1
|
An updated and comprehensive review on the composition and preservation strategies of bovine colostrum and its contributions to animal health. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Habibu B, Umaru Kawu M, Aluwong T, Joan Makun H. Postnatal hypoglycemia and blood glucose concentrations in neonatal tropical goat kids. Vet Clin Pathol 2021; 50:525-534. [PMID: 34719809 DOI: 10.1111/vcp.13028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to evaluate the influences of breed, sex, litter size, and birth weight on the incidence of postnatal hypoglycemia and blood glucose concentrations in neonatal tropical goats. A total of 160 neonatal goat kids belonging to Red Sokoto (n = 98), Sahel (n = 40), and West African Dwarf (n = 22) breeds, were categorized after birth based on glycemic status, sex, litter size, and birth weights (high or low). Blood samples were collected on postnatal days 0, 1, 2, 3, 10, and 20 to determine blood glucose concentrations. Results revealed that the incidence of hypoglycemia at birth among neonatal goat kids was 22.5% (36/160) and was significantly (P < 0.05) higher in the Sahel breed kids, twin kids, and kids born with low birth weights. After 24 hours, all hypoglycemic kids became normoglycemic but maintained lower (P < 0.05) blood glucose levels than those that were normoglycemic at birth, until day 10, when both groups had comparable blood glucose levels. In all groups, blood glucose concentrations increased significantly 24 hours postnatal, and kids with high birth weights had significantly higher values than those with low birth weights, while the buck kids had higher values than the doelings. There was a negative correlation (r = -0.31; P < 0.0003) between the blood glucose concentration of dams and those of their kids. In conclusion, the incidence of hypoglycemia in tropical goat kids was markedly influenced by breed, birth weight, and litter size. Furthermore, the hypoglycemic kids maintained lower blood glucose concentrations until day 10 postnatal, suggesting the need for relevant nutritional provisions for hypoglycemic kids during this critical period.
Collapse
Affiliation(s)
- Buhari Habibu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Umaru Kawu
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Tagang Aluwong
- Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Hussaina Joan Makun
- National Animal Production Research Institute, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
3
|
Żarczyńska K, Sobiech P, Tobolski D, Mee JF, Illek J. Effect of a single, oral administration of selenitetriglycerides, at two dose rates, on blood selenium status and haematological and biochemical parameters in Holstein-Friesian calves. Ir Vet J 2021; 74:11. [PMID: 33892796 PMCID: PMC8067295 DOI: 10.1186/s13620-021-00192-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selenitetriglycerides are biologically active, organic forms of selenium formed as a result of the modification of selenic acid and sunflower oil. Studies in rats have shown that they are well absorbed and of low toxicity. There are no published studies on selenitetriglycerides supplementation in calves. RESULTS In this study, selenitetriglycerides were administered once orally on the 2nd day of life at a dose of 0.5 or 1 mg Se/kg body weight to each of six Holstein-Friesian calves while six control calves were not supplemented. Blood for determination of selenium concentration, glutathione peroxidase activity, haematological parameters, aspartate aminotransferase, creatine kinase, and lactate dehydrogenase activities and glucose, total protein, albumin, triglycerides, cholesterol, urea, and creatinine concentration was collected before supplementation (day 0) and 1, 2, 5, 10 and 14 days after supplementation. Selenitetriglycerides administration increased (P < 0.01) serum selenium concentration in supplemented calves as early as day1, from a mean of 63.4 to 184.22 µg/l in calves receiving selenium at a dose of 0.5 mg/kg BW, and from 63.17 to 200.33 µg/l in calves receiving 1 mg/kg. Serum selenium concentrations remained significantly higher compared to the control group throughout the experiment. Glutathione peroxidase activity was higher in supplemented than control calves, significantly so in animals receiving the 1 mg/kg dose of Se on the 10th and 14th days (P < 0.05). There were no significant differences in the haematological and biochemical parameters between the groups. CONCLUSIONS This experiment showed that supplementation with selenitetriglycerides could significantly improve blood selenium status in calves without adverse effects on haematological or biochemical parameters. These findings are essential prerequisites for future studies on selenitetriglycerides supplementation to manage clinical selenium deficiency in calves.
Collapse
Affiliation(s)
- Katarzyna Żarczyńska
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-957, Olsztyn, Poland.
| | - Przemysław Sobiech
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-957, Olsztyn, Poland
| | - Dawid Tobolski
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-957, Olsztyn, Poland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark Research Centre, Fermoy, Co, P61 C997, Cork, Ireland
| | - Josef Illek
- Clinical Laboratory for Large Animals, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42, Brno, Czech Republic
| |
Collapse
|
4
|
Zhao XW, Zhu HL, Qi YX, Wu T, Huang DW, Ding HS, Chen S, Li M, Cheng GL, Zhao HL, Yang YX. Quantitative comparative phosphoproteomic analysis of the effects of colostrum and milk feeding on liver tissue of neonatal calves. J Dairy Sci 2021; 104:8265-8275. [PMID: 33865590 DOI: 10.3168/jds.2020-20097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Posttranslational modifications, mostly phosphorylation, are critical for protein structure and function. However, the association between liver phosphoproteins in neonatal calves and colostrum intake is not well understood. In this study, we examined the liver phosphoproteome profile in neonatal calves after receiving colostrum or milk. Liver tissue samples were collected from control calves (CON, n = 3) 2 h after birth and from calves that received colostrum (CG, n = 3) or milk (MG, n = 3) 24 h after birth. Hepatic phosphoprotein expression profiles were analyzed using quantitative proteomics based on the liquid chromatography-tandem mass spectrometry method. In total, 1,587 phosphorylated sites were identified in 1,011 liver proteins. The most abundant phosphorylation site AA was serine (87.5%), followed by threonine (11.9%) and tyrosine (0.5%). Among the 1,011 phosphoproteins, 219, 453, and 26 displayed differential expression in the CG versus MG, CG versus CON, and MG versus CON comparisons, respectively. Differentially expressed phosphoproteins in the CG-MG comparison included 3-phosphoinositide-dependent protein kinase 1, glucose transporter member 4, protein kinase N2, and vinculin, which were mainly involved in the glycogen metabolic process, transport, growth and development, and cell adhesion process, according to Gene Ontology analysis. Pathway analysis indicated their enrichment in the insulin signaling pathway, spliceosome, and adherens junction. The CG-CON comparison identified differentially expressed phosphoproteins and their target genes that were largely involved in the cellular process, macromolecule metabolic process, developmental process, and transport. Pathway analysis indicated their association with endocytosis, mechanistic target of rapamycin, AMP-activated protein kinase, and insulin signaling pathways. These data demonstrate that changes in the phosphoproteins of liver tissues may play an important role in energy metabolism and immune response in the calves that received colostrum. These results provide novel insights into the crucial roles of protein phosphorylation during the early life of newborn calves.
Collapse
Affiliation(s)
- X W Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Qi
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - T Wu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - D W Huang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H S Ding
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - S Chen
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - M Li
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - G L Cheng
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Swanson RM, Tait RG, Galles BM, Duffy EM, Schmidt TB, Petersen JL, Yates DT. Heat stress-induced deficits in growth, metabolic efficiency, and cardiovascular function coincided with chronic systemic inflammation and hypercatecholaminemia in ractopamine-supplemented feedlot lambs. J Anim Sci 2020; 98:5840746. [PMID: 32428228 DOI: 10.1093/jas/skaa168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
Heat stress hinders growth and well-being in livestock, an effect that is perhaps exacerbated by the β1 agonist ractopamine. Heat stress deficits are mediated in part by reduced feed intake, but other mechanisms involved are less understood. Our objective was to determine the direct impact of heat stress on growth and well-being in ractopamine-supplemented feedlot lambs. Commercial wethers were fed under heat stress (40 °C) for 30 d, and controls (18 °C) were pair-fed. In a 2 × 2 factorial, lambs were also given a daily gavage of 0 or 60 mg ractopamine. Growth, metabolic, cardiovascular, and stress indicators were assessed throughout the study. At necropsy, 9th to 12th rib sections (four-rib), internal organs, and feet were assessed, and sartorius muscles were collected for ex vivo glucose metabolic studies. Heat stress increased (P < 0.05) rectal temperatures and respiration rates throughout the study and reduced (P < 0.05) weight gain and feed efficiency over the first week, ultrasonic loin-eye area and loin depth near the end of the study, and four-rib weight at necropsy. Fat content of the four-rib and loin were also reduced (P < 0.05) by heat stress. Ractopamine increased (P < 0.05) loin weight and fat content and partially moderated the impact of heat stress on rectal temperature and four-rib weight. Heat stress reduced (P < 0.05) spleen weight, increased (P < 0.05) adrenal and lung weights, and was associated with hoof wall overgrowth but not organ lesions. Ractopamine did not affect any measured indicators of well-being. Heat stress reduced (P < 0.05) blood urea nitrogen and increased (P < 0.05) circulating monocytes, granulocytes, and total white blood cells as well as epinephrine, TNFα, cholesterol, and triglycerides. Cortisol and insulin were not affected. Heat stress reduced (P < 0.05) blood pressure and heart rates in all lambs and increased (P < 0.05) left ventricular wall thickness in unsupplemented but not ractopamine-supplemented lambs. No cardiac arrhythmias were observed. Muscle glucose uptake did not differ among groups, but insulin-stimulated glucose oxidation was reduced (P < 0.05) in muscle from heat-stressed lambs. These findings demonstrate that heat stress impairs growth, metabolism, and well-being even when the impact of feed intake is eliminated by pair-feeding and that systemic inflammation and hypercatecholaminemia likely contribute to these deficits. Moreover, ractopamine improved muscle growth indicators without worsening the effects of heat stress.
Collapse
Affiliation(s)
- Rebecca M Swanson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Richard G Tait
- Bioinformatics and Biostatistics, Neogen GeneSeek, Lincoln, NE
| | - Beth M Galles
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Erin M Duffy
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
6
|
Burdick Sanchez NC, Carroll JA, May ND, Hughes HD, Roberts SL, Broadway PR, Ballou MA, Richeson JT. Modulation of the metabolic response using dexamethasone in beef steers vaccinated with a multivalent respiratory vaccine. Transl Anim Sci 2020; 4:324-330. [PMID: 32704992 DOI: 10.1093/tas/txz165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 11/14/2022] Open
Abstract
Available energy plays a critical role in the initiation and maintenance of an immune response to a pathogen, a process that is further altered by activation of the stress system. This study was designed to determine the effect of an acute vs chronic stress model on the metabolic response to vaccination in naïve beef steers. Steers (n = 32; 209 ± 8 kg) were blocked by body weight (BW) and randomly assigned to one of three treatments: 1) Chronic stress (CHR), 0.5 mg/kg BW dexamethasone (DEX) administered i.v. at 1000 h on day 3 to day 0; 2) Acute stress (ACU), 0.5 mg/kg BW DEX administered i.v. at 1000 h on day 0 only; or 3) Control (CON), no DEX. On day -4, steers were fitted with jugular vein catheters and moved into individual bleeding stalls in an environmentally-controlled facility. Blood samples were collected at -74, -50, and -26 h, at 0.5-h intervals from -4 to 6 h, and at 12, 24, 36, 48, and 72 h relative to vaccination with a combination vaccine (Pyramid 5 + Presponse SQ, Boehringer Ingelheim Animal Health USA, Duluth, GA) at 1200 h on day 0. Data were analyzed by the MIXED procedure of SAS specific for repeated measures. There was a treatment × time interaction (P < 0.001) for serum glucose concentrations. Specifically, glucose concentrations increased at -50 h in CHR steers and at 1200 h in ACU steers and remained elevated through 72 h postvaccination period in these two treatments compared to CON steers. The change in nonesterified fatty acid (NEFA) concentrations relative to baseline values was affected by treatment and time (P < 0.001) such that the change in NEFA was greater in CHR (0.06 ± 0.01 mmol/L), followed by CON (-0.01 ± 0.01 mmol/L) and ACU steers (-0.04 ± 0.01 mmol/L). There was a tendency (P = 0.08) for a treatment × time interaction for change in serum NEFA concentrations. Serum urea nitrogen (SUN) was affected by treatment and time (P < 0.001) such that SUN concentrations were greatest in CHR (12.0 ± 0.1 mg/dL) followed by ACU (10.4 ± 0.1 mg/dL) and CON steers (9.6 ± 0.1 mg/dL); however, the treatment × time interaction was not significant (P = 0.12). These data demonstrate that activation of the stress and immune axes using an acute or chronic stress model can increase energy mobilization prior to and following vaccination in naïve steers, potentially affecting available energy needed to mount an adequate antibody response to vaccination.
Collapse
Affiliation(s)
| | | | - Nathan D May
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX
| | - Heather D Hughes
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX
| | - Shelby L Roberts
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX
| | | | - Michael A Ballou
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX
| | - John T Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX
| |
Collapse
|
7
|
Seenappa V, Joshi MB, Satyamoorthy K. Intricate Regulation of Phosphoenolpyruvate Carboxykinase (PEPCK) Isoforms in Normal Physiology and Disease. Curr Mol Med 2020; 19:247-272. [PMID: 30947672 DOI: 10.2174/1566524019666190404155801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The phosphoenolpyruvate carboxykinase (PEPCK) isoforms are considered as rate-limiting enzymes for gluconeogenesis and glyceroneogenesis pathways. PEPCK exhibits several interesting features such as a) organelle-specific isoforms (cytosolic and a mitochondrial) in vertebrate clade, b) tissue-specific expression of isoforms and c) organism-specific requirement of ATP or GTP as a cofactor. In higher organisms, PEPCK isoforms are intricately regulated and activated through several physiological and pathological stimuli such as corticoids, hormones, nutrient starvation and hypoxia. Isoform-specific transcriptional/translational regulation and their interplay in maintaining glucose homeostasis remain to be fully understood. Mounting evidence indicates the significant involvement of PEPCK isoforms in physiological processes (development and longevity) and in the progression of a variety of diseases (metabolic disorders, cancer, Smith-Magenis syndrome). OBJECTIVE The present systematic review aimed to assimilate existing knowledge of transcriptional and translational regulation of PEPCK isoforms derived from cell, animal and clinical models. CONCLUSION Based on current knowledge and extensive bioinformatics analysis, in this review we have provided a comparative (epi)genetic understanding of PCK1 and PCK2 genes encompassing regulatory elements, disease-associated polymorphisms, copy number variations, regulatory miRNAs and CpG densities. We have also discussed various exogenous and endogenous modulators of PEPCK isoforms and their signaling mechanisms. A comprehensive review of existing knowledge of PEPCK regulation and function may enable identification of the underlying gaps to design new pharmacological strategies and interventions for the diseases associated with gluconeogenesis.
Collapse
Affiliation(s)
- Venu Seenappa
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Manjunath B Joshi
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Kapaettu Satyamoorthy
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| |
Collapse
|
8
|
Leão AE, Coelho SG, Azevedo RA, Campos MM, Machado FS, Laguna JG, Ferreira AL, Pereira LGR, Tomich TR, de Fátima Costa S, Machado MA, de Lima Reis DR. Effect of pelleted vs. ground starter with or without hay on preweaned dairy calves. PLoS One 2020; 15:e0234610. [PMID: 32645008 PMCID: PMC7347148 DOI: 10.1371/journal.pone.0234610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to evaluate the effect of the physical form of starter and inclusion of hay in the diet of preweaning dairy calves on performance, digestibility, ruminal development, and mRNA expression of genes involved in ruminal metabolism. Holstein × Gyr crossbred male calves (n = 38 1day old) were assigned to 3 treatments for 9 weeks: Control (n = 13; pellet starter with 4 mm diameter and 18 mm length and 4% steam-flaked corn), Ground (n = 12; same starter of the control but ground pass through a 4.0 mm sieve), or Ground plus 5% chopped Tifton hay GH (n = 13). All calves were fed 4 L/d of whole milk up to 63 d of age and were abruptly weaned at 64 d of age. Water and diets were offered ad libitum. Samples of ruminal contents were obtained from all animals at 30, 45, and 60 d of age to evaluate pH, ammonia nitrogen, and volatile fatty acids (VFA). At 55 d of age, an apparent digestibility assay was performed using 18 animals (n = 6/ treatment). At 65 d of age, the 18 animals were euthanized to evaluate the development of the digestive tract. The physical form of starter and the dietary inclusion of hay did not influence starter intake (Control 326 g/d, Ground 314 g/d and GH 365 g/d), daily weight gain (Control 541g/d, Ground 531g/d and GH 606g/d), feed efficiency, apparent nutrient digestibility, energy partitioning, nitrogen balance, ruminal pH, ammonia nitrogen concentration, VFA, the development of the digestive tract and the mRNA expression of genes involved in AGV metabolism.
Collapse
Affiliation(s)
- Aloma Eiterer Leão
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Gesteira Coelho
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Rafael Alves Azevedo
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Juliana Guimarães Laguna
- Department of Animal Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | | | | | | | - Suely de Fátima Costa
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | | |
Collapse
|
9
|
Liermann W, Schäff CT, Gruse J, Derno M, Weitzel JM, Kanitz E, Otten W, Hoeflich A, Stefaniak T, Sauerwein H, Bruckmaier RM, Gross JJ, Hammon HM. Effects of colostrum instead of formula feeding for the first 2 days postnatum on whole-body energy metabolism and its endocrine control in neonatal calves. J Dairy Sci 2020; 103:3577-3598. [PMID: 32089303 PMCID: PMC7127366 DOI: 10.3168/jds.2019-17708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/18/2019] [Indexed: 01/05/2023]
Abstract
Colostrum provides high amounts of nutritive and non-nutritive substrates, which are essential for calf nutrition and passive immunization. Colostral growth factors and hormones have beneficial effects on postnatal maturation and may affect substrate utilization and energy expenditure in neonatal calves. We tested the hypothesis that energy metabolism and its endocrine regulation differ during the first 10 d of life in calves fed either colostrum or a milk-based formula with a similar nutrient composition to colostrum, but largely depleted of bioactive substances, for the first 2 d postnatum. Male Holstein calves (n = 18) were fed either pooled colostrum (COL; n = 9) or a milk-based formula (FOR; n = 9) for the first 2 d of life. From d 3 on, all calves received same milk replacer. On d 2 and 7 of life, calves were placed in a respiration chamber for indirect calorimetric measurements to calculate heat production, fat (FOX) and carbohydrate oxidation (COX), as well as respiratory quotient. Blood was sampled on d 1 before first colostrum intake and on d 2, 3, 7, 8, 9, and 10 before morning feeding, to measure plasma concentrations of immunoglobulins, metabolites, and hormones. Additional postprandial blood samples were taken on d 1 and 9 at 30, 60, 120, 240, and 420 min after milk feeding. Liver samples were collected on d 10 of life to determine gene expression related to energy metabolism. Formula-fed calves showed lower plasma concentrations of total protein, immunoglobulins, haptoglobin, leptin, adiponectin, and insulin-like growth factor (IGF) binding protein (IGFBP)-4 during the whole study but temporarily higher plasma concentrations of urea, insulin, glucagon, triglyceride, and cholesterol on the first day after feeding, compared with concentrations in COL. The temporary increase in glucagon, triglyceride, and cholesterol on d 1 reversed on d 2 or 3, showing higher concentrations in COL than in FOR calves. In FOR, IGF-I, IGFBP-2, and IGFBP-3 were lower on d 3 than in COL. Interestingly, FOR calves had higher heat production during respiratory measurements on d 2 and higher body temperature on d 2, 3, and 5 than those of COL. The hepatic mRNA abundance of cytosolic phosphoenolpyruvate carboxykinase was higher in FOR than in COL. Our results indicate that first milk feeding after birth influenced whole-body energy expenditure but not FOX and COX in neonatal calves, and the absorption of colostral leptin and adiponectin might affect insulin sensitivity on d 1 of life.
Collapse
Affiliation(s)
- W Liermann
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C T Schäff
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J Gruse
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Derno
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - W Otten
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - A Hoeflich
- Institute of Genome Biology Physiology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - T Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-375 Wroclaw, Poland
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Germany
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Switzerland
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
10
|
Qiao Y, Fan G, Guo J, Gao S, Zhao R, Yang X. Effects of adipokine zinc-α2-glycoprotein on adipose tissue metabolism after dexamethasone treatment. Appl Physiol Nutr Metab 2018; 44:83-89. [PMID: 29972738 DOI: 10.1139/apnm-2018-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zinc-α2-glycoprotein (ZAG) has been demonstrated to play a role in stimulating lipid mobilization under normal conditions. However, further studies are required to determine whether ZAG overexpression can alleviate the reduction in plasma lipid levels under stress conditions. In the present study, we investigated the effects of ZAG on lipometabolism in white adipose tissue (WAT) after dexamethasone (DEX) stimulation using C57BL/6 male mice as the experimental models. Transcript and protein levels of genes associated with the β-adrenoreceptor (β-AR)/cyclic adenosine monophosphate/protein kinase a (PKA) pathway, lipid mobilization, and energy metabolism were determined by quantitative real-time polymerase chain reaction and Western blotting. Plasma levels of nonesterified fatty acid (NEFA) were measured using an automatic biochemical analyzer. Results indicated that plasma NEFA levels were decreased in the DEX group, but NEFA levels were rescued by ZAG overexpression. ZAG overexpression resulted in the upregulation of β3-AR and phosphorylated PKA protein relative to those of the DEX group. Analysis of lipometabolism showed that protein levels of phosphorylated hormone-sensitive lipase was reduced upon DEX treatment but were restored by ZAG overexpression. For energy metabolism, ZAG significantly upregulated the protein expression of carnitine palmitoyltransferase1a and cytochrome c oxidase subunit 1 relative to those of the DEX group. In conclusion, ZAG could alleviate DEX-induced decrease in plasma NEFA levels and this could be associated with the promoting lipid mobilization in WAT.
Collapse
Affiliation(s)
- Yu Qiao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jun Guo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shixing Gao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
11
|
Chronic Effects of Fusarium Mycotoxins in Rations with or without Increased Concentrate Proportion on the Insulin Sensitivity in Lactating Dairy Cows. Toxins (Basel) 2018; 10:toxins10050188. [PMID: 29738450 PMCID: PMC5983244 DOI: 10.3390/toxins10050188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/24/2018] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to investigate the effect of long-term exposure to a Fusarium toxin deoxynivalenol (DON, 5 mg/kg DM) on the energy metabolism in lactating cows fed diets with different amounts of concentrate. In Period 1 27 German Holstein cows were assigned to two groups and fed a control or mycotoxin-contaminated diet with 50% concentrate for 11 weeks. In Period 2 each group was further divided and fed either a diet containing 30% or 60% concentrate for 16 weeks. Blood samples were collected in week 0, 4, 8, 15, 21, and 27 for calculation of the Revised Quantitative Insulin Sensitivity Check Index and biopsy samples of skeletal muscle and the liver in w 0, 15, and 27 for analysis by real-time RT-qPCR. The DON-fed groups presented lower insulin sensitivities than controls at week 27. Concomitantly, muscular mRNA expression of insulin receptors and hepatic mRNA expression of glucose transporter 2 and key enzymes for gluconeogenesis and fatty acid metabolism were lower in DON-fed cows compared to the control. The study revealed no consistent evidence that DON effects were modified by dietary concentrate levels. In conclusion, long-term dietary DON intake appears to have mild effects on energy metabolism in lactating dairy cows.
Collapse
|
12
|
Guo YS, Tao JZ. 1H nuclear magnetic resonance-based plasma metabolomics provides another perspective of response mechanisms of newborn calves upon the first colostrum feeding. J Anim Sci 2018; 96:1769-1777. [PMID: 29733417 PMCID: PMC6140947 DOI: 10.1093/jas/sky078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
The first meal of a neonatal calf after birth is crucial for survival and health. Blood IgG levels remarkably increase in neonatal calves after the first colostrum feeding. However, there is little comprehensive information on blood small-molecule metabolites in neonatal calves at that time. In this study, the changes in plasma metabolites of neonatal calves after the initial colostrum feeding were first examined with comprehensive 1H nuclear magnetic resonance (NMR). Sixteen plasma samples obtained from 8 calves before and after feeding were analyzed with 1H NMR. Multivariate analyses revealed a significant difference in metabolic profiles. After feeding, acute phase N-acetylated glycoproteins and 13 other plasma metabolites decreased, whereas 19 plasma metabolites increased. Metabolomics pathway analysis of these metabolites revealed that a global metabolic response on the first colostrum feeding was reflected by alterations of 13 metabolic pathways including lipid, carbohydrate, and amino acid metabolism in neonatal calves. These results suggested that besides meeting energy demand, a 4.0 L of high-quality colostrum feeding within 4 h after birth had a positive effect on relieving the postnatal stress in neonatal calves. This study provides another perspective of response mechanisms of newborn calves upon the first colostrum feeding.
Collapse
Affiliation(s)
- Y S Guo
- Agricultural College, Ningxia University, Yinchuan, China
| | - J Z Tao
- Agricultural College, Ningxia University, Yinchuan, China
| |
Collapse
|
13
|
Laguna JG, Cardoso MS, Lima JA, Reis RB, Carvalho AU, Saturnino HM, Teixeira SMR. Expression of hepatic genes related to energy metabolism during the transition period of Holstein and F 1 Holstein-Gir cows. J Dairy Sci 2017; 100:9861-9870. [PMID: 28964523 DOI: 10.3168/jds.2016-12459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the expression of genes encoding enzymes and other factors involved with carbohydrate and lipid metabolism in the liver of 2 genetic groups of dairy cows during the transition period. We analyzed the expression of glucose-6-phosphatase (G6PC), cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), methylmalonyl-CoA mutase (MUT), β-hydroxybutyrate dehydrogenase-2 (BDH2), acetyl-CoA carboxylase (ACC), carnitine palmitoyltransferase-2 (CPT2), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), glucose transporter-2 (SLC2A2), and the transcription factor peroxisome proliferator-activated receptor α (PPARA). Blood concentrations of glucose, nonesterified fatty acids, and β-hydroxybutyrate were also determined. Liver biopsies and blood samples were taken at d 15 prepartum and at d 6, 21, 36, 51, and 66 postpartum from Holsteins (n = 6) and F1 Holstein-Gir (n = 6) cows. Cows were kept under the same prepartum and postpartum management conditions. The results showed that the expression of G6PC, PEPCK-C, BDH2, ACC, CPT2, HMGCR, SLC2A2, and PPARA genes did not differ between genetic groups. Except for PEPCK-C, no interaction between genetic groups and the experimental period was observed. Within both groups of cows, G6PC and PEPCK-C gene expression decreased when comparing prepartum gene expression with 21 and 36 DIM, and increased in d 51 postpartum. MUT mRNA levels differed between the 2 genetic groups and displayed a significant increase after d 36 postpartum, whereas mRNA levels of HMGCR tended to increase when comparing d 21 and 36 to d 51 postpartum. Glucose concentrations also differed between genetic groups, being significantly higher in the plasma of F1 Holstein-Gir cows than in Holstein cows, but no differences were found within each group during the analysis period. β-Hydroxybutyrate and nonesterified fatty acid concentrations did not differ between genetic groups, but displayed increased levels from prepartum to d 6 and 21 postpartum. Our results indicated that expression in the liver of genes involved with glucose and fatty acid metabolism were similar in both groups of cows and significant differences were observed between the 2 groups in the expression of MUT, a gene involved in propionate metabolism.
Collapse
Affiliation(s)
- J G Laguna
- Department of Animal Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - M S Cardoso
- Department of Parasitology, UFMG, Belo Horizonte, 31270-901, Brazil
| | - J A Lima
- Department of Animal Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - R B Reis
- Department of Animal Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - A U Carvalho
- Department of Clinical and Surgery, UFMG, Belo Horizonte, 30161-970, Brazil
| | - H M Saturnino
- Department of Animal Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| | - S M R Teixeira
- Biochemistry and Immunology Department, UFMG, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
14
|
Sadri H, Steinhoff-Wagner J, Hammon HM, Bruckmaier RM, Görs S, Sauerwein H. Mammalian target of rapamycin signaling and ubiquitin proteasome-related gene expression in 3 different skeletal muscles of colostrum- versus formula-fed calves. J Dairy Sci 2017; 100:9428-9441. [PMID: 28918148 DOI: 10.3168/jds.2017-12857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
Abstract
The rates of protein turnover are higher during the neonatal period than at any other time in postnatal life. The mammalian target of rapamycin (mTOR) and the ubiquitin-proteasome system are key pathways regulating cellular protein turnover. The objectives of this study were (1) to elucidate the effect of feeding colostrum versus milk-based formula on the mRNA abundance of key components of the mTOR pathway and of the ubiquitin-proteasome system in skeletal muscle of neonatal calves and (2) to compare different muscles. German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) up to 4 d of life. The nutrient content in formula and colostrum was similar, but formula had lower concentrations of free branched-chain AA (BCAA) and free total AA, insulin, and insulin-like growth factor (IGF)-I than colostrum. Blood samples were taken from d 1 to 4 before morning feeding and before and 2 h after the last feeding on d 4. Muscle samples from M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM) were collected after slaughter on d 4 at 2 h after feeding. The preprandial concentrations of free total AA and BCAA, insulin, and IGF-I in plasma changed over time but did not differ between groups. Plasma free total AA and BCAA concentrations decreased in COL, whereas they increased in FOR after feeding, resulting in higher postprandial plasma total AA and BCAA concentrations in FOR than in COL. Plasma insulin concentrations increased after feeding in both groups but were higher in COL than in FOR. Plasma IGF-I concentrations decreased in COL, whereas they remained unchanged in FOR after feeding. The mRNA abundance of mTOR and ribosomal protein S6 kinase 1 (S6K1) in 3 different skeletal muscles was greater in COL than in FOR, whereas that of eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) was unaffected by diet. The mRNA abundance of ubiquitin activating enzyme (UBA1) and ubiquitin conjugating enzyme 1 (UBE2G1) enzymes was not affected by diet, whereas that of ubiquitin conjugating enzyme 2 (UBE2G2) was greater (MLD) or tended to be greater (MM) in COL than in FOR. The mRNA abundance of atrogin-1 in MLD and MST was lower in COL than in FOR, whereas that of muscle ring finger protein-1 (MuRF1) was greater (MST) or tended to be greater (MLD). The abundance of MuRF1 mRNA was highest in MST, followed by MLD, and was lowest in MM. The results indicate that colostrum feeding may stimulate protein turnover that may result in a high rate of protein deposition in a muscle type-specific manner. Such effects seem to be mediated by the postprandial increase in plasma insulin.
Collapse
Affiliation(s)
- H Sadri
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53111 Bonn, Germany; Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - J Steinhoff-Wagner
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - S Görs
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53111 Bonn, Germany.
| |
Collapse
|
15
|
Ghaffari MH, MacPherson JAR, Berends H, Steele MA. Diurnal variation of NMR based blood metabolites in calves fed a high plane of milk replacer: a pilot study. BMC Vet Res 2017; 13:271. [PMID: 28836978 PMCID: PMC5569568 DOI: 10.1186/s12917-017-1185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Blood profiles have been used to monitor herd health status, diagnose disorders, and predict the risk of diseases in cattle and calves. Characterizing plasma metabolites in dairy calves could provide further insight into daily metabolic variations and the mechanisms that lead to metabolic diseases. In addition, by understanding physiological ranges of plasma metabolites relative to meal and the time of feeding in healthy animals, veterinarians can accurately diagnose abnormalities with a blood test. For diagnostic purposes, nuclear magnetic resonance (NMR) spectroscopy shows promise as a new and reliable method to determine a large number of blood metabolites simultaneously. RESULTS Results demonstrated that the concentration of specific metabolites in plasma (i.e., lysine, isoleucine, leucine, tyrosine, glutamine, creatine, and 1-methylhistidine) fluctuated around meal times, while others (i.e., glutamic acid, methanol, formic acid, and acetic acid) maintained a stable temporal concentration. In addition to temporal changes in concentration, results also characterized differences for overall plasma metabolite concentrations; for example, methionine had the lowest (38 μM) while glutamine had the highest concentration (239 μM) amongst plasma AA. This is the first report describing how the plasma metabolome changes during 24-h period in young calves fed an elevated plane of milk replacer twice daily. CONCLUSIONS Data from this pilot study will help to establish reference standards for future metabolic diagnostics in dairy calves. In addition, this pilot study illustrated that feeding milk replacer may influence plasma metabolite concentrations. With the rapid implementation of blood metabolomics in monitoring animal health, it is then important to consider the time of feeding during the day when interpreting metabolomics analysis results.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Jayden A R MacPherson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Harma Berends
- Trouw Nutrition R&D, P.O. Box 220, 5830 AE, Boxmeer, The Netherlands
| | - Michael A Steele
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada.
| |
Collapse
|
16
|
Weber C, Schäff C, Kautzsch U, Börner S, Erdmann S, Bruckmaier R, Röntgen M, Kuhla B, Hammon H. Variable liver fat concentration as a proxy for body fat mobilization postpartum has minor effects on insulin-induced changes in hepatic gene expression related to energy metabolism in dairy cows. J Dairy Sci 2017; 100:1507-1520. [DOI: 10.3168/jds.2016-11808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
|
17
|
Gruse J, Görs S, Tuchscherer A, Otten W, Weitzel JM, Metges CC, Wolffram S, Hammon HM. The Effects of Oral Quercetin Supplementation on Splanchnic Glucose Metabolism in 1-Week-Old Calves Depend on Diet after Birth. J Nutr 2015; 145:2486-95. [PMID: 26400967 DOI: 10.3945/jn.115.218271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inadequate colostrum supply results in insufficient intake of macronutrients and bioactive factors, thereby impairing gastrointestinal development and the maturation of glucose metabolism in neonatal calves. The flavonoid quercetin has been shown to have health-promoting properties, including effects in diabetic animals. However, quercetin interacts with intestinal glucose absorption and might therefore exert negative effects in neonates. OBJECTIVE We evaluated the interaction between neonatal diet and quercetin feeding on splanchnic glucose metabolism in neonatal calves. METHODS Calves (n = 28) were assigned to 4 groups and fed either colostrum or a milk-based formula on days 1 and 2 and supplemented daily with 148 μmol quercetin aglycone/kg body weight [colostrum with quercetin (CQ+)/formula with quercetin (FQ+)] or without this substance [colostrum without quercetin (CQ-)/formula with quercetin (FQ-)] from days 2-8. From day 3 onward, all calves received milk replacer. A xylose absorption test was performed on day 3, and on day 7, blood samples were collected to study glucose first-pass uptake after [(13)C6]-glucose feeding and intravenous [6,6-(2)H2]-glucose bolus injection. Plasma concentrations of metabolites and hormones were measured by taking additional blood samples. A biopsy specimen of the liver was harvested on day 8 to measure the mRNA expression of gluconeogenic enzymes. RESULTS Higher postprandial plasma concentrations of glucose, lactate, urea, adrenaline, noradrenaline, insulin, and glucagon on day 7 in colostrum-fed calves indicate that metabolic processes were stimulated. Postabsorptive xylose and glucose plasma concentrations each increased by an additional 26%, and splanchnic glucose turnover decreased by 35% in colostrum-fed calves, suggesting improved glucose absorption and lower splanchnic glucose utilization in colostrum-fed calves. Quercetin supplementation resulted in higher noradrenaline concentrations and enhanced peak absorption and oxidation of [(13)C6]-glucose by 10%. Liver mitochondrial phosphoenolpyruvate carboxykinase mRNA abundance was reduced by 34% in colostrum-deprived calves. CONCLUSIONS Feeding colostrum during the first 2 d of life is crucial for maturation of splanchnic glucose metabolism in calves. Supplementing quercetin improves gastrointestinal absorption capacity, particularly in colostrum-deprived calves.
Collapse
Affiliation(s)
| | - Solvig Görs
- Institutes of Nutritional Physiology "Oskar Kellner"
| | | | | | - Joachim M Weitzel
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; and
| | | | - Siegfried Wolffram
- Institute of Animal Nutrition and Physiology, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | |
Collapse
|
18
|
Schäff C, Rohrbeck D, Steinhoff-Wagner J, Kanitz E, Sauerwein H, Bruckmaier R, Hammon H. Hepatic glucocorticoid and α1- and β2-adrenergic receptors in calves change during neonatal maturation and are related to energy regulation. J Dairy Sci 2015; 98:1046-56. [DOI: 10.3168/jds.2014-8636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
|
19
|
Schäff C, Rohrbeck D, Steinhoff-Wagner J, Kanitz E, Sauerwein H, Bruckmaier R, Hammon H. Effects of colostrum versus formula feeding on hepatic glucocorticoid and α1- and β2-adrenergic receptors in neonatal calves and their effect on glucose and lipid metabolism. J Dairy Sci 2014; 97:6344-57. [DOI: 10.3168/jds.2014-8359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022]
|
20
|
Metges CC, Görs S, Lang IS, Hammon HM, Brüssow KP, Weitzel JM, Nürnberg G, Rehfeldt C, Otten W. Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs. J Nutr 2014; 144:155-63. [PMID: 24353346 DOI: 10.3945/jn.113.182691] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (≥573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP-HC fetuses adapted via prematurely expressed hepatic gluconeogenic enzymes.
Collapse
|
21
|
Weber C, Hametner C, Tuchscherer A, Losand B, Kanitz E, Otten W, Sauerwein H, Bruckmaier R, Becker F, Kanitz W, Hammon H. Hepatic gene expression involved in glucose and lipid metabolism in transition cows: Effects of fat mobilization during early lactation in relation to milk performance and metabolic changes. J Dairy Sci 2013; 96:5670-81. [DOI: 10.3168/jds.2012-6277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 05/23/2013] [Indexed: 01/10/2023]
|
22
|
Li Y, Li X, Song Y, Shi X, Ding H, Yang W, Liu Z, Chen H, Li X, Wang J, Liu G, Wang Z. Effect of leptin on the gluconeogenesis in calf hepatocytes cultured in vitro. Cell Biol Int 2013; 37:1350-3. [PMID: 23956103 DOI: 10.1002/cbin.10172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022]
Abstract
We have investigated the effect of leptin on gluconeogenesis in the liver. Hepatocytes were cultured and treated with 0, 2.5, 5, 10, 50, 100 ng/mL of leptin in groups I, II, III, IV, V, and VI, respectively. mRNA expression and enzyme activity of pyruvate carboxylase and phosphoenolpyruvate carboxykinase were determined by real-time fluorescence quantitative RT-PCR and biochemical kits, respectively. Compared with group I, mRNA expression of pyruvate carboxylase and phosphoenolpyruvate carboxykinase in groups III, IV, V, and VI were significantly lower (P < 0.01). Pyruvate carboxylase and phosphoenolpyruvate carboxykinase enzyme activity decreased significantly (P < 0.05) when leptin concentration exceeded 5 and 10 ng/mL, respectively. These results indicate that leptin markedly downregulated mRNA expression and enzyme activity of pyruvate carboxylase and phosphoenolpyruvate carboxykinase in hepatocytes, which suggests that high concentrations of LP inhibit hepatocyte gluconeogenesis, thus making negative energy balance more serious.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zarrin M, De Matteis L, Vernay M, Wellnitz O, van Dorland H, Bruckmaier R. Long-term elevation of β-hydroxybutyrate in dairy cows through infusion: Effects on feed intake, milk production, and metabolism. J Dairy Sci 2013; 96:2960-72. [DOI: 10.3168/jds.2012-6224] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/27/2013] [Indexed: 11/19/2022]
|
24
|
Schönhusen U, Junghans P, Flöter A, Steinhoff-Wagner J, Görs S, Schneider F, Metges CC, Hammon HM. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding. J Dairy Sci 2013; 96:2400-2412. [PMID: 23415525 DOI: 10.3168/jds.2012-5933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022]
Abstract
The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase activities in proximal and mid jejunum and lactase activities in mid jejunum were lower in the CON than in the SPIA group. Activities of PEPCK were higher in the SPIA than in the SPI group. In conclusion, feeding milk diets with soy protein isolate seems to affect glucose status in kids, but has no effect on first-pass uptake and oxidation of glucose. The highest activities of lactase and maltase were observed after supplementation with AA. Higher PEPCK activities in the liver may point at elevated gluconeogenic activities after AA supplementation in soy-fed kids.
Collapse
Affiliation(s)
- U Schönhusen
- Department of Nutritional Physiology "Oskar Kellner," and.
| | - P Junghans
- Department of Nutritional Physiology "Oskar Kellner," and
| | - A Flöter
- Department of Nutritional Physiology "Oskar Kellner," and
| | | | - S Görs
- Department of Nutritional Physiology "Oskar Kellner," and
| | - F Schneider
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C C Metges
- Department of Nutritional Physiology "Oskar Kellner," and
| | - H M Hammon
- Department of Nutritional Physiology "Oskar Kellner," and
| |
Collapse
|
25
|
Kusenda M, Kaske M, Piechotta M, Locher L, Starke A, Huber K, Rehage J. Effects of Dexamethasone-21-Isonicotinate on Peripheral Insulin Action in Dairy Cows 5 days after Surgical Correction of Abomasal Displacement. J Vet Intern Med 2012. [DOI: 10.1111/jvim.12010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- M. Kusenda
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - M. Kaske
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - M. Piechotta
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - L. Locher
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - A. Starke
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - K. Huber
- Department of Physiology; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - J. Rehage
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| |
Collapse
|
26
|
Hammon HM, Steinhoff-Wagner J, Flor J, Schönhusen U, Metges CC. Lactation Biology Symposium: role of colostrum and colostrum components on glucose metabolism in neonatal calves. J Anim Sci 2012; 91:685-95. [PMID: 23100594 DOI: 10.2527/jas.2012-5758] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In neonatal calves, nutrient intake shifts from continuous glucose supply via the placenta to discontinuous colostrum and milk intake with lactose and fat as main energy sources. Calves are often born hypoglycemic and have to establish endogenous glucose production (eGP) and gluconeogenesis, because lactose intake by colostrum and milk does not meet glucose demands. Besides establishing a passive immunity, colostrum intake stimulates maturation and function of the neonatal gastrointestinal tract (GIT). Nutrients and nonnutritive factors, such as hormones and growth factors, which are present in high amounts in colostrum of first milking after parturition, affect intestinal growth and function and enhance the absorptive capacity of the GIT. Likely as a consequence of that, colostrum feeding improves the glucose status in neonatal calves by increasing glucose absorption, which results in elevated postprandial plasma glucose concentrations. Hepatic glycogen concentrations rise much greater when colostrum instead of a milk-based colostrum replacer (formula with same nutrient composition as colostrum but almost no biologically active substances, such as hormones and growth factors) is fed. In contrast, first-pass glucose uptake in the splanchnic tissue tended to be greater in calves fed formula. The greater plasma glucose rise and improved energy status in neonatal calves after colostrum intake lead to greater insulin secretion and accelerated stimulation of anabolic processes indicated by enhanced maturation of the postnatal somatotropic axis in neonatal calves. Hormones involved in stimulation of eGP, such as glucagon and cortisol, depend on neonatal diet, but their effects on eGP stimulation seem to be impaired. Although colostrum feeding affects systemic insulin, IGF-I, and leptin concentrations, evidence for systemic action of colostral insulin, IGF-I, and leptin in neonatal calves is weak. Studies so far indicate no absorption of insulin, IGF-I, and leptin from colostrum in neonatal calves, unlike in rodents where systemic effects of colostral leptin are demonstrated. Therefore, glucose availability in neonatal calves is promoted by perinatal maturation of eGP and colostrum intake. There may be long-lasting effects of an improved colostrum supply and glucose status on postnatal growth and development, and colostrum supply may contribute to neonatal programming of performance (milk and growth) in later life, but data proving this concept are missing.
Collapse
Affiliation(s)
- H M Hammon
- Department of Nutritional Physiology Oskar Kellner, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
27
|
Castro N, Kawashima C, van Dorland H, Morel I, Miyamoto A, Bruckmaier R. Metabolic and energy status during the dry period is crucial for the resumption of ovarian activity postpartum in dairy cows. J Dairy Sci 2012; 95:5804-12. [DOI: 10.3168/jds.2012-5666] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/16/2012] [Indexed: 11/19/2022]
|
28
|
Hammon HM, Steinhoff-Wagner J, Schönhusen U, Metges CC, Blum JW. Energy metabolism in the newborn farm animal with emphasis on the calf: endocrine changes and responses to milk-born and systemic hormones. Domest Anim Endocrinol 2012; 43:171-85. [PMID: 22480719 DOI: 10.1016/j.domaniend.2012.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 01/10/2023]
Abstract
Neonatal mammals need adaption to changes in nutrient supply because energy intake shifts from continuous parenteral supply of nutrients (mainly glucose, lactate, and amino acids) via the placenta to discontinuous colostrum and milk intake with lactose and fat as main energy sources. Besides ingested lactose, endogenous glucose production is essential in the neonate to assure sufficient glucose availability. Fetal endogenous glucose production is low, but endocrine changes (especially the prenatal rise of glucocorticoid production) promote maturation of metabolic pathways that enable marked glycogen synthesis before and enhanced gluconeogenesis after birth to establish an adequate glucose status during postnatal maturation. In preterm born farm animals gluconeogenic activity is low, mainly because of a low glucocorticoid and thyroid status. In full-term neonates, endogenous glucose production increases with age. Colostral bioactive components (such as growth factors, hormones, bioactive peptides, and cytokines) do not have a direct effect on endogenous glucose production. However, colostrum feeding stimulates intestinal growth and development, an effect at least in part mediated by bioactive substances. Increased nutrient and glucose absorption thus allows increased glucose supply and hepatic glycogen storage, which improves the glucose status. The improved energetic status of colostrum-fed neonates is reflected by an accelerated maturation of the somatotropic axis, leading especially to enhanced production of IGF-I in the neonate. Secretion and production of hormones involved in the regulation of glucose and fat metabolism in neonates depend on the developmental stage and the response to feeding. In addition, many such hormones have actions in the neonate that differ from adult animals. Endocrine action to support endogenous energy supply in neonates is probably not fully established, and therefore, needs postnatal maturation. Therefore, our knowledge on energy metabolism in the neonate needs to be extended to better understand the function and the failure and to assess endocrine responses during the neonatal period.
Collapse
Affiliation(s)
- H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
29
|
Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM. Maturation of endogenous glucose production in preterm and term calves. J Dairy Sci 2012; 94:5111-23. [PMID: 21943762 DOI: 10.3168/jds.2011-4355] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022]
Abstract
Glucose disposability is often impaired in neonatal calves and even more in preterm calves. The objective of this study was to investigate ontogenic maturation of endogenous glucose production (eGP) in calves and its effects on postnatal glucose homeostasis. Calves (n = 7 per group) were born preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery), or spontaneously born and fed colostrum for 4 d (TC). Blood samples were taken immediately after birth and before and 2h after feeding at 24h after birth (PT; T) or on d 4 of life (TC) to determine metabolic and endocrine changes. After birth (PT and T) or on d 3 of life (TC), fasted calves were gavaged with deuterium-labeled water to determine gluconeogenesis (GNG) and intravenously infused with [U(13)C]-glucose to measure eGP and glucose oxidation (GOx) in blood plasma. After slaughter at 26h after birth (PT, T) or on d 4 of life (TC), glycogen concentrations in liver and hepatic mRNA concentrations and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase were measured. Preterm calves had the lowest plasma concentrations of cortisol and 3,5,3'-triiodothyronine at birth. Plasma glucose concentrations from d 1 to 2 decreased more, but plasma concentrations of lactate and urea and glucagon:insulin ratio were higher in PT than in T and TC calves. The eGP, GNG, GOx, as well as hepatic glycogen concentrations and PEPCK activities, were lowest in PT calves. Results indicate impaired glucose homeostasis due to decreased eGP in PT calves and maturation of eGP with ontogenic development.
Collapse
|
30
|
Effect of insulin-like growth factor-1 (IGF-1) on the gluconeogenesis in calf hepatocytes cultured in vitro. Mol Cell Biochem 2011; 362:87-91. [PMID: 22015655 DOI: 10.1007/s11010-011-1130-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
The major role of insulin-like growth factor-1 (IGF-1) in the liver is to mediate glucose uptake in hepatocytes to synthesize glycogen and maintain blood glucose homeostasis. In this study, to evaluate the role of IGF-1 on gluconeogenesis and nutrient metabolism in dairy cattle, pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) expression and enzyme activity were evaluated in primary cultures of bovine hepatocytes treated with different concentrations of IGF-1 by quantitative polymerase chain reaction and spectrophotometry, respectively. The results showed that expression of PC and PEPCK were significantly lower in bovine hepatocytes by IGF-1 treatment in test group compare to the control group (P < 0.01). As IGF-1 concentration increased, PC and PEPCK enzyme activity in bovine hepatocytes decreased. Evaluating PC and PEPCK mRNA levels and enzyme activity may thus be useful to monitor subclinical ketosis in dairy cows.
Collapse
|
31
|
Effects of non-esterified fatty acids on the gluconeogenesis in bovine hepatocytes. Mol Cell Biochem 2011; 359:385-8. [DOI: 10.1007/s11010-011-1032-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
|
32
|
Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 2011; 62:869-77. [PMID: 21171012 DOI: 10.1002/iub.400] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gluconeogenesis is a crucial process to support glucose homeostasis when nutritional supply with glucose is insufficient. Because ingested carbohydrates are efficiently fermented to short-chain fatty acids in the rumen, ruminants are required to meet the largest part of their glucose demand by de novo genesis after weaning. The qualitative difference to nonruminant species is that propionate originating from ruminal metabolism is the major substrate for gluconeogenesis. Disposal of propionate into gluconeogenesis via propionyl-CoA carboxylase, methylmalonyl-CoA mutase, and the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK) has a high metabolic priority and continues even if glucose is exogenously supplied. Gluconeogenesis is regulated at the transcriptional and several posttranscriptional levels and is under hormonal control (primarily insulin, glucagon, and growth hormone). Transcriptional regulation is relevant for regulating precursor entry into gluconeogenesis (propionate, alanine and other amino acids, lactate, and glycerol). Promoters of the bovine pyruvate carboxylase (PC) and PEPCK genes are directly controlled by metabolic products. The final steps decisive for glucose release (fructose 1,6-bisphosphatase and glucose 6-phosphatase) appear to be highly dependent on posttranscriptional regulation according to actual glucose status. Glucogenic precursor entry, together with hepatic glycogen dynamics, is mostly sufficient to meet the needs for hepatic glucose output except in high-producing dairy cows during the transition from the dry period to peak lactation. Lactating cows adapt to the increased glucose requirement for lactose production by mobilization of endogenous glucogenic substrates and increased hepatic PC expression. If these adaptations fail, lipid metabolism may be altered leading to fatty liver and ketosis. Increasing feed intake and provision of glucogenic precursors from the diet are important to ameliorate these disturbances. An improved understanding of the complex mechanisms underlying gluconeogenesis may further improve our options to enhance the postpartum health status of dairy cows.
Collapse
Affiliation(s)
- Jörg R Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Free University of Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Kaufmann LD, Dohme-Meier F, Münger A, Bruckmaier RM, van Dorland HA. Metabolism of grazed vs. zero-grazed dairy cows throughout the vegetation period: hepatic and blood plasma parameters. J Anim Physiol Anim Nutr (Berl) 2011; 96:228-36. [PMID: 21453349 DOI: 10.1111/j.1439-0396.2011.01142.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Grass may have a differential impact on the metabolism of the dairy cow, depending on the grazing system applied. In this study, the hypothesis was tested that metabolism of grazed vs. zero-grazed dairy cows is differently regulated throughout the vegetation period. The study included three experimental periods (p1, p2 and p3) of 14 days each, and two treatments [grazing from pasture, PASTURE, n = 9; or zero-grazing in a free-stall barn (BARN, n = 9)]. Blood and liver samples were collected at the end of each period when the cows were on average 64, 120 and 197 DIM. Concentrations of metabolites and hormones, and activities of various enzymes were determined in plasma. Liver samples were measured for mRNA abundance of genes encoding enzymes and nuclear receptors involved in metabolic pathways. PASTURE cows had higher plasma concentrations of T(3), BHB, and total protein than BARN cows across periods (p < 0.05). BARN cows had higher concentrations of NEFA (in p1) and urea (in p1 and p2) in relation PASTURE cows (p < 0.05), and had higher mRNA abundance of liver-X-receptor-α and glycerol-3-phosphate-acyltransferase across periods (p < 0.05). The results confirm the hypothesis that metabolism is different between BARN and PASTURE cows throughout the vegetation period, and show that the observed differences are mainly reflected in parameters of lipid metabolism.
Collapse
Affiliation(s)
- L D Kaufmann
- Agroscope Liebefeld-Posieux, Research Station ALP, Posieux, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Lohakare JD, van de Sand H, Gerlach K, Hosseini A, Mielenz M, Sauerwein H, Pries M, Südekum KH. Effects of limited concentrate feeding on growth and blood and serum variables, and on nutrient digestibility and gene expression of hepatic gluconeogenic enzymes in dairy calves. J Anim Physiol Anim Nutr (Berl) 2011; 96:25-36. [DOI: 10.1111/j.1439-0396.2010.01117.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM. Intestinal glucose absorption but not endogenous glucose production differs between colostrum- and formula-fed neonatal calves. J Nutr 2011; 141:48-55. [PMID: 21084656 DOI: 10.3945/jn.110.128652] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.
Collapse
|
36
|
High-protein diet during gestation and lactation affects mammary gland mRNA abundance, milk composition and pre-weaning litter growth in mice. Animal 2011; 5:268-77. [DOI: 10.1017/s1751731110001734] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
37
|
Lohrenz AK, Duske K, Schneider F, Nürnberg K, Losand B, Seyfert H, Metges C, Hammon H. Milk performance and glucose metabolism in dairy cows fed rumen-protected fat during mid lactation. J Dairy Sci 2010; 93:5867-76. [DOI: 10.3168/jds.2010-3342] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/06/2010] [Indexed: 11/19/2022]
|
38
|
Graber M, Kohler S, Kaufmann T, Doherr M, Bruckmaier R, van Dorland H. A field study on characteristics and diversity of gene expression in the liver of dairy cows during the transition period. J Dairy Sci 2010; 93:5200-15. [DOI: 10.3168/jds.2010-3265] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/08/2010] [Indexed: 01/23/2023]
|
39
|
Van Dorland HA, Bruckmaier RM. Regional mRNA expression of key gluconeogenic enzymes in the liver of dairy cows. J Anim Physiol Anim Nutr (Berl) 2010; 94:505-8. [PMID: 19906140 DOI: 10.1111/j.1439-0396.2009.00935.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver tissue was collected from eight random dairy cows at a slaughterhouse to test if gene expression of pyruvate carboxylase (PC), mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and cytosolic phosphoenolpyruvate carboxykinase (PEPCKc) is different at different locations in the liver. Obtained liver samples were analysed for mRNA expression levels of PC, PEPCKc and PEPCKm and subjected to the MIXED procedure of SAS to test for the sampled locations with cow liver as repeated subject. Additionally, the general linear model procedure (GLM) for analysis of variance was applied to test for significant differences for mRNA abundance of PEPCKm, PEPCKc and bPC between the livers. In conclusion, this study demonstrated that mRNA abundance of PC, PEPCKc and PEPCKm is not different between locations in the liver but may differ between individual cows.
Collapse
Affiliation(s)
- H A Van Dorland
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
40
|
Hammon H, Metges C, Schulz A, Junghans P, Steinhoff J, Schneider F, Pfuhl R, Bruckmaier R, Weikard R, Kühn C. Differences in milk production, glucose metabolism, and carcass composition of 2 Charolais × Holstein F2 families derived from reciprocal paternal and maternal grandsire crosses. J Dairy Sci 2010; 93:3007-18. [DOI: 10.3168/jds.2009-2931] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/30/2010] [Indexed: 11/19/2022]
|
41
|
Shing CM, Hunter DC, Stevenson LM. Bovine Colostrum Supplementation and Exercise Performance. Sports Med 2009; 39:1033-54. [DOI: 10.2165/11317860-000000000-00000] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
van Dorland H, Richter S, Morel I, Doherr M, Castro N, Bruckmaier R. Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows. J Dairy Sci 2009; 92:1924-40. [DOI: 10.3168/jds.2008-1454] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Hammon H, Stürmer G, Schneider F, Tuchscherer A, Blum H, Engelhard T, Genzel A, Staufenbiel R, Kanitz W. Performance and metabolic and endocrine changes with emphasis on glucose metabolism in high-yielding dairy cows with high and low fat content in liver after calving. J Dairy Sci 2009; 92:1554-66. [DOI: 10.3168/jds.2008-1634] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Haga S, Fujimoto S, Yonezawa T, Yoshioka K, Shingu H, Kobayashi Y, Takahashi T, Otani Y, Katoh K, Obara Y. Changes in Hepatic Key Enzymes of Dairy Calves in Early Weaning Production Systems. J Dairy Sci 2008; 91:3156-64. [DOI: 10.3168/jds.2007-0853] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Blum JW, Elsasser TH, Greger DL, Wittenberg S, de Vries F, Distl O. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves. Domest Anim Endocrinol 2007; 33:245-68. [PMID: 16829014 DOI: 10.1016/j.domaniend.2006.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/01/2006] [Accepted: 05/18/2006] [Indexed: 12/26/2022]
Abstract
Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfs<controls, P<0.002; dwarfs<half-siblings, P=0.06; half-siblings<controls, P=0.08) but not in muscle. IGF-1R mRNA abundance in liver in half-siblings and controls was 2.4- and 2.5-fold higher (P=0.003 and P=0.001, respectively) and in muscle tissue was 2.3- and 1.8-fold higher (P=0.01 and P=0.08, respectively) than in dwarfs. Hepatic IGF-1R protein levels (Western blots) in muscle were 2.5-fold higher (P<0.05) and in liver and muscle (quantitative immunohistochemistry) were higher (P<0.02 and P<0.07, respectively) in half-siblings than in dwarfs. The reduced presence of IGF-1R may have been the underlying cause of dwarfism in studied calves.
Collapse
MESH Headings
- Animals
- Blotting, Western/veterinary
- Cattle
- Cattle Diseases/blood
- Cattle Diseases/genetics
- Cattle Diseases/metabolism
- Down-Regulation
- Dwarfism/blood
- Dwarfism/genetics
- Dwarfism/metabolism
- Dwarfism/veterinary
- Female
- Glucagon/blood
- Glucagon/genetics
- Growth Hormone/blood
- Growth Hormone/genetics
- Immunohistochemistry/veterinary
- Insulin/blood
- Insulin/genetics
- Insulin-Like Growth Factor Binding Proteins/blood
- Insulin-Like Growth Factor Binding Proteins/genetics
- Insulin-Like Growth Factor Binding Proteins/metabolism
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/metabolism
- Liver/metabolism
- Liver/physiology
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Pedigree
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, IGF Type 1/biosynthesis
- Receptor, IGF Type 1/blood
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/blood
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Receptors, Somatotropin/blood
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Thyroxine/blood
- Thyroxine/genetics
- Triiodothyronine/blood
- Triiodothyronine/genetics
Collapse
Affiliation(s)
- J W Blum
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Havinga R, Bloks VW, Baller JF, van der Leij FR, Reijngoud DJ, Sauer PJJ, Kuipers F. Postnatal treatment with dexamethasone perturbs hepatic and cardiac energy metabolism and is associated with a sustained atherogenic plasma lipid profile in suckling rats. Pediatr Res 2007; 61:165-70. [PMID: 17237716 DOI: 10.1203/pdr.0b013e31802d89ff] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Early exposure to glucocorticoids (GC) has been proposed to disturb hepatic and cardiac function in later life. In the present study, we evaluated early metabolic alterations upon GC treatment that may predispose to long-term abnormalities. Rats were injected with dexamethasone (DEX) at d 1, 2, and 3 after birth and controls received saline (SAL). Rats were killed at 2, 7, and 14 d of age. Compared with SAL, DEX induced lower plasma insulin levels, hyperglycemia, hyperketonemia, and dyslipidemia at 2 d. At the same time, DEX treatment significantly increased expression of gluconeogenic and fatty acid oxidation genes in liver and expression of genes involved fatty acid utilization in heart. At 7 d, DEX-treated rats showed insulin resistance with hyperlipidemia, whereas hepatic and cardiac gene expression patterns were largely normalized. Hyperlipidemia and a significantly increased hepatic triglyceride content in DEX-treated rats were prominent at 14 d without large differences in hepatic and cardiac gene expression patterns. Thus, neonatal DEX administration transiently affects cardiac and hepatic gene expression patterns in suckling rats associated with sustained effects on plasma glucose and lipid concentrations. Whether these early effects of DEX contribute to hepatic and cardiac abnormalities at adult age needs further evaluation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Greger DL, Blum JW. Effects of dexamethasone on mRNA abundance of nuclear receptors and hepatic nuclear receptor target genes in neonatal calves. J Anim Physiol Anim Nutr (Berl) 2007; 91:62-7. [PMID: 17217392 DOI: 10.1111/j.1439-0396.2006.00642.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatic nuclear receptors (NR), particularly constitutive androstane receptor (CAR) and pregnane X receptor (PXR), are involved in the coordinated transcriptional control of genes that encode proteins involved in the metabolism and detoxification of xeno- and endobiotics. A broad spectrum of metabolic processes are mediated by NR acting in concert with ligands such as glucocorticoids. This study examined the role of dexamethasone on hepatic mRNA expression of CAR, PXR and several NR target genes. Twenty-eight male calves were allotted to one of four treatment groups in a 2 x 2 arrangement of treatments: feed source (colostrum or milk-based formula) and glucocorticoid administration (twice daily intramuscular dexamethasone). Liver biopsies were obtained at 5 days of age. Real-time reverse transcription polymerase chain reaction was used to quantify mRNA abundances. No effects of feed source on mRNA abundances were observed. For the NR examined, mRNA abundance of both CAR and PXR in dexamethasone-treated calves was lower (p < 0.05) by 39% and 40%, respectively, than in control calves. Abundance of NR target genes exhibited a mixed response. SULT1A1 mRNA abundance was 39% higher (p < 0.05) in dexamethasone-treated calves compared with control calves. mRNA abundance of CYP2C8 tended also to be higher (+44%; p = 0.053) after dexamethasone treatment. No significant treatment effects (p > 0.10) were observed for mRNA abundances of CYP3A4, CYP2E1, SULT2A1, UGT1A1 or cytochrome P450 reductase (CPR). In conclusion, an enhanced glucocorticoid status, induced by pharmacological amounts of dexamethasone, had differential and in part unexpected effects on NR and NR target systems in 5-day-old calves. Part of the unexpected responses may be due the immaturity of NR and NR receptor target systems.
Collapse
Affiliation(s)
- D L Greger
- Division of Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
48
|
Scheuer BH, Zbinden Y, Schneiter P, Tappy L, Blum JW, Hammon HM. Effects of colostrum feeding and glucocorticoid administration on insulin-dependent glucose metabolism in neonatal calves. Domest Anim Endocrinol 2006; 31:227-45. [PMID: 16360295 DOI: 10.1016/j.domaniend.2005.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 11/29/2022]
Abstract
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Collapse
Affiliation(s)
- B H Scheuer
- Division of Animal Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
XU C, WANG Z. Effect of propionate, pyruvate and β-hydroxybutyric acid on pyruvate carboxylase mRNA expression of in vitro culture bovine hepatocytes. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00370.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Shing CM, Jenkins DG, Stevenson L, Coombes JS. The influence of bovine colostrum supplementation on exercise performance in highly trained cyclists. Br J Sports Med 2006; 40:797-801. [PMID: 16825268 PMCID: PMC2564397 DOI: 10.1136/bjsm.2006.027946] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The aim of this experiment was to investigate the influence of low dose bovine colostrum supplementation on exercise performance in cyclists over a 10 week period that included 5 days of high intensity training (HIT). METHODS Over 7 days of preliminary testing, 29 highly trained male road cyclists completed a VO(2max) test (in which their ventilatory threshold was estimated), a time to fatigue test at 110% of ventilatory threshold, and a 40 km time trial (TT40). Cyclists were then assigned to either a supplement (n = 14, 10 g/day bovine colostrum protein concentrate (CPC)) or a placebo group (n = 15, 10 g/day whey protein) and resumed their normal training. Following 5 weeks of supplementation, the cyclists returned to the laboratory to complete a second series of performance testing (week 7). They then underwent five consecutive days of HIT (week 8) followed by a further series of performance tests (week 9). RESULTS The influence of bovine CPC on TT40 performance during normal training was unclear (week 7: 1+/-3.1%, week 9: 0.1+/-2.1%; mean+/-90% confidence limits). However, at the end of the HIT period, bovine CPC supplementation, compared to the placebo, elicited a 1.9+/-2.2% improvement from baseline in TT40 performance and a 2.3+/-6.0% increase in time trial intensity (% VO(2max)), and maintained TT40 heart rate (2.5+/-3.7%). In addition, bovine CPC supplementation prevented a decrease in ventilatory threshold following the HIT period (4.6+/-4.6%). CONCLUSION Low dose bovine CPC supplementation elicited improvements in TT40 performance during an HIT period and maintained ventilatory threshold following five consecutive days of HIT.
Collapse
Affiliation(s)
- C M Shing
- School of Human Movement Studies, The University of Queensland, St. Lucia, Brisbane, Qld 4072, Australia.
| | | | | | | |
Collapse
|