1
|
Fu Y, Wang Y, Tang W, Yang Q, Wang G, Li M. Clinical characteristics and risk factors for poor outcomes of invasive pneumococcal disease in pediatric patients in China. BMC Infect Dis 2024; 24:602. [PMID: 38898407 PMCID: PMC11186143 DOI: 10.1186/s12879-024-09493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Invasive pneumococcal disease (IPD) is a significant health concern in children worldwide. In this study, we aimed to analyze the clinical features, antibiotic resistance, and risk variables for poor outcomes in patients with IPD in Hangzhou. METHODS A retrospective single-centre study was performed using the pediatric intensive care (PIC) database from 2010 to 2018. The clinical characteristics, laboratory data, antimicrobial resistance, and risk factors for in-hospital mortality and sepsis in patients with IPD in intensive care units (ICUs) were analyzed systematically. RESULTS A total of 178 IPD patients were included in the study. The majority of the IPD children were 2-10 years old. Antimicrobial resistance tests of S. pneumoniae isolates revealed high resistance to erythromycin, tetracycline and compound sulfamethoxazole (SMZ-Co). All the isolates were sensitive to vancomycin, linezolid, moxifloxacin, telithromycin, ofloxacin, and levofloxacin. IPD patients may experience poor outcomes, including death and sepsis. The in-hospital mortality was 3.93%, and 34.27% of patients suffered from sepsis. Temperature (OR 3.80, 95% CI 1.62-8.87; P = 0.0021), Partial Pressure of Oxygen in Arterial Blood (PaO2) (OR 0.99, 95% CI 0.98-1.00; P = 0.0266), and albumin (OR 0.89, 95% CI 0.80-0.99; P = 0.0329) were found to be independent risk factors for sepsis in children with IPD. CONCLUSION Pediatric IPD deserves attention in China. Appropriate surveillance and antibiotic selection are crucial in managing resistant strains. Early identification of high-risk individuals with risk factors contributes to the development of appropriate treatment strategies.
Collapse
Affiliation(s)
- Yanan Fu
- Department of Medical Engineering, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yingchun Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Wei Tang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Qing Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Guan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
2
|
Afriyie DK, Ameyaw EO, Henneh IT, Asare G, Ofori-Atta E, Amponsah SK, Appiah-Opong R. Acute Oral Toxicological Profile of Croton membranaceus Mull. Arg. Aqueous Stem Extract, a Herbal Treatment for Benign Prostate Hyperplasia, in Male Sprague-Dawley Rats. J Toxicol 2024; 2024:7526701. [PMID: 38962425 PMCID: PMC11221977 DOI: 10.1155/2024/7526701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 07/05/2024] Open
Abstract
Croton membranaceus Mull. Arg. is a traditional medicinal plant frequently employed in Ghana for the treatment of benign prostatic hyperplasia and prostate cancer. The objective of this study was to determine the acute oral toxicity of the aqueous stem extract of Croton membranaceus (CMASE) in male Sprague-Dawley (S-D) rats. The acute toxicity of CMASE was evaluated using S-D rats randomly divided into four groups of five animals each. Three groups (low dose, median dose, and high dose) of rats received single oral doses of CMASE (1000, 2500, and 5000 mg/kg body weight, respectively) using an oral gavage. The control group was given distilled water. After 14 days of daily observations, hematological, biochemical, and histopathological analyses were conducted on the rats. From the results obtained, doses of CMASE up to 5000 mg/kg did not cause death or induce any clinical indications of toxicity during the study period. Also, the mean body weight and the hematological indices assessed were not significantly affected by the various doses of CMASE compared to the control group. However, serum uric acid and creatinine levels decreased significantly (p < 0.001) 14 days after the extract administration. Serum liver function enzyme levels, including alkaline phosphatase (ALP), alanine aminotransferases (ALT), and aspartate aminotransferases (AST), and serum proteins (total proteins and albumin) exhibited significant (p < 0.001) non dose-dependent changes (increases and decreases) in treated groups compared to the controls. Other biochemical indices, however, did not differ significantly between the treated groups and the controls. The gross pathological and histological analysis of the heart, liver, and kidney tissues did not reveal any significant changes in histoarchitecture. The oral LD50 of CMASE in rats was greater than 5000 mg/kg, indicating that the extract was relatively safe. It must, however, be used with care as a substitute for the roots.
Collapse
Affiliation(s)
- Daniel Kwame Afriyie
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Ofori Ameyaw
- Department of Pharmacotherapeutics and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Tabiri Henneh
- Department of Pharmacotherapeutics and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Asare
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Ebenezer Ofori-Atta
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| | - Regina Appiah-Opong
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Mitalo NS, Waiganjo NN, Mokua Mose J, Bosire DO, Oula JO, Orina Isaac A, Nyabuga Nyariki J. Coinfection with Schistosoma mansoni Enhances Disease Severity in Human African Trypanosomiasis. J Trop Med 2023; 2023:1063169. [PMID: 37954132 PMCID: PMC10637842 DOI: 10.1155/2023/1063169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human African trypanosomiasis (HAT) and schistosomiasis are neglected parasitic diseases found in the African continent. This study was conducted to determine how primary infection with Schistosoma mansoni affects HAT disease progression with a secondary infection with Trypanosoma brucei rhodesiense (T.b.r) in a mouse model. Methods Female BALB-c mice (6-8 weeks old) were randomly divided into four groups of 12 mice each. The different groups were infected with Schistosoma mansoni (100 cercariae) and Trypanosoma brucei rhodesiense (5.0 × 104) separately or together. Twenty-one days after infection with T.b.r, mice were sacrificed and samples were collected for analysis. Results The primary infection with S. mansoni significantly enhanced successive infection by the T.b.r; consequently, promoting HAT disease severity and curtailing host survival time. T.b.r-induced impairment of the neurological integrity and breach of the blood-brain barrier were markedly pronounced on coinfection with S. mansoni. Coinfection with S. mansoni and T.b.r resulted in microcytic hypochromic anemia characterized by the suppression of RBCs, hematocrit, hemoglobin, and red cell indices. Moreover, coinfection of the mice with the two parasites resulted in leukocytosis which was accompanied by the elevation of basophils, neutrophils, lymphocytes, monocytes, and eosinophils. More importantly, coinfection resulted in a significant elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, creatinine, urea, and uric acid, which are the markers of liver and kidney damage. Meanwhile, S. mansoni-driven dyslipidemia was significantly enhanced by the coinfection of mice with T.b.r. Moreover, coinfection with S. mansoni and T.b.r led to a strong immune response characterized by a significant increase in serum TNF-α and IFN-γ. T.b.r infection enhanced S. mansoni-induced depletion of cellular-reduced glutathione (GSH) in the brain and liver tissues, indicative of lethal oxidative damage. Similarly, coinfection resulted in a significant rise in nitric oxide (NO) and malondialdehyde (MDA) levels. Conclusion Primary infection with S. mansoni exacerbates disease severity of secondary infection with T.b.r in a mouse model that is associated with harmful inflammatory response, oxidative stress, and organ injury.
Collapse
Affiliation(s)
- Nancy S. Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Naomi N. Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - David O. Bosire
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James O. Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| |
Collapse
|
4
|
Yu C, Ding Z, Liu H, Ren Y, Zhang M, Liao Q, Luo T, Gao L, Lyu S, Tan H, Hu L, Chen Z, Xu P, Xiao E. Novel albumin-binding multifunctional probe for synergistic enhancement of FL/MR dual-modal imaging and photothermal therapy. Front Chem 2023; 11:1253379. [PMID: 37593108 PMCID: PMC10427858 DOI: 10.3389/fchem.2023.1253379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The fluorescence/magnetic resonance (FL/MR) dual-modal imaging could provide accurate tumor visualization to guide photothermal therapy (PTT) of cancer, which has attracted widespread attention from scientists. However, facile and effective strategies to synergistically enhance fluorescence intensity, MR contrast and photothermal efficacy have rarely been reported. This study presents a novel multifunctional probe Gd-EB-ICG (GI) for FL/MR dual-modal imaging-guided PTT of cancer. GIs can self-assemble with endogenous albumin to form drug-albumin complexes (GIAs), which exhibit excellent biocompatibility. Albumin can protect GIAs from the recognition and clearance by the mononuclear phagocytic system (MPS). High plasma concentration and long half-life allow GIAs to accumulate continuously in the tumor area through EPR effect and specific uptake of tumor. Because of the prolonged rotational correlation time (τR) of Gd chelates, GIAs exhibited superior MR contrast performance over GIs with more than 3 times enhancement of longitudinal relaxation efficiency (r1). The fluorescence quantum yield and photothermal conversion efficiency of GIAs was also significantly improved due to the constrained geometry, disrupted aggregation and enhanced photothermal stability. This simple and feasible strategy successfully resulted in a synergistic effect for FL/MR dual-modal imaging and photothermal therapy, which can cast a new light for the clinical translation of multifunctional probes.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuyuan Ding
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yulu Ren
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minping Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuling Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Luo
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujing Gao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiwen Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linan Hu
- Department of Radiology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Zhu Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengfei Xu
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Titanji BK, Lee M, Wang Z, Chen J, Hui Q, Lo Re III V, So-Armah K, Justice AC, Xu K, Freiberg M, Gwinn M, Marconi VC, Sun YV. Epigenome-wide association study of biomarkers of liver function identifies albumin-associated DNA methylation sites among male veterans with HIV. Front Genet 2022; 13:1020871. [PMID: 36303554 PMCID: PMC9592923 DOI: 10.3389/fgene.2022.1020871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Liver disease (LD) is an important cause of morbidity and mortality for people with HIV (PWH). The molecular factors linked with LD in PWH are varied and incompletely characterized. We performed an epigenome-wide association study (EWAS) to identify associations between DNA methylation (DNAm) and biomarkers of liver function-aspartate transaminase, alanine transaminase, albumin, total bilirubin, platelet count, FIB-4 score, and APRI score-in male United States veterans with HIV. Methods: Blood samples and clinical data were obtained from 960 HIV-infected male PWH from the Veterans Aging Cohort Study. DNAm was assessed using the Illumina 450K or the EPIC 850K array in two mutually exclusive subsets. We performed a meta-analysis for each DNAm site measured by either platform. We also examined the associations between four measures of DNAm age acceleration (AA) and liver biomarkers. Results: Nine DNAm sites were positively associated with serum albumin in the meta-analysis of the EPIC and 450K EWAS after correcting for multiple testing. Four DNAm sites (cg16936953, cg18942579, cg01409343, and cg12054453), annotated within the TMEM49 and four of the remaining five sites (cg18181703, cg03546163, cg20995564, and cg23966214) annotated to SOCS3, FKBP5, ZEB2, and SAMD14 genes, respectively. The DNAm site, cg12992827, was not annotated to any known coding sequence. No significant associations were detected for the other six liver biomarkers. Higher PhenoAA was significantly associated with lower level of serum albumin (β = -0.007, p-value = 8.6 × 10-4, CI: -0.011116, -0.002884). Conclusion: We identified epigenetic associations of both individual DNAm sites and DNAm AA with liver function through serum albumin in men with HIV. Further replication analyses in independent cohorts are warranted to confirm the epigenetic mechanisms underlying liver function and LD in PWH.
Collapse
Affiliation(s)
- Boghuma K. Titanji
- Division of Infectious Disease, Emory School of Medicine, Atlanta, GA, United States
| | - Mitch Lee
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Zeyuan Wang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Vincent Lo Re III
- Division of Infectious Diseases Department of Medicine and Center for Clinical Epidemiology and Biostatistics Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Kaku So-Armah
- Boston University Medical School, Boston, MA, United States
| | - Amy C. Justice
- Connecticut Veteran Health System, West Haven, CT, United States,Yale University School of Medicine, New Haven, CT, United States
| | - Ke Xu
- Connecticut Veteran Health System, West Haven, CT, United States,Yale University School of Medicine, New Haven, CT, United States
| | - Matthew Freiberg
- Cardiovascular Medicine Division and Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Marta Gwinn
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vincent C. Marconi
- Division of Infectious Disease, Emory School of Medicine, Atlanta, GA, United States,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States,Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, United States,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Yan V. Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States,*Correspondence: Yan V. Sun,
| |
Collapse
|
6
|
Acharya R, Poudel D, Bowers R, Patel A, Schultz E, Bourgeois M, Paswan R, Stockholm S, Batten M, Kafle S, Lonial K, Locklear I. Low Serum Albumin Predicts Severe Outcomes in COVID-19 Infection: A Single-Center Retrospective Case-Control Study. J Clin Med Res 2021; 13:258-267. [PMID: 34104277 PMCID: PMC8166291 DOI: 10.14740/jocmr4507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) can cause serious complications such as multiorgan failure and death which are difficult to predict. We conducted this retrospective case-control observational study with the hypothesis that low serum albumin at presentation can predict serious outcomes in COVID-19 infection. Methods We included severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed, hospitalized patients from March to July 2020 in a tertiary care hospital in the USA. Patients were followed for 21 days for the development of the primary endpoint defined as the composite outcome which included acute encephalopathy, acute kidney injury, the requirement of new renal replacement therapy, acute hypercoagulability, acute circulatory failure, new-onset heart failure, acute cardiac injury, acute arrhythmia, acute respiratory distress syndrome (ARDS), high flow oxygen support, intensive care unit (ICU) stay, mechanical ventilation or death; and the secondary endpoint of death only. Univariate and multivariate logistic regression analyses were performed to study the effect of albumin level and outcomes. Results The mean age was 56.76 years vs. 55.67 years (P = 0.68) in the normal albumin vs. the low albumin group. We noticed an inverse relationship between serum albumin at presentation and serious outcomes. The low albumin group had a higher composite outcome (93.88% vs. 6.12%, P < 0.05) and higher mortality (13.87% vs. 2.38%, P < 0.05) in comparison to the normal albumin group. The multivariate logistic regression analysis revealed higher odds of having composite outcomes with lower albumin group (odds ratio (OR) 10.88, 95% confidence interval (CI) 4.74 - 24.97, P < 0.05). In the subgroup analysis, the multivariate logistic regression analysis revealed higher odds of having composite outcomes with the very low albumin group (OR 7.94, 95% CI 1.70 - 37.14, P < 0.05). Conclusions Low serum albumin on presentation in COVID-19 infection is associated with serious outcomes not limited to mortality. The therapeutic option of albumin infusion should be investigated.
Collapse
Affiliation(s)
- Roshan Acharya
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Dilli Poudel
- Department of Rheumatology, Indiana Regional Medical Center, Indiana, PA 15701, USA
| | - Riley Bowers
- Department of Pharmacy, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Aakash Patel
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Evan Schultz
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Michael Bourgeois
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Rishi Paswan
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Scott Stockholm
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Macelyn Batten
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Smita Kafle
- RN-BSN Program, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Kriti Lonial
- Department of Pulmonology and Critical Care, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| | - Irlene Locklear
- Department of Pulmonology and Critical Care, Cape Fear Valley Medical Center, Fayetteville, NC 28304, USA
| |
Collapse
|
7
|
Su Q, Li T, He PF, Lu XC, Yu Q, Gao QC, Wang ZJ, Wu MN, Yang D, Qi JS. Trichostatin A ameliorates Alzheimer's disease-related pathology and cognitive deficits by increasing albumin expression and Aβ clearance in APP/PS1 mice. Alzheimers Res Ther 2021; 13:7. [PMID: 33397436 PMCID: PMC7784383 DOI: 10.1186/s13195-020-00746-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an intractable neurodegenerative disorder in the elderly population, currently lacking a cure. Trichostatin A (TSA), a histone deacetylase inhibitor, showed some neuroprotective roles, but its pathology-improvement effects in AD are still uncertain, and the underlying mechanisms remain to be elucidated. The present study aims to examine the anti-AD effects of TSA, particularly investigating its underlying cellular and molecular mechanisms. METHODS Novel object recognition and Morris water maze tests were used to evaluate the memory-ameliorating effects of TSA in APP/PS1 transgenic mice. Immunofluorescence, Western blotting, Simoa assay, and transmission electron microscopy were utilized to examine the pathology-improvement effects of TSA. Microglial activity was assessed by Western blotting and transwell migration assay. Protein-protein interactions were analyzed by co-immunoprecipitation and LC-MS/MS. RESULTS TSA treatment not only reduced amyloid β (Aβ) plaques and soluble Aβ oligomers in the brain, but also effectively improved learning and memory behaviors of APP/PS1 mice. In vitro study suggested that the improvement of Aβ pathology by TSA was attributed to the enhancement of Aβ clearance, mainly by the phagocytosis of microglia, and the endocytosis and transport of microvascular endothelial cells. Notably, a meaningful discovery in the study was that TSA dramatically upregulated the expression level of albumin in cell culture, by which TSA inhibited Aβ aggregation and promoted the phagocytosis of Aβ oligomers. CONCLUSIONS These findings provide a new insight into the pathogenesis of AD and suggest TSA as a novel promising candidate for the AD treatment.
Collapse
Affiliation(s)
- Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pei-Feng He
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Xue-Chun Lu
- Department of Hematology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qi Yu
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qi-Chao Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dan Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
8
|
Basolo A, Ando T, Chang DC, Hollstein T, Krakoff J, Piaggi P, Votruba S. Reduced Albumin Concentration Predicts Weight Gain and Higher Ad Libitum Energy Intake in Humans. Front Endocrinol (Lausanne) 2021; 12:642568. [PMID: 33776937 PMCID: PMC7991842 DOI: 10.3389/fendo.2021.642568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Circulating albumin is negatively associated with adiposity but whether it is associated with increased energy intake, lower energy expenditure or weight gain has not been examined. METHODS In study 1 (n=238; 146 men), we evaluated whether fasting albumin concentration was associated with 24-h energy expenditure and ad libitum energy intake. In study 2 (n=325;167 men), we evaluated the association between plasma albumin and change in weight and body composition. RESULTS After adjustment for known determinants of energy intake lower plasma albumin concentration was associated with greater total daily energy intake (β= 89.8 kcal/day per 0.1 g/dl difference in plasma albumin, p=0.0047). No associations were observed between plasma albumin concentrations and 24-h energy expenditure or 24-h respiratory quotient (p>0.2). Over 6 years, volunteers gained on average 7.5 ± 11.7 kg (p<0.0001). Lower albumin concentrations were associated with greater weight [β=3.53 kg, p=0.039 (adjusted for age, sex, follow up time), CI 0.16 to 6.21 per 1 g/dl difference albumin concentration] and fat mass (β=2.3 kg, p=0.022), respectively, but not with changes in fat free mass (p=0.06). CONCLUSIONS Lower albumin concentrations were associated with increased ad libitum food intake and weight gain, indicating albumin as a marker of energy intake regulation. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifiers NCT00340132, NCT00342732.
Collapse
Affiliation(s)
- Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
- *Correspondence: Alessio Basolo,
| | - Takafumi Ando
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Douglas C. Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Susanne Votruba
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, United States
| |
Collapse
|
9
|
Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. CRIT CARE RESUSC 2020; 22:257-265. [PMID: 32900333 PMCID: PMC10692529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Albumin is the most abundant and perhaps most important protein in human blood. Research has identified many of albumin's possible roles in modulating acid-base balance, modifying inflammation, maintaining vascular endothelial integrity, and binding endogenous and exogenous compounds. Albumin plays a key role in the homeostasis of vascular endothelium, offering protection from inflammation and damage to the glycocalyx. Albumin binds a diverse range of compounds. It transports, delivers and clears drugs, plus it helps with uptake, storage and disposal of potentially harmful biological products. The biological effects of albumin in critical illness are incompletely understood, but may enhance its clinical role beyond use as an intravenous fluid. In this article, we summarise the evidence surrounding albumin's biological and physiological effects beyond its use for plasma volume expansion, and explore potential mechanistic effects of albumin as a disease modifier in patients with critical illness.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia. ,
| | - Jonathan Bannard-Smith
- Department of Critical Care, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. CRIT CARE RESUSC 2020; 22:257-265. [PMID: 32900333 PMCID: PMC10692529 DOI: 10.1016/s1441-2772(23)00394-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Albumin is the most abundant and perhaps most important protein in human blood. Research has identified many of albumin's possible roles in modulating acid-base balance, modifying inflammation, maintaining vascular endothelial integrity, and binding endogenous and exogenous compounds. Albumin plays a key role in the homeostasis of vascular endothelium, offering protection from inflammation and damage to the glycocalyx. Albumin binds a diverse range of compounds. It transports, delivers and clears drugs, plus it helps with uptake, storage and disposal of potentially harmful biological products. The biological effects of albumin in critical illness are incompletely understood, but may enhance its clinical role beyond use as an intravenous fluid. In this article, we summarise the evidence surrounding albumin's biological and physiological effects beyond its use for plasma volume expansion, and explore potential mechanistic effects of albumin as a disease modifier in patients with critical illness.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia. ,
| | - Jonathan Bannard-Smith
- Department of Critical Care, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Zainal Z, Ong A, Yuen May C, Chang SK, Abdul Rahim A, Khaza’ai H. Acute and Subchronic Oral Toxicity of Oil Palm Puree in Sprague-Dawley Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103404. [PMID: 32414159 PMCID: PMC7277154 DOI: 10.3390/ijerph17103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
Palm puree is rich in antioxidants and is produced via blending various proportions of mesocarp fibre and crude palm oil. The aim of this study was to assess the acute and subchronic toxicity of palm puree in male and female Sprague–Dawley rats. For the acute toxicity study, animals administered single palm-puree doses (2000 mg kg−1) by gavage were observed daily for 14 d. For the subchronic toxicity study, the rats were administered 500, 1000, or 2000 mg kg−1 palm puree daily for 28 d. We evaluated body and organ weights; performed haematological, biochemical, and histopathological analyses of blood and organ samples during and after treatment; and calculated the oral no-observed-adverse-effect level (NOAEL). The toxicity studies showed no signs of toxicity or mortality. The haematological, biochemical, and histopathological analyses and body and organ weights indicated no evidence of substantial toxicity at any dose of palm puree. The oral lethal dose and NOAEL for the palm puree were greater than 2000 mg kg−1 d−1 over 28 d. To the best of our knowledge, the present study is the first to confirm the safety of palm puree as a novel functional food. These encouraging results warrant further studies to elucidate its potential for pharmaceutical formulations.
Collapse
Affiliation(s)
- Zaida Zainal
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor 43000, Malaysia;
- Correspondence: ; Tel.: +60-387-694-935; Fax: +60-389-221-742
| | - Augustine Ong
- MOSTA, C3A-10, 4th Floor, Damansara Intan, No. 1, Jalan SS20/27, Selangor 47400, Malaysia; (A.O.); (C.Y.M.)
| | - Choo Yuen May
- MOSTA, C3A-10, 4th Floor, Damansara Intan, No. 1, Jalan SS20/27, Selangor 47400, Malaysia; (A.O.); (C.Y.M.)
| | - Sui Kiat Chang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Afiqah Abdul Rahim
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor 43000, Malaysia;
| | - Huzwah Khaza’ai
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| |
Collapse
|
12
|
Prakash TP, Mullick AE, Lee RG, Yu J, Yeh ST, Low A, Chappell AE, Østergaard ME, Murray S, Gaus HJ, Swayze EE, Seth PP. Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Res 2020; 47:6029-6044. [PMID: 31127296 PMCID: PMC6614804 DOI: 10.1093/nar/gkz354] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Enhancing the functional uptake of antisense oligonucleotide (ASO) in the muscle will be beneficial for developing ASO therapeutics targeting genes expressed in the muscle. We hypothesized that improving albumin binding will facilitate traversal of ASO from the blood compartment to the interstitium of the muscle tissues to enhance ASO functional uptake. We synthesized structurally diverse saturated and unsaturated fatty acid conjugated ASOs with a range of hydrophobicity. The binding affinity of ASO fatty acid conjugates to plasma proteins improved with fatty acid chain length and highest binding affinity was observed with ASO conjugates containing fatty acid chain length from 16 to 22 carbons. The degree of unsaturation or conformation of double bond appears to have no influence on protein binding or activity of ASO fatty acid conjugates. Activity of fatty acid ASO conjugates correlated with the affinity to albumin and the tightest albumin binder exhibited the highest activity improvement in muscle. Palmitic acid conjugation increases ASO plasma Cmax and improved delivery of ASO to interstitial space of mouse muscle. Conjugation of palmitic acid improved potency of DMPK, Cav3, CD36 and Malat-1 ASOs (3- to 7-fold) in mouse muscle. Our approach provides a foundation for developing more effective therapeutic ASOs for muscle disorders.
Collapse
Affiliation(s)
| | - Adam E Mullick
- Antisense Drug Discovery, 2855 Gazelle Ct., Carlsbad, CA 92010, USA
| | - Richard G Lee
- Antisense Drug Discovery, 2855 Gazelle Ct., Carlsbad, CA 92010, USA
| | - Jinghua Yu
- Ionis Pharmaceuticals, Medicinal Chemistry, USA
| | - Steve T Yeh
- Antisense Drug Discovery, 2855 Gazelle Ct., Carlsbad, CA 92010, USA
| | - Audrey Low
- Antisense Drug Discovery, 2855 Gazelle Ct., Carlsbad, CA 92010, USA
| | | | | | - Sue Murray
- Antisense Drug Discovery, 2855 Gazelle Ct., Carlsbad, CA 92010, USA
| | - Hans J Gaus
- Ionis Pharmaceuticals, Medicinal Chemistry, USA
| | | | | |
Collapse
|
13
|
Parodi A, Miao J, Soond SM, Rudzińska M, Zamyatnin AA. Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules 2019; 9:E218. [PMID: 31195727 PMCID: PMC6627831 DOI: 10.3390/biom9060218] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Albumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents. In this review, we describe and discuss the recent advances in how this technology has been harnessed for drug delivery in cancer, evaluating the commonly used synthesis protocols and considering the key factors that determine the biological transport and the effectiveness of such technology. With this in mind, we highlight how clinical and experimental albumin-based delivery nanoplatforms may be designed for tackling tumor progression or improving the currently established diagnostic procedures.
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Jiaxing Miao
- Ohio State University, 410 W 10th Ave. Columbus, 43210, Ohio, USA.
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
14
|
Nevens F, Bittencourt PL, Coenraad MJ, Ding H, Hou MC, Laterre PF, Mendizabal M, Ortiz-Olvera NX, Vorobioff JD, Zhang W, Angeli P. Recommendations on the Diagnosis and Initial Management of Acute Variceal Bleeding and Hepatorenal Syndrome in Patients with Cirrhosis. Dig Dis Sci 2019; 64:1419-1431. [PMID: 30996046 DOI: 10.1007/s10620-018-5448-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/29/2018] [Indexed: 12/14/2022]
Abstract
Cirrhosis is a serious and life-threatening condition which imposes a significant socioeconomic burden on affected individuals and healthcare systems. Cirrhosis can result in portal hypertension, which may lead to major complications, including acute variceal bleeding and hepatorenal syndrome. Without prompt treatment, these complications may be life-threatening. Over the past 2 decades, new treatment modalities and treatment strategies have been introduced, which have improved patients' prognosis, but the initial management of these severe complications continues to present a challenge. The present recommendations aim to increase clinicians' knowledge on the importance of early diagnosis and treatment, and to provide evidence-based management strategies to potentially, further improve patient outcomes. Special attention was given to the role of terlipressin. A comprehensive non-systematic literature search was undertaken to evaluate the evidence for the diagnosis and initial management of acute variceal bleeding and hepatorenal syndrome in patients with cirrhosis. Recommendations on the diagnosis and initial management of acute variceal bleeding and hepatorenal syndrome in patients with cirrhosis have been developed based on the best available evidence and the expert opinion of the consensus panel following a comprehensive review of the available clinical data. Prompt identification and timely treatment of acute variceal bleeding and hepatorenal syndrome are essential to reduce the burden.
Collapse
Affiliation(s)
- Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium.
| | - Paulo Lisboa Bittencourt
- Unit of Gastroenterology and Hepatology, Portuguese Hospital of Salvador, Rua Prof. Clementino Fraga, 220/1901, Salvador, Bahia, Brazil
| | - Minneke J Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2300 ZC, Leiden, The Netherlands
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, No 8, Youan Men Wai Street, Fengtai District, Beijing, 100069, China
| | - Ming-Chih Hou
- Department of Medicine Division of Gastroenterology, Taipei Veterans General Hospital, 201, Sec. II, Shih-Pai Road, Taipei, Taiwan
| | - Pierre-François Laterre
- Medical-surgical Intensive Care Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Brussels, Belgium
| | - Manuel Mendizabal
- Hepatology and Liver Transplant Unit, Hospital Universitario Austral, Av. Peron 1500, 1629, Pilar, Provincia de Buenos Aires, Argentina
| | - Nayeli Xochiquetzal Ortiz-Olvera
- Department of Gastroenterology, UMAE, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Julio D Vorobioff
- Department of Gastroenterology and Hepatology, University of Rosario Medical School, Morrison 8750, 2000, Rosario, Argentina
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Rd, Jingan Qu, Shanghai Shi, 200000, China
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
15
|
Abdullah SM. Prevalence of Hepatitis B and C virus infection and their co-relation with hematological and hepatic parameters in subjects undergoing Premarital Screening in the Jazan Region, Kingdom of Saudi Arabia. Pak J Med Sci 2018; 34:316-321. [PMID: 29805400 PMCID: PMC5954371 DOI: 10.12669/pjms.342.14278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Hepatitis is a serious health concern with a high rate of mortality and morbidity world over. Saudi Arabia also has its course of the disease incidence. The data on the prevalence of the disease is still limiting. This study aimed to estimate the prevalence of hepatitis B virus [HBV] and hepatitis C virus [HCV] infection in the Jazan region and study its effects on hematological and hepatic parameters. Methods: This cross-sectional study was conducted at premarital screening centre located in King Fahd Central Hospital, Jazan, Kingdom of Saudi Arabia. A total of 7,826, Saudi couples undertaking premarital screening from Jazan region, were enrolled in the study and screened between January 2014 and June 2015 for hepatitis B virus and hepatitis C virus. Complete blood counts and hepatic profile were carried out for individuals who were Hepatitis B and or C virus positive. Results: A higher prevalence of hepatitis virus infection in male participants [HBV 1.9%; HCV 0.4%] than in females [HBV 1.43%; HCV 0.2%] was seen. The neutrophil-to-lymphocyte (NLR) and platelet-to-lymphocyte (PLR) ratios were significantly decreased among HBV- and HCV-infected patients. The concentration of hepatic enzymes showed a statistically significant increase in seropositive individuals. The levels of albumin were significantly decreased in individuals with hepatitis B and C when compared with the control group Conclusions: The study concludes that the prevalence of HBV infection among Saudi subjects in Jazan was higher than the prevalence of HCV infection, and both HBV and HCV were higher in men than in women.
Collapse
Affiliation(s)
- Saleh Mohammed Abdullah
- Saleh Mohammed Abdullah, M.Sc., PhD, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Saudi Arabia
| |
Collapse
|
16
|
3D Co-Culture with Vascular Cells Supports Long-Term Hepatocyte Phenotype and Function In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0046-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Kang HY, Choi YK, Jeong YI, Choi KC, Hyun SH, Hwang WS, Jeung EB. Immortalization of Porcine 11β-Hydroxysteroid Dehydrogenase Type 1-Transgenic Liver Cells Using SV40 Large T Antigen. Int J Mol Sci 2017; 18:ijms18122625. [PMID: 29206210 PMCID: PMC5751228 DOI: 10.3390/ijms18122625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cortisol is a steroid hormone essential to the maintenance of homeostasis that is released in response to stress and low blood glucose concentration. Cortisol is converted from cortisone by 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1). It has been reported that too much cortisol or overexpression of HSD11B1 induces obesity and the insulin resistance that accompanies metabolic syndrome in rodent adipose tissue. In our previous study, HSD11B1-transgenic (TG) fibroblasts were established, and a porcine model was generated by SCNT using those fibroblasts. Hepatocytes overexpressing HSD11B1 were obtained from livers of this porcine model and cultured in vitro. However, the primary hepatocytes were found to have a short life span or low proliferation rate. To overcome these problems, the SV40 large T antigen was transduced into primary HSD11B1-TG hepatocytes, and those cells were immortalized. Immortalized HSD11B1-TG hepatocytes showed restored morphology, more rapid proliferation rate, and more expression of HSD11B1 than primary hepatocytes. As well, these cells kept the hepatic characteristics such as gluconeogenic response to cortisone and increased expression of hepatic makers. The immortalized HSD11B1-TG hepatocytes may be useful for studying traits and potential therapeutic drugs for treatment of metabolic disorders induced by overexpression of HSD11B1.
Collapse
Affiliation(s)
- Hee Young Kang
- College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Young-Kwon Choi
- College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea.
| | - Yeon Ik Jeong
- Sooam Biotech Research Foundation, 64 Kyunginro, Guro-gu, Seoul 08359, Korea.
| | - Kyung-Chul Choi
- College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea.
| | - Sang-Hwan Hyun
- College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea.
| | - Woo-Suk Hwang
- Sooam Biotech Research Foundation, 64 Kyunginro, Guro-gu, Seoul 08359, Korea.
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
18
|
Han CY, Lim SW, Koo JH, Kim W, Kim SG. PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1-Xbp1s pathway expedites liver injury. Gut 2016; 65:1377-88. [PMID: 25966993 PMCID: PMC4975835 DOI: 10.1136/gutjnl-2014-308506] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) stress is involved in liver injury, but molecular determinants are largely unknown. This study investigated the role of pleckstrin homology-like domain, family A, member-3 (PHLDA3), in hepatocyte death caused by ER stress and the regulatory basis. DESIGN Hepatic PHLDA3 expression was assessed in HCV patients with hepatitis and in several animal models with ER stress. Immunoblottings, PCR, reporter gene, chromatin immunoprecipitation (ChIP) and mutation analyses were done to explore gene regulation. The functional effect of PHLDA3 on liver injury was validated using lentiviral delivery of shRNA. RESULTS PHLDA3 was overexpressed in relation to hepatocyte injury in patients with acute liver failure or liver cirrhosis or in toxicant-treated mice. In HCV patients with liver injury, PHLDA3 was upregulated in parallel with the induction of ER stress marker. Treatment of mice with tunicamycin (Tm) (an ER stress inducer) increased PHLDA3 expression in the liver. X box-binding protein-1 (Xbp1) was newly identified as a transcription factor responsible for PHLDA3 expression. Inositol-requiring enzyme 1 (IRE1) (an upstream regulator of Xbp1) was required for PHLDA3 induction by Tm, whereas other pathways (c-Jun N-terminal kinase (JNK), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6)) were not. PHLDA3 overexpression correlated with the severity of hepatocyte injury in animal or cell model of ER stress. In p53-deficient cells, ER stress inducers transactivated PHLDA3 with a decrease in cell viability. ER stress-induced hepatocyte death depended on serine/threonine protein kinase B (Akt) inhibition by PHLDA3. Lentiviral delivery of PHLDA3 shRNA to mice abrogated p-Akt inhibition in the liver by Tm, attenuating hepatocyte injury. CONCLUSIONS ER stress in hepatocytes induces PHLDA3 via IRE1-Xbp1s pathway, which facilitates liver injury by inhibiting Akt.
Collapse
Affiliation(s)
- Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Woo Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. MOLECULAR AND CELLULAR THERAPIES 2016; 4:3. [PMID: 26925240 PMCID: PMC4769556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2023]
Abstract
The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Matthias Kuhlmann
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
20
|
Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. MOLECULAR AND CELLULAR THERAPIES 2016; 4:3. [PMID: 26925240 PMCID: PMC4769556 DOI: 10.1186/s40591-016-0048-8] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Abstract
The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Matthias Kuhlmann
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
21
|
Veronesi E, Murgia A, Caselli A, Grisendi G, Piccinno MS, Rasini V, Giordano R, Montemurro T, Bourin P, Sensebé L, Rojewski MT, Schrezenmeier H, Layrolle P, Ginebra MP, Panaitescu CB, Gómez-Barrena E, Catani F, Paolucci P, Burns JS, Dominici M. Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration. Tissue Eng Part C Methods 2013; 20:239-51. [PMID: 23845029 DOI: 10.1089/ten.tec.2013.0250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation. A successfully validated transportation protocol extends the applicability of fresh stem cells involving multicentric trials for regenerative medicine.
Collapse
Affiliation(s)
- Elena Veronesi
- 1 Laboratory of Cell Biology and Advanced Cancer Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia , Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Velati C. The clinical use of albumin: a topic for Transfusion Medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2009; 7:249. [PMID: 20011635 PMCID: PMC2782801 DOI: 10.2450/2009.0136-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|