He Y, Yao J, Liu S. Integrated Transcriptome and Proteome Analyses of β-Conglycinin-Induced Intestinal Damage in Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6601-6612. [PMID: 38480492 DOI: 10.1021/acs.jafc.3c06329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
β-conglycinin (β-CG) induces intestinal damage in piglets; however, its regulatory mechanisms are not fully understood. This study aimed to investigate the molecular mechanisms by which β-CG regulates intestinal injury in piglets through downstream genes and proteins. Our findings revealed that β-CG significantly reduced villus height while increasing the crypt depth. In addition, we analyzed the transcriptome and proteome of jejunum tissues after the β-CG treatment. In total, 382 differentially expressed genes (DEGs) and 292 differentially expressed proteins (DEPs) were identified between the treatment and the control groups. The expression levels of DEGs and DEPs were validated by using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting, respectively. The findings revealed a consistent correlation between their expression levels and transcriptomic and proteomic data. In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs and DEPs revealed their enrichment in oxidation-related GOs, as well as in lysosome-related pathways. A protein-protein interaction (PPI) regulatory network was constructed based on the DEPs. The integration of transcriptomic and proteomic analyses identified six genes that were significantly different at both the transcript and the protein levels. This study provides valuable insights into the molecular mechanisms underlying β-CG-induced intestinal injury in piglets.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Shuangyang Yin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Jiaqi Yao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Simiao Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, P. R. China
| |
Collapse
|
3
|
Ma PF, Zhuo L, Yuan LP, Qi XH. Recent Advances in Vitamin D3 Intervention to Eradicate Helicobacter pylori Infection. J Multidiscip Healthc 2024; 17:825-832. [PMID: 38434485 PMCID: PMC10906669 DOI: 10.2147/jmdh.s454605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Helicobacter pylori (HP) infections affect approximately one-third of children worldwide. In China, the incidence of HP infection in children ranges from approximately 30% to 60%. In addition to damaging the gastrointestinal tract mucosa, HP infection in children can negatively affect their growth and development, hematology, respiratory and hepatobiliary system, skin, nutritional metabolism, and autoimmune system. However, the rate of HP eradication also fell considerably from the previous rate due to the presence of drug-resistant HP strains and the limited types of antibiotics that can be used in young patients. Vitamin D3 (VitD3) is a steroid hormone that can reduce inflammation in the stomach mucosa induced by HP and can alleviate and eradicate HP through a variety of pathways and mechanisms, including immune regulation and the stimulation of antimicrobial peptide (AMP) secretion and Ca2+ influx, to reestablish lysosomal acidification; thus, these results provide new strategies and ideas for the eradication of drug-resistant HP strains.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Lin Zhuo
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Li-Ping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiao-Hui Qi
- Department of Pediatrics, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| |
Collapse
|
4
|
Guo Y, Li Y, Tang Z, Geng C, Xie X, Song S, Wang C, Li X. Compromised NHE8 Expression Is Responsible for Vitamin D-Deficiency Induced Intestinal Barrier Dysfunction. Nutrients 2023; 15:4834. [PMID: 38004229 PMCID: PMC10674576 DOI: 10.3390/nu15224834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Objectives: Vitamin D (VitD) and Vitamin D receptor (VDR) are suggested to play protective roles in the intestinal barrier in ulcerative colitis (UC). However, the underlying mechanisms remain elusive. Evidence demonstrates that Na+/H+ exchanger isoform 8 (NHE8, SLC9A8) is essential in maintaining intestinal homeostasis, regarded as a promising target for UC therapy. Thus, this study aims to investigate the effects of VitD/VDR on NHE8 in intestinal protection. Methods: VitD-deficient mice, VDR-/- mice and NHE8-/- mice were employed in this study. Colitis mice were established by supplementing DSS-containing water. Caco-2 cells and 3D-enteroids were used for in vitro studies. VDR siRNA (siVDR), VDR over-expression plasmid (pVDR), TNF-α and NF-κb p65 inhibitor QNZ were used for mechanical studies. The expression of interested proteins was detected by multiple techniques. Results: In colitis mice, paricalcitol upregulated NHE8 expression was accompanied by restoring colonic mucosal injury. In VitD-deficient and VDR-/- colitis mice, NHE8 expression was compromised with more serious mucosal damage. Noteworthily, paricalcitol could not prevent intestinal barrier dysfunction and histological destruction in NHE8-/- mice. In Caco-2 cells and enteroids, siVDR downregulated NHE8 expression, further promoted TNF-α-induced NHE8 downregulation and stimulated TNF-α-induced NF-κb p65 phosphorylation. Conversely, QNZ blocked TNF-α-induced NHE8 downregulation in the absence or presence of siVDR. Conclusions: Our study indicates depressed NHE8 expression is responsible for VitD-deficient-induced colitis aggravation. These findings provide novel insights into the molecular mechanisms of VitD/VDR in intestine protection in UC.
Collapse
Affiliation(s)
- Yaoyu Guo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Yanni Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Zeya Tang
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Xiaoxi Xie
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Shuailing Song
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Chunhui Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Xiao Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| |
Collapse
|
5
|
Molani-Gol R, Rafraf M. Maternal vitamin D in pregnancy and infant's gut microbiota: a systematic review. Front Pediatr 2023; 11:1248517. [PMID: 37915988 PMCID: PMC10617198 DOI: 10.3389/fped.2023.1248517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Background An infant's gut microbiome plays a vital role in their health, and various factors can impact their gut microbiota composition. This review aimed to summarize the current knowledge regarding the associations between maternal prenatal supplementation with vitamin D and the composition of infants' gut microbiota. Method A comprehensive systematic search was done on Web of Science, Scopus, PubMed, ScienceDirect, and Google Scholar databases without date restrictions until December 2022 using relevant keywords. All relevant original articles in English were eligible for the present review. Results Eight articles (two mice, three randomized clinical trials, and three cohort studies) were included in this review. The included mice studies reported that maternal prenatal vitamin D supplementation significantly affects the offspring's gut microbiome composition (such as enhancing the abundance of colonic Bacteroides). Moreover, the included cohort studies revealed a significant association between maternal supplementation with vitamin D during pregnancy and the infant's gut microbiome. However, one-third of clinical trials indicated that vitamin D levels in utero could influence the colonization of the microbial community in the infant's gut. Conclusion The findings of this review revealed that maternal vitamin D supplementation during pregnancy was linked to an infant's gut microbiome and could impact their gut microbiota composition. However, more studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Roghayeh Molani-Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Gong Y, Chen A, Zhang G, Shen Q, Zou L, Li J, Miao YB, Liu W. Cracking Brain Diseases from Gut Microbes-Mediated Metabolites for Precise Treatment. Int J Biol Sci 2023; 19:2974-2998. [PMID: 37416776 PMCID: PMC10321288 DOI: 10.7150/ijbs.85259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
The gut-brain axis has been a subject of significant interest in recent years. Understanding the link between the gut and brain axis is crucial for the treatment of disorders. Here, the intricate components and unique relationship between gut microbiota-derived metabolites and the brain are explained in detail. Additionally, the association between gut microbiota-derived metabolites and the integrity of the blood-brain barrier and brain health is emphasized. Meanwhile, gut microbiota-derived metabolites with their recent applications, challenges and opportunities their pathways on different disease treatment are focus discussed. The prospective strategy of gut microbiota-derived metabolites potential applies to the brain disease treatments, such as Parkinson's disease and Alzheimer's disease, is proposed. This review provides a broad perspective on gut microbiota-derived metabolites characteristics facilitate understand the connection between gut and brain and pave the way for the development of a new medication delivery system for gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Ying Gong
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Anmei Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Guohui Zhang
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| | - Qing Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Weixin Liu
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| |
Collapse
|
7
|
Huang D, Guo Y, Li X, Pan M, Liu J, Zhang W, Mai K. Vitamin D 3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai. Cell Biol Toxicol 2023; 39:885-906. [PMID: 34637036 DOI: 10.1007/s10565-021-09647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
Vitamin D3 is believed to be a contributing factor to innate immunity. Vitamin D receptor (VDR) has a positive effect on inhibiting nuclear factor κB (NF-κB)-mediated inflammation. The underlying molecular mechanisms remain unclear, particularly in mollusks. Consequently, this study will investigate the process of vitamin D3/VDR regulating NF-κB pathway and further explore their functions on inflammation, autophagy, and apoptosis in abalone Haliotis discus hannai. Results showed that knockdown of VDR by using siRNA and dsRNA of VDR in vitro and in vivo led to more intense response of NF-κB signaling to lipopolysaccharide and higher level of apoptosis and autophagy. In addition, 1,25(OH)2D3 stimulation after VDR silencing could partially alleviate apoptosis and induce autophagy. Overexpression of VDR restricted the K48-polyubiquitin chain-dependent inhibitor of κB (IκB) ubiquitination and apoptosis-associated speck-like protein containing CARD (ASC) oligomerization. Besides, VDR silencing resulted in increase of ASC speck formation. In further mechanistic studies, we showed that VDR can directly bind to IκB and IKK1 in vitro and in vivo. In the feeding trial, H&E staining, TUNEL, and electron microscope results showed that vitamin D3 deficiency (0 IU/kg) could recruit more basophilic cells and increase more TUNEL-positive apoptotic cells and lipid droplets (LDs) than vitamin D3 supplement (1000 IU/kg and 5000 IU/kg). In summary, abalone VDR plays a negative regulator role in NF-κB-mediated inflammation via interacting with IκB and inhibiting ubiquitin-dependent degradation of IκB. Vitamin D3 in combination with VDR is essential to establish a delicate balance between autophagy and apoptosis in response to inflammation.
Collapse
Affiliation(s)
- Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
8
|
Bakke DS, Zhang J, Zhang Y, Ogbu D, Xia Y, Sun J. Myeloid vitamin D receptor regulates Paneth cells and microbial homeostasis. FASEB J 2023; 37:e22957. [PMID: 37219463 PMCID: PMC10321143 DOI: 10.1096/fj.202202169rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Cross talk between immune cells and the intestinal crypt is critical in maintaining intestinal homeostasis. Recent studies highlight the direct impact of vitamin D receptor (VDR) signaling on intestinal and microbial homeostasis. However, the tissue-specific role of immune VDR signaling is not fully understood. Here, we generated a myeloid-specific VDR knockout (VDRΔLyz ) mouse model and used a macrophage/enteroids coculture system to examine tissue-specific VDR signaling in intestinal homeostasis. VDRΔLyz mice exhibited small intestine elongation and impaired Paneth cell in maturation and localization. Coculture of enteroids with VDR-/- macrophages increased the delocalization of Paneth cells. VDRΔLyz mice exhibited significant changes in the microbiota taxonomic and functional files, and susceptibility to Salmonella infection. Interestingly, loss of myeloid VDR impaired Wnt secretion in macrophages, thus inhibiting crypt β-catenin signaling and disrupting Paneth cell differentiation in the epithelium. Taken together, our data have demonstrated that myeloid cells regulate crypt differentiation and the microbiota in a VDR-dependent mechanism. Dysregulation of myeloid VDR led to high risks of colitis-associated diseases. Our study provided insight into the mechanism of immune/Paneth cell cross talk in regulating intestinal homeostasis.
Collapse
Affiliation(s)
- Danika S Bakke
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Destiny Ogbu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
- UIC Cancer Center, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
9
|
Sharma A, Yu Y, Lu J, Lu L, Zhang YG, Xia Y, Sun J, Claud EC. The Impact of Maternal Probiotics on Intestinal Vitamin D Receptor Expression in Early Life. Biomolecules 2023; 13:847. [PMID: 37238716 PMCID: PMC10216467 DOI: 10.3390/biom13050847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D signaling via the Vitamin D Receptor (VDR) has been shown to protect against intestinal inflammation. Previous studies have also reported the mutual interactions of intestinal VDR and the microbiome, indicating a potential role of probiotics in modulating VDR expression. In preterm infants, although probiotics have been shown to reduce the incidence of necrotizing enterocolitis (NEC), they are not currently recommended by the FDA due to potential risks in this population. No previous studies have delved into the effect of maternally administered probiotics on intestinal VDR expression in early life. Using an infancy mouse model, we found that young mice exposed to maternally administered probiotics (SPF/LB) maintained higher colonic VDR expression than our unexposed mice (SPF) in the face of a systemic inflammatory stimulus. These findings indicate a potential role for microbiome-modulating therapies in preventing diseases such as NEC through the enhancement of VDR signaling.
Collapse
Affiliation(s)
- Anita Sharma
- Division of Pediatric Gastroenterology, C.S. Mott Children’s Hospital, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yueyue Yu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Lei Lu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Erika C. Claud
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Nabavi-Rad A, Jamshidizadeh S, Azizi M, Yadegar A, Robinson K, Monaghan TM, Zali MR. The synergistic effect of Levilactobacillus brevis IBRC-M10790 and vitamin D3 on Helicobacter pylori-induced inflammation. Front Cell Infect Microbiol 2023; 13:1171469. [PMID: 37216180 PMCID: PMC10196258 DOI: 10.3389/fcimb.2023.1171469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Background Owing to the emergence and spread of multidrug resistance mechanisms in Helicobacter pylori, achieving a successful eradication has become exceedingly difficult. Thus, this study for the first time determines the effect of a combination of vitamin D3 and probiotic on the pathogenesis and treatment of H. pylori. Methods We established an in vitro experimental system using AGS human gastric carcinoma cells and explored the synergistic effect of Levilactobacillus brevis IBRC-M10790 and vitamin D3 on H. pylori. Live and pasteurized L. brevis, L. brevis-derived membrane vesicles (MVs), and L. brevis cell-free supernatant (CFS), as well as their combination with vitamin D3 were used during this study. We assessed the anti-inflammatory and anti-oxidative effects of these combinations using RT-qPCR and ELISA, respectively. We further performed an adhesion assay to evaluate the influence of L. brevis and vitamin D3 on the adherence rate of H. pylori to AGS cells. Results Our results demonstrated that L. brevis and vitamin D3 possess anti-inflammatory and anti-oxidative effects against H. pylori infection in AGS cells. The combination of vitamin D3 with the probiotic strain (particularly live L. brevis and its CFS) can more efficiently reduce the expression of pro-inflammatory cytokines IL-6, IL-8, IFN-γ, and TNF-α in the AGS cells. Moreover, vitamin D3 and L. brevis exhibited an additive impact preserving the integrity of the epithelial barrier by increasing the expression of the tight junction protein ZO-1. Furthermore, this combination can potentially reduce H. pylori adherence to AGS cells. Conclusions This study indicates the advantage of combining vitamin D3 and probiotic to attenuate H. pylori-induced inflammation and oxidative stress. Consequently, probiotic and vitamin D3 co-supplementation can be considered as a novel therapeutic approach to manage and prevent H. pylori infection.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Jamshidizadeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azizi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karen Robinson
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Hamza FN, Daher S, Fakhoury HMA, Grant WB, Kvietys PR, Al-Kattan K. Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients 2023; 15:nu15071696. [PMID: 37049536 PMCID: PMC10097244 DOI: 10.3390/nu15071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Vitamin D plays a crucial role in modulating the innate immune response by interacting with its intracellular receptor, VDR. In this review, we address vitamin D/VDR signaling and how it contributes to the regulation of intestinal and respiratory microbiota. We additionally review some components of the innate immune system, such as the barrier function of the pulmonary and intestinal epithelial membranes and secretion of mucus, with their respective modulation by vitamin D. We also explore the mechanisms by which this vitamin D/VDR signaling mounts an antimicrobial response through the transduction of microbial signals and the production of antimicrobial peptides that constitute one of the body’s first lines of defense against pathogens. Additionally, we highlight the role of vitamin D in clinical diseases, namely inflammatory bowel disease and acute respiratory distress syndrome, where excessive inflammatory responses and dysbiosis are hallmarks. Increasing evidence suggests that vitamin D supplementation may have potentially beneficial effects on those diseases.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Sarah Daher
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Hana M. A. Fakhoury
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Correspondence:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Peter R. Kvietys
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
12
|
Grüner N, Ortlepp AL, Mattner J. Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-Bone Physiology. Int J Mol Sci 2023; 24:ijms24065161. [PMID: 36982235 PMCID: PMC10048911 DOI: 10.3390/ijms24065161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Intestinal microbiota, and their mutual interactions with host tissues, are pivotal for the maintenance of organ physiology. Indeed, intraluminal signals influence adjacent and even distal tissues. Consequently, disruptions in the composition or functions of microbiota and subsequent altered host-microbiota interactions disturb the homeostasis of multiple organ systems, including the bone. Thus, gut microbiota can influence bone mass and physiology, as well as postnatal skeletal evolution. Alterations in nutrient or electrolyte absorption, metabolism, or immune functions, due to the translocation of microbial antigens or metabolites across intestinal barriers, affect bone tissues, as well. Intestinal microbiota can directly and indirectly alter bone density and bone remodeling. Intestinal dysbiosis and a subsequently disturbed gut-bone axis are characteristic for patients with inflammatory bowel disease (IBD) who suffer from various intestinal symptoms and multiple bone-related complications, such as arthritis or osteoporosis. Immune cells affecting the joints are presumably even primed in the gut. Furthermore, intestinal dysbiosis impairs hormone metabolism and electrolyte balance. On the other hand, less is known about the impact of bone metabolism on gut physiology. In this review, we summarized current knowledge of gut microbiota, metabolites and microbiota-primed immune cells in IBD and bone-related complications.
Collapse
Affiliation(s)
- Niklas Grüner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Lisa Ortlepp
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
13
|
Kouba BR, Camargo A, Rodrigues ALS. Neuroinflammation in Alzheimer's disease: potential beneficial effects of vitamin D. Metab Brain Dis 2023; 38:819-829. [PMID: 36862275 DOI: 10.1007/s11011-023-01188-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. In recent years, several studies have robustly shown that neuroinflammation plays a crucial role in the pathophysiology of this disease. The co-localization of amyloid-β plaques near activated glial cells and the increased levels of inflammatory cytokines in AD patients indicate the involvement of the neuroinflammatory process in AD progression. Considering that pharmacological treatment remains a challenge for the management of this disease, compounds with anti-inflammatory and antioxidant properties are promising therapeutic strategies. In this context, vitamin D has gained attention in the last few years due to its neuroprotective property and the high prevalence of vitamin D deficiency in the population. Herein, in this narrative review we present the possible contribution of the antioxidant and anti-inflammatory properties of vitamin D for its neuroprotective effects, and the clinical and preclinical data dealing with the effects of vitamin D in AD, focusing mainly on the neuroinflammatory process.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
14
|
Aggeletopoulou I, Marangos M, Assimakopoulos SF, Mouzaki A, Thomopoulos K, Triantos C. Vitamin D and Microbiome: Molecular Interaction in Inflammatory Bowel Disease Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00055-X. [PMID: 36868465 DOI: 10.1016/j.ajpath.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Studies of systemic autoimmune diseases point to characteristic microbial patterns in various diseases, including inflammatory bowel disease (IBD). Autoimmune diseases, and IBD in particular, show a predisposition to vitamin D deficiency, leading to alterations in the microbiome and disruption of intestinal epithelial barrier integrity. In this review, we examine the role of the gut microbiome in IBD and discuss how vitamin D-vitamin D receptor (VDR)-associated molecular signaling pathways contribute to the development and progression of IBD through their effects on gut barrier function, the microbial community, and immune system function. The present data demonstrate that vitamin D promotes the proper function of the innate immune system by acting as an immunomodulator, exerting anti-inflammatory effects, and critically contributing to the maintenance of gut barrier integrity and modulation of the gut microbiota, mechanisms that may influence the IBD development and progression. VDR regulates the biological effects of vitamin D and is related to environmental, genetic, immunologic, and microbial aspects of IBD. Vitamin D influences the distribution of the fecal microbiota, with high vitamin D levels associated with increased levels of beneficial bacterial species and lower levels of pathogenic bacteria. Understanding the cellular functions of vitamin D-VDR signaling in intestinal epithelial cells may pave the way for the development of new treatment strategies for the therapeutic armamentarium of IBD in the near future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece; Division of Hematology, Department of Internal Medicine, Laboratory of Immunohematology, Medical School, University Hospital of Patras, Patras, Greece.
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Laboratory of Immunohematology, Medical School, University Hospital of Patras, Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
15
|
Zhang YG, Xia Y, Zhang J, Deb S, Garrett S, Sun J. Intestinal vitamin D receptor protects against extraintestinal breast cancer tumorigenesis. Gut Microbes 2023; 15:2202593. [PMID: 37074210 PMCID: PMC10120454 DOI: 10.1080/19490976.2023.2202593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The microbiota plays critical roles in regulating the function and health of the intestine and extraintestinal organs. A fundamental question is whether an intestinal-microbiome-breast axis exists during the development of breast cancer. If so, what are the roles of host factors? Vitamin D receptor (VDR) involves host factors and the human microbiome. Vdr gene variation shapes the human microbiome, and VDR deficiency leads to dysbiosis. We hypothesized that intestinal VDR protects hosts against tumorigenesis in the breast. We examined a 7,12-dimethylbenzanthracene (DMBA)-induced breast cancer model in intestinal epithelial VDR knockout (VDRΔIEC) mice with dysbiosis. We reported that VDRΔIEC mice with dysbiosis are more susceptible to breast cancer induced by DMBA. Intestinal and breast microbiota analysis showed that VDR deficiency leads to a bacterial profile shift from normal to susceptible to carcinogenesis. We found enhanced bacterial staining within breast tumors. At the molecular and cellular levels, we identified the mechanisms by which intestinal epithelial VDR deficiency led to increased gut permeability, disrupted tight junctions, microbial translocation, and enhanced inflammation, thus increasing tumor size and number in the breast. Furthermore, treatment with the beneficial bacterial metabolite butyrate or the probiotic Lactobacillus plantarum reduced breast tumors, enhanced tight junctions, inhibited inflammation, increased butyryl-CoA transferase, and decreased levels of breast Streptococcus bacteria in VDRΔIEC mice. The gut microbiome contributes to the pathogenesis of diseases not only in the intestine but also in the breast. Our study provides insights into the mechanism by which intestinal VDR dysfunction and gut dysbiosis lead to a high risk of extraintestinal tumorigenesis. Gut-tumor-microbiome interactions represent a new target in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shreya Deb
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
- UIC Cancer Center, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Hernández-Flores TDJ, Pedraza-Brindis EJ, Cárdenas-Bedoya J, Ruíz-Carrillo JD, Méndez-Clemente AS, Martínez-Guzmán MA, Iñiguez-Gutiérrez L. Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. Int J Mol Sci 2022; 23:12324. [PMID: 36293182 PMCID: PMC9604189 DOI: 10.3390/ijms232012324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023] Open
Abstract
A balanced and varied diet provides diverse beneficial effects on health, such as adequate micronutrient availability and a gut microbiome in homeostasis. Besides their participation in biochemical processes as cofactors and coenzymes, vitamins and minerals have an immunoregulatory function; meanwhile, gut microbiota and its metabolites coordinate directly and indirectly the cell response through the interaction with the host receptors. Malnourishment is a crucial risk factor for several pathologies, and its involvement during the Coronavirus Disease 2019 pandemic has been reported. This pandemic has caused a significant decline in the worldwide population, especially those with chronic diseases, reduced physical activity, and elder age. Diet and gut microbiota composition are probable causes for this susceptibility, and its supplementation can play a role in reestablishing microbial homeostasis and improving immunity response against Coronavirus Disease 2019 infection and recovery. This study reviews the role of micronutrients and microbiomes in the risk of infection, the severity of disease, and the Coronavirus Disease 2019 sequelae.
Collapse
Affiliation(s)
- Teresita de Jesús Hernández-Flores
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
| | - Eliza Julia Pedraza-Brindis
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| | - Jhonathan Cárdenas-Bedoya
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| | - José Daniel Ruíz-Carrillo
- Clínica Medicina Familiar 1 del ISSSTE “Dr. Arturo González Guzmán”, Guadalajara 44340, Jalisco, Mexico
| | - Anibal Samael Méndez-Clemente
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
| | - Marco Alonso Martínez-Guzmán
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| | - Liliana Iñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| |
Collapse
|
18
|
Chen Z, Huang D, Yongyut P, Li G, Esteban MÁ, Jintasataporn O, Deng J, Zhang W, Ai Q, Mai K, Zhang Y. Vitamin D 3 deficiency induced intestinal inflammatory response of turbot through nuclear factor-κB/inflammasome pathway, accompanied by the mutually exclusive apoptosis and autophagy. Front Immunol 2022; 13:986593. [PMID: 36159807 PMCID: PMC9493454 DOI: 10.3389/fimmu.2022.986593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D3 (VD3) participated widely in the nuclear factor-κB (NF-κB)-mediated inflammation, apoptosis, and autophagy through the vitamin D receptor (VDR). However, the molecular mechanisms remain not understood in teleost. The present study investigated the functions of VD3/VDR on intestinal inflammation, autophagy, and apoptosis of turbot in vivo and in vitro. Triple replicates of 30 fish were fed with each of three diets with graded levels of 32.0 (D0), 1012.6 (D1), and 3978.2 (D2) IU/kg VD3. Obvious intestinal enteritis was observed in the D0 group and followed with dysfunction of intestinal mucosal barriers. The intestinal inflammatory response induced by VD3 deficiency was regulated by the NF-κB/inflammasome signalling. The promotion of intestinal apoptosis and suppression of intestinal autophagy were also observed in the D0 group. Similarly, VD3 deficiency in vitro induced more intense inflammation regulated by NF-κB/inflammasome signalling. The mutually exclusive apoptosis and autophagy were also observed in the group without 1,25(OH)2D3 in vitro, accompanied by similar changes in apoptosis and autophagy increased apoptosis. The gene expression of VDRs was significantly increased with the increasing VD3 supplementation both in vivo and in vitro. Moreover, VDR knockdown in turbot resulted in intestinal inflammation, and this process relied on the activation of inflammasome mediated by NF-κB signalling. Simultaneously, intestinal apoptosis was promoted, whereas intestinal autophagy was inhibited. In conclusion, VD3 deficiency could induce intestinal inflammation via activation of the NF-κB/inflammasome pathway, intestinal apoptosis, and autophagy formed a mutually exclusive relation in teleost. And VDR is the critical molecule in those processes.
Collapse
Affiliation(s)
- Zhichu Chen
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Prakaiwan Yongyut
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Guangbin Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Orapint Jintasataporn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Chen X, Zhang Z, Sun N, Li J, Ma Z, Rao Z, Sun X, Zeng Q, Wu Y, Li J, Zhang J, Chen Y. Vitamin D receptor enhances
NLRC4
inflammasome activation by promoting
NAIPs–NLRC4
association. EMBO Rep 2022; 23:e54611. [DOI: 10.15252/embr.202254611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xin Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zaikui Zhang
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Naishuang Sun
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Jinzhou Li
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zebing Rao
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Xiaomeng Sun
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Qiang Zeng
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Yuxuan Wu
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Jiahuang Li
- School of Biopharmacy China Pharmaceutical University Nanjing China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing China
| | - Yunzi Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
- Medical Centre for Digestive Diseases Second Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
20
|
Triantos C, Aggeletopoulou I, Mantzaris GJ, Mouzaki Α. Molecular basis of vitamin D action in inflammatory bowel disease. Autoimmun Rev 2022; 21:103136. [DOI: 10.1016/j.autrev.2022.103136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
|
21
|
Kouba BR, Camargo A, Gil-Mohapel J, Rodrigues ALS. Molecular Basis Underlying the Therapeutic Potential of Vitamin D for the Treatment of Depression and Anxiety. Int J Mol Sci 2022; 23:ijms23137077. [PMID: 35806075 PMCID: PMC9266859 DOI: 10.3390/ijms23137077] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder and anxiety disorders are common and disabling conditions that affect millions of people worldwide. Despite being different disorders, symptoms of depression and anxiety frequently overlap in individuals, making them difficult to diagnose and treat adequately. Therefore, compounds capable of exerting beneficial effects against both disorders are of special interest. Noteworthily, vitamin D deficiency has been associated with an increased risk of developing depression and anxiety, and individuals with these psychiatric conditions have low serum levels of this vitamin. Indeed, in the last few years, vitamin D has gained attention for its many functions that go beyond its effects on calcium–phosphorus metabolism. Particularly, antioxidant, anti-inflammatory, pro-neurogenic, and neuromodulatory properties seem to contribute to its antidepressant and anxiolytic effects. Therefore, in this review, we highlight the main mechanisms that may underlie the potential antidepressant and anxiolytic effects of vitamin D. In addition, we discuss preclinical and clinical studies that support the therapeutic potential of this vitamin for the management of these disorders.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
| | - Anderson Camargo
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Correspondence: (J.G.-M.); (A.L.S.R.); Tel.: +1-250-721-6586 (J.G.-M.); +55-(48)-3721-5043 (A.L.S.R.)
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (A.C.)
- Correspondence: (J.G.-M.); (A.L.S.R.); Tel.: +1-250-721-6586 (J.G.-M.); +55-(48)-3721-5043 (A.L.S.R.)
| |
Collapse
|
22
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
23
|
Wang H, He X, Liang S, Chen X. Role of vitamin D in ulcerative colitis: an update on basic research and therapeutic applications. Expert Rev Gastroenterol Hepatol 2022; 16:251-264. [PMID: 35236213 DOI: 10.1080/17474124.2022.2048817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Vitamin D deficiency is common in patients with ulcerative colitis (UC). Moreover, vitamin D supplementation seems to contribute to disease relief. Nevertheless, the exact etiological link between vitamin D deficiency and UC is far from clear, and an agreement has not been reached on the frequency and dosage of vitamin D supplementation required. AREAS COVERED This review will outline the possible role of vitamin D in the pathogenesis of UC and summarize the current state of clinical research on vitamin D. Literature was searched on PUBMED, with 'Vitamin D,' 'Ulcerative colitis,' 'Vitamin D receptor,' and 'disease activity' as MeSH Terms. Relevant information is presented in figures or tables. EXPERT OPINION The etiological relationship between vitamin D and the onset of UC is still being researched. More high-quality double-blind randomized clinical studies are needed to determine the efficacy of vitamin D supplementation in the treatment of UC, whether as the main treatment or as an adjuvant treatment. Importantly, determining the dosage and frequency of vitamin D supplementation should be the main research direction in the future, and regional factors should also be fully considered in this respect.
Collapse
Affiliation(s)
- HongQian Wang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Xue He
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - ShiMin Liang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Xi Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| |
Collapse
|
24
|
Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B. Role of Vitamin K in Intestinal Health. Front Immunol 2022; 12:791565. [PMID: 35069573 PMCID: PMC8769504 DOI: 10.3389/fimmu.2021.791565] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC) generally characterized by clinical symptoms, including malabsorption, intestinal dysfunction, injury, and microbiome imbalance, as well as certain secondary intestinal disease complications, continue to be serious public health problems worldwide. The role of vitamin K (VK) on intestinal health has drawn growing interest in recent years. In addition to its role in blood coagulation and bone health, several investigations continue to explore the role of VK as an emerging novel biological compound with the potential function of improving intestinal health. This study aims to present a thorough review on the bacterial sources, intestinal absorption, uptake of VK, and VK deficiency in patients with intestinal diseases, with emphasis on the effect of VK supplementation on immunity, anti-inflammation, intestinal microbes and its metabolites, antioxidation, and coagulation, and promoting epithelial development. Besides, VK-dependent proteins (VKDPs) are another crucial mechanism for VK to exert a gastroprotection role for their functions of anti-inflammation, immunomodulation, and anti-tumorigenesis. In summary, published studies preliminarily show that VK presents a beneficial effect on intestinal health and may be used as a therapeutic drug to prevent/treat intestinal diseases, but the specific mechanism of VK in intestinal health has yet to be elucidated.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Gilani SJ, Bin-Jumah MN, Nadeem MS, Kazmi I. Vitamin D attenuates COVID-19 complications via modulation of proinflammatory cytokines, antiviral proteins, and autophagy. Expert Rev Anti Infect Ther 2022; 20:231-241. [PMID: 34112047 PMCID: PMC8477590 DOI: 10.1080/14787210.2021.1941871] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Global emergence of coronavirus disease-19 (COVID-19) has clearly shown variable severity, mortality, and frequency between and within populations worldwide. These striking differences have made many biological variables attractive for future investigations. One of these variables, vitamin D, has been implicated in COVID-19 with rapidly growing scientific evidence. AREAS COVERED The review intended to systematically explore the sources, and immunomodulatory role of vitamin D in COVID-19. Search engines and data sources including Google Scholar, PubMed, NCBI, Scopus, and Web of Science were used for data collection. The search terms used were Vitamin D, COVID-19, immune system, and antiviral mechanism. Overall, 232 sources of information were collected and 188 were included in this review. EXPERT OPINION Interaction of vitamin D and vitamin D receptor (VDR) triggers the cellular events to modulate the immune system by regulation of many genes. Vitamin D operates as a double-edged sword against COVID-19. First, in macrophages, it promotes the production of antimicrobial and antiviral proteins like β-defensin 2 and cathelicidin, and these proteins inhibit the replication of viral particles and promote the clearance of virus from the cells by autophagy. Second, it suppresses cytokine storm and inflammatory processes in COVID-19.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Vernia F, Valvano M, Longo S, Cesaro N, Viscido A, Latella G. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients 2022; 14:269. [PMID: 35057450 PMCID: PMC8779654 DOI: 10.3390/nu14020269] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Vitamin D is an immunoregulatory factor influencing intestinal homeostasis. Recent evidence supports a central role of this micronutrient in the course of Inflammatory Bowel Diseases (IBD). This narrative review aims to provide a general overview of the possible biological mechanisms of action of vitamin D and its therapeutic implications in IBD. (2) Methods: A systematic electronic search of the English literature up to October 2021 was performed using Medline and the Cochrane Library. Only papers written in English that analyzed the role of vitamin D in IBD were included. (3) Results: In vitro and animal studies reported that vitamin D signaling improves epithelial barrier integrity regulating the expression of several junctional proteins, defensins, and mucins, modulates the inflammatory response, and affects gut microbiome composition. Recent studies also suggest that vitamin D deficiency is highly prevalent among IBD patients and that low serum levels correlate with disease activity and, less clearly, with disease course. (4) Conclusions: An increasing body of evidence suggests some role of vitamin D in the pathophysiology of IBD, nonetheless the underlying mechanisms have been so far only partially elucidated. A strong correlation with disease activity has been reported but its implication in the treatment is still undefined. Thus, studies focused on this issue, the definition of vitamin D levels responsible for clinical effects, and the potential role of vitamin D as a therapeutic agent are strongly encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazza S. Tommasi, Coppito, 67100 L’Aquila, Italy; (F.V.); (M.V.); (S.L.); (N.C.); (A.V.)
| |
Collapse
|
27
|
Zhang J, Zhang Y, Xia Y, Sun J. Imbalance of the intestinal virome and altered viral-bacterial interactions caused by a conditional deletion of the vitamin D receptor. Gut Microbes 2021; 13:1957408. [PMID: 34375154 PMCID: PMC8366551 DOI: 10.1080/19490976.2021.1957408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vitamin D receptor (VDR) deficiency is associated with cancer, infection, and chronic inflammation. Prior research has demonstrated VDR regulation of bacteria; however, little is known regarding VDR and viruses. We hypothesize that VDR deficiency impacts on the intestinal virome and viral-bacterial interactions. We specifically deleted VDR from intestinal epithelial cells (VDRΔIEC), Paneth cells (VDRΔPC), and myeloid cells (VDRΔLyz) in mice. Feces were collected for shotgun metagenomic sequencing and metabolite profiling. To test the functional changes, we evaluated pattern recognition receptors (PRRs) and analyzed microbial metabolites. Vibrio phages, Lactobacillus phages, and Escherichia coli typing phages were significantly enriched in all three conditional VDR-knockout mice. In the VDRΔLyz mice, the levels of eight more virus species (2 enriched, 6 depleted) were significantly changed. Altered virus species were primarily observed in female VDRΔLyz (2 enriched, 3 depleted) versus male VDRΔLyz (1 enriched, 1 depleted). Altered alpha and beta diversity (family to species) were found in VDRΔLyz. In VDRΔIEC mice, bovine viral diarrhea virus 1 was significantly enriched. A significant correlation between viral and bacterial alterations was found in conditional VDR knockout mice. There was a positive correlation between Vibrio phage JSF5 and Cutibacterium acnes in VDRΔPC and VDRΔLyz mice. Also, there were more altered viral species in female conditional VDR knockout mice. Notably, there were significant changes in PRRs: upregulated TLR3, TLR7, and NOD2 in VDRΔLyz mice and increased CLEC4L expression in VDRΔIEC and VDRΔPC mice. Furthermore, we identified metabolites related to virus infection: decreased glucose in VDRΔIEC mice, increased ribulose/xylulose and xylose in VDRΔLyz mice, and increased long-chain fatty acids in VDRΔIEC and VDRΔLyz female mice. Tissue-specific deletion of VDR changes the virome and functionally changes viral receptors, which leads to dysbiosis, metabolic dysfunction, and infection risk. This study helps to elucidate VDR regulating the virome in a tissue-specific and sex-specific manner.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA,CONTACT Yinglin Xia Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 734 CSB, MC716, Chicago, IL, 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA,Department of Medicine, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA,Jesse Brown VA Medical Center Chicago, IL, USA,Jun Sun Division of Gastroenterology and Hepatology Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, MC716Chicago, IL, 60612, USA
| |
Collapse
|
28
|
Hussein HM, Elyamany MF, Rashed LA, Sallam NA. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. Eur J Pharm Sci 2021; 170:106105. [PMID: 34942358 DOI: 10.1016/j.ejps.2021.106105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is associated with elevated endocannabinoid tone, gut dysbiosis, and inflammation predisposing to diabetes. The endocannabinoid system mediates the effects of gut microbiota and regulates the gut barrier integrity. We examined the effects of vitamin D (VD) on colonic cannabinoid receptor 1(CB1R), tight junction proteins, gut dysbiosis, metabolic and cognitive dysfunction in a model of type 2 diabetes compared with metformin. METHODS Rats received high-fat, high-sucrose diet (HFSD) and either VD (500 IU/kg/day; p.o.), or metformin (200 mg/kg/day; p.o.) for 8 weeks. After 6 weeks, streptozotocin (STZ) (40 mg/kg; i.p) was injected. Behavioral, cognitive, and metabolic assessments were carried out. Finally, fecal, blood, and tissue samples were collected to examine Bacteroidetes/Firmicutes ratio, colonic CB1R, zonula occludens-1 (ZO-1), occludin, and Toll-like receptor 4 (TLR4); serum lipopolysaccharides (LPS), peptidoglycan (PGN), tumor necrosis factor-alpha (TNF-ɑ), glucagon-like peptide-1 (GLP-1), lipids, and VD; hippocampal brain-derived neurotrophic factor (BDNF) and inflammatory markers. RESULTS VD ameliorated HFSD/STZ-induced dysbiosis/gut barrier dysfunction as indicated by lower circulating LPS, PGN and TNF-ɑ levels, likely by downregulating colonic CB1R and upregulating ZO-1 and occludin expressions. Additionally, VD suppressed HFSD/STZ-induced hyperglycemia, hyperinsulinemia, dyslipidemia, and hippocampal neuroinflammation. These changes culminated in improved glycemic control and cognitive function. VD was more effective than metformin in decreasing serum LPS and TNF-ɑ levels; whereas metformin resulted in better glycemic control. CONCLUSION Targeting gut microbiota by VD could be a successful strategy in the treatment of diabetes and associated cognitive deficit. The crosstalk between VD axis and the endocannabinoid system needs further exploration.
Collapse
Affiliation(s)
- Hebatallah M Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
29
|
Ding R, Xiao Z, Jiang Y, Yang Y, Ji Y, Bao X, Xing K, Zhou X, Zhu S. Calcitriol ameliorates damage in high-salt diet-induced hypertension: Evidence of communication with the gut-kidney axis. Exp Biol Med (Maywood) 2021; 247:624-640. [PMID: 34894804 DOI: 10.1177/15353702211062507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have established a link between high-salt diet, inflammation, and hypertension. Vitamin D supplementation has shown anti-inflammatory effects in many diseases; gut microbiota is also associated with a wide variety of cardiovascular diseases, but potential role of vitamin D and gut microbiota in high-salt diet-induced hypertension remains unclear. Therefore, we used rats with hypertension induced by a high-salt diet as the research object and analyzed the transcriptome of their tissues (kidney and colon) and gut microbiome to conduct an overall analysis of the gut-kidney axis. We aimed to confirm the effects of high salt and calcitriol on the gut-kidney immune system and the composition of the intestinal flora. We demonstrate that consumption of a high-salt diet results in hypertension and inflammation in the colon and kidney and alteration of gut microbiota composition and function. High-salt diet-induced hypertension was found to be associated with seven microbial taxa and mainly associated with reduced production of the protective short-chain fatty acid butyrate. Calcitriol can reduce colon and kidney inflammation, and there are gene expression changes consistent with restored intestinal barrier function. The protective effect of calcitriol may be mediated indirectly by immunological properties. Additionally, the molecular pathways of the gut microbiota-mediated blood pressure regulation may be related to circadian rhythm signals, which needs to be further investigated. An innovative association analysis of the microbiota may be a key strategy to understanding the association between gene patterns and host.
Collapse
Affiliation(s)
- Ruifeng Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zilong Xiao
- Department of Cardiology, Zhongshan Hospital of Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yufeng Jiang
- Department of Nephrology, 66329Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yi Yang
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Yang Ji
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xunxia Bao
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Kaichen Xing
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Xinli Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
30
|
Wang Z, Chen WD, Wang YD. Nuclear receptors: a bridge linking the gut microbiome and the host. Mol Med 2021; 27:144. [PMID: 34740314 PMCID: PMC8570027 DOI: 10.1186/s10020-021-00407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome is the totality of microorganisms, bacteria, viruses, protozoa, and fungi within the gastrointestinal tract. The gut microbiome plays key roles in various physiological and pathological processes through regulating varieties of metabolic factors such as short-chain fatty acids, bile acids and amino acids. Nuclear receptors, as metabolic mediators, act as a series of intermediates between the microbiome and the host and help the microbiome regulate diverse processes in the host. Recently, nuclear receptors such as farnesoid X receptor, peroxisome proliferator-activated receptors, aryl hydrocarbon receptor and vitamin D receptor have been identified as key regulators of the microbiome-host crosstalk. These nuclear receptors regulate metabolic processes, immune activity, autophagy, non-alcoholic and alcoholic fatty liver disease, inflammatory bowel disease, cancer, obesity, and type-2 diabetes. Conclusion In this review, we have summarized the functions of the nuclear receptors in the gut microbiome-host axis in different physiological and pathological conditions, indicating that the nuclear receptors may be the good targets for treatment of different diseases through the crosstalk with the gut microbiome.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China. .,School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation, The People' Hospital of Hebi, Henan University, Henan, People's Republic of China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
31
|
Matthews SW, Heitkemper MM, Kamp K. Early Evidence Indicates Vitamin D Improves Symptoms of Irritable Bowel Syndrome: Nursing Implications and Future Research Opportunities. Gastroenterol Nurs 2021; 44:426-436. [PMID: 34690298 DOI: 10.1097/sga.0000000000000634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
Irritable bowel syndrome (IBS) affects approximately 11.2% of the population. Yet, full understanding of its etiology and optimal treatment remains elusive. Understanding of the underlying pathophysiology of IBS has been limited. However, research is beginning to identify the cause as multifactorial (e.g., low-grade local mucosal inflammation, systemic immune activation, altered intestinal permeability, intestinal hypersensitivity, altered central nervous system processing, changes in intestinal microbiota). Understanding of the role of vitamin D in intestinal inflammation, immunity, and gastrointestinal conditions is increasing but is not yet fully understood. Growing evidence has linked vitamin D deficiency with a variety of gastrointestinal disorders, including inflammatory bowel disease, diverticulitis, colorectal cancer, and IBS. Several studies have demonstrated that individuals with IBS are more likely to have vitamin D deficiency than healthy controls. Recent vitamin D supplementation studies have shown improvement in quality of life and reduction in IBS symptoms (including abdominal pain, distention, flatulence, constipation, and visceral sensitivity) but the mechanism remains unclear. Nurses are well positioned to educate patients about the importance of sufficient vitamin D for overall health in individuals with IBS as well as participate in well-designed therapeutic studies to explore whether enhanced vitamin D status will ultimately help treat IBS more effectively.
Collapse
Affiliation(s)
- Sarah W Matthews
- Sarah W. Matthews, DNP, MN, BSN, APRN, FNP-BC, is Assistant Professor, Department of Child, Family, and Population Health Nursing, University of Washington, School of Nursing, Seattle; and Nurse Practitioner, Kaiser Permanente Washington, Bellevue
- Margaret M. Heitkemper, PhD, MN, BSN, RN, FAAN, is Professor and Chairperson, Department of Biobehavioral Nursing and Health Informatics, University of Washington, School of Nursing, Seattle
- Kendra Kamp, PhD, BSN, RN, is Assistant Professor, Department of Biobehavioral Nursing and Health Informatics, University of Washington, School of Nursing, Seattle
| | - Margaret M Heitkemper
- Sarah W. Matthews, DNP, MN, BSN, APRN, FNP-BC, is Assistant Professor, Department of Child, Family, and Population Health Nursing, University of Washington, School of Nursing, Seattle; and Nurse Practitioner, Kaiser Permanente Washington, Bellevue
- Margaret M. Heitkemper, PhD, MN, BSN, RN, FAAN, is Professor and Chairperson, Department of Biobehavioral Nursing and Health Informatics, University of Washington, School of Nursing, Seattle
- Kendra Kamp, PhD, BSN, RN, is Assistant Professor, Department of Biobehavioral Nursing and Health Informatics, University of Washington, School of Nursing, Seattle
| | - Kendra Kamp
- Sarah W. Matthews, DNP, MN, BSN, APRN, FNP-BC, is Assistant Professor, Department of Child, Family, and Population Health Nursing, University of Washington, School of Nursing, Seattle; and Nurse Practitioner, Kaiser Permanente Washington, Bellevue
- Margaret M. Heitkemper, PhD, MN, BSN, RN, FAAN, is Professor and Chairperson, Department of Biobehavioral Nursing and Health Informatics, University of Washington, School of Nursing, Seattle
- Kendra Kamp, PhD, BSN, RN, is Assistant Professor, Department of Biobehavioral Nursing and Health Informatics, University of Washington, School of Nursing, Seattle
| |
Collapse
|
32
|
Xiao L, Liu Q, Luo M, Xiong L. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome. Front Cell Infect Microbiol 2021; 11:729346. [PMID: 34631603 PMCID: PMC8495119 DOI: 10.3389/fcimb.2021.729346] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional bowel disorder worldwide and is associated with visceral hypersensitivity, gut motility, immunomodulation, gut microbiota alterations, and dysfunction of the brain-gut axis; however, its pathophysiology remains poorly understood. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. The aim of our study was to investigate specific types of microbiota-derived metabolites, especially bile acids, short-chain fatty acids, vitamins, amino acids, serotonin and hypoxanthine, which are all implicated in the pathogenesis of IBS. Metabolites-focused research has identified multiple microbial targets relevant to IBS patients, important roles of microbiota-derived metabolites in the development of IBS symptoms have been established. Thus, we provide an overview of gut microbiota and their metabolites on the different subtypes of IBS (constipation-predominant IBS-C, diarrhea-predominant IBS-D) and present controversial views regarding the role of microbiota in IBS.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
The Cooperation of Bifidobacterium longum and Active Vitamin D3 on Innate Immunity in Salmonella Colitis Mice via Vitamin D Receptor. Microorganisms 2021; 9:microorganisms9091804. [PMID: 34576700 PMCID: PMC8465383 DOI: 10.3390/microorganisms9091804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. Intestinal epithelial cells serve as an essential component of the mucosal innate immune system to defend against Salmonella infection. Our in vitro studies showed probiotics and active vitamin D have similar effects on innate immunity in Salmonella-infected intestinal epithelial cells, including antimicrobial peptide and inflammatory responses, to protect the host against infection while downregulating detrimental overwhelming inflammation. Hence, we investigated the synergistic effects of probiotics and active vitamin D on Salmonella colitis and translocation to liver and spleen by in vitro and in vivo studies. The Salmonella colitis model is conducted with 6–8 w/o male C57BL/6 mice: Streptomycin (20 mg/mouse p.o.)-pretreated C57BL/6 mice are mock infected with sterile PBS or infected orally with 1 × 108 CFU of a S. Typhimurium wild-type strain SL1344 for 48 h. The mice in the treated groups received 1, 25D daily (0.2 ug/25 g/d) and/or 1 × 108 CFU of probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) by intragastric administration for 14 days. The in vivo study demonstrated the combination of probiotic Bifidobacterium longum and active vitamin D3 had the synergistic effects on reducing the severity of Salmonella colitis and body weight loss in C57BL/6 mice by reducing cecal inflammatory mIL-6, mIL-8, mTNF-α and mIL-1β mRNA responses, blocking the translocation of bacteria while enhancing the antimicrobial peptide mhBD-3 mRNA in comparison to the infection only group. However, LGG did not have the same synergistic effects. It suggests the synergistic effects of Bifidobacterium longum and active vitamin D on the antibacterial and anti-inflammatory responses in Salmonella colitis. Therefore, our in vivo studies demonstrated that the combination of probiotic Bifidobacterium longum and active vitamin D3 has the synergistic effects on reducing the severity of Salmonella colitis via the suppression of inflammatory responses, and blocking the translocation of bacteria through the enhancement of antimicrobial peptides.
Collapse
|
34
|
Lobo de Sá FD, Backert S, Nattramilarasu PK, Mousavi S, Sandle GI, Bereswill S, Heimesaat MM, Schulzke JD, Bücker R. Vitamin D Reverses Disruption of Gut Epithelial Barrier Function Caused by Campylobacter jejuni. Int J Mol Sci 2021; 22:ijms22168872. [PMID: 34445577 PMCID: PMC8396270 DOI: 10.3390/ijms22168872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Infections by the zoonotic foodborne bacterium Campylobacter jejuni (C. jejuni) are among the most frequent causes of bacterial gastroenteritis worldwide. The aim was to evaluate the relationship between epithelial barrier disruption, mucosal immune activation, and vitamin D (VD) treatment during C. jejuni infection, using intestinal epithelial cells and mouse models focused on the interaction of C. jejuni with the VD signaling pathway and VD treatment to improve C. jejuni-induced barrier dysfunction. Our RNA-Seq data from campylobacteriosis patients demonstrate inhibition of VD receptor (VDR) downstream targets, consistent with suppression of immune function. Barrier-preserving effects of VD addition were identified in C. jejuni-infected epithelial cells and IL-10-/- mice. Furthermore, interference of C. jejuni with the VDR pathway was shown via VDR/retinoid X receptor (RXR) interaction. Paracellular leakiness of infected epithelia correlated with tight junction (TJ) protein redistribution off the TJ domain and apoptosis induction. Supplementation with VD reversed barrier impairment and prevented inhibition of the VDR pathway, as shown by restoration of transepithelial electrical resistance and fluorescein (332 Da) permeability. We conclude that VD treatment restores gut epithelial barrier functionality and decreases bacterial transmigration and might, therefore, be a promising compound for C. jejuni treatment in humans and animals.
Collapse
Affiliation(s)
- Fábia D. Lobo de Sá
- Nutritional Medicine/Clinical Physiology, Medical Department, Division of Gastroenterology, Infectious Diseases, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.D.L.d.S.); (P.K.N.); (J.-D.S.)
| | - Steffen Backert
- Division of Microbiology, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Praveen K. Nattramilarasu
- Nutritional Medicine/Clinical Physiology, Medical Department, Division of Gastroenterology, Infectious Diseases, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.D.L.d.S.); (P.K.N.); (J.-D.S.)
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (S.M.); (S.B.); (M.M.H.)
| | - Geoffrey I. Sandle
- Institute of Medical Research at St James’s, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (S.M.); (S.B.); (M.M.H.)
| | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (S.M.); (S.B.); (M.M.H.)
| | - Jörg-Dieter Schulzke
- Nutritional Medicine/Clinical Physiology, Medical Department, Division of Gastroenterology, Infectious Diseases, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.D.L.d.S.); (P.K.N.); (J.-D.S.)
| | - Roland Bücker
- Nutritional Medicine/Clinical Physiology, Medical Department, Division of Gastroenterology, Infectious Diseases, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.D.L.d.S.); (P.K.N.); (J.-D.S.)
- Correspondence: ; Tel.: +49-30-450-514548
| |
Collapse
|
35
|
Endocrine Disorders in Autoimmune Rheumatological Diseases: A Focus on Thyroid Autoimmune Diseases and on the Effects of Chronic Glucocorticoid Treatment. ENDOCRINES 2021. [DOI: 10.3390/endocrines2030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Autoimmune rheumatological diseases’ incidence and prevalence have risen over the last decades and they are becoming increasingly important worldwide. Thyroid autoimmune diseases share with them an imbalance in the immune system that lead to a pro-inflammatory environment. Usually this is the result of a multi-factorial process. In fact, it includes not only a possible genetic predisposition, but also environmental causes like microbiota dysbiosis, diet rich in processed foods, exposure to toxicants and infections. However, many aspects are currently under study. This paper aims to examine the factors that participate in the developing of rheumatological and thyroid autoimmune diseases. Moreover, as glucocorticoids still represent a leading treatment for systemic autoimmune rheumatological diseases, our secondary aim is to summarize the main effects of glucocorticoids treatment focusing on iatrogenic Cushing’s syndrome and glucocorticoids’ withdrawal syndrome.
Collapse
|
36
|
Zhang J, Garrett S, Sun J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes Dis 2021; 8:385-400. [PMID: 33521210 PMCID: PMC7836435 DOI: 10.1016/j.gendis.2020.08.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged and is responsible for the Coronavirus Disease 2019 global pandemic. Coronaviruses, including SARS-CoV-2, are strongly associated with respiratory symptoms during infection, but gastrointestinal symptoms, such as diarrhea, vomiting, nausea, and abdominal pain, have been identified in subsets of COVID-19 patients. This article focuses on gastrointestinal symptoms and pathophysiology in COVID-19 disease. Evidence suggests that the gastrointestinal tract could be a viral target for SARS-CoV-2 infection. Not only is the SARS-CoV-2 receptor ACE2 highly expressed in the GI tract and is associated with digestive symptoms, but bleeding and inflammation are observed in the intestine of COVID-19 patients. We further systemically summarize the correlation between COVID-19 disease, gastrointestinal symptoms and intestinal microbiota. The potential oral-fecal transmission of COVID-19 was supported by viral RNA and live virus detection in the feces of COVID-19 patients. Additionally, the viral balance in the GI tract could be disordered during SARS-CoV-2 infection which could further impact the homeostasis of the gut microbial flora. Finally, we discuss the clinical and ongoing trials of treatments/therapies, including antiviral drugs, plasma transfusion and immunoglobulins, and diet supplementations for COVID-19. By reviewing the pathogenesis of SARS-CoV-2 virus, and understanding the correlation among COVID-19, inflammation, intestinal microbiota, and lung microbiota, we provide perspective in prevention and control, as well as diagnosis and treatment of the COVID-19 disease.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Endoplasmic reticulum stress in intestinal inflammation: implications of bile acids. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Yang ZH, Liu F, Zhu XR, Suo FY, Jia ZJ, Yao SK. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis. World J Gastroenterol 2021; 27:3609-3629. [PMID: 34239273 PMCID: PMC8240054 DOI: 10.3748/wjg.v27.i24.3609] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota and its metabolites may be involved in the pathogenesis of inflammatory bowel disease. Several clinical studies have recently shown that patients with ulcerative colitis (UC) have altered profiles of fecal bile acids (BAs). It was observed that BA receptors Takeda G-protein-coupled receptor 5 (TGR5) and vitamin D receptor (VDR) participate in intestinal inflammatory responses by regulating NF-ĸB signaling. We hypothesized that altered profiles of fecal BAs might be correlated with gut microbiota and inflammatory responses in patients with UC. AIM To investigate the changes in fecal BAs and analyze the relationship of BAs with gut microbiota and inflammation in patients with UC. METHODS The present study used 16S rDNA sequencing technology to detect the differences in the intestinal flora between UC patients and healthy controls (HCs). Fecal BAs were measured by targeted metabolomics approaches. Mucosal TGR5 and VDR expression was analyzed using immunohistochemistry, and serum inflammatory cytokine levels were detected by ELISA. RESULTS Thirty-two UC patients and twenty-three HCs were enrolled in this study. It was found that the diversity of gut microbiota in UC patients was reduced compared with that in HCs. Firmicutes, Clostridium IV, Butyricicoccus, Clostridium XlVa, Faecalibacterium, and Roseburia were significantly decreased in patients with UC (P = 3.75E-05, P = 8.28E-07, P = 0.0002, P = 0.003, P = 0.0003, and P = 0.0004, respectively). Proteobacteria, Escherichia, Enterococcus, Klebsiella, and Streptococcus were significantly enriched in the UC group (P = 2.99E-09, P = 3.63E-05, P = 8.59E-05, P = 0.003, and P = 0.016, respectively). The concentrations of fecal secondary BAs, such as lithocholic acid, deoxycholic acid, glycodeoxycholic acid, glycolithocholic acid, and taurolithocholate, in UC patients were significantly lower than those in HCs (P = 8.1E-08, P = 1.2E-07, P = 3.5E-04, P = 1.9E-03, and P = 1.8E-02, respectively) and were positively correlated with Butyricicoccus, Roseburia, Clostridium IV, Faecalibacterium, and Clostridium XlVb (P < 0.01). The concentrations of primary BAs, such as taurocholic acid, cholic acid, taurochenodeoxycholate, and glycochenodeoxycholate, in UC patients were significantly higher than those in HCs (P = 5.3E-03, P = 4E-02, P = 0.042, and P = 0.045, respectively) and were positively related to Enterococcus, Klebsiella, Streptococcus, Lactobacillus, and pro-inflammatory cytokines (P < 0.01). The expression of TGR5 was significantly elevated in UC patients (0.019 ± 0.013 vs 0.006 ± 0.003, P = 0.0003). VDR expression in colonic mucosal specimens was significantly decreased in UC patients (0.011 ± 0.007 vs 0.016 ± 0.004, P = 0.033). CONCLUSION Fecal BA profiles are closely related to the gut microbiota and serum inflammatory cytokines. Dysregulation of the gut microbiota and altered constitution of fecal BAs may participate in regulating inflammatory responses via the BA receptors TGR5 and VDR.
Collapse
Affiliation(s)
- Zhen-Huan Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Ran Zhu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Fei-Ya Suo
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zi-jun Jia
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
39
|
Huang F, Huang S. Active vitamin D3 attenuates the severity of Salmonella colitis in mice by orchestrating innate immunity. Immun Inflamm Dis 2021; 9:481-491. [PMID: 33559391 PMCID: PMC8127544 DOI: 10.1002/iid3.408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Salmonella spp. pose major public health problems worldwide. A better understanding of the pathogenesis of these foodborne pathogens is a prerequisite for the design of improved intervention strategies that could reduce the use of antimicrobial agents and drug-resistant Salmonellosis. Accumulating evidence indicates that vitamin D is involved in regulating innate immunity, and may, therefore, play a key role in human responses to infection. Studies have suggested 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, effectively ameliorates colitis. These findings have broad implications for the use of vitamin D compounds in colitis. This study investigated the effect of active vitamin D3 on the severity of Salmonella colitis. METHODS A Salmonella colitis model was established with 6-8-week-old male C57BL/6 mice: Streptomycin-pretreated C57BL/6 mice were infected orally with Salmonella enterica serova Typhimurium wild-type strain SL1344 for 48 h. The mice were randomly assigned to control, model, and 1,25(OH)2 D3 -treated groups. After the experiment, the mice were sacrificed, and intestinal, spleen, and liver tissue samples were removed to analyze bacterial colonization, western blot for protein levels, and real-time-polymer chain reaction for messenger RNA (mRNA) expression. RESULTS We observed that 1,25D3 reduced the severity of Salmonella colitis in C57BL/6 mice by reducing cecal mIL-1beta, mIL-6, mTNF-alpha, and mIL-8 mRNA expressions, bacterial colonization (CFU/mg tissue) in the liver and spleen, but increased the human β-defensin-2 mRNA and autophagy protein expression, compared to those of the SL1344 infection only. CONCLUSIONS Our results document that active vitamin D3 reduced Salmonella colitis by decreasing inflammation, and bacterial translocation via induction of killing and autophagic clearance of pathogenic organisms.
Collapse
Affiliation(s)
- Fu‐Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial HospitalChang Gung University College of MedicineKaohsiungTaiwan
| | - Shun‐Chen Huang
- Department of PathologyKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| |
Collapse
|
40
|
Bergandi L, Apprato G, Silvagno F. Vitamin D and Beta-Glucans Synergically Stimulate Human Macrophage Activity. Int J Mol Sci 2021; 22:ijms22094869. [PMID: 34064458 PMCID: PMC8124691 DOI: 10.3390/ijms22094869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 01/05/2023] Open
Abstract
Vitamin D and beta-glucans are both immunostimulants. Vitamin D exerts its beneficial effects on many components of the immune system. In macrophages, the hormone modulates both phagocytic activity and cytokine production; therefore, it plays an important role in mediating the innate immune response to infection. The immunomodulatory properties of beta-glucans are attributed to the ability of these fungal cell wall polysaccharides to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes and macrophages. The intracellular signaling pathways activated by beta-glucans lead to enhanced phagocytosis and cytokine response. In this study we investigated the possible potentiation of immunomodulatory properties of the combined treatment with vitamin D and beta-glucans. The effects of 100 nM 1,25-dihydroxyvitamin D3 or 100 µg/mL beta-glucans were evaluated in human macrophages in terms of cytokine production, intracellular vesicle acidification and changes in energy metabolism, three hallmarks of macrophage antimicrobial activation. We found that all the analyzed parameters were enhanced by the co-treatment compared to the response to single molecules. The results of this study support the validity of a novel therapeutic approach that could boost the immune response, taking advantage of the synergy between two natural compounds.
Collapse
|
41
|
Lu R, Zhang YG, Xia Y, Zhang J, Kaser A, Blumberg R, Sun J. Paneth Cell Alertness to Pathogens Maintained by Vitamin D Receptors. Gastroenterology 2021; 160:1269-1283. [PMID: 33217447 PMCID: PMC8808465 DOI: 10.1053/j.gastro.2020.11.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Vitamin D exerts a regulatory role over mucosal immunity via the vitamin D receptor (VDR). Although Paneth cells and their products are known to regulate the commensal and pathogenic microbiota, the role that VDRs in Paneth cells play in these responses is unknown. METHODS We identified the decreased intestinal VDR significantly correlated with reduction of an inflammatory bowel disease risk gene ATG16L1 and Paneth cell lysozymes in patients with Crohn's disease. We generated Paneth cell-specific VDR knockout (VDRΔPC) mice to investigate the molecular mechanisms. RESULTS Lysozymes in the Paneth cells were significantly decreased in the VDRΔPC mice. Isolated VDRΔPC Paneth cells exhibited weakened inhibition of pathogenic bacterial growth and displayed reduced autophagic responses. VDRΔPC mice had significantly higher inflammation after Salmonella infections. VDRΔPC mice also showed high susceptibility to small intestinal injury induced by indomethacin, a nonsteroidal anti-inflammatory drug. Co-housing of VDRΔPC and VDRlox mice made the VDRΔPC less vulnerable to dextran sulfate sodium colitis, suggesting the transmission of protective bacterial from the VDRlox mice. Thus, a lack of VDR in Paneth cells leads to impaired antibacterial activities and consequently increased inflammatory responses. Genetically and environmentally regulated VDRs in the Paneth cells may set the threshold for the development of chronic inflammation, as observed in inflammatory bowel diseases. CONCLUSIONS We provide new insights into the tissue-specific functions of VDRs in maintaining Paneth cell alertness to pathogens in intestinal disorders. Targeting the VDR affects multiple downstream events within Paneth cells that inhibit intestinal inflammation and establish host defense against enteropathogens.
Collapse
Affiliation(s)
- Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yong-guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Arthur Kaser
- Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Richard Blumberg
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois; UIC Cancer Center, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
42
|
Pagnini C, Picchianti-Diamanti A, Bruzzese V, Lorenzetti R, Luchetti MM, Martin Martin LS, Pica R, Scolieri P, Scribano ML, Zampaletta C, Chimenti MS, Lagana B. Vitamin D Signaling in Gastro-Rheumatology: From Immuno-Modulation to Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22052456. [PMID: 33671090 PMCID: PMC7957646 DOI: 10.3390/ijms22052456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
In the last decades, the comprehension of the pathophysiology of bone metabolism and its interconnections with multiple homeostatic processes has been consistently expanded. The branch of osteoimmunology specifically investigating the link between bone and immune system has been developed. Among molecular mediators potentially relevant in this field, vitamin D has been recently pointed out, and abnormalities of the vitamin D axis have been described in both in vitro and in vivo models of inflammatory bowel diseases (IBD) and arthritis. Furthermore, vitamin D deficiency has been reported in patients affected by IBD and chronic inflammatory arthritis, thus suggesting the intriguing possibility of impacting the disease activity by the administration vitamin D supplements. In the present review, the complex interwoven link between vitamin D signaling, gut barrier integrity, microbiota composition, and the immune system was examined. Potential clinical application exploiting vitamin D pathway in the context of IBD and arthritis is presented and critically discussed. A more detailed comprehension of the vitamin D effects and interactions at molecular level would allow one to achieve a novel therapeutic approach in gastro-rheumatologic inflammatory diseases through the design of specific trials and the optimization of treatment protocols.
Collapse
Affiliation(s)
- Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, S. Giovanni Addolorata Hospital, 00184 Rome, Italy;
| | - Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Sapienza University, 00189 Rome, Italy;
- Correspondence:
| | - Vincenzo Bruzzese
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | - Roberto Lorenzetti
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | - Michele Maria Luchetti
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | | | - Roberta Pica
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Palma Scolieri
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | | | | | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, 00187 Rome, Italy;
| | - Bruno Lagana
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Sapienza University, 00189 Rome, Italy;
| |
Collapse
|
43
|
Devaux CA, Lagier JC, Raoult D. New Insights Into the Physiopathology of COVID-19: SARS-CoV-2-Associated Gastrointestinal Illness. Front Med (Lausanne) 2021; 8:640073. [PMID: 33681266 PMCID: PMC7930624 DOI: 10.3389/fmed.2021.640073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Although SARS-CoV-2 is considered a lung-tropic virus that infects the respiratory tract through binding to the ACE2 cell-surface molecules present on alveolar lungs epithelial cells, gastrointestinal symptoms have been frequently reported in COVID-19 patients. What can be considered an apparent paradox is that these symptoms (e.g., diarrhea), sometimes precede the development of respiratory tract illness as if the breathing apparatus was not its first target during viral dissemination. Recently, evidence was reported that the gut is an active site of replication for SARS-CoV-2. This replication mainly occurs in mature enterocytes expressing the ACE2 viral receptor and TMPRSS4 protease. In this review we question how SARS-CoV-2 can cause intestinal disturbances, whether there are pneumocyte-tropic, enterocyte-tropic and/or dual tropic strains of SARS-CoV-2. We examine two major models: first, that of a virus directly causing damage locally (e.g., by inducing apoptosis of infected enterocytes); secondly, that of indirect effect of the virus (e.g., by inducing changes in the composition of the gut microbiota followed by the induction of an inflammatory process), and suggest that both situations probably occur simultaneously in COVID-19 patients. We eventually discuss the consequences of the virus replication in brush border of intestine on long-distance damages affecting other tissues/organs, particularly lungs.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Jean-Christophe Lagier
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
44
|
Park SW, Lee YJ, Ryoo E. Difference in Vitamin D Levels Between Children with Clostridioides difficile Enteritis and Those with Other Acute Infectious Enteritis. Pediatr Gastroenterol Hepatol Nutr 2021; 24:81-89. [PMID: 33505897 PMCID: PMC7813570 DOI: 10.5223/pghn.2021.24.1.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/02/2020] [Accepted: 09/19/2020] [Indexed: 11/14/2022] Open
Abstract
PURPOSE A steady increase in Clostridioides difficile enteritis (CDE) has been reported recently. CDE is associated with intestinal dysbiosis, and vitamin D receptors are known to play an important role in this microbial imbalance as immunological regulators. We investigated the difference in vitamin D levels between children with CDE and those with other acute infectious enteritis. METHODS This retrospective study was conducted on children below 18 years of age who visited the Gil hospital, underwent investigation to assess vitamin D levels, and had confirmed gastrointestinal infection between January 2015 and December 2018. Patients were divided into two groups: the "CDE group" (n=18) and the "other infectious enteritis group" (n=88); their clinical characteristics, other laboratory results, and vitamin D levels were analyzed. RESULTS There was no difference in gender, age, and seasonal distributions between the CDE and other infectious enteritis groups. Other laboratory results were not significantly different between two groups, excluding serum albumin level (4.52±0.45 g/dL vs. 4.31±0.28 g/dL, p=0.011). The mean 25-hydroxy vitamin D level in the CDE group was higher than that in the control group (18.75±8.11 ng/mL vs. 14.50±6.79 ng/mL, p=0.021). CONCLUSION Vitamin D levels in the CDE group were lower than normal but higher than the other infectious enteritis group. These results suggested that CDE has a different mechanism or susceptibility associated with vitamin D in children, and even marginal changes in vitamin D levels can act as a risk factor for infection.
Collapse
Affiliation(s)
- Sang Woo Park
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Young June Lee
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Eell Ryoo
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
45
|
Battistini C, Ballan R, Herkenhoff ME, Saad SMI, Sun J. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci 2020; 22:E362. [PMID: 33396382 PMCID: PMC7795229 DOI: 10.3390/ijms22010362] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract (GIT), including Crohn's disease (CD) and ulcerative colitis (UC), which differ in the location and lesion extensions. Both diseases are associated with microbiota dysbiosis, with a reduced population of butyrate-producing species, abnormal inflammatory response, and micronutrient deficiency (e.g., vitamin D hypovitaminosis). Vitamin D (VitD) is involved in immune cell differentiation, gut microbiota modulation, gene transcription, and barrier integrity. Vitamin D receptor (VDR) regulates the biological actions of the active VitD (1α,25-dihydroxyvitamin D3), and is involved in the genetic, environmental, immune, and microbial aspects of IBD. VitD deficiency is correlated with disease activity and its administration targeting a concentration of 30 ng/mL may have the potential to reduce disease activity. Moreover, VDR regulates functions of T cells and Paneth cells and modulates release of antimicrobial peptides in gut microbiota-host interactions. Meanwhile, beneficial microbial metabolites, e.g., butyrate, upregulate the VDR signaling. In this review, we summarize the clinical progress and mechanism studies on VitD/VDR related to gut microbiota modulation in IBD. We also discuss epigenetics in IBD and the probiotic regulation of VDR. Furthermore, we discuss the existing challenges and future directions. There is a lack of well-designed clinical trials exploring the appropriate dose and the influence of gender, age, ethnicity, genetics, microbiome, and metabolic disorders in IBD subtypes. To move forward, we need well-designed therapeutic studies to examine whether enhanced vitamin D will restore functions of VDR and microbiome in inhibiting chronic inflammation.
Collapse
Affiliation(s)
- Carolina Battistini
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Rafael Ballan
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Marcos Edgar Herkenhoff
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Susana Marta Isay Saad
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
46
|
Wang HQ, Zhang WH, Wang YQ, Geng XP, Wang MW, Fan YY, Guan J, Shen JL, Chen X. Colonic vitamin D receptor expression is inversely associated with disease activity and jumonji domain-containing 3 in active ulcerative colitis. World J Gastroenterol 2020; 26:7352-7366. [PMID: 33362389 PMCID: PMC7739157 DOI: 10.3748/wjg.v26.i46.7352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The expression of jumonji domain-containing 3 (Jmjd3) and trimethylated H3 lysine 27 (H3K27me3) in active ulcerative colitis (UC) and the correlation between vitamin D receptor (VDR) and the Jmjd3 pathway are unknown.
AIM To study the relationship between VDR, Jmjd3 and H3K27me3 in patients with active UC.
METHODS One hundred patients with active UC and 56 healthy controls were enrolled in this study. The patients with active UC were divided into groups according to mild (n = 29), moderate (n = 32) and severe (n = 29) disease activity based on the modified Mayo score. Vitamin D levels were measured by radioimmunoassay. Colonic mucosal tissues from UC patients and controls were collected by colonoscopy. The expression of VDR, Jmjd3 and H3K27me3 in the intestinal mucosa was determined by immunohistochemistry staining.
RESULTS Patients with active UC had lower levels of serum vitamin D (13.7 ± 2.8 ng/mL, P < 0.001) than the controls (16.2 ± 2.5 ng/mL). In the UC cohort, serum vitamin D level was negatively correlated with disease activity (r = -0.323, P = 0.001). VDR expression in the mucosa of UC patients was reduced compared to that in normal tissues (P < 0.001) and negatively correlated with disease activity (r = -0.868, P < 0.001). Similar results for VDR expression were noted in the most serious lesion (defined as UC diseased) and 20 cm proximal to the anus (defined as UC normal) (P < 0.05). Simultaneously, Jmjd3 expression significantly increased in UC patients (P < 0.001), but no difference was found between the different sites in UC patients. H3K27me3 expression in UC patients was significantly down-regulated when compared with normal tissues (P < 0.001), but up-regulated in the mild disease activity group in comparison with the moderate disease activity group of UC patients (P < 0.05). Jmjd3 Level was negatively correlated with the level of VDR (r = -0.342, P = 0.002) and H3K27me3 (r = -0.341, P = 0.002), while VDR level was positively correlated with H3K27me3 (r = 0.473, P < 0.001).
CONCLUSION Serum vitamin D and VDR were inversely correlated with disease activity in active UC. Jmjd3 expression increased in the colonic mucosa of active UC patients and was negatively associated with VDR and H3K27me3 level.
Collapse
Affiliation(s)
- Hong-Qian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wen-Hui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ya-Qi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xiao-Pan Geng
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ming-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yuan-Yuan Fan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Jing Guan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ji-Long Shen
- Department of Pathogen Biology, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
47
|
Singh P, Rawat A, Alwakeel M, Sharif E, Al Khodor S. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci Rep 2020; 10:21641. [PMID: 33303854 PMCID: PMC7729960 DOI: 10.1038/s41598-020-77806-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D deficiency affects approximately 80% of individuals in some countries and has been linked with gut dysbiosis and inflammation. While the benefits of vitamin D supplementation on the gut microbiota have been studied in patients with chronic diseases, its effects on the microbiota of otherwise healthy individuals is unclear. Moreover, whether effects on the microbiota can explain some of the marked inter-individual variation in responsiveness to vitamin D supplementation is unknown. Here, we administered vitamin D to 80 otherwise healthy vitamin D-deficient women, measuring serum 25(OH) D levels in blood and characterizing their gut microbiota pre- and post- supplementation using 16S rRNA gene sequencing. Vitamin D supplementation significantly increased gut microbial diversity. Specifically, the Bacteroidetes to Firmicutes ratio increased, along with the abundance of the health-promoting probiotic taxa Akkermansia and Bifidobacterium. Significant variations in the two-dominant genera, Bacteroides and Prevotella, indicated a variation in enterotypes following supplementation. Comparing supplementation responders and non-responders we found more pronounced changes in abundance of major phyla in responders, and a significant decrease in Bacteroides acidifaciens in non-responders. Altogether, our study highlights the positive impact of vitamin D supplementation on the gut microbiota and the potential for the microbial gut signature to affect vitamin D response.
Collapse
Affiliation(s)
- Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | - Arun Rawat
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Elham Sharif
- College of Health Sciences, Qatar University, Doha, Qatar.
| | | |
Collapse
|
48
|
Mishima Y, Ishihara S. Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. Int J Mol Sci 2020; 21:ijms21228664. [PMID: 33212919 PMCID: PMC7698457 DOI: 10.3390/ijms21228664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gastrointestinal disorders, and accumulating evidence gained in both preclinical and clinical studies indicate the involvement of enteric microbiota in its pathogenesis. Gut resident microbiota appear to influence brain activity through the enteric nervous system, while their composition and function are affected by the central nervous system. Based on these results, the term “brain–gut–microbiome axis” has been proposed and enteric microbiota have become a potential therapeutic target in IBS cases. However, details regarding the microbe-related pathophysiology of IBS remain elusive. This review summarizes the existing knowledge of molecular mechanisms in the pathogenesis of IBS as well as recent progress related to microbiome-derived neurotransmitters, compounds, metabolites, neuroendocrine factors, and enzymes.
Collapse
|
49
|
Drall KM, Field CJ, Haqq AM, de Souza RJ, Tun HM, Morales-Lizcano NP, Konya TB, Guttman DS, Azad MB, Becker AB, Lefebvre DL, Mandhane PJ, Moraes TJ, Sears MR, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. Vitamin D supplementation in pregnancy and early infancy in relation to gut microbiota composition and C. difficile colonization: implications for viral respiratory infections. Gut Microbes 2020; 12:1799734. [PMID: 32779963 PMCID: PMC7524344 DOI: 10.1080/19490976.2020.1799734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Canada and the US, the infant diet is supplemented with vitamin D via supplement drops or formula. Pregnant and nursing mothers often take vitamin D supplements. Since little is known about the impact of this supplementation on infant gut microbiota, we undertook a study to determine the association between maternal and infant vitamin D supplementation, infant gut microbiota composition and Clostridioides difficile colonization in 1,157 mother-infant pairs of the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study over 2009-2012. Logistic and MaAsLin regression were employed to assess associations between vitamin D supplementation, and C. difficile colonization, or other gut microbiota, respectively. Sixty-five percent of infants received a vitamin D supplement. Among all infants, infant vitamin D supplementation was associated with a lower abundance of genus Megamonas (q = 0.01) in gut microbiota. Among those exclusively breastfed, maternal prenatal supplementation was associated with lower abundance of Bilophila (q = 0.01) and of Lachnospiraceae (q = 0.02) but higher abundance of Haemophilus (q = 0.02). There were no differences in microbiota composition with vitamin D supplementation among partially and not breastfed infants. Neither infant nor maternal vitamin D supplementation were associated with C. difficile colonization, after adjusting for breastfeeding status and other factors. However, maternal consumption of vitamin-D fortified milk reduced the likelihood of C. difficile colonization in infants (adjustedOR: 0.40, 95% CI: 0.19-0.82). The impact of this compositional difference on later childhood health, especially defense against viral respiratory infection, may go beyond the expected effects of vitamin D supplements and remains to be ascertained.
Collapse
Affiliation(s)
- Kelsea M. Drall
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M. Haqq
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Russell J. de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada,Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Hein M. Tun
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada,HKU-Pasteur Research Pole, School of Public Health, Hong Kong University, Hong Kong SAR, China
| | | | - Theodore B. Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada,Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - Meghan B. Azad
- Department of Pediatrics & Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Allan B. Becker
- Department of Pediatrics & Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | | | - Piush J. Mandhane
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Theo J. Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ONCanada
| | - Malcolm R. Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ONCanada
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Anita L Kozyrskyj
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada,School of Public Health, University of Alberta, Edmonton, Canada,CONTACT : Anita L Kozyrskyj 3-527 Edmonton Clinic Health Academy, Edmonton, ABT6G 1C9, Canada
| |
Collapse
|
50
|
Supplemental 25-hydroxycholecalciferol Alleviates Inflammation and Cardiac Fibrosis in Hens. Int J Mol Sci 2020; 21:ijms21218379. [PMID: 33171670 PMCID: PMC7664627 DOI: 10.3390/ijms21218379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Broiler breeder hens with efficient feed conversion rate under restricted feed intake (R-hens) or allowed unlimited access to feed (Ad-hens) progressed with cardiac functional failure and suffered early sudden death. A supplement of 69 μg 25-hydroxycholecalciferol (25-OH-D3)/kg feed improved heart health and rescued livability in both R- and Ad-hens throughout laying stage (26–60 wks). Improvements occurred through cardiac hypertrophic remodeling, reduced arrhythmias, and pathological cues. Here, we further demonstrated consistently decreased circulating and cardiac IL-6 and IL-1β levels in conjunction with reduced cardiac chemoattraction and leukocyte infiltration by 25-OH-D3 in Ad-hens and in R-hens at later time points (35 and 47 wks) (p < 0.05). Supplemental 25-OH-D3 also ameliorated cardiac fibrosis, endoplasmic reticulum (ER) stress, and autophagy, mostly in Ad-hens, as both collagen content and expression of COL3A1, as well as CCAAT box binding enhancer homologous protein (CHOP) and activating transcription factor 6 (ATF6), were consistently decreased, and suppression of microtubule-associated protein 1 light Chain 3 beta (LC3B) and Sequestosome 1 (SQSTM1) was rescued at 35 and 47 wks (p < 0.05). Vitamin D receptor-NF-κB signaling was shown to mediate these beneficial effects. The present results demonstrate that ER stress and autophagic processes along the sequence from inflammation to fibrotic changes contribute to pathological cardiac remodeling and functional compromise by Ad-feed intake. 25-OH-D3 is an effective anti-inflammatory and anti-fibrotic supplement to ameliorate cardiac pathogenesis in broiler breeder hens.
Collapse
|