1
|
Eser M, Hekimoglu G, Dursun F. Unraveling the genetic basis of MODY: insights from next-generation sequencing. J Appl Genet 2024:10.1007/s13353-024-00907-7. [PMID: 39361122 DOI: 10.1007/s13353-024-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is an uncommon kind of monogenic diabetes. The major characteristics of MODY include not having insulin resistance and the absence of autoimmunity, early onset, and a family history suggesting autosomal-dominant inheritance. Nonetheless, genetic testing is necessary for diagnosis. The MODY-related genes CEL, ABCC8, PDX1, GCK, WFS1, HNF4A, HNF1A, and HNF1B were examined using Next Generation Sequencing (NGS) in this investigation. This study aimed to evaluate the genetic and clinical characteristics of patients referred with a preliminary diagnosis of MODY, retrospectively. A total of 30 patients (18 male and 12 female) participated, with ages ranging from 5 to 56. Eight distinct genetic variants were identified in 17 cases (57%). Pathogenic variants in the HNF1A gene have been identified. Likely pathogenic variants were found in CEL, ABCC8, GCK, and HNF4A. The genes APPL1, BLK, INS, KCNJ1, KLF11, NEUROD1, PAX4, RFX6, and ZFP57 were shown to be mutation-free. Four distinct pathogenic variants are found in this series. Unexpectedly high rates of pathogenic variants have been found in the HNF1A gene. In 27% of cases, there is a family history of vertically transmitted diabetes. The study highlights the importance of genetic testing for individuals with early-onset diabetes and a strong family history of the condition. Comprehensive genetic testing and increased public awareness are essential for MODY.
Collapse
Affiliation(s)
- Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gulam Hekimoglu
- Department of Histology and Embryology, International Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Fatma Dursun
- Department of Pediatric Endocrinology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
2
|
Wang X, Cheng W, Wang Z, Liu C, Deng A, Li J. Chinese carrier of the HNF1A p.Gln444fs variant exhibits enhanced response to sulfonylureas. Heliyon 2024; 10:e35112. [PMID: 39170165 PMCID: PMC11336406 DOI: 10.1016/j.heliyon.2024.e35112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Background We assessed the response to sulfonylureas and the functional characteristics of HNF1A mutations in patients with maturity-onset diabetes of the young type 3 (MODY3). Methods We recruited a family with suspected MODY in this study, and gene sequencing (whole-exome sequencing) was used to screen germline mutations. Luciferase reporter assays were used to evaluate the activity of the mutated genes. Results Heterozygous HNF1A variant (NM_000545.8:c.1330_1331del, p.Gln444fs) was identified in the proband and was not found in his father, grandmother, and nonrelated healthy controls. The mutant protein had 552 amino acids, 110 fewer than the wild type protein. Furthermore, the amino acid sequence was completely different between the mutant protein and the wild type protein starting from the 444th amino acid. Luciferase reporter assays revealed that the variant had impaired HNF4A promoter-regulation activity. The patient did not achieve good hypoglycemic effects during long-term treatment with insulin and metformin. The effect of hypoglycemic treatment was highly significant after the addition of sulfonylurea drugs. Conclusions The HNF1A p.Gln444fs variant associated with MODY3, and most likely a truncated protein, impaired HNF1A transcriptional activity. The variant carrier experienced an enhanced response to sulfonylureas.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhuo Cheng
- Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhongjing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Leenders F, de Koning EJP, Carlotti F. Pancreatic β-Cell Identity Change through the Lens of Single-Cell Omics Research. Int J Mol Sci 2024; 25:4720. [PMID: 38731945 PMCID: PMC11083883 DOI: 10.3390/ijms25094720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional β-cell mass. This decline is predominantly attributed to β-cell death, although recent findings suggest that the loss of β-cell identity may also contribute to β-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with β-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on β-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among β-cells and have facilitated the identification of distinct β-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of β-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased β-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on β-cell identity. Lastly, this review outlines the factors that may influence the identification of β-cell subpopulations when designing and performing a single-cell omics experiment.
Collapse
Affiliation(s)
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.L.); (E.J.P.d.K.)
| |
Collapse
|
4
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Gaglia JL, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Selvin E, Stanton RC, Gabbay RA. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S20-S42. [PMID: 38078589 PMCID: PMC10725812 DOI: 10.2337/dc24-s002] [Citation(s) in RCA: 320] [Impact Index Per Article: 320.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
5
|
Rabby MG, Rahman MH, Islam MN, Kamal MM, Biswas M, Bonny M, Hasan MM. In silico identification and functional prediction of differentially expressed genes in South Asian populations associated with type 2 diabetes. PLoS One 2023; 18:e0294399. [PMID: 38096208 PMCID: PMC10721103 DOI: 10.1371/journal.pone.0294399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the major metabolic disorders in humans caused by hyperglycemia and insulin resistance syndrome. Although significant genetic effects on T2D pathogenesis are experimentally proved, the molecular mechanism of T2D in South Asian Populations (SAPs) is still limited. Hence, the current research analyzed two Gene Expression Omnibus (GEO) and 17 Genome-Wide Association Studies (GWAS) datasets associated with T2D in SAP to identify DEGs (differentially expressed genes). The identified DEGs were further analyzed to explore the molecular mechanism of T2D pathogenesis following a series of bioinformatics approaches. Following PPI (Protein-Protein Interaction), 867 potential DEGs and nine hub genes were identified that might play significant roles in T2D pathogenesis. Interestingly, CTNNB1 and RUNX2 hub genes were found to be unique for T2D pathogenesis in SAPs. Then, the GO (Gene Ontology) showed the potential biological, molecular, and cellular functions of the DEGs. The target genes also interacted with different pathways of T2D pathogenesis. In fact, 118 genes (including HNF1A and TCF7L2 hub genes) were directly associated with T2D pathogenesis. Indeed, eight key miRNAs among 2582 significantly interacted with the target genes. Even 64 genes were downregulated by 367 FDA-approved drugs. Interestingly, 11 genes showed a wide range (9-43) of drug specificity. Hence, the identified DEGs may guide to elucidate the molecular mechanism of T2D pathogenesis in SAPs. Therefore, integrating the research findings of the potential roles of DEGs and candidate drug-mediated downregulation of marker genes, future drugs or treatments could be developed to treat T2D in SAPs.
Collapse
Affiliation(s)
- Md. Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Md. Hafizur Rahman
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Khulna, Bangladesh
- Faculty of Food Sciences and Safety, Department of Quality Control and Safety Management, Khulna Agricultural University, Khulna, Bangladesh
| | - Md. Numan Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Md. Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Mrityunjoy Biswas
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Mantasa Bonny
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Md. Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| |
Collapse
|
6
|
Liu M, Liu L, Guo H, Fan X, Liu T, Xu C, He Z, Song Y, Gao L, Shao S, Zhao J, Lu P. Dominant-negative HNF1α mutant promotes liver steatosis and inflammation by regulating hepatic complement factor D. iScience 2023; 26:108018. [PMID: 37841581 PMCID: PMC10568430 DOI: 10.1016/j.isci.2023.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Patients with HNF1A variants may develop liver steatosis, while the underlying mechanism is still unclear. Here, we established a mouse model carrying the dominant-negative HNF1α P291fsinsC mutation (hHNF1Amut/-) and found that the mutant mice developed liver steatosis spontaneously under the normal chow diet. Transcriptome analysis showed significant upregulation of Cfd and other genes related to innate immune response in the liver of hHNF1Amut/- mice. The changes in lipid metabolism and complement pathways were also confirmed by proteomics. We demonstrated that HNF1α inhibited CFD expression in hepatocytes, and the P291fsinsC mutant could reverse this inhibitory effect. Furthermore, the suppression of CFD with specific inhibitor or siRNAs reduced triglyceride levels in hepatocytes, suggesting that CFD regulated hepatocyte lipid deposition. Our results demonstrate that the HNF1α P291fsinsC mutant promotes hepatic steatosis and inflammation by upregulating CFD expression, and targeting CFD may delay the progression of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Moke Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Luna Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Honglin Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiude Fan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Tianbao Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Chao Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Zhao He
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Yongfeng Song
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
| |
Collapse
|
7
|
Chu Y, Zhao L, Liu X, Chen H, Zhao C, Chen S, Xiang S, Lu J, Wang X, Wan Y, Dong D, Yao S, Li C, Yin R, Ren G, Yang X, Yu M. Lysine 117 Residue Is Essential for the Function of the Hepatocyte Nuclear Factor 1α. Diabetes 2023; 72:1502-1516. [PMID: 37440709 DOI: 10.2337/db22-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Hepatocyte nuclear factor 1α (HNF1α) plays essential roles in controlling development and metabolism; its mutations are clearly linked to the occurrence of maturity-onset diabetes of the young (MODY3) in humans. Lysine 117 (K117) to glutamic acid (E117) mutation in the HNF1α gene has been clinically associated with MODY3, but no functional data on this variant are available. Here, we addressed the role of lysine 117 in HNF1α function using a knock-in animal model and site-directed mutagenesis. HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. These phenotypes were very similar to those of mice with complete HNF1α deficiency, suggesting that K117 is critical to HNF1α functions. K117E homozygotes developed diabetes in the early postnatal period. The relative deficiency of serum insulin levels and the normal response to insulin treatment in homozygous mice were markedly similar to those in the MODY3 disorder in humans. Moreover, K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of MODY3 as well. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization. Collectively, our findings reveal a previously unappreciated role of POU domain of HNF1α in homodimerization and provide important clues for identifying the molecular basis of HNF1α-related diseases such as MODY3. ARTICLE HIGHLIGHTS HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. K117E homozygotes developed diabetes in the early postnatal period. K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of maturity-onset diabetes of the young. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization.
Collapse
Affiliation(s)
- Yuan Chu
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Long Zhao
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chen Zhao
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Sicong Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Life Sciences, He Bei University, Baoding, China
| | - Yue Wan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medical Sciences, An Hui Medical University, Hefei, China
| | - Diandian Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Life Sciences, He Bei University, Baoding, China
| | - Songhui Yao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medical Sciences, An Hui Medical University, Hefei, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Guangming Ren
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Life Sciences, He Bei University, Baoding, China
- School of Basic Medical Sciences, An Hui Medical University, Hefei, China
| |
Collapse
|
8
|
Weng C, Gu A, Zhang S, Lu L, Ke L, Gao P, Liu X, Wang Y, Hu P, Plummer D, MacDonald E, Zhang S, Xi J, Lai S, Leskov K, Yuan K, Jin F, Li Y. Single cell multiomic analysis reveals diabetes-associated β-cell heterogeneity driven by HNF1A. Nat Commun 2023; 14:5400. [PMID: 37669939 PMCID: PMC10480445 DOI: 10.1038/s41467-023-41228-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Broad heterogeneity in pancreatic β-cell function and morphology has been widely reported. However, determining which components of this cellular heterogeneity serve a diabetes-relevant function remains challenging. Here, we integrate single-cell transcriptome, single-nuclei chromatin accessibility, and cell-type specific 3D genome profiles from human islets and identify Type II Diabetes (T2D)-associated β-cell heterogeneity at both transcriptomic and epigenomic levels. We develop a computational method to explicitly dissect the intra-donor and inter-donor heterogeneity between single β-cells, which reflect distinct mechanisms of T2D pathogenesis. Integrative transcriptomic and epigenomic analysis identifies HNF1A as a principal driver of intra-donor heterogeneity between β-cells from the same donors; HNF1A expression is also reduced in β-cells from T2D donors. Interestingly, HNF1A activity in single β-cells is significantly associated with lower Na+ currents and we nominate a HNF1A target, FXYD2, as the primary mitigator. Our study demonstrates the value of investigating disease-associated single-cell heterogeneity and provides new insights into the pathogenesis of T2D.
Collapse
Affiliation(s)
- Chen Weng
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anniya Gu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shanshan Zhang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peidong Gao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yuntong Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peinan Hu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Dylan Plummer
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Elise MacDonald
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saixian Zhang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jiajia Xi
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sisi Lai
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Konstantin Leskov
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kyle Yuan
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Kavitha B, Ranganathan S, Gopi S, Vetrivel U, Hemavathy N, Mohan V, Radha V. Molecular characterization and re-interpretation of HNF1A variants identified in Indian MODY subjects towards precision medicine. Front Endocrinol (Lausanne) 2023; 14:1177268. [PMID: 37396188 PMCID: PMC10313120 DOI: 10.3389/fendo.2023.1177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background HNF1A is an essential component of the transcription factor network that controls pancreatic β-cell differentiation, maintenance, and glucose stimulated insulin secretion (GSIS). A continuum of protein malfunction is caused by variations in the HNF1A gene, from severe loss-of-function (LOF) variants that cause the highly penetrant Maturity Onset Diabetes of the Young (MODY) to milder LOF variants that are far less penetrant but impart a population-wide risk of type 2 diabetes that is up to five times higher. Before classifying and reporting the discovered variations as relevant in clinical diagnosis, a critical review is required. Functional investigations offer substantial support for classifying a variant as pathogenic, or otherwise as advised by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) ACMG/AMP criteria for variant interpretation. Objective To determine the molecular basis for the variations in the HNF1A gene found in patients with monogenic diabetes in India. Methods We performed functional protein analyses such as transactivation, protein expression, DNA binding, nuclear localization, and glucose stimulated insulin secretion (GSIS) assay, along with structural prediction analysis for 14 HNF1A variants found in 20 patients with monogenic diabetes. Results Of the 14 variants, 4 (28.6%) were interpreted as pathogenic, 6 (42.8%) as likely pathogenic, 3 (21.4%) as variants of uncertain significance, and 1 (7.14%) as benign. Patients harboring the pathogenic/likely pathogenic variants were able to successfully switch from insulin to sulfonylureas (SU) making these variants clinically actionable. Conclusion Our findings are the first to show the need of using additive scores during molecular characterization for accurate pathogenicity evaluations of HNF1A variants in precision medicine.
Collapse
Affiliation(s)
- Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| | | | - Sundaramoorthy Gopi
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| | - Umashankar Vetrivel
- Department of Bioinformatics, Vision Research Foundation, Chennai, India
- Department of Virology Biotechnology, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | | | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai and Dr. Mohan’s Diabetes Specialties Centre, International Diabetes Federation (IDF) Centre of Education, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| |
Collapse
|
10
|
Pollack-Schreiber N, Nwosu BU, Salemi P. Genetic testing for maturity-onset diabetes of the young resulting in an upgraded genetic classification of an HNF1A gene variant: a case report. Front Endocrinol (Lausanne) 2023; 14:1173471. [PMID: 37396173 PMCID: PMC10313222 DOI: 10.3389/fendo.2023.1173471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
The frequent misdiagnosis of MODY (Maturity-Onset Diabetes of the Young) subtypes makes it necessary to clarify the clinical spectrum of the disease phenotypes in suspected subjects so that accurate diagnosis and management plans can be introduced as early as possible in the course of the disease. We report the case of a MODY subtype that was initially characterized as variant of uncertain significance (VUS) but was later changed to a likely pathogenic variant following our report of two cases where the full expression of the clinical phenotype was described. HNF1A-MODY (Maturity Onset Diabetes of the Young type 3) is one of the most common subtypes of MODY. Due to its variable clinical presentation, and the concerns with being misdiagnosed as either type 1 or type 2 diabetes, DNA sequencing is needed to confirm the diagnosis. This case report illustrates the clinical scenario leading to the identification of the gene variant c.416T>C(p. Leu139Pro) in the HNF1A gene, initially reported as a VUS and later upgraded to a likely pathogenic variant. Though the mutation was described in two Czech family members in 2020, the clinical course and phenotype was not characterized. Therefore, there was the need to fully describe the spectrum of the disease arising from the mutation. The case report fully describes the clinical spectrum of this mutation and provides much needed clinical management approaches to the wider scientific community.
Collapse
|
11
|
Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, Saint-Martin C, Molnes J, Misra S, Aukrust I, de Franco A, Flanagan SE, Njølstad PR, Billings LK, Owen KR, Gloyn AL. A Systematic Review of the use of Precision Diagnostics in Monogenic Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.15.23288269. [PMID: 37131594 PMCID: PMC10153302 DOI: 10.1101/2023.04.15.23288269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monogenic forms of diabetes present opportunities for precision medicine as identification of the underlying genetic cause has implications for treatment and prognosis. However, genetic testing remains inconsistent across countries and health providers, often resulting in both missed diagnosis and misclassification of diabetes type. One of the barriers to deploying genetic testing is uncertainty over whom to test as the clinical features for monogenic diabetes overlap with those for both type 1 and type 2 diabetes. In this review, we perform a systematic evaluation of the evidence for the clinical and biochemical criteria used to guide selection of individuals with diabetes for genetic testing and review the evidence for the optimal methods for variant detection in genes involved in monogenic diabetes. In parallel we revisit the current clinical guidelines for genetic testing for monogenic diabetes and provide expert opinion on the interpretation and reporting of genetic tests. We provide a series of recommendations for the field informed by our systematic review, synthesizing evidence, and expert opinion. Finally, we identify major challenges for the field and highlight areas for future research and investment to support wider implementation of precision diagnostics for monogenic diabetes.
Collapse
Affiliation(s)
- Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Tokai Tumai, Auckland, New Zealand
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Toni I Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Ikle
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Pernille Svalastoga
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin A Maloney
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cécile Saint-Martin
- Department of Medical Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - aiElisa de Franco
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Pål R Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liana K Billings
- Division of Endocrinology, NorthShore University HealthSystem, Skokie, IL, USA; Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Katharine R Owen
- Oxford Center for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Peng H, Li J, Wang Z. De novo HNF1A mutation of young maturity-onset diabetes 3 of a young girl-Case report. BMC Endocr Disord 2023; 23:38. [PMID: 36782183 PMCID: PMC9926701 DOI: 10.1186/s12902-023-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Young maturity-onset diabetes of the young type3(MODY3) as a special type of diabetes, the probability of diagnosis is low. This article reports on a case and reviews the relevant knowledge of the disease. We report an 11-year-and-11-month-old girl whose grandmother died from diabetic complications while the rest of the families were non-diabetes. The proband was initially treated with insulin and metformin but the threatment proved inefficient. After an exome-targeted capture sequencing test, she was diagnosed with mature-onset diabetes of young type 3 (MODY3), and sulfonylureas make sense. The key to mody treatment is a correct and timely diagnosis, which contributes to helping patients overcome the problems of MODY3, especially for blood sugar control.
Collapse
Affiliation(s)
- Haoran Peng
- Chengdu Medical College, 610083 Chengdu, China
| | - Jianbo Li
- Southwest Medical University, 646000 Luzhou, China
| | - Zhang Wang
- Department of Geriatrics, The General Hospital of Western Theater Command, 610083 Chengdu, China
| |
Collapse
|
13
|
Aedh AI, Alshahrani MS, Huneif MA, Pryme IF, Oruch R. A Glimpse into Milestones of Insulin Resistance and an Updated Review of Its Management. Nutrients 2023; 15:nu15040921. [PMID: 36839279 PMCID: PMC9960458 DOI: 10.3390/nu15040921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Insulin is the main metabolic regulator of fuel molecules in the diet, such as carbohydrates, lipids, and proteins. It does so by facilitating glucose influx from the circulation into the liver, adipose tissue, and skeletal myocytes. The outcome of which is subjected to glycogenesis in skeletal muscle and lipogenesis in adipose tissue, as well as in the liver. Therefore, insulin has an anabolic action while, on the contrary, hypoinsulinemia promotes the reverse process. Protein breakdown in myocytes is also encountered during the late stages of diabetes mellitus. The balance of the blood glucose level in physiological conditions is maintained by virtue of the interactive functions of insulin and glucagon. In insulin resistance (IR), the balance is disturbed because glucose transporters (GLUTs) of cell membranes fail to respond to this peptide hormone, meaning that glucose molecules cannot be internalized into the cells, the consequence of which is hyperglycemia. To develop the full state of diabetes mellitus, IR should be associated with the impairment of insulin release from beta-cells of the pancreas. Periodic screening of individuals of high risk, such as those with obesity, hypercholesterolemia, and pregnant nulliparous women in antenatal control, is vital, as these are important checkpoints to detect cases of insulin resistance. This is pivotal as IR can be reversed, provided it is detected in its early stages, through healthy dietary habits, regular exercise, and the use of hypoglycemic agents. In this review, we discuss the pathophysiology, etiology, diagnosis, preventive methods, and management of IR in brief.
Collapse
Affiliation(s)
- Abdullah I. Aedh
- Department of Internal Medicine, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Majed S. Alshahrani
- Department of Obstetrics & Gynecology, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Mohammed A. Huneif
- Department of Pediatrics, School of Medicine, Najran University, Najran 66324, Saudi Arabia
| | - Ian F. Pryme
- Department of Biomedicine, School of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Ramadhan Oruch
- Department of Biochemistry and Molecular Biology, School of Medicine, Najran University, Najran 66324, Saudi Arabia
- Correspondence: ; Tel.: +966-562144606
| |
Collapse
|
14
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S19-S40. [PMID: 36507649 PMCID: PMC9810477 DOI: 10.2337/dc23-s002] [Citation(s) in RCA: 1014] [Impact Index Per Article: 507.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
15
|
Ren XY, Xue MR, Yan ZL, Zhang SJ, Liu M, Li AZ. Clinical Characteristics and Gene Mutations of Two Families with MODY 3 in Inner Mongolia. Pharmgenomics Pers Med 2022; 15:1019-1027. [PMID: 36567880 PMCID: PMC9785186 DOI: 10.2147/pgpm.s371141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Objective This study aimed to analyze the clinical characteristics and gene mutations of two families with maturity-onset diabetes of the young 3 (MODY 3) in Inner Mongolia. Methods Fifty-three patients in Inner Mongolia suspected of having MODY 3 were enrolled in this study according to clinical manifestations. Blood samples were collected, and all exons of the HNF1α gene were analyzed; the second-generation DNA of the splicing regions of the gene was determined by direct sequencing. Results In Family 1, the proband, mother, and uncle all carried the missense heterozygous mutation on exon 2 of the HNF1α gene (c.512G>A, p.Arg171Gln), and both the proband and uncle had MODY 3. In Family 2, the proband, grandfather, father, uncle I, and uncle II all carried a missense mutation on exon 2 (c.391C>t, p.Arg131Trp), and all had MODY 3. The blood glucose control in these patients was stable while they were being treated with oral sulfonylurea hypoglycemic drugs alone or with insulin. Uncle II had serious macrovascular and microvascular complications. Conclusion Maturity-onset diabetes of the young 3 gene mutations (c.512G>A, p.Arg171Gln) and (c.391C>T, p.Arg131Trp) may be the main pathogenic genes of the two families with MODY 3. The two gene mutations found in this study have not been reported previously in China.
Collapse
Affiliation(s)
- Xiao-Yan Ren
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Meng-Ruo Xue
- Department of Interventional Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Zhao-Li Yan
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China,Correspondence: Zhao-Li Yan, Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, No. 1, North Tongdao Street, Huiming District, Hohhot, 010050, People’s Republic of China, Tel +86 13848177245, Email
| | - Shao-Jie Zhang
- Department of Anatomy, Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Min Liu
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Ai-Zhen Li
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| |
Collapse
|
16
|
Stankute I, Dobrovolskiene R, Danyte E, Steponaviciute R, Schwitzgebel VM, Verkauskiene R. Pancreatic beta-cell function dynamics in youth with GCK, HNF1A, and KCNJ11 genes mutations during mixed meal tolerance test. Pediatr Diabetes 2022; 23:1009-1016. [PMID: 36068963 PMCID: PMC9826376 DOI: 10.1111/pedi.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 08/14/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aims were (1) to assess beta-cell function in GCK diabetes patients over 2-year period; (2) to evaluate the dynamics of beta-cell function in HNF1A and KCNJ11 patients after treatment optimization; using mixed meal tolerance test (MMTT) as a gold standard for non-invasive beta-cell function assessment. RESEARCH DESIGN AND METHODS Twenty-two GCK diabetes patients, 22 healthy subjects, 4 patients with HNF1A and 2 with KCNJ11 were recruited. Firstly, beta-cell function was compared between GCK patients versus controls; the dynamics of beta-cell function were assessed in GCK patients with two MMTTs in 2-year period. Secondly, the change of beta-cell function was evaluated in HNF1A and KCNJ11 patients after successful treatment optimization in 2-year period. RESULTS GCK diabetes patients had lower area under the curve (AUC) of C-peptide (CP), average CP and peak CP compared to controls. Also, higher levels of fasting, average, peak and AUC of glycemia during MMTT were found in GCK patients compared to healthy controls. No significant changes in either CP or glycemia dynamics were observed in GCK diabetes group comparing 1st and 2nd MMTTs. Patients with HNF1A and KCNJ11 diabetes had significantly improved diabetes control 2 years after the treatment was optimized (HbA1c 7.1% vs. 5.9% [54 mmol/mol vs. 41 mmol/mol], respectively, p = 0.028). Higher peak CP and lower HbA1c were found during 2nd MMTT in patients with targeted treatment compared to the 1st MMTT before the treatment change. CONCLUSION In short-term perspective, GCK diabetes group revealed no deterioration of beta-cell function. Individualized treatment in monogenic diabetes showed improved beta-cell function.
Collapse
Affiliation(s)
- Ingrida Stankute
- Institute of EndocrinologyLithuanian University of Health SciencesKaunasLithuania,Medical AcademyLithuanian University of Health SciencesKaunasLithuania
| | | | - Evalda Danyte
- Institute of EndocrinologyLithuanian University of Health SciencesKaunasLithuania
| | - Rasa Steponaviciute
- Department of Laboratory MedicineLithuanian University of Health SciencesKaunasLithuania
| | - Valerie M. Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and ObstetricsUniversity Hospitals of GenevaGenevaSwitzerland,Diabetes Center of the Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Rasa Verkauskiene
- Institute of EndocrinologyLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|
17
|
Bonner C, Saponaro C. Where to for precision treatment of HNF1A-MODY? Diabetologia 2022; 65:1825-1829. [PMID: 35412067 DOI: 10.1007/s00125-022-05696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Caroline Bonner
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.
| | - Chiara Saponaro
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| |
Collapse
|
18
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J Pers Med 2022; 12:jpm12111762. [PMID: 36573710 PMCID: PMC9697644 DOI: 10.3390/jpm12111762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.
Collapse
Affiliation(s)
- Hazar Younis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Arushi Verma
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, Reno, NV 89557, USA
- Correspondence:
| |
Collapse
|
20
|
Doğan M, Eröz R, Bolu S, Yüce H, Gezdirici A, Arslanoğlu İ, Teralı K. Study of ten causal genes in Turkish patients with clinically suspected maturity-onset diabetes of the young (MODY) using a targeted next-generation sequencing panel. Mol Biol Rep 2022; 49:7483-7495. [PMID: 35733065 DOI: 10.1007/s11033-022-07552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY), which is the most common cause of monogenic diabetes, has an autosomal dominant pattern of inheritance and exhibits marked clinical and genetic heterogeneity. The aim of the current study was to investigate molecular defects in patients with clinically suspected MODY using a next-generation sequencing (NGS)-based targeted gene panel. METHODS Candidate patients with clinical suspicion of MODY and their parents were included in the study. Molecular genetic analyses were performed on genomic DNA by using NGS. A panel of ten MODY-causal genes involving GCK, HNF1A, HNF1B, HNF4A, ABCC8, CEL, INS, KCNJ11, NEUROD1, PDX1 was designed and subsequently implemented to screen 40 patients for genetic variants. RESULTS Ten different pathogenic or likely pathogenic variants were identified in MODY-suspected patients, with a diagnostic rate of 25%. Three variants of uncertain significance were also detected in the same screen. A novel pathogenic variant in the gene HNF1A (c.505_506delAA [p.Lys169AlafsTer18]) was described for the first time in this report. Intriguingly, we were able to detect variants associated with rare forms of MODY in our study population. CONCLUSIONS Our results suggest that in heterogenous diseases such as MODY, NGS analysis enables accurate identification of underlying molecular defects in a timely and cost-effective manner. Although MODY accounts for 2-5% of all diabetic cases, molecular genetic diagnosis of MODY is necessary for optimal long-term treatment and prognosis as well as for effective genetic counseling.
Collapse
Affiliation(s)
- Mustafa Doğan
- Department of Medical Genetics, Genetic Diseases Center, Basaksehir Cam and Sakura City Hospital, 34480, Istanbul, Turkey.
| | - Recep Eröz
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, 81620, Aksaray, Turkey
| | - Semih Bolu
- Department of Pediatric Endocrinology, Faculty of Medicine, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey
| | - Hüseyin Yüce
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, 81620, Aksaray, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Genetic Diseases Center, Basaksehir Cam and Sakura City Hospital, 34480, Istanbul, Turkey
| | - İlknur Arslanoğlu
- Department of Pediatrics Endocrinology, Faculty of Medicine, Duzce University, 81620, Duzce, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, 99428, Kyrenia, Cyprus
| |
Collapse
|
21
|
He J, Du C, Peng X, Hong W, Qiu D, Qiu X, Zhang X, Qin Y, Zhang Q. Hepatocyte nuclear factor 1A suppresses innate immune response by inducing degradation of TBK1 to inhibit steatohepatitis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Firdous P, Nissar K, Masoodi SR, Ganai BA. Biomarkers: Tools for Discriminating MODY from Other Diabetic Subtypes. Indian J Endocrinol Metab 2022; 26:223-231. [PMID: 36248040 PMCID: PMC9555386 DOI: 10.4103/ijem.ijem_266_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/24/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Maturity Onset Diabetes of Young (MODY), characterized by the pancreatic b-cell dysfunction, the autosomal dominant mode of inheritance and early age of onset (often ≤25 years). It differs from normal type 1 and type 2 diabetes in that it occurs at a low rate of 1-5%, three-generational autosomal dominant patterns of inheritance and lacks typical diabetic features such as obesity. MODY patients can be managed by diet alone for many years, and sulfonylureas are also recommended to be very effective for managing glucose levels for more than 30 years. Despite rapid advancements in molecular disease diagnosis methods, MODY cases are frequently misdiagnosed as type 1 or type 2 due to overlapping clinical features, genetic testing expenses, and a lack of disease understanding. A timely and accurate diagnosis method is critical for disease management and its complications. An early diagnosis and differentiation of MODY at the clinical level could reduce the risk of inappropriate insulin or sulfonylurea treatment therapy and its associated side effects. We present a broader review to highlight the role and efficacy of biomarkers in MODY differentiation and patient selection for genetic testing analysis.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| | - Kamran Nissar
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir
| | | | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| |
Collapse
|
23
|
Alvarez M, Rincon O, Alvarado A, Puentes F. Maturity-onset diabetes of the young type 3 and premature ovarian insufficiency: chance or causality: a case report and literature review. Endocrinol Diabetes Metab Case Rep 2022; 2022:21-0166. [PMID: 35615950 PMCID: PMC9175577 DOI: 10.1530/edm-21-0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
Summary We present the case of a 23-year-old patient with maturity-onset diabetes of the young type 3 (MODY 3) and premature ovarian insufficiency (POI). There is no known correlation between MODY 3 and POI, although POI can impair glucose metabolism, and MODY can cause microvascular complications such as POI. We did not find literature describing a correlation between these two pathologies nor did we find similar cases described in the literature. Learning points Maturity-onset diabetes of the young type 3 (MODY 3) is an infrequent cause of diabetes that should be considered in young patients with atypical presentation of type 1 or type 2 diabetes. MODY 3 can be associated with microvascular complications of diabetes, which is why it is important to diagnose as early as possible. Impairment of glucose metabolism has been demonstrated in patients with premature ovarian insufficiency and menopause.
Collapse
|
24
|
Wang M, Shu H, Xie J, Huang Y, Wang K, Feng R, Yu X, Guan J, Feng W, Liu M. An intron mutation of HNF1A causes abnormal splicing and impairs its activity as a transcription factor. Mol Cell Endocrinol 2022; 545:111575. [PMID: 35081418 DOI: 10.1016/j.mce.2022.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Mutations in HNF1A are associated with Maturity Onset Diabetes of the Young type 3 (MODY3) and most of them are in the coding region. Herein, we identified an intron mutation at the 6th nucleotide upstream of the end of intron 7 of HNF1A, named IVS7-6G > A, in a patient with early-onset diabetes. The "minigene" assay showed that IVS7-6G > A produced two aberrant mRNA variants translating into two truncated proteins: L502S fs* and G437A fs*, both affecting HNF1A transactivation domain (TAD). To determine functional consequences of IVS7-6G > A mutation, we made plasmids encoding truncated HNF1A containing different portions of HNF1A TAD and found that the TAD of HNF1A is important not only for its regulatory activities, but also for its nuclearization, and the residues 282-501 was more essential than 502-631. Our data suggested IVS7-6G > A impaired HNF1A splicing and may contribute to the pathogenesis of MODY3.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Hua Shu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Jing Xie
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Yadi Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Kunling Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Renrui Feng
- Division of Laboratory Animal, Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin, 300020, China.
| | - Xiaomeng Yu
- Division of Laboratory Animal, Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin, 300020, China.
| | - Jun Guan
- Department of Technique, RSR TJ Biotech Co., Ltd, J-312, 6 Haitai Development Road, Haitai Green Area, Huayuan Industrial Park, Binhai Hi-tech Zone, Tianjin, 300384, China.
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
25
|
Cujba AM, Alvarez-Fallas ME, Pedraza-Arevalo S, Laddach A, Shepherd MH, Hattersley AT, Watt FM, Sancho R. An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep 2022; 38:110425. [PMID: 35235779 PMCID: PMC8905088 DOI: 10.1016/j.celrep.2022.110425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
The HNF1αp291fsinsC truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1αp291fsinsC causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1αp291fsinsC affects hiPSC differentiation during pancreatic development. HNF1αp291fsinsC hiPSCs shows reduced pancreatic progenitor and β cell differentiation. Mechanistically, HNF1αp291fsinsC interacts with HNF1β and inhibits its function, and disrupting this interaction partially rescues HNF1β-dependent transcription. HNF1β overexpression in the HNF1αp291fsinsC patient organoid line increases PDX1+ progenitors, while HNF1β overexpression in the HNF1αp291fsinsC patient iPSC line partially rescues β cell differentiation. Our study highlights the capability of pancreas progenitor-derived organoids to model disease in vitro. Additionally, it uncovers an HNF1β-mediated mechanism linked to HNF1α truncation that affects progenitor differentiation and could explain the clinical heterogeneity observed in MODY3 patients. MODY3 patient and CRISPR/Cas9 HNF1αp291fsinsC mutated iPSC lines are generated Mutant iPSCs show deficient pancreatic progenitor and β cell differentiation Mutant truncated HNF1α protein binds wild-type HNF1β protein to hinder its function HNF1β overexpression in MODY3 iPSC line partially rescues β cell differentiation
Collapse
Affiliation(s)
- Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | | | | | | | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK; Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
26
|
Sepehri Z, Banerjee A, Vizeacoumar FS, Freywald A, Vizeacoumar FJ, Dolinsky VW, Davie JR. Differential expression of
HNF1A
and
HNF1A‐AS1
in colon cancer cells. IUBMB Life 2022; 74:496-507. [DOI: 10.1002/iub.2609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zahra Sepehri
- Department of Biochemistry and Medical Genetics University of Manitoba Winnipeg Manitoba Canada
- Department of Internal Medicine Zabol University of Medical Sciences Zabol Iran
| | - Archana Banerjee
- Division of Oncology, College of Medicine University of Saskatchewan Saskatoon SK Canada
- Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road Saskatoon SK Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive Saskatoon SK Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive Saskatoon SK Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine University of Saskatchewan Saskatoon SK Canada
- Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road Saskatoon SK Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba Winnipeg MB Canada
- Department of Pharmacology and Therapeutics University of Manitoba Winnipeg MB Canada
| | - James R. Davie
- Department of Biochemistry and Medical Genetics University of Manitoba Winnipeg Manitoba Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
27
|
Meta-analysis of HNF1A-MODY3 variants among human population. J Diabetes Metab Disord 2022; 21:1037-1046. [PMID: 35673428 PMCID: PMC9167412 DOI: 10.1007/s40200-022-00975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/09/2022] [Indexed: 02/04/2023]
Abstract
Background Previously, numerous case-control studies have highlighted variants responsible for Maturity onset diabetes of young (MODY). However, these studies have been conducted among diverse populations and hence yielded contradictory results. We, therefore, performed a meta-analysis to precisely find the association of SNPs with the disease for the HNF1A gene. Objective Meta-analysis of clinically defined studies deciphering mutations in the HNF1A gene responsible for the development of MODY3 was conducted among various populations to determine associations using statistical approaches. Methods The curation of 505 research articles published between the years 2000-2021 was carried out. Visualization of data-related protocols and statistical-analysis were conducted, which led to the identification of highly prevalent mutations among different populations (majorly Europe). Further comparison between the frequencies of the control (healthy population) and test (diseased population) dataset generated through curation was performed. Results We identified nine MODY3 mutations (rs587776825, rs1169288, rs1800574, rs2464196, rs137853244, rs137853238, rs587780357, rs137853240 and rs137853243) at the genome-wide significance level ( p < 5.0 × 10-8). The present study confirmed that the data does not follow a normal distribution. Further, the data was confirmed to be a more homogenous type with frequencies having a significant association with the disease. Conclusion This meta-analysis found significant associations of mutations in HNF1A with MODY3, consistent with previous studies. Our findings should help elucidate the mutations in a compiled form responsible for causing MODY3. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-00975-8.
Collapse
|
28
|
Dabi YT, Degechisa ST. Genome Editing and Human Pluripotent Stem Cell Technologies for in vitro Monogenic Diabetes Modeling. Diabetes Metab Syndr Obes 2022; 15:1785-1797. [PMID: 35719247 PMCID: PMC9199525 DOI: 10.2147/dmso.s366967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a metabolic disease characterized by chronic hyperglycemia. Polygenic diabetes, which encompasses type-1 and type-2 diabetes, is the most prevalent kind of diabetes and is caused by a combination of different genetic and environmental factors, whereas rare phenotype monogenic diabetes is caused by a single gene mutation. Monogenic diabetes includes Neonatal diabetes mellitus and Maturity-onset diabetes of the young. The majority of our current knowledge about the pathogenesis of diabetes stems from studies done on animal models. However, the genetic difference between these creatures and humans makes it difficult to mimic human clinical pathophysiology, limiting their value in modeling key aspects of human disease. Human pluripotent stem cell technologies combined with genome editing techniques have been shown to be better alternatives for creating in vitro models that can provide crucial knowledge about disease etiology. This review paper addresses genome editing and human pluripotent stem cell technologies for in vitro monogenic diabetes modeling.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Email
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
29
|
Liu JP, Yang AP, Lei G, Yu M, Peng Y, Le AP. Prevalence and clinical characteristics of T2DM patients with OTUD3 gene rs78466831 SNP at a single academic center in China. Front Endocrinol (Lausanne) 2022; 13:1059641. [PMID: 36531510 PMCID: PMC9755877 DOI: 10.3389/fendo.2022.1059641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND A novel, rare OTUD3 c.863G>A (rs78466831) in humans has been reported associated with diabetes, but the prevalence and clinical characteristics of T2DM patients with rs78466831 have not been reported before. OBJECTIVE To investigate the prevalence and clinical characteristics of T2DM patients with rs78466831 and provide a basis for clinical diagnosis and treatment. METHODS OTUD3 gene rs78466831 SNP was detected by Sanger sequencing in all the collected specimens of laboratory-confirmed T2DM patients and healthy people. Clinical characteristics indexes inconsisting of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG) and a body mass index (BMI), T2DM-associated chronic complications (myocardial infarction, cerebrovascular disease, retinopathy, arterial plaque, peripheral neuropathy and nephropathy) were obtained from the clinical laboratory information systems and electronic medical record system. Clinical characteristic indicators were compared between the wild-type and variant (rs78466831) patients with T2DM. RESULTS The prevalence of rs78466831 in the T2DM patients group was significantly higher than the healthy control in our academic center. The general characteristic indicators were not significantly different between the wild-type and rs78466831 patients with T2DM, except the family history of diabetes. Clinical laboratory indicators including HbA1c, FBG, OGTT, TC, HDL-C, LDL-C and CP had no significant difference between the two groups. The therapeutic drug and target achievement rates were not significantly different between the two groups. The incidence of diabetic retinopathy in the variant group was significantly higher than the wild-type group. CONCLUSIONS The OTUD3 gene rs78466831 was associated with T2DM and may be a biological risk factor of diabetes retinopathy.
Collapse
Affiliation(s)
- Jian-Ping Liu
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ai-Ping Yang
- Department of Clinical Laboratory, Shanghai Songjiang Jiuting Hospital, Shanghai, China
| | - Gang Lei
- Department of Critical Care Medicine, People’s Hospital of Zhangshu, Zhangshu, Jiangxi, China
| | - Man Yu
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Clinical Laboratory, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Yu Peng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ai-ping Le
- Department of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Blood Transfusion Medicine of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Ai-ping Le,
| |
Collapse
|
30
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
31
|
Maturity-Onset Diabetes of the Young (MODY): Genetic Causes, Clinical Characteristics, Considerations for Testing, and Treatment Options. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) encompasses a group of rare monogenic forms of diabetes distinct in etiology and clinical presentation from the more common forms of Type 1 (autoimmune) and Type 2 diabetes. Since its initial description as a clinical entity nearly 50 years ago, the underlying genetic basis for the various forms of MODY has been increasingly better elucidated. Clinically, the diagnosis may be made in childhood or young adulthood and can present as overt hyperglycemia requiring insulin therapy or as a subtle form of slowly progressive glucose impairment. Due to the heterogeneity of clinical symptoms, patients with MODY may be misdiagnosed as possessing another form of diabetes, resulting in potentially inappropriate treatment and delays in screening of affected family members and associated comorbidities. In this review, we highlight the various known genetic mutations associated with MODY, clinical presentation, indications for testing, and the treatment options available.
Collapse
|
32
|
Karakilic E, Saygili ES, Silan F, Onduc GG, Agcaoglu U. New results for monogenic diabetes with analysis of causative genes using next-generation sequencing: a tertiary centre experience from Turkey. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Lehtiö J, Arslan T, Siavelis I, Pan Y, Socciarelli F, Berkovska O, Umer HM, Mermelekas G, Pirmoradian M, Jönsson M, Brunnström H, Brustugun OT, Purohit KP, Cunningham R, Asl HF, Isaksson S, Arbajian E, Aine M, Karlsson A, Kotevska M, Hansen CG, Haakensen VD, Helland Å, Tamborero D, Johansson HJ, Branca RM, Planck M, Staaf J, Orre LM. Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune evasion mechanisms. NATURE CANCER 2021; 2:1224-1242. [PMID: 34870237 PMCID: PMC7612062 DOI: 10.1038/s43018-021-00259-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite major advancements in lung cancer treatment, long-term survival is still rare, and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry (MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition MS-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.
Collapse
Affiliation(s)
- Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, SciLifeLab, Solna, Sweden.
| | - Taner Arslan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Ioannis Siavelis
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Fabio Socciarelli
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Olena Berkovska
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Husen M. Umer
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Georgios Mermelekas
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Mohammad Pirmoradian
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Mats Jönsson
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Hans Brunnström
- Department of Pathology, Laboratory Medicine Region Skåne, Lund, Sweden,Division of Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Odd Terje Brustugun
- Section of Oncology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Krishna Pinganksha Purohit
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen’s Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK,MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Richard Cunningham
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen’s Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK,MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Hassan Foroughi Asl
- Genomic Medicine Center, Karolinska University Hospital, Stockholm, Sweden. Clinical Genomics Facility, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sofi Isaksson
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Elsa Arbajian
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Mattias Aine
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Anna Karlsson
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Marija Kotevska
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden,Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund, Sweden
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen’s Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK,MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,Department of Oncology, Oslo University Hospital, Oslo, Norway,Faculty of Medicine, University of Oslo, Norway
| | - David Tamborero
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Henrik J. Johansson
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Rui M. Branca
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| | - Maria Planck
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden,Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Lukas M. Orre
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, SE-17165, Sweden
| |
Collapse
|
34
|
Yalçıntepe S, Özgüç Çömlek F, Gürkan H, Demir S, Atlı Eİ, Atlı E, Eker D, Tütüncüler Kökenli F. The Application of Next Generation Sequencing Maturity Onset Diabetes of the Young Gene Panel in Turkish Patients from Trakya Region. J Clin Res Pediatr Endocrinol 2021; 13:320-331. [PMID: 33565752 PMCID: PMC8388052 DOI: 10.4274/jcrpe.galenos.2021.2020.0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by targeted-gene sequencing of 20 genes related to monogenic diabetes, estimate the frequency and describe the clinical characteristics of monogenic diabetes and MODY in the Trakya Region of Turkey. METHODS A panel of 20 monogenic diabetes related genes were screened in 61 cases. Illumina NextSeq550 system was used for sequencing. Pathogenicity of the variants were assessed by bioinformatics prediction software programs and segregation analyses. RESULTS In 29 (47.5%) cases, 31 pathogenic/likely pathogenic variants in the GCK, ABCC8, KCNJ11, HNF1A, HNF4A genes and in 11 (18%) cases, 14 variants of uncertain significance (VUS) in the GCK, RFX6, CEL, PDX1, KCNJ11, HNF1A, G6PC2, GLIS3 and KLF11 genes were identified. There were six different pathogenic/likely pathogenic variants and six different VUS which were novel. CONCLUSION This is the first study including molecular studies of twenty monogenic diabetes genes in Turkish cases in the Trakya Region. The results showed that pathogenic variants in the GCK gene are the leading cause of MODY in our population. A high frequency of novel variants (32.4%-12/37) in the current study, suggests that multiple gene analysis provides accurate genetic diagnosis in MODY.
Collapse
Affiliation(s)
- Sinem Yalçıntepe
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey,* Address for Correspondence: Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey Phone: +90 537 716 86 91 E-mail:
| | - Fatma Özgüç Çömlek
- Trakya University Faculty of Medicine, Department of Pediatric Endocrinology, Edirne, Turkey
| | - Hakan Gürkan
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Selma Demir
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Emine İkbal Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Engin Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Damla Eker
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | | |
Collapse
|
35
|
Gaál Z, Szűcs Z, Kántor I, Luczay A, Tóth-Heyn P, Benn O, Felszeghy E, Karádi Z, Madar L, Balogh I. A Comprehensive Analysis of Hungarian MODY Patients-Part I: Gene Panel Sequencing Reveals Pathogenic Mutations in HNF1A, HNF1B, HNF4A, ABCC8 and INS Genes. Life (Basel) 2021; 11:life11080755. [PMID: 34440499 PMCID: PMC8399091 DOI: 10.3390/life11080755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) has about a dozen known causal genes to date, the most common ones being HNF1A, HNF4A, HNF1B and GCK. The phenotype of this clinically and genetically heterogeneous form of diabetes depends on the gene in which the patient has the mutation. We have tested 450 Hungarian index patients with suspected MODY diagnosis with Sanger sequencing and next-generation sequencing and found a roughly 30% positivity rate. More than 70% of disease-causing mutations were found in the GCK gene, about 20% in the HNF1A gene and less than 10% in other MODY-causing genes. We found 8 pathogenic and 9 likely pathogenic mutations in the HNF1A gene in a total of 48 patients and family members. In the case of HNF1A-MODY, the recommended first-line treatment is low dose sulfonylurea but according to our data, the majority of our patients had been on unnecessary insulin therapy at the time of requesting their genetic testing. Our data highlights the importance of genetic testing in the diagnosis of MODY and the establishment of the MODY subtype in order to choose the most appropriate treatment.
Collapse
Affiliation(s)
- Zsolt Gaál
- 4th Department of Medicine, Jósa András Teaching Hospital, 4400 Nyíregyháza, Hungary;
| | - Zsuzsanna Szűcs
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (L.M.)
| | - Irén Kántor
- Department of Pediatrics, Jósa András Teaching Hospital, 4400 Nyíregyháza, Hungary;
| | - Andrea Luczay
- 1st Department of Pediatrics, Semmelweis University, 1085 Budapest, Hungary; (A.L.); (P.T.-H.)
| | - Péter Tóth-Heyn
- 1st Department of Pediatrics, Semmelweis University, 1085 Budapest, Hungary; (A.L.); (P.T.-H.)
| | - Orsolya Benn
- Department of Pediatrics, Szent György Hospital of Fejér County, 8000 Székesfehérvár, Hungary; (O.B.); (Z.K.)
| | - Enikő Felszeghy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsuzsanna Karádi
- Department of Pediatrics, Szent György Hospital of Fejér County, 8000 Székesfehérvár, Hungary; (O.B.); (Z.K.)
| | - László Madar
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (L.M.)
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (L.M.)
- Correspondence:
| |
Collapse
|
36
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
37
|
Patouni K, Cinek O, Pruhova S, Elblova L, Xatzipsalti M, Sertedaki A, Vazeou A. A case of digenic maturity onset diabetes of the young with heterozygous variants in both HNF1Α and HNF1Β genes. Eur J Med Genet 2021; 64:104264. [PMID: 34161864 DOI: 10.1016/j.ejmg.2021.104264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/27/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Maturity onset diabetes of the young (MODY) is the most commonly reported form of monogenic diabetes in the pediatric population. Only a few cases of digenic MODY have been reported up to now. CASE REPORT A female patient was diagnosed with diabetes at the age of 7 years and was treated with insulin. A strong family history of diabetes was present in the maternal side of the family. The patient also presented hypomagnesemia, glomerulocystic kidney disease and a bicornuate uterus. Genetic testing of the patient revealed that she was a double heterozygous carrier of HNF1A gene variant c.685C > T; (p.Arg229Ter) and a whole gene deletion of the HNF1B gene. Her mother was a carrier of the same HNF1A variant. CONCLUSION Digenic inheritance of MODY pathogenic variants is probably more common than currently reported in literature. The use of Next Generation Sequencing panels in testing strategies for MODY could unmask such cases that would otherwise remain undiagnosed.
Collapse
Affiliation(s)
- Konstantina Patouni
- Diabetes Center, First Department of Paediatrics, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| | - Ondrej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Maria Xatzipsalti
- Diabetes Center, First Department of Paediatrics, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Andriani Vazeou
- Diabetes Center, First Department of Paediatrics, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
38
|
Micaglio E, Locati ET, Monasky MM, Romani F, Heilbron F, Pappone C. Role of Pharmacogenetics in Adverse Drug Reactions: An Update towards Personalized Medicine. Front Pharmacol 2021; 12:651720. [PMID: 33995067 PMCID: PMC8120428 DOI: 10.3389/fphar.2021.651720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Adverse drug reactions (ADRs) are an important and frequent cause of morbidity and mortality. ADR can be related to a variety of drugs, including anticonvulsants, anaesthetics, antibiotics, antiretroviral, anticancer, and antiarrhythmics, and can involve every organ or apparatus. The causes of ADRs are still poorly understood due to their clinical heterogeneity and complexity. In this scenario, genetic predisposition toward ADRs is an emerging issue, not only in anticancer chemotherapy, but also in many other fields of medicine, including hemolytic anemia due to glucose-6-phosphate dehydrogenase (G6PD) deficiency, aplastic anemia, porphyria, malignant hyperthermia, epidermal tissue necrosis (Lyell's Syndrome and Stevens-Johnson Syndrome), epilepsy, thyroid diseases, diabetes, Long QT and Brugada Syndromes. The role of genetic mutations in the ADRs pathogenesis has been shown either for dose-dependent or for dose-independent reactions. In this review, we present an update of the genetic background of ADRs, with phenotypic manifestations involving blood, muscles, heart, thyroid, liver, and skin disorders. This review aims to illustrate the growing usefulness of genetics both to prevent ADRs and to optimize the safe therapeutic use of many common drugs. In this prospective, ADRs could become an untoward "stress test," leading to new diagnosis of genetic-determined diseases. Thus, the wider use of pharmacogenetic testing in the work-up of ADRs will lead to new clinical diagnosis of previously unsuspected diseases and to improved safety and efficacy of therapies. Improving the genotype-phenotype correlation through new lab techniques and implementation of artificial intelligence in the future may lead to personalized medicine, able to predict ADR and consequently to choose the appropriate compound and dosage for each patient.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuela T Locati
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Federico Romani
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| | | | - Carlo Pappone
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| |
Collapse
|
39
|
Zhang E, Huang X, He J. Integrated bioinformatic analysis of HNF1A in human cancers. J Int Med Res 2021; 49:300060521997326. [PMID: 33752475 PMCID: PMC7995467 DOI: 10.1177/0300060521997326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Cancer is a threat to human health, and many molecules are involved in the transformation of malignant cells. Hepatocyte nuclear factor 1A (HNF1A) is an important transcription factor that regulates multiple biological processes. Our research focused on elucidating the expression and function of HNF1A in cancer through bioinformatic analysis. METHODS UALCAN, Kaplan-Meier plotter, COSMIC, Tumor IMmune Estimation Resource, and Cancer Regulome were used to obtain relevant data for HNF1A. RESULTS HNF1A was abnormally expressed in multiple cancers, and its expression was associated with differences in overall survival in patients with cancer. HNF1A mutations widely exist in tumors and interact with different genes involved in various processes. Additionally, we found that HNF1A was associated with the infiltration of immune cells, and it affected the prognostic value of these cells in some cancers. CONCLUSIONS HNF1A plays a crucial role in cancer, and it may represent a biomarker and target for future cancer immunotherapy.
Collapse
Affiliation(s)
- Enfan Zhang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| | - Xi Huang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| | - Jingsong He
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| |
Collapse
|
40
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
41
|
Molecular and clinical assessment of maturity-onset diabetes of the young revealed low mutational rate in Moroccan families. Int J Pediatr Adolesc Med 2021; 9:98-103. [PMID: 35663783 PMCID: PMC9152556 DOI: 10.1016/j.ijpam.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
Background Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes characterized by autosomal dominant inheritance. To offer an adequate patient management and therapeutic treatment for MODY patients, in addition to an early efficient diagnosis of their asymptomatic relatives, it is crucial to set an accurate molecular diagnosis. Hence, our aim was to determine the frequency of HNF1A and GCK genes among Moroccan-suspected MODY patients. Methods Twenty suspected MODY patients were screened for HNF1A and GCK mutations using Sanger sequencing and MLPA methods. Segregation analysis of identified mutations was performed among family members. The pathogenic nature of missense variants was predicted using bioinformatic tools. Results A total of two mutations were revealed among all patients raising the diagnostic rate to 10%. We identified a large novel GCK deletion (c.209-?_1398+?del) by MLPA in one patient and a previously reported missense substitution (c.92G > A) in HNF1A gene. Conclusion This is the first investigation to perform the molecular diagnosis of MODY suspected patients. Our findings constitute a primary contribution towards unraveling the genetic landscape involved in the pathogenesis of MODY disease in Morocco.
Collapse
|
42
|
Fareed FMA, Korulu S, Özbil M, Çapan ÖY. HNF1A-MODY Mutations in Nuclear Localization Signal Impair HNF1A-Import Receptor KPNA6 Interactions. Protein J 2021; 40:512-521. [PMID: 33459938 DOI: 10.1007/s10930-020-09959-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
Mutations in hepatocyte nuclear factor (HNF)1A gene cause the most common form of Maturity-onset diabetes of the young (MODY), a monogenic subtype of diabetes mellitus. Functional characterization of mutant proteins reveals that mutations may disrupt DNA binding capacity, transactivation ability and nuclear localization of HNF1A depending on the position of the mutation. Previously identified Arg271Trp and Ser345Tyr mutations in HNF1A were found to be defective in nuclear localization. Arg271 residue resides in a region similar to classical nuclear localization signal (NLS) motif, while Ser345 does not. Importin α family members recognize NLS motifs on cargo proteins and subsequently translocate them into nucleus. Here, we first investigated the nuclear localization mechanism of wild type HNF1A protein. For this purpose, we analyzed the interaction of HNF1A with three mouse homolog importin α proteins (KPNA2, KPNA4 and KPNA6) by co-immunoprecipitation assay and molecular docking simulation. Hereby, KPNA6 was identified as the main import receptor, which is responsible for the transport of HNF1A into the nucleus. Immunolocalization studies in mouse pancreatic cells (Min6) also confirmed the co-localization of HNF1A and KPNA6 in the cytoplasm. Secondly, the interaction between KPNA6 and mutant HNF1A proteins (Arg271Trp and Ser345Tyr) was assessed. Co-immunoprecipitation studies revealed a reduced interaction compared to wild type HNF1A. Our study demonstrated for the first time that HNF1A transcription factor is recognized and transported by importin/karyopherin import family, and mutations in NLS motifs may disrupt the interaction leading to nuclear localization abnormalities and MODY phenotype.
Collapse
Affiliation(s)
- Fareed M A Fareed
- Department of Molecular Biology and Genetics, İstanbul Arel University, 34537, Istanbul, Turkey.,Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Sirin Korulu
- Institute of Natural and Health Sciences, Tallinn University, 10120, Tallinn, Estonia
| | - Mehmet Özbil
- Biotechnology Institute, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Özlem Yalçın Çapan
- Department of Molecular Biology and Genetics, İstanbul Arel University, 34537, Istanbul, Turkey.
| |
Collapse
|
43
|
Moalla M, Safi W, Babiker Mansour M, Hadj Kacem M, Mahfood M, Abid M, Kammoun T, Hachicha M, Mnif-Feki M, Hadj Kacem F, Hadj Kacem H. Tunisian Maturity-Onset Diabetes of the Young: A Short Review and a New Molecular and Clinical Investigation. Front Endocrinol (Lausanne) 2021; 12:684018. [PMID: 34393998 PMCID: PMC8358796 DOI: 10.3389/fendo.2021.684018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION/AIMS Maturity-Onset Diabetes of the Young (MODY) is a monogenic non-autoimmune diabetes with 14 different genetic forms. MODY-related mutations are rarely found in the Tunisian population. Here, we explored MODY related genes sequences among seventeen unrelated Tunisian probands qualifying the MODY clinical criteria. MATERIALS AND METHODS The GCK and HNF1A genes were systematically analyzed by direct sequencing in all probands. Then, clinical exome sequencing of 4,813 genes was performed on three unrelated patients. Among them, 130 genes have been reported to be involved in the regulation of glucose metabolism, β-cell development, differentiation and function. All identified variants were analyzed according to their frequencies in the GnomAD database and validated by direct sequencing. RESULTS We identified the previously reported GCK mutation (rs1085307455) in one patient. The clinical features of the MODY2 proband were similar to previous reports. In this study, we revealed rare and novel alterations in GCK (rs780806456) and ABCC8 (rs201499958) genes with uncertain significance. We also found two likely benign alterations in HNF1A (rs1800574) and KLF11 (rs35927125) genes with minor allele frequencies similar to those depicted in public databases. No pathogenic variants have been identified through clinical exome analysis. CONCLUSIONS The most appropriate patients were selected, following a strict clinical screening approach, for genetic testing. However, the known MODY1-13 genes could not explain most of the Tunisian MODY cases, suggesting the involvement of unidentified genes in the majority of Tunisian affected families.
Collapse
Affiliation(s)
- Mariam Moalla
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wajdi Safi
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Maab Babiker Mansour
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Hadj Kacem
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abid
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Thouraya Kammoun
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mongia Hachicha
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mouna Mnif-Feki
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Faten Hadj Kacem
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Hassen Hadj Kacem,
| |
Collapse
|
44
|
Schnedl WJ, Holasek SJ, Schenk M, Enko D, Mangge H. Diagnosis of hepatic nuclear factor 1A monogenic diabetes mellitus (HNF1A-MODY) impacts antihyperglycemic treatment. Wien Klin Wochenschr 2020; 133:241-244. [PMID: 33245425 DOI: 10.1007/s00508-020-01770-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022]
Abstract
Monogenic mutations of the hepatocyte nuclear factor 1 homeobox A maturity onset diabetes of the young (HNF1A-MODY) is characterized by early onset, typically before the age of 25 years. Patients are often not clinically recognized; however, the identification of HNF1A-MODY patients is crucial because they require different antihyperglycemic medical treatment than patients with type 1 or type 2 diabetes mellitus. We describe two adult patients with monogenic diabetes, both identified as HNF1A-MODY, genetically c.815G>A, p.Arg272His and c675delC, p.Ser225Argfs*8, respectively. They were misdiagnosed as having type 1 diabetes mellitus, and consequently, initiating insulin therapy led to hypoglycemia and unstable blood glucose control. Usually, sulfonylureas represent the basis of antidiabetic treatment in patients with HNF1A-MODY; however, all medical personnel involved in diabetes care should be aware of monogenic diabetes mellitus and the possibilities for genetic testing. The patients observed have shown the necessity of the identification and appropriate genetic diagnosis of HNF1A-MODY in order to discontinue insulin therapy and to initiate adjusted diabetes management.
Collapse
Affiliation(s)
- Wolfgang J Schnedl
- General Internal Medicine Practice, Dr. Theodor Körnerstraße 19b, 8600, Bruck/Mur, Austria.
| | - Sandra J Holasek
- Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31a, 8010, Graz, Austria
| | - Michael Schenk
- Das Kinderwunsch Institut Schenk GmbH, Am Sendergrund 11, 8143, Dobl, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, 8036, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, 8036, Graz, Austria
| |
Collapse
|
45
|
The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol 2020; 6:20. [PMID: 33292863 PMCID: PMC7640483 DOI: 10.1186/s40842-020-00112-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background The most common type of monogenic diabetes is maturity-onset diabetes of the young (MODY), a clinically and genetically heterogeneous group of endocrine disorders that affect 1–5% of all patients with diabetes mellitus. MODY is characterized by autosomal dominant inheritance but de novo mutations have been reported. Clinical features of MODY include young-onset hyperglycemia, evidence of residual pancreatic function, and lack of beta cell autoimmunity or insulin resistance. Glucose-lowering medications are the main treatment options for MODY. The growing recognition of the clinical and public health significance of MODY by clinicians, researchers, and governments may lead to improved screening and diagnostic practices. Consequently, this review article aims to discuss the epidemiology, pathogenesis, diagnosis, and treatment of MODY based on relevant literature published from 1975 to 2020. Main body The estimated prevalence of MODY from European cohorts is 1 per 10,000 in adults and 1 per 23,000 in children. Since little is known about the prevalence of MODY in African, Asian, South American, and Middle Eastern populations, further research in non-European cohorts is needed to help elucidate MODY’s exact prevalence. Currently, 14 distinct subtypes of MODY can be diagnosed through clinical assessment and genetic analysis. Various genetic mutations and disease mechanisms contribute to the pathogenesis of MODY. Management of MODY is subtype-specific and includes diet, oral antidiabetic drugs, or insulin. Conclusions Incidence and prevalence estimates for MODY are derived from epidemiologic studies of young people with diabetes who live in Europe, Australia, and North America. Mechanisms involved in the pathogenesis of MODY include defective transcriptional regulation, abnormal metabolic enzymes, protein misfolding, dysfunctional ion channels, or impaired signal transduction. Clinicians should understand the epidemiology and pathogenesis of MODY because such knowledge is crucial for accurate diagnosis, individualized patient management, and screening of family members.
Collapse
|
46
|
Hu M, Cherkaoui I, Misra S, Rutter GA. Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Front Endocrinol (Lausanne) 2020; 11:576632. [PMID: 33162936 PMCID: PMC7580382 DOI: 10.3389/fendo.2020.576632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The inheritance of variants that lead to coding changes in, or the mis-expression of, genes critical to pancreatic beta cell function can lead to alterations in insulin secretion and increase the risk of both type 1 and type 2 diabetes. Recently developed clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene editing tools provide a powerful means of understanding the impact of identified variants on cell function, growth, and survival and might ultimately provide a means, most likely after the transplantation of genetically "corrected" cells, of treating the disease. Here, we review some of the disease-associated genes and variants whose roles have been probed up to now. Next, we survey recent exciting developments in CRISPR/Cas9 technology and their possible exploitation for β cell functional genomics. Finally, we will provide a perspective as to how CRISPR/Cas9 technology may find clinical application in patients with diabetes.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ines Cherkaoui
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shivani Misra
- Metabolic Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Abstract
Monogenic diabetes, including maturity-onset diabetes of the young, neonatal diabetes, and other rare forms of diabetes, results from a single gene mutation. It has been estimated to represent around 1% to 6% of all diabetes. With the advances in genome sequencing technology, it is possible to diagnose more monogenic diabetes cases than ever before. In Korea, 11 studies have identified several monogenic diabetes cases, using Sanger sequencing and whole exome sequencing since 2001. The recent largest study, using targeted exome panel sequencing, found a molecular diagnosis rate of 21.1% for monogenic diabetes in clinically suspected patients. Mutations in glucokinase (GCK), hepatocyte nuclear factor 1α (HNF1A), and HNF4A were most commonly found. Genetic diagnosis of monogenic diabetes is important as it determines the therapeutic approach required for patients and helps to identify affected family members. However, there are still many challenges, which include a lack of simple clinical criterion for selecting patients for genetic testing, difficulties in interpreting the genetic test results, and high costs for genetic testing. In this review, we will discuss the latest updates on monogenic diabetes in Korea, and suggest an algorithm to screen patients for genetic testing. The genetic tests and non-genetic markers for accurate diagnosis of monogenic diabetes will be also reviewed.
Collapse
Affiliation(s)
- Ye Seul Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea
- Corresponding author: Kyong Soo Park Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea E-mail:
| |
Collapse
|
48
|
Analysis of the promoter regions of disease-causing genes in maturity-onset diabetes of the young patients. Mol Biol Rep 2020; 47:6759-6768. [PMID: 32860162 DOI: 10.1007/s11033-020-05734-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is a form of monogenic diabetes caused by the variants in MODY-related genes. In addition to coding variants, variants in the promoter region of MODY-related genes can cause the disease as well. In this study, we screened the promoter regions of the most common MODY-related genes GCK, HNF1A, HNF4A and HNF1B in our cohort of 29 MODY patients. We identified one genetic variant in the HNF1A gene, a 7 bp insertion c.-154-160insTGGGGGT, and three variants in the GCK gene, -282C>T; -194A>G; 402C>G appearing as set. Chloramphenicol acetyltransferase (CAT) assay was performed to test the effect of the 7 bp insertion and the variant set on the activity of the reporter gene in HepG2 and RIN-5F cell, respectively, where a decreasing trend was observed for both variants. In silico analysis and electrophoretic mobility shift assay showed that the 7 bp insertion did not create the binding site for new transcriptional factors, but gave rise to additional binding sites for the existing ones. Results from our study indicated that the 7 bp insertion in the HNF1A gene could be associated with the patient's diabetes. As for the GCK variant set, it is probably not associated with diabetes in patients, but it may modify the fasting glucose level by causing small elevation in variant set carriers. We have presented two promoter variants in MODY-related genes. Variant in the HNF1A gene is presumed to be disease-causing and the GCK promoter variant set could be a phenotype modifier.
Collapse
|
49
|
Delvecchio M, Pastore C, Giordano P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther 2020; 11:1667-1685. [PMID: 32583173 PMCID: PMC7376807 DOI: 10.1007/s13300-020-00864-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is an unusual form of diabetes with specific features that distinguish it from type 1 and type 2 diabetes. There are 14 known subtypes of MODY, and mutations in three genes (HNF1A, HNF4A, GCK) account for about 95% of all MODY cases. Diagnosis usually occurs before the age of 25 years, although less frequent forms may occur more often-but not necessarily-later in life. The molecular diagnosis may tailor the choice of the most appropriate treatment, with the aim to optimize blood glucose control, reduce the risk of hypoglycemic events and long-term complications, and enable proper genetic counseling. Treatment is usually unnecessary for patients with mutations in the GCK gene, while oral hypoglycemic agents (generally sulphonylureas) are recommended for patients with mutations in the HNF4A and HNF1A genes. More recent data show that other glucose-lowering agents can be effective in the latter patients, and additional and alternative therapies have been proposed. Proper management guidelines during pregnancy have been developed for carriers of GCK gene mutations, but such guidelines are still a subject of debate in other cases, although some recommendations are available. The other subtypes of MODY are even more rare, and very little data are available in the literature. In this review we summarize the most pertinent findings and recommendations on the treatment of patients with the different subtypes of MODY. Our aim is to provide the reader with an easy-to-read update that can be used to drive the clinician's therapeutical approach to these patients after the molecular diagnosis.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Metabolic Disorders and Diabetes Unit, "Giovanni XXIII" Children's Hospital, A.O.U. Policlinico di Bari, Bari, Italy.
| | - Carmela Pastore
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
50
|
Peixoto-Barbosa R, Reis AF, Giuffrida FMA. Update on clinical screening of maturity-onset diabetes of the young (MODY). Diabetol Metab Syndr 2020; 12:50. [PMID: 32528556 PMCID: PMC7282127 DOI: 10.1186/s13098-020-00557-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common type of monogenic diabetes, being characterized by beta-cell disfunction, early onset, and autosomal dominant inheritance. Despite the rapid evolution of molecular diagnosis methods, many MODY cases are misdiagnosed as type 1 or type 2 diabetes. High costs of genetic testing and limited knowledge of MODY as a relevant clinical entity are some of the obstacles that hinder correct MODY diagnosis and treatment. We present a broad review of clinical syndromes related to most common MODY subtypes, emphasizing the role of biomarkers that can help improving the accuracy of clinical selection of candidates for molecular diagnosis. MAIN BODY To date, MODY-related mutations have been reported in at least 14 different genes. Mutations in glucokinase (GCK), hepatocyte nuclear factor-1 homeobox A (HNF1A), and hepatocyte nuclear factor-4 homeobox A (HNF4A) are the most common causes of MODY. Accurate etiological diagnosis can be challenging. Many biomarkers such as apolipoprotein-M (ApoM), aminoaciduria, complement components, and glycosuria have been tested, but have not translated into helpful diagnostic tools. High-sensitivity C-reactive protein (hs-CRP) levels are lower in HNF1A-MODY and have been tested in some studies to discriminate HNF1A-MODY from other types of diabetes, although more data are needed. Overall, presence of pancreatic residual function and absence of islet autoimmunity seem the most promising clinical instruments to select patients for further investigation. CONCLUSIONS The selection of diabetic patients for genetic testing is an ongoing challenge. Metabolic profiling, diabetes onset age, pancreatic antibodies, and C-peptide seem to be useful tools to better select patients for genetic testing. Further studies are needed to define cut-off values in different populations.
Collapse
Affiliation(s)
- Renata Peixoto-Barbosa
- Disciplina de Endocrinologia, Centro de Diabetes, Universidade Federal de São Paulo (UNIFESP), Rua Estado de Israel, 639–Vila Clementino, São Paulo, SP CEP: 04022-001 Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia (UNEB), Salvador, Brazil
| | - André F. Reis
- Disciplina de Endocrinologia, Centro de Diabetes, Universidade Federal de São Paulo (UNIFESP), Rua Estado de Israel, 639–Vila Clementino, São Paulo, SP CEP: 04022-001 Brazil
| | - Fernando M. A. Giuffrida
- Disciplina de Endocrinologia, Centro de Diabetes, Universidade Federal de São Paulo (UNIFESP), Rua Estado de Israel, 639–Vila Clementino, São Paulo, SP CEP: 04022-001 Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia (UNEB), Salvador, Brazil
| |
Collapse
|