1
|
Hirose S, Tomaru A, Akiyama H, Hara-Kudo Y. Effective Decontamination Methods for Shiga Toxin-producing Escherichia coli on Beef Surfaces for Application in Beef Carcass Hygiene. J Food Prot 2024; 87:100366. [PMID: 39341380 DOI: 10.1016/j.jfp.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Effective methods for decontamination of Shiga toxin-producing Escherichia coli (STEC) on beef were evaluated by 48 mL spraying, 100 mL, and 500 mL flushing with ethanol, hydrogen peroxide, peracetic acid, acidified sodium chlorite, and sodium hypochlorite in this study. The flushing with 500 mL of 1,000 ppm peracetic acid was most effective, reducing pathogens by 2.8 log CFU/cm2, followed by 1,200 ppm acidified sodium chlorite. The spraying with 1,000 ppm peracetic acid reduced pathogens by 1.6 log CFU/cm2. The flushing with 500 mL of 200 and 500 ppm acidified sodium chlorite, and 50, 100, 200, and 500 ppm peracetic acid significantly reduced the STEC population compared with those treated with distilled water (p < 0.05), reducing pathogens by 2.1, 2.4, 1.6, 1.8, 2.1 and 2.4 log CFU/cm2, respectively. Additionally, the flushing with 500 mL of 200 and 500 ppm acidified sodium chlorite significantly changed the color of beef samples (p < 0.05), whereas 100-500 ppm peracetic acid did not significantly change the color (p > 0.05). The flushing with 500 mL of 200 and 500 ppm acidified sodium chlorite and 200 and 500 ppm peracetic acid significantly changed the odor of beef samples compared with those treated with distilled water (p < 0.05). There was no difference in the reduction of STEC population between peracetic acid treatment at 25 °C and 55 °C, with or without washing with sterilized distilled water after decontamination. Washing with distilled water after flushing with peracetic acid tended to reduce the odor of the samples. These results suggest that treatment with 100, 200, and 500 ppm peracetic acid, followed by washing with distilled water, might reduce the STEC population without retaining the odor of the sanitizer.
Collapse
Affiliation(s)
- Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Akiko Tomaru
- Division of Microbiology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| |
Collapse
|
2
|
Butters A, Jovel J, Gow S, Liljebjelke K, Waldner C, Checkley SL. PmrB Y358N, E123D amino acid substitutions are not associated with colistin resistance but with phylogeny in Escherichia coli. Microbiol Spectr 2024; 12:e0053224. [PMID: 39162501 PMCID: PMC11451601 DOI: 10.1128/spectrum.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Colistin resistance in Escherichia coli is of public health significance for its use to treat multidrug-resistant Gram-negative infections. Amino acid variations in PmrB have been implicated in colistin resistance in E. coli. In this cross-sectional study, 288 generic E. coli isolates from surveillance of broiler chicken and feedlot cattle feces, retail meat, wastewater, and well water were whole-genome sequenced. Phylogroup designation and screening for two amino acid substitutions in PmrB putatively linked to colistin resistance (Y358N, E123D) were performed in silico. Three additional data sets of publicly available E. coli assemblies were similarly scrutinized: (i) E. coli isolates from studies identifying the Y358N or E123D substitutions, (ii) colistin-susceptible E. coli isolates reported in the literature, and (iii) a random sampling of 14,700 E. coli assemblies available in the National Center for Biotechnology Information public database. Within all data sets, ≥95% of phylogroup B1 and C isolates have the PmrB Y358N variation. The PmrB E123D amino acid substitution was only identified in phylogroup B2 isolates, of which 94%-100% demonstrate the substitution. Both PmrB amino acid variations were infrequent in other phylogroups. Among published colistin susceptible isolates, colistin minimum inhibitory concentrations (MICs) were not higher in isolates bearing the E123D and Y358N amino acid variations than in isolates without these PmrB substitutions. The E123D and Y358N PmrB amino acid substitutions in E. coli appear strongly associated with phylogroup. The previously observed associations between Y358N and E123D amino acid substitutions in PmrB and colistin resistance in E. coli may be spurious. IMPORTANCE Colistin is a critical last-resort treatment for extensively drug-resistant Gram-negative infections in humans. Therefore, accurate identification of the genetic mechanisms of resistance to this antimicrobial is crucial to effectively monitor and mitigate the spread of resistance. Examining over 16,000 whole-genome sequenced Escherichia coli isolates, this study identifies that PmrB E123D and Y358N amino acid substitutions previously associated with colistin resistance in E. coli are strongly associated with phylogroup and are alone not sufficient to confer a colistin-resistant phenotype. This is a critical clarification, as both substitutions are identified as putative mechanisms of colistin resistance in many publications and a common bioinformatic tool. Given the potential spurious nature of initial associations of these substitutions with colistin resistance, this study's findings emphasize the importance of appropriate experimental design and consideration of relevant biological factors such as phylogroup when ascribing causal mechanisms of resistance to chromosomal variations.
Collapse
Affiliation(s)
- Alyssa Butters
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Juan Jovel
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
| | - Sheryl Gow
- Canadian Integrated
Program for Antimicrobial Resistance Surveillance/FoodNet, Public Health
Agency of Canada, Ottawa,
Ontario, Canada
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Karen Liljebjelke
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Cheryl Waldner
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Sylvia L. Checkley
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| |
Collapse
|
3
|
Zhang P, Liu L, Sheng H, Zhang M, Wang T, Chang G, Wang Y, Bai L, Wang X. Antibiotic Resistance and Genomic Analysis of Shiga Toxin-Producing Escherichia coli from Dairy Cattle, Raw Milk, and Farm Environment in Shaanxi Province, China. Foodborne Pathog Dis 2024; 21:624-633. [PMID: 39042484 DOI: 10.1089/fpd.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
To investigate the epidemiology of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle, 975 samples (185 feces, 34 silage, 36 cattle drinking water, 360 raw milk, and 360 teat skin swabs) were collected from two dairy farms in Baoji and Yangling, Shaanxi Province, China, and were screened for STEC. Whole-genome sequencing was used to analyze the genomic characteristics and potential transmission of STEC isolates. A total of 32 samples were contaminated with STEC, including 4.0% (19/479) in Farm A and 2.6% (13/496) in Farm B. Compared with adult cows (4.5%), nonadult cows had a higher rate (21.3%) of STEC colonization. A total of 14 serotypes and 11 multilocus sequence typing were identified in 32 STEC isolates, among which O55:H12 (25.0%) and ST101 (31.3%) were the most predominant, respectively. Six stx subtypes/combinations were identified, including stx1a (53.1%), stx2g (15.6%), stx2d, stx2a+stx2d, stx1a+stx2a (6.3%, for each), and stx2a (3.1%). Of 32 STEC isolates, 159 virulence genes and 27 antibiotic resistance genes were detected. Overall, STEC isolates showed low levels of resistance to the 16 antibiotics tested (0-40.6%), with most common resistance to ampicillin (40.6%). The phylogenetic analysis confirmed that STEC in the gut of cattle can be transmitted through feces. The results of this study help to improve our understanding of the epidemiological aspects of STEC in dairy cattle and provide early warning and control of the prevalence and spread of the bacterium.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- College of Food Science, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Lisha Liu
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, Beijing, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yeru Wang
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Ullah S, Hassan Khan SU, Ali T, Zeb MT, Riaz MH, Khan S, Goyal SM. Molecular characterization and antibiotic susceptibility of Shiga toxin- producing Escherichia coli (STEC) isolated from raw milk of dairy bovines in Khyber Pakhtunkhwa, Pakistan. PLoS One 2024; 19:e0307830. [PMID: 39226279 PMCID: PMC11371208 DOI: 10.1371/journal.pone.0307830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/11/2024] [Indexed: 09/05/2024] Open
Abstract
This study investigated the virulence potential and antibiotic susceptibility analysis of non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups, which are significant cause of food borne diseases. A study collected 800 samples of dairy bovine raw milk through various sources, 500 from milk shops, 200 from dairy farms, 26 from milk collection centers, and 74 from street vendors. Using a standard method, E. coli was detected in 321 out of the 800 samples collected. Out of the 321 E. coli-positive samples isolated, 148 were identified as STEC using selective media, specifically Cefixime Tellurite Sorbitol MacConkey's Agar (CT-SMA). Out of the 148 positive samples, 40 were confirmed as STEC non-O157 strains using multiplex PCR, indicating a prevalence of 5% (40 out of 800 samples). STEC isolates were subjected to antimicrobial susceptibility testing, and all isolates were resistant to at least one or more antimicrobials tested through the disk diffusion method, revealed high resistance to Amoxicillin 100%, Ceftriaxone 50%, and Penicillin 44.5%, and notably 44% of the strains exhibited Streptomycin resistance, while Enrofloxacin 55%, Florfenicol 50% and Norfloxacin 44%, demonstrated the highest susceptibility. Out of 40 STEC non-O157, twelve were subjected to Multi Locus Sequence Typing (MLST) sequencing through Illumina Inc. MiSeq platform's next-generation sequencing technology, United States. The genome investigation evidenced the persistence of twelve serotypes H4:O82, H30:O9a, H4:O82, H16:O187, H9:O9, H16:O113, H30:O9, H32:O, H32:O, H32, H32, and H38:O187, linked to the potential infections in humans. Conclusion: STEC isolates showed resistance to multiple antimicrobials, raising concerns for both animal and public health due to widespread use of these drugs in treatment and prevention. The study contributes new insights into monitoring STEC in raw milk, emphasizing the critical role of whole genome sequencing (WGS) for genotyping and sequencing diverse isolates. Still a deficiency in understanding STEC pathogenesis mechanisms, ongoing surveillance is crucial for safeguarding human health and enhancing understanding of STEC genetic characteristics.
Collapse
Affiliation(s)
- Safir Ullah
- Department of Zoology, Faculty of Biological Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed Ul Hassan Khan
- Department of Zoology, Faculty of Biological Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tariq Ali
- Directorate of Livestock and Dairy Development Department Khyber Pakhtunkhwa, Veterinary Research Institute Peshawar, Peshawar, Pakistan
| | - Muhammad Tariq Zeb
- Directorate of Livestock and Dairy Development Department Khyber Pakhtunkhwa, Veterinary Research Institute Peshawar, Peshawar, Pakistan
| | - Muhammad Hasnain Riaz
- Directorate of Livestock and Dairy Development Department Khyber Pakhtunkhwa, Veterinary Research Institute Peshawar, Peshawar, Pakistan
| | - Siraj Khan
- Department of Pharmacy, Faculty of Biological Science, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Sagar M. Goyal
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
5
|
Thilakarathna SH, Li V, Chui L. A challenging STEC strain isolation from patients' stools: an O166:H15 STEC strain with the stx2 gene. Microbiol Spectr 2024; 12:e0009824. [PMID: 38814093 PMCID: PMC11218488 DOI: 10.1128/spectrum.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Two patients with acute gastroenteritis tested positive for Shiga toxin-producing Escherichia coli (STEC) by polymerase chain reaction (PCR), and both strains carried the Shiga toxin 2 encoding gene. Since routine culture using CHROMagar STEC failed to recover these isolates, immunomagnetic separation (IMS) targeting the top six non-O157:H7 serotypes was used for isolate recovery. After two subsequent IMS runs, the STEC strains were isolated from trypticase soy broth with and without overnight enrichment for runs 1 and 2, respectively. Serotyping based on whole-genome sequencing revealed that both patients carried the strain O166:H15 STEC with the stx2 gene. Hence, the magnetic beads used in IMS appeared to have cross-reactivity with other E. coli serotypes. When the STEC isolates from both stools were cultured on CHROMagar STEC and sheep blood agar (BAP), two distinct colony sizes were apparent after overnight incubation. The small and large colonies were picked and separately cultured on both media, and colony growth was observed for 2 weeks at room temperature after an initial overnight incubation at 37°C. After 1 week, the colonies showed concentric ring structures with a darker center and a lighter surrounding on CHROMagar STEC and a "fried egg"-resembling structure with a raised circular center and a flat surrounding on BAP. Both colony types remained morphologically different on CHROMagar STEC throughout the 15 days. However, on BAP, their appearance was comparable by day 7. IMPORTANCE Shiga toxin-producing E. coli (STEC) infections can lead to severe complications such as bloody diarrhea and hemolytic uremic syndrome (HUS), especially in young children and the elderly. Strains that carry the shiga toxin 2 gene (stx2), such as O157:H7, have been mostly linked with severe disease outcomes. In recent years, outbreaks caused by non-O157:H7 strains have increased. E. coli O166:H15 has been previously reported causing a gastroenteritis outbreak in 1996 as a non-STEC strain, however the O166:H15 serotype we recovered carried the stx2 gene. It was particularly challenging to isolate this strain from stools by culture. Consequently, we tested immunomagnetic separation for the STEC recovery, which was a novel approach on clinical stools. Virulence genes were included for the characterization of these isolates.
Collapse
Affiliation(s)
- Surangi H. Thilakarathna
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Vincent Li
- Alberta Precision Laboratories - Public Health Laboratory (ProvLab), Edmonton, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Alberta Precision Laboratories - Public Health Laboratory (ProvLab), Edmonton, Canada
| |
Collapse
|
6
|
Bulgan E, Byambajav Z, Ayushjav N, Hirai Y, Tanaka M, Purevdorj NO, Badrakh S, Suzuki A, Komatsu Y, Sato T, Horiuchi M. Characterization of Shiga Toxin-producing Escherichia coli Isolated from Cattle Around Ulaanbaatar City, Mongolia. J Food Prot 2024; 87:100294. [PMID: 38718985 DOI: 10.1016/j.jfp.2024.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are associated with severe infections including hemorrhagic colitis and hemolytic uremic syndrome in humans. Ruminants are known as reservoirs of STEC; however, no data are available on STEC in ruminants in Mongolia, where more than 5 million cattle and 25 million sheep are raised. To disclose the existence and characteristics of STEC in Mongolia, in this study, we isolated and characterized STEC from cattle in Mongolia. We collected 350 rectal swabs of cattle from 30 farms near Ulaanbaatar city and isolated 45 STEC from 21 farms. Rectal swabs were precultured with modified Escherichia coli broth and then inoculated to Cefixime-Tellurite Sorbitol MacConkey agar plate and/or CHROMagar STEC agar plate for the isolation of STEC. The isolation ratios in each farm were from 0% to 40%. Multiplex PCR for the estimation of O- and H-serotypes identified 12 O-genotypes (Og-types) and 11 H-genotypes (Hg-types) from 45 isolates; however, Og-types of 19 isolates could not be determined. Stx gene subtyping by PCR identified 2 stx1 subtypes (1a and 1c) and 4 stx2 subtypes (2a, 2c, 2d, and 2g). Forty-five isolates were divided into 21 different groups based on the Og- and Hg-types, stx gene subtypes and the existence of virulence factors, ehxA, eae, and saa, which includes several major serotypes associated with human illness such as O26:H11 and O157:H7. The most dominant isolate, OgUT:H19 [stx1a (+), stx2a (+), ehxA (+) and saa (+)], was isolated from eight farms. This is the first report on the characterization of STEC in cattle in Mongolia, and the results suggest the importance of further monitoring of STEC contamination in the food chains as well as STEC infection in humans.
Collapse
Affiliation(s)
- Erdenebat Bulgan
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Zolzaya Byambajav
- Laboratory of Veterinary Sanitation and Hygiene, Ulaanbaatar Veterinary Department, Chinguunjav Street, 2nd Khoroo, Bayangol District, Ulaanbaatar 16050, Mongolia
| | - Narantuya Ayushjav
- Laboratory of Veterinary Sanitation and Hygiene, Ulaanbaatar Veterinary Department, Chinguunjav Street, 2nd Khoroo, Bayangol District, Ulaanbaatar 16050, Mongolia
| | - Yuji Hirai
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Misaki Tanaka
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Nyam-Osor Purevdorj
- School of Veterinary Medicine, Mongolian University of Life Science, Zaisan, Khan-Uul, Ulaanbaatar 17024, Mongolia
| | - Sandagdorj Badrakh
- School of Veterinary Medicine, Mongolian University of Life Science, Zaisan, Khan-Uul, Ulaanbaatar 17024, Mongolia
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yusuke Komatsu
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
7
|
Sora VM, Zaghen F, Zecconi A. How to Improve Surveillance Program for Shiga Toxin-Producing E. coli (STEC): Gap Analysis and Pilot Study. Pathogens 2024; 13:511. [PMID: 38921808 PMCID: PMC11206285 DOI: 10.3390/pathogens13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Several pathotypes of enteric E. coli have been identified. The group represented by Shiga toxin-producing E. coli (STEC) is of particular interest. Raw milk and raw milk products are significant sources of STEC infection in humans; therefore, identifying pathogens at the herd level is crucial for public health. Most national surveillance programs focus solely on raw milk and raw milk cheeses that are ready for retail sale, neglecting the possibility of evaluating the source of contamination directly at the beginning of the dairy chain. To assess the viability of the application of new molecular methodologies to STEC identification in raw milk filters and in calf feces, we analyzed 290 samples from 18 different dairy herds, including 88 bulk tank milk (BTM), 104 raw milk filters (RMF), and 98 calf feces samples. In total 3.4% of BTM, 41.4% of RMF, and 73.4% of calves' feces were positive for stx, supporting our hypothesis that BTM is not a suitable matrix to assess the presence of STEC at herd level, underestimating it. Our conclusion is that the surveillance program needs critical and extensive improvements such as RMF and calves' feces analysis implementation to be more efficient in detecting and preventing STEC infections. The epidemiology of these infections and the characteristics of the pathogen clearly show how a One Health approach will be pivotal in improving our capabilities to control the spread of these infections.
Collapse
Affiliation(s)
- Valerio Massimo Sora
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Francesca Zaghen
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Alfonso Zecconi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| |
Collapse
|
8
|
Azam AH, Sato K, Miyanaga K, Nakamura T, Ojima S, Kondo K, Tamura A, Yamashita W, Tanji Y, Kiga K. Selective bacteriophages reduce the emergence of resistant bacteria in bacteriophage-antibiotic combination therapy. Microbiol Spectr 2024; 12:e0042723. [PMID: 38695573 PMCID: PMC11237537 DOI: 10.1128/spectrum.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2024] [Indexed: 06/06/2024] Open
Abstract
Escherichia coli O157:H7 is a globally important foodborne pathogen with implications for food safety. Antibiotic treatment for O157 may potentially contribute to the exacerbation of hemolytic uremic syndrome, and the increasing prevalence of antibiotic-resistant strains necessitates the development of new treatment strategies. In this study, the bactericidal effects and resistance development of antibiotic and bacteriophage monotherapy were compared with those of combination therapy against O157. Experiments involving continuous exposure of O157 to phages and antibiotics, along with genetic deletion studies, revealed that the deletion of glpT and uhpT significantly increased resistance to fosfomycin. Furthermore, we found that OmpC functions as a receptor for the PP01 phage, which infects O157, and FhuA functions as a receptor for the newly isolated SP15 phage, targeting O157. In the glpT and uhpT deletion mutants, additional deletion in ompC, the receptor for the PP01 phage, increased resistance to fosfomycin. These findings suggest that specific phages may contribute to antibiotic resistance by selecting the emergence of gene mutations responsible for both phage and antibiotic resistance. While combination therapy with phages and antibiotics holds promise for the treatment of bacterial infections, careful consideration of phage selection is necessary.IMPORTANCEThe combination treatment of fosfomycin and bacteriophages against Escherichia coli O157 demonstrated superior bactericidal efficacy compared to monotherapy, effectively suppressing the emergence of resistance. However, mutations selected by phage PP01 led to enhanced resistance not only to the phage but also to fosfomycin. These findings underscore the importance of exercising caution in selecting phages for combination therapy, as resistance selected by specific phages may increase the risk of developing antibiotic resistance.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Koji Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Tomohiro Nakamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Shinjiro Ojima
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Kohei Kondo
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Azumi Tamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Wakana Yamashita
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kotaro Kiga
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| |
Collapse
|
9
|
Zelalem A, Koran T, Abegaz K, Abera Z, Mummed B, Olani A, Aliy A, Chimdessa M, Fentahun S, Schwan CL, Vipham JL. Hygienic status of beef butcher shop facilities and antibiotic resistance profile of Salmonella enterica in Ethiopia. Braz J Microbiol 2024; 55:1703-1714. [PMID: 38592593 PMCID: PMC11153418 DOI: 10.1007/s42770-024-01312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The microbiological quality of meat is influenced by the conditions of hygiene prevailing during production and handling. Thus, this study aimed to assess the prevalence of Salmonella enterica and its antimicrobial resistance, load of hygiene indicator bacteria including E. coli (ECC), coliforms (CC), total coliform (TCC), Enterobacteriaceae (EB) and aerobic plate count (APC), and meat handler's food safety knowledge and hygiene practices in butcher shops in two cities, Addis Ababa and Hawassa in Ethiopia, during 2020 and 2021. A total of 360 samples of beef carcasses (n = 120), knives (n = 60), chopping boards (n = 60), weighing balance (n = 60), and personnel's hands (n = 60) were randomly collected for microbial analysis. Besides, 120 participants were selected to participate in a food safety knowledge and hygiene practices assessment. The S. enterica isolates were identified by agglutination test followed by qPCR targeting invA gene. Phenotypic antimicrobial resistance profiles of S. enterica were determined using disk diffusion assays as described in CLSI. The ECC, CC, TCC, EB, and APC populations were quantified by plating onto petrifilm plates. A structured questionnaire was used to determine food safety knowledge and hygiene practices of participants. Overall prevalence of S. enterica was 16.7% (95% CI, 8.3-26.7) and location seems to have no effect (p = 0.806). Only 20% of the S. enterica were resistant to ampicillin and tetracycline. However, the majority (80%) of S. enterica isolates were susceptible to the panel of 11 antimicrobials tested. The overall mean ± SD (log CFU/cm2) of ECC, CC, TCC, EB, and APC were 4.31 ± 1.15; 4.61 ± 1.33; 4.77 ± 1.32; 4.59 ± 1.38 and 5.87 ± 1.52, respectively. No significant difference (p = 0.123) in E. coli contamination was observed between samples of beef carcasses and chopping boards. The EB contamination showed no significant difference (p > 0.05) among sample sources. The APC contamination levels on beef carcass were significantly higher (p > 0.05) than other sample sources. A total of 56% (95% CI: 46.7 - 65.0) of the participants had poor knowledge and 65% (95% CI: 56.7 - 73.3) had poor hygiene practices towards food safety. This study highlighted the poor hygiene status of butcher facilities with a potential risk of beef safety. Thus, appropriate food safety control strategies and inspection is needed at retail establishments.
Collapse
Affiliation(s)
- Andarge Zelalem
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia.
| | | | - Kebede Abegaz
- Department of Food Science & Technology, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Zelalem Abera
- Univeristy Laboratory Management Directorate, Central Laboratories, Haramaya University, Dire Dawa, Ethiopia
| | - Bahar Mummed
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
| | | | - Abde Aliy
- Animal Health Institute, Sebeta, Ethiopia
| | - Meseret Chimdessa
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Selam Fentahun
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Carla L Schwan
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jessie L Vipham
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Ikeuchi S, Hirose S, Shimada K, Koyama A, Ishida S, Katayama N, Suzuki T, Tokairin A, Tsukamoto M, Tsue Y, Yamaguchi K, Osako H, Hiwatashi S, Chiba Y, Akiyama H, Hayashidani H, Hara-Kudo Y. Isolation of Shiga Toxin-Producing Escherichia coli from the Surfaces of Beef Carcasses in Slaughterhouses in Japan. J Food Prot 2024; 87:100263. [PMID: 38484844 DOI: 10.1016/j.jfp.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Shiga toxin-producing E. coli (STEC) is an important foodborne pathogen worldwide. It is necessary to control and prevent STEC contamination on beef carcasses in slaughterhouses because STEC infection is associated with beef consumption. However, the frequencies of STEC contamination of beef carcasses in various slaughterhouses in Japan are not well known. Herein, we investigated the contamination of beef carcasses with STEC in slaughterhouses to assess the potential risks of STEC. In total, 524 gauze samples were collected from the surfaces of beef carcasses at 12 domestic slaughterhouses from November 2020 to February 2023. The samples were measured for aerobic plate counts and tested for pathogenic genes (stx and eae) and major O-serogroups (O26, O45, O103, O111, O121, O145, and O157) by real-time PCR screening. Subsequently, immunomagnetic separation (IMS) was performed on samples positive for stx, eae, and at least one of the seven O-serogroups of STEC. Isolation process without IMS was performed on samples positive for stx, including those subjected to IMS. STEC O157:H7 and stx-positive E. coli other than serotype O157:H7 were isolated from 0.6% and 4.6% of beef carcass surfaces, respectively. Although the STEC O157:H7 isolation rate was low and stx-positive E. coli other than serotype O157:H7 belonged to minor O-serogroups, the results mean a risk of foodborne illness. Furthermore, a moderate correlation was observed between aerobic plate counts and detection rates of stx-positive samples by real-time PCR screening. The STEC O157:H7 isolated facilities showed higher values on aerobic plate counts and detection rates of stx-positive samples than the mean values of total samples. Therefore, these results suggest that it is important to evaluate hygiene treatments against beef carcasses for the reduction of STEC contamination risk, particularly in facilities with high aerobic plate counts.
Collapse
Affiliation(s)
- Shunsuke Ikeuchi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Kohei Shimada
- Section of Meat Inspection, Division of Food Hygiene, Bureau of Health and Safety, Department of Health and Welfare, Hokkaido Government, Kita 3-jo, Nishi 6-chome, Chuo-ku, Sapporo, Hokkaido 060-8588, Japan
| | - Ayako Koyama
- Higashimokoto Meat Inspection Center, 72-1, Chigusa, Higashimokoto, Ozora, Abashiri District, Hokkaido 099-3231, Japan
| | - Shoji Ishida
- Hokkaido Hayakita Meat Inspection Center, 695, Toasa, Abira-cho, Yufutsu District, Hokkaido 059-1433, Japan
| | - Naoto Katayama
- Tokushima Prefectural Meat Inspection Centre, 2-140-3 Fudohon-machi, Tokushima, Tokushima 770-0063, Japan
| | - Takehiko Suzuki
- Hokkaido Obihiro Meat Inspection Center, North 2, West 25, Obihiro, Hokkaido 080-2465, Japan
| | - Akiko Tokairin
- Towada Meat Inspection Center, 1-13, Sambongi Nozaki, Towada, Aomori 034-0001, Japan
| | - Mayumi Tsukamoto
- Gifu Prefectural Hida Meat Inspection Office, 17-1 Maehara-machi, Takayama, Gifu 506-0048, Japan
| | - Yuki Tsue
- Miyazaki Prefecture Tsuno Meat Inspection Center, 15530, Kawakita, Tsuno-cho, Koyu-gun, Miyazaki 889-1201, Japan
| | - Kenichi Yamaguchi
- Akita City Meat Hygiene Inspection Office, 2-6 Dosaka, Jinnai, Kawabe, Akita, Akita 019-2631, Japan
| | - Hideo Osako
- Kumamoto Prefectural Meat Inspection Office, 1341 Sozaki, Shichijyo-machi, Kikuchi, Kumamoto 861-1344, Japan
| | - Sachiko Hiwatashi
- Nagasaki Prefectural Isahaya Meat Inspection Station, 79-20 Saiwai-machi, Isahaya, Nagasaki 854-0022, Japan
| | - Yumi Chiba
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hideki Hayashidani
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan; Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
11
|
Youseef M, Karam F, Kadry M, Elhariri M, Elhelw R. Escherichia coli and their potential transmission of carbapenem and colistin-resistant genes in camels. BMC Microbiol 2024; 24:65. [PMID: 38402189 PMCID: PMC10893666 DOI: 10.1186/s12866-024-03215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Camels harbouring multidrug-resistant Gram-negative bacteria are capable of transmitting various microorganisms to humans. This study aimed to determine the distribution of anti-microbial resistance among Escherichia coli (E. coli) isolated from the feces of apparently healthy camels in Egyptian abattoirs. Additionally, we sought to characterize Shiga toxin-producing E. coli (STEC) strains, assess their virulence potential, and investigate the possibility of camels spreading carbapenem- and colistin-resistant E. coli. METHODS 121 fecal swaps were collected from camels in different abattoirs in Egypt. Isolation and identification of E. coli were performed using conventional culture techniques and biochemical identification. All isolates obtained from the examined samples underwent genotyping through polymerase chain reaction (PCR) of the Shiga toxin-encoding genes (Stx1 and Stx2), the carbapenemase-encoding genes (blaKPC, blaOXA-48, blaNDM, and blaVIM), and the mcr genes for mcr-1 to mcr-5. RESULT Bacteriological examination revealed 75 E. coli isolates. PCR results revealed that one strain (1.3%) tested positive for Stx1, and five (6.6%) were positive for Stx2. Among the total 75 strains of E. coli, the overall prevalence of carbapenemase-producing E. coli was 27, with 7 carrying blaOXA48, 14 carrying blaNDM, and 6 carrying blaVIM. Notably, no strains were positive for blaKPC but a high prevalence rate of mcr genes were detected. mcr-1, mcr-2, mcr-3, and mcr-4 genes were detected among 3, 2, 21, and 3 strains, respectively. CONCLUSION The results indicate that camels in Egypt may be a primary source of anti-microbial resistance (AMR) E. coli, which could potentially be transmitted directly to humans or through the food chain.
Collapse
Affiliation(s)
- Marwa Youseef
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Fatma Karam
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Mona Kadry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Mahmoud Elhariri
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Rehab Elhelw
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
12
|
Oliveira A, Dias C, Oliveira R, Almeida C, Fuciños P, Sillankorva S, Oliveira H. Paving the way forward: Escherichia coli bacteriophages in a One Health approach. Crit Rev Microbiol 2024; 50:87-104. [PMID: 36608263 DOI: 10.1080/1040841x.2022.2161869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.
Collapse
Affiliation(s)
- Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Pablo Fuciños
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
13
|
Gökmen M, İlhan Z, Tavşanlı H, Önen A, Ektik N, Göçmez EB. Prevalence and molecular characterization of shiga toxin-producing Escherichia coli in animal source foods and green leafy vegetables. FOOD SCI TECHNOL INT 2024; 30:30-36. [PMID: 36113141 DOI: 10.1177/10820132221125104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) has emerged as important enteric foodborne zoonotic pathogens of considerable public health significance worldwide. The aim of this study was to determine the prevalence of the top seven STEC serotypes and to identify these serotypes in samples of animal source foods and vegetables. A total of 294 samples including 84 meat samples, 135 milk and dairy product samples and 75 green leafy vegetable samples were tested. The samples were harvested in mTSB-broth pre-enriched with novobiocin and then were tested by amplifying 16S shiga toxin (stx1/2), and eae genes using multiplex polymerase chain reaction (m-PCR) assay. A total of 260 (88.4%) samples were positive for E. coli and 29 (11.1%) of them were positive for shiga toxin, and eae genes. The positive samples were cultivated on CHROMAgar STEC and the colonies were evaluated for top seven STEC by m-PCR. The top seven STEC serotypes were detected in 27 (93.1%) of the samples: the STEC O111 serotype in 11 (40.7%) beef samples, STEC O45 in 3 (11.1%) chicken, STEC O145 in 6 (22.2%) parsley, 3 (11.1%) lettuce, 1 (3.7%) spinach, and 1 (3.7%) cheese, and STEC O103 in 2 (7.4%) lettuce samples. None of the samples was found positive for STEC O26, O121, and O157 serotypes. This study highlights the fact that the top seven STEC group poses a great risk in terms of food safety and public health in both animal source foods and vegetables.
Collapse
Affiliation(s)
- Mukadderat Gökmen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Ziya İlhan
- Department Microbiology, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Hakan Tavşanlı
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Adem Önen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Nisanur Ektik
- Department of Food Hygiene and Technology, Institute of Health, Balikesir University, Balikesir, Turkey
| | - Enise Begüm Göçmez
- Department of Food Hygiene and Technology, Institute of Health, Balikesir University, Balikesir, Turkey
| |
Collapse
|
14
|
Zhang L, Ma X, Tong P, Zheng B, Zhu M, Peng B, Wang J, Liu Y. RNA-Seq analysis of long non-coding RNA in human intestinal epithelial cells infected by Shiga toxin-producing Escherichia coli. Cytokine 2024; 173:156421. [PMID: 37944420 DOI: 10.1016/j.cyto.2023.156421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The Shiga toxin-producing Escherichia coli (STEC) infects animals and induces acute intestinal inflammation. Long non-coding RNAs (lncRNAs) are known to play crucial roles in modulating inflammation response. However, it is not clear whether lncRNAs are involved in STEC-induced inflammation. METHODS AND RESULTS To understand the association of lncRNAs with STEC infection, we used RNA-seq technology to analyze the profiles of lncRNAs in Mock-infected and STEC-infected human intestinal epithelial cells (HIECs). We detected a total of 702 lncRNAs differentially expressed by STEC infection. 583 differentially expressed lncRNAs acted as competitive microRNAs (miRNAs) binding elements in regulating the gene expression involved in TNF signaling pathway, IL-17 signaling pathway, PI3K-Akt signaling pathway, and apoptosis pathways. We analyzed 3 targeted genes, TRADD, TRAF1 and TGFB2, which were differentially regulated by mRNA-miRNA-lncRNA interaction network, potentially involved in the inflammatory and apoptotic response to STEC infection. Functional analysis of up/downstream genes associated with differentially expressed lncRNAs revealed their role in adheres junction and endocytosis. We also used the qRT-PCR technique to validate 8 randomly selected differentially expressed lncRNAs and mRNAs in STEC-infected HIECs. CONCLUSION Our results, for the first time, revealed differentially expressed lncRNAs induced by STEC infection of HIECs. The results will help investigate the molecular mechanisms for the inflammatory responses induced by STEC.
Collapse
Affiliation(s)
- Liuqing Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Baili Zheng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Mingyue Zhu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Bin Peng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
15
|
Bloch S, Lewandowska N, Zwolenkiewicz J, Mach P, Łukasiak A, Olejniczak M, Donaldson LW, Węgrzyn G, Nejman-Faleńczyk B. Bacteriophage-encoded 24B_1 molecule resembles herpesviral microRNAs and plays a crucial role in the development of both the virus and its host. PLoS One 2023; 18:e0296038. [PMID: 38117844 PMCID: PMC10732415 DOI: 10.1371/journal.pone.0296038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
The 24B_1 small non-coding RNA molecule has been identified in Escherichia coli after induction of Shiga toxin-converting bacteriophage Φ24B. In this work, we focused on its direct role during phage and bacterial host development. We observed that in many aspects, this phage sRNA resembles herpesviral microRNAs. Similar to microRNAs, the mature 24B_1 is a short molecule, consisting of just 20 nucleotides. It is generated by cleaving the 80-nt long precursor transcript, and likely it undergoes a multi-step maturation process in which the Hfq protein plays an important role, as confirmed by demonstration of its binding to the 24B_1 precursor, but not to the 24B_1 mature form. Moreover, 24B_1 plays a significant role in maintaining the prophage state and reprogramming the host's energy metabolism. We proved that overproduction of this molecule causes the opposite physiological effects to the mutant devoid of the 24B_1 gene, and thus, favors the lysogenic pathway. Furthermore, the 24B_1 overrepresentation significantly increases the efficiency of expression of phage genes coding for proteins CI, CII, and CIII which are engaged in the maintenance of the prophage. It seems that through binding to mRNA of the sdhB gene, coding for the succinate dehydrogenase subunit, the 24B_1 alters the central carbon metabolism and causes a drop in the ATP intracellular level. Interestingly, a similar effect, called the Warburg switch, is caused by herpesviral microRNAs and it is observed in cancer cells. The advantage of the Warburg effect is still unclear, however, it was proposed that the metabolism of cancer cells, and all rapidly dividing cells, is adopted to convert nutrients such as glucose and glutamine faster and more efficiently into biomass. The availability of essential building blocks, such as nucleotides, amino acids, and lipids, is crucial for effective cell proliferation which in turn is essential for the prophage and its host to stay in the lysogenic state.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Joanna Zwolenkiewicz
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Paulina Mach
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
16
|
Ngoma NFN, Malahlela MN, Marufu MC, Cenci-Goga BT, Grispoldi L, Etter E, Kalake A, Karama M. Antimicrobial growth promoters approved in food-producing animals in South Africa induce shiga toxin-converting bacteriophages from Escherichia coli O157:H7. Gut Pathog 2023; 15:64. [PMID: 38057920 DOI: 10.1186/s13099-023-00590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
In this study, four antimicrobial growth promoters, including virginiamycin, josamycin, flavophospholipol, poly 2-propenal 2-propenoic acid and ultraviolet light, were tested for their capacity to induce stx-bacteriophages in 47 Shiga toxin-producing E. coli O157:H7 isolates. Induced bacteriophages were characterized for shiga toxin subtypes and structural genes by PCR, DNA restriction fragment length polymorphisms (RFLP) and morphological features by electron microscopy. Bacteriophages were induced from 72.3% (34/47) of the STEC O157:H7 isolates tested. Bacteriophage induction rates per induction method were as follows: ultraviolet light, 53.2% (25/47); poly 2-propenal 2-propenoic acid, 42.6% (20/47); virginiamycin, 34.0% (16/47); josamycin, 34.0% (16/47); and flavophospholipol, 29.8% (14/47). A total of 98 bacteriophages were isolated, but only 59 were digestible by NdeI, revealing 40 RFLP profiles which could be subdivided in 12 phylogenetic subgroups. Among the 98 bacteriophages, stx2a, stx2c and stx2d were present in 85.7%, 94.9% and 36.7% of bacteriophages, respectively. The Q, P, CIII, N1, N2 and IS1203 genes were found in 96.9%, 82.7%, 69.4%, 40.8%, 60.2% and 73.5% of the samples, respectively. Electron microscopy revealed four main representative morphologies which included three bacteriophages which all had long tails but different head morphologies: long hexagonal head, oval/oblong head and oval/circular head, and one bacteriophage with an icosahedral/hexagonal head with a short thick contractile tail. This study demonstrated that virginiamycin, josamycin, flavophospholipol and poly 2-propenal 2-propenoic acid induce genetically and morphologically diverse free stx-converting bacteriophages from STEC O157:H7. The possibility that these antimicrobial growth promoters may induce bacteriophages in vivo in animals and human hosts is a public health concern. Policies aimed at minimizing or banning the use of antimicrobial growth promoters should be promoted and implemented in countries where these compounds are still in use in animal agriculture.
Collapse
Affiliation(s)
- Nomonde F N Ngoma
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Mogaugedi N Malahlela
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Munyaradzi C Marufu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Beniamino T Cenci-Goga
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
- Departimento di Medicina Veterinaria, Laboratorio di Ispezione Degli Alimenti di Origine Animale, University of Perugia, Perugia, 06126, Italy
| | - Luca Grispoldi
- Departimento di Medicina Veterinaria, Laboratorio di Ispezione Degli Alimenti di Origine Animale, University of Perugia, Perugia, 06126, Italy
| | - Eric Etter
- CIRAD, UMR ASTRE, Petit-Bourg, F-97170, France
- ASTRE, Université de Montpellier, CIRAD INRAE, Montpellier, France
| | - Alan Kalake
- Gauteng Department of Agriculture and Rural Development, Johannesburg, 2001, South Africa
| | - Musafiri Karama
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
17
|
Berger PI, Hermanns S, Kerner K, Schmelz F, Schüler V, Ewers C, Bauerfeind R, Doherr MG. Cross-sectional study: prevalence of oedema disease Escherichia coli (EDEC) in weaned piglets in Germany at pen and farm levels. Porcine Health Manag 2023; 9:49. [PMID: 37885038 PMCID: PMC10601234 DOI: 10.1186/s40813-023-00343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Escherichia coli bacteria capable of producing the toxin Stx2e and possessing F18-fimbriae (edema disease E. coli, EDEC) are considered causative agents of porcine oedema disease. This disease, which usually occurs in piglets shortly after weaning, has a high lethality in affected animals and can lead to high economic losses in piglet rearing. The aim of this cross-sectional field study was to determine the prevalence of EDEC in weaned piglets in Germany at pen and farm levels. RESULTS Ninety-nine farms with unknown history of infections with shigatoxin-producing E. coli (STEC) and oedema disease were sampled. On each farm, up to five pens were selected for sampling (n = 481). The piglets in these pens were at an age 1-3 weeks after weaning. Single faecal samples (n = 2405) and boot swabs (n = 479) were collected from the floor. On 50 farms, cotton ropes were additionally used to collect oral fluid samples (n = 185) and rope wash out samples (n = 231) from the selected pens. All samples were analyzed by bacterial culture combined with a duplex PCR for the presence of the corresponding genes stx2e and fedA (major subunit protein of F18 fimbriae). In addition, whole DNA specimens extracted from boot swabs, oral fluid samples, and rope wash out samples were directly examined by duplex PCR for DNA of stx2e and fedA. A pen was classified as positive if at least one of the samples, regardless of the technique, yielded a positive result in the PCR, and farms were considered positive if at least one pen was classified as positive. Overall, genes stx2e and fedA were found simultaneously in 24.9% (95% CI 22.1-29.1%) of sampled pens and in 37.4% (95% CI 27.9-47.7%) of sampled farms. Regardless of the presence of F18-fimbriae, Escherichia coli encoding for Stx2e (STEC-2e) were found in 35.1% (95% CI 31.0-39.1%) of the pens and 53.5% (95% CI 44.4-63.6%) of the farms sampled. CONCLUSIONS Escherichia coli strains considered capable to cause oedema disease in swine (EDEC) are highly prevalent in the surveyed pig producing farms in Germany. Due to intermittent shedding of EDEC and a potentially low within-farm prevalence, we recommend a combination of different sampling techniques for EDEC monitoring at pen and farm levels. Further studies are needed to understand which STEC-2e strains really pose the risk of causing severe porcine disease.
Collapse
Affiliation(s)
- Pia I Berger
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany.
| | - Steffen Hermanns
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | | | | | - Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Marcus G Doherr
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Haley BJ, Kim SW, Salaheen S, Hovingh E, Van Kessel JAS. Genome-Wide Analysis of Escherichia coli Isolated from Dairy Animals Identifies Virulence Factors and Genes Enriched in Multidrug-Resistant Strains. Antibiotics (Basel) 2023; 12:1559. [PMID: 37887260 PMCID: PMC10604827 DOI: 10.3390/antibiotics12101559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The gastrointestinal tracts of dairy calves and cows are reservoirs of antimicrobial-resistant bacteria (ARB), which are present regardless of previous antimicrobial therapy. Young calves harbor a greater abundance of resistant bacteria than older cows, but the factors driving this high abundance are unknown. Here, we aimed to fully characterize the genomes of multidrug-resistant (MDR) and antimicrobial-susceptible Escherichia coli strains isolated from pre-weaned calves, post-weaned calves, dry cows, and lactating cows and to identify the accessory genes that are associated with the MDR genotype to discover genetic targets that can be exploited to mitigate antimicrobial resistance in dairy farms. Results indicated that both susceptible and resistant E. coli isolates recovered from animals on commercial dairy operations were highly diverse and encoded a large pool of virulence factors. In total, 838 transferrable antimicrobial resistance genes (ARGs) were detected, with genes conferring resistance to aminoglycosides being the most common. Multiple sequence types (STs) associated with mild to severe human gastrointestinal and extraintestinal infections were identified. A Fisher's Exact Test identified 619 genes (ARGs and non-ARGs) that were significantly enriched in MDR isolates and 147 genes that were significantly enriched in susceptible isolates. Significantly enriched genes in MDR isolates included the iron scavenging aerobactin synthesis and receptor genes (iucABCD-iutA) and the sitABCD system, as well as the P fimbriae pap genes, myo-inositol catabolism (iolABCDEG-iatA), and ascorbate transport genes (ulaABC). The results of this study demonstrate a highly diverse population of E. coli in commercial dairy operations, some of which encode virulence genes responsible for severe human infections and resistance to antibiotics of human health significance. Further, the enriched accessory genes in MDR isolates (aerobactin, sit, P fimbriae, and myo-inositol catabolism and ascorbate transport genes) represent potential targets for reducing colonization of antimicrobial-resistant bacteria in the calf gut.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 307 Center Drive, Beltsville, MD 20705, USA; (S.W.K.)
| |
Collapse
|
19
|
Rivas M, Pichel M, Colonna M, Casanello AL, Alconcher LF, Galavotti J, Principi I, Araujo SP, Ramírez FB, González G, Pianciola LA, Mazzeo M, Suarez Á, Oderiz S, Ghezzi LFR, Arrigo DJ, Paladini JH, Baroni MR, Pérez S, Tamborini A, Chinen I, Miliwebsky ES, Goldbaum F, Muñoz L, Spatz L, Sanguineti S. Surveillance of Shiga toxin-producing Escherichia coli associated bloody diarrhea in Argentina. Rev Argent Microbiol 2023; 55:345-354. [PMID: 37301652 DOI: 10.1016/j.ram.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC-HUS) infection is endemic, and reliable data about prevalence and risk factors have been available since 2000. However, information about STEC-associated bloody diarrhea (BD) is limited. A prospective study was performed during the period October 2018-June 2019 in seven tertiary-hospitals and 18 referral units from different regions, aiming to determine (i) the frequency of STEC-positive BD cases in 714 children aged 1-9 years of age and (ii) the rate of progression of bloody diarrhea to HUS. The number and regional distribution of STEC-HUS cases in the same hospitals and during the same period were also assessed. Twenty-nine (4.1%) of the BD patients were STEC-positive, as determined by the Shiga Toxin Quik Chek (STQC) test and/or the multiplex polymerase chain reaction (mPCR) assay. The highest frequencies were found in the Southern region (Neuquén, 8.7%; Bahía Blanca, 7.9%), in children between 12 and 23 month of age (8.8%), during summertime. Four (13.8%) cases progressed to HUS, three to nine days after diarrhea onset. Twenty-seven STEC-HUS in children under 5 years of age (77.8%) were enrolled, 51.9% were female; 44% were Stx-positive by STQC and all by mPCR. The most common serotypes were O157:H7 and O145:H28 and the prevalent genotypes, both among BD and HUS cases, were stx2a-only or -associated. Considering the endemic behavior of HUS and its high incidence, these data show that the rate of STEC-positive cases is low among BD patients. However, the early recognition of STEC-positive cases is important for patient monitoring and initiation of supportive treatment.
Collapse
Affiliation(s)
- Marta Rivas
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina.
| | - Mariana Pichel
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Mariana Colonna
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | | | - Laura F Alconcher
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Jimena Galavotti
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Iliana Principi
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Sofía Pérez Araujo
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Flavia B Ramírez
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Gladys González
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Luis A Pianciola
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Melina Mazzeo
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Ángela Suarez
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Sebastián Oderiz
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Lidia F R Ghezzi
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - Diego J Arrigo
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - José H Paladini
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - María R Baroni
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - Susana Pérez
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Ana Tamborini
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Elizabeth S Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Fernando Goldbaum
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Luciana Muñoz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Linus Spatz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Santiago Sanguineti
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| |
Collapse
|
20
|
Milton AAP, Srinivas K, Lyngdoh V, Momin AG, Lapang N, Priya GB, Ghatak S, Sanjukta R, Sen A, Das S. Biofilm-forming antimicrobial-resistant pathogenic Escherichia coli: A one health challenge in Northeast India. Heliyon 2023; 9:e20059. [PMID: 37809422 PMCID: PMC10559811 DOI: 10.1016/j.heliyon.2023.e20059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
This study aimed to investigate the prevalence of Shiga toxin-producing Escherichia coli (STEC), Enteropathogenic E. coli (EPEC), and Enterotoxigenic E. coli (ETEC) in common food animals (cattle, goats, and pigs) reared by tribal communities and smallholder farmers in Northeast India. The isolates were characterized for the presence of virulence genes, extended-spectrum beta-lactamases (ESBL) production, antimicrobial resistance, and biofilm production, and the results were statistically interpreted. In pathotyping 141 E. coli isolates, 10 (7.09%, 95% CI: 3.45%-12.66%) were identified as STEC, 2 (1.42%, 95% CI: 0.17%-5.03%) as atypical-EPEC, and 1 (0.71%, 95% CI: 0.02%-3.89%) as typical-EPEC. None of the isolates were classified as ETEC. Additionally, using the phenotypic combination disc method (ceftazidime with and without clavulanic acid), six isolates (46.1%, 95% CI: 19.22%-74.87%) were determined to be ESBL producers. Among the STEC/EPEC strains, eleven (84.6%, 95% CI: 54.55%-98.08%) and one (7.7%, 95% CI: 0.19%-36.03%) strains were capable of producing strong or moderate biofilms, respectively. PFGE analysis revealed indistinguishable patterns for certain isolates, suggesting clonal relationships. These findings highlight the potential role of food animals reared by tribal communities and smallholder farmers as reservoirs of virulent biofilm-forming E. coli pathotypes, with implications for food contamination and zoonotic infections. Therefore, monitoring these pathogens in food animals is crucial for optimizing public health through one health strategy.
Collapse
Affiliation(s)
- A. Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - K. Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Aleimo G. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Naphisabet Lapang
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - G. Bhuvana Priya
- College of Agriculture, Central Agricultural University (Imphal), Kyrdemkulai, Meghalaya, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - R.K. Sanjukta
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| |
Collapse
|
21
|
Dos Santos GF, de Sousa FG, Beier SL, Mendes ACR, Leão AMGES. Escherichia coli O157:H7 strains in bovine carcasses and the impact on the animal production chain. Braz J Microbiol 2023; 54:2243-2251. [PMID: 37335430 PMCID: PMC10484834 DOI: 10.1007/s42770-023-01034-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Foodborne diseases are characterized by conditions that can induce symptomatic illnesses in their carriers, and therefore represent a serious problem. They are important conditions from a clinical and epidemiological point of view, and are associated with the occurrence of serious public health problems, with a strong impact on morbidity and mortality. The Escherichia coli (E. coli) is an enterobacterium associated with enteric conditions of variable intensity and which are accompanied by blood. The transmission routes are mainly based on the consumption of contaminated food and water sources. Shiga toxin-producing E. coli (STEC) are considered a serogroup of E. coli, are capable of producing Shiga-type toxins (Stx 1 and Stx 2) and the O157:H7 strain is one of the best-known serotypes. The early detection of this pathogen is very important, especially due to the capacity of contamination of carcasses destined for food consumption and supply of productive markets. Sanitary protocols must be developed and constantly reviewed in order to prevent/control the presence of the pathogen.
Collapse
Affiliation(s)
- Gabrielle Fernanda Dos Santos
- Postgraduate in Quality Management and Hygiene and Technology of Products of Animal Origin, Ifope Educacional, Belo Horizonte, Brazil
| | - Felipe Gaia de Sousa
- Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, 6627 Antônio Carlos Av, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Suzane Lilian Beier
- Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, 6627 Antônio Carlos Av, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | |
Collapse
|
22
|
Cao Y, Fang T, Shen J, Zhang G, Guo D, Zhao L, Jiang Y, Zhi S, Zheng L, Lv X, Yao Z, Yu D. Development of Recombinase Aided Amplification (RAA)-Exo-Probe Assay for the Rapid Detection of Shiga Toxin-Producing Escherichia coli. J AOAC Int 2023; 106:1246-1253. [PMID: 37252814 DOI: 10.1093/jaoacint/qsad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is a significant cause of foodborne illness causing various gastrointestinal diseases including hemolytic uremic syndrome (HUS), the most severe form, which can lead to kidney failure or even death. OBJECTIVE Here, we report the development of recombinase aided amplification (RAA)-exo-probe assays targeting the stx1 and stx2 genes for the rapid detection of STEC in food samples. METHODS Primers and exo-probes were designed and optimized for the detection of stx1 and stx2 using RAA technology. The optimal STEC RAA-exo-probe assays were then tested for specificity and sensitivity, and validated in both spiked and real food samples. RESULTS These assays were found to be 100% specific to STEC strains and were also highly sensitive with a detection limit of 1.6 × 103 CFU/mL or 32 copies/reaction. Importantly, the assays were able to successfully detect STEC in spiked and real food samples (beef, mutton, and pork), with a detection limit as low as 0.35 CFU/25g in beef samples after an overnight enrichment step. CONCLUSIONS Overall, the RAA assay reactions completed within ∼20 min and were less dependent on expensive equipment, suggesting they can be easily adopted for in-field testing requiring only a fluorescent reader. HIGHLIGHTS As such, we have developed two rapid, sensitive, and specific assays that can be used for the routine monitoring of STEC contamination in food samples, particularly in the field or in poorly equipped labs.
Collapse
Affiliation(s)
- Yuhao Cao
- Ningbo University, Health Science Center, 818 Fenghua Road, Jiangbei District, Ningbo 315211, China
| | - Taisong Fang
- Zhejiang University, College of Biosystems Engineering and Food Science, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Jinling Shen
- Shanghai Customs, Technology Center for Animal Plant and Food Inspection and Quarantine, 299 Mianbei Road, Pudong New District, Shanghai 201210, China
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740, USA
| | - Dehua Guo
- Shanghai Customs, Technology Center for Animal Plant and Food Inspection and Quarantine, 299 Mianbei Road, Pudong New District, Shanghai 201210, China
| | - Lina Zhao
- Shanghai Customs, Technology Center for Animal Plant and Food Inspection and Quarantine, 299 Mianbei Road, Pudong New District, Shanghai 201210, China
| | - Yuan Jiang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, 1 Weigang, Nanjing 210095, China
| | - Shuai Zhi
- Ningbo University, Health Science Center, 818 Fenghua Road, Jiangbei District, Ningbo 315211, China
| | - Lin Zheng
- Ningbo University, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo 315211, China
| | - Xiaofei Lv
- China Jiliang University, Department of Environmental Engineering, 258 Xueyuan Street, Qiantang District, Hangzhou 310018, China
| | - Zhiyuan Yao
- Ningbo University, School of Civil and Environmental Engineering, 818 Fenghua Road, Jiangbei District, Ningbo 315211, China
| | - Daniel Yu
- University of Alberta, School of Public Health, 116 Street and 85 Avenue, Edmonton, AB, Canada
| |
Collapse
|
23
|
Tomisch J, Busse V, Rosato F, Makshakova ON, Salavei P, Kittel AS, Gillon E, Lataster L, Imberty A, Meléndez AV, Römer W. A Shiga Toxin B-Subunit-Based Lectibody Boosts T Cell Cytotoxicity towards Gb3-Positive Cancer Cells. Cells 2023; 12:1896. [PMID: 37508560 PMCID: PMC10378424 DOI: 10.3390/cells12141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.
Collapse
Affiliation(s)
- Jana Tomisch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Vincent Busse
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Pavel Salavei
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104 Freiburg, Germany
| | - Anna-Sophia Kittel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Emilie Gillon
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Levin Lataster
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
24
|
Amemiya K, Rozak DA, Dankmeyer JL, Dorman WR, Marchand C, Fetterer DP, Worsham PL, Purcell BK. Shiga-Toxin-Producing Strains of Escherichia coli O104:H4 and a Strain of O157:H7, Which Can Cause Human Hemolytic Uremic Syndrome, Differ in Biofilm Formation in the Presence of CO 2 and in Their Ability to Grow in a Novel Cell Culture Medium. Microorganisms 2023; 11:1744. [PMID: 37512916 PMCID: PMC10384166 DOI: 10.3390/microorganisms11071744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
One pathogen that commonly causes gastrointestinal illnesses from the consumption of contaminated food is Escherichia coli O157:H7. In 2011 in Germany, however, there was a prominent outbreak of bloody diarrhea with a high incidence of hemolytic uremic syndrome (HUS) caused by an atypical, more virulent E. coli O104:H4 strain. To facilitate the identification of this lesser-known, atypical E. coli O104:H4 strain, we wanted to identify phenotypic differences between it and a strain of O157:H7 in different media and culture conditions. We found that E. coli O104:H4 strains produced considerably more biofilm than the strain of O157:H7 at 37 °C (p = 0.0470-0.0182) Biofilm production was significantly enhanced by the presence of 5% CO2 (p = 0.0348-0.0320). In our study on the innate immune response to the E. coli strains, we used HEK293 cells that express Toll-like receptors (TLRs) 2 or 4. We found that E. coli O104:H4 strains had the ability to grow in a novel HEK293 cell culture medium, while the E. coli O157:H7 strain could not. Thus, we uncovered previously unknown phenotypic properties of E. coli O104:H4 to further differentiate this pathogen from E. coli O157:H7.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David A Rozak
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - William R Dorman
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles Marchand
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Brett K Purcell
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Department of Medicine, University of Florida, Orlando, FL 32816, USA
| |
Collapse
|
25
|
Walker L, Sun S, Thippareddi H. Growth comparison and model validation for growth of Shiga toxin-producing Escherichia coli (STEC) in ground beef. Lebensm Wiss Technol 2023; 182:114823. [DOI: 10.1016/j.lwt.2023.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
|
26
|
Söderlund R, Flink C, Aspán A, Eriksson E. Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic E. coli (aEPEC) in Swedish retail wheat flour. Access Microbiol 2023; 5:acmi000577.v3. [PMID: 37323947 PMCID: PMC10267659 DOI: 10.1099/acmi.0.000577.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/17/2023] Open
Abstract
Wheat flour has been identified as the source of multiple outbreaks of gastrointestinal disease caused by shiga toxin-producing Escherichia coli (STEC). We have investigated the presence and genomic characteristics of STEC and related atypical enteropathogenic E. coli (aEPEC) in 200 bags of Swedish-produced retail wheat flour, representing 87 products and 25 brands. Samples were enriched in modified tryptone soya broth (mTSB) and screened with real-time PCR targeting stx1, stx2 and eae, and the serogroups O157, O121 and O26. Isolation was performed by immunomagnetic separation (IMS) for suspected STEC/aEPEC O157, O121 and O26, and by screening pools of colonies for other STEC. Real-time PCR after enrichment revealed 12 % of samples to be positive for shiga toxin genes (stx1 and/or stx2) and 11 % to be positive for intimin (eae). Organic production, small-scale production or whole grain did not significantly influence shiga toxin gene presence or absence in a generalized linear mixed model analysis. Eight isolates of STEC were recovered, all of which were intimin-negative. Multiple serotype/sequence type/shiga toxin subtype combinations that have also been found in flour samples in other European countries were recovered. Most STEC types recovered were associated with sporadic cases of STEC among humans in Sweden, but no types known to have caused outbreaks or severe cases of disease (i.e. haemolytic uraemic syndrome) were found. The most common finding was O187:H28 ST200 with stx2g, with possible links to cervid hosts. Wildlife associated with crop damage is a plausible explanation for at least some of the surprisingly high frequency of STEC in wheat flour.
Collapse
Affiliation(s)
- Robert Söderlund
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Catarina Flink
- Department of Biology, Swedish Food Agency, Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
27
|
Szczerba-Turek A, Chierchia F, Socha P, Szweda W. Shiga Toxin-Producing Escherichia coli in Faecal Samples from Wild Ruminants. Animals (Basel) 2023; 13:ani13050901. [PMID: 36899758 PMCID: PMC10000188 DOI: 10.3390/ani13050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Wildlife can harbour Shiga toxin-producing Escherichia coli (STEC). In the present study, STEC in faecal samples from red deer (n = 106) and roe deer (n = 95) were characterised. All isolates were non-O157 strains. In red deer, STEC were detected in 17.9% (n = 19) of the isolates, and the eae/stx2b virulence profile was detected in two isolates (10.5%). One STEC strain harboured stx1a (5.3%) and eighteen STEC strains harboured stx2 (94.7%). The most prevalent stx2 subtypes were stx2b (n = 12; 66.7%), stx2a (n = 3; 16.7%), and stx2g (n = 2; 11.1%). One isolate could not be subtyped (NS) with the applied primers (5.6%). The most widely identified serotypes were O146:H28 (n = 4; 21%), O146:HNM (n = 2; 10.5%), O103:H7 (n = 1; 5.3%), O103:H21 (n = 1; 5.3%), and O45:HNM (n = 1; 5.3%). In roe deer, STEC were detected in 16.8% (n = 16) of the isolates, and the eae/stx2b virulence profile was detected in one isolate (6.3%). Two STEC strains harboured stx1a (12.5%), one strain harboured stx1NS/stx2b (6.3%), and thirteen strains harboured stx2 (81.3%). The most common subtypes were stx2b (n = 8; 61.5%), stx2g (n = 2; 15.4%), non-typeable subtypes (NS) (n = 2; 15.4%), and stx2a (n = 1; 7.7%). Serotype O146:H28 (n = 5; 31.3%) was identified. The study demonstrated that the zoonotic potential of STEC strains isolated from wildlife faeces should be monitored in the context of the 'One Health' approach which links human health with animal and environmental health.
Collapse
Affiliation(s)
- Anna Szczerba-Turek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
- Correspondence: ; Tel.: +48-604-591-361
| | - Filomena Chierchia
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Piotr Socha
- Department of Animal Reproduction with a Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
28
|
Pakbin B, Brück WM, Brück TB. Molecular Mechanisms of Shigella Pathogenesis; Recent Advances. Int J Mol Sci 2023; 24:2448. [PMID: 36768771 PMCID: PMC9917014 DOI: 10.3390/ijms24032448] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Shigella species are the main cause of bacillary diarrhoea or shigellosis in humans. These organisms are the inhabitants of the human intestinal tract; however, they are one of the main concerns in public health in both developed and developing countries. In this study, we reviewed and summarised the previous studies and recent advances in molecular mechanisms of pathogenesis of Shigella Dysenteriae and non-Dysenteriae species. Regarding the molecular mechanisms of pathogenesis and the presence of virulence factor encoding genes in Shigella strains, species of this bacteria are categorised into Dysenteriae and non-Dysenteriae clinical groups. Shigella species uses attachment, invasion, intracellular motility, toxin secretion and host cell interruption mechanisms, causing mild diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome diseases in humans through the expression of effector delivery systems, protein effectors, toxins, host cell immune system evasion and iron uptake genes. The investigation of these genes and molecular mechanisms can help us to develop and design new methods to detect and differentiate these organisms in food and clinical samples and determine appropriate strategies to prevent and treat the intestinal and extraintestinal infections caused by these enteric pathogens.
Collapse
Affiliation(s)
- Babak Pakbin
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
| |
Collapse
|
29
|
Antunes L, João AL, Nunes T, Henriques AR. Burden of disease estimation based on Escherichia coli quantification in ready-to-eat meals served in Portuguese institutional canteens. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023; 15:2226916. [PMID: 37365731 PMCID: PMC10305517 DOI: 10.1080/19490976.2023.2226916] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Soni A, Bremer P, Brightwell G. A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens-A Challenge for Thermal Validation Trials. Foods 2022; 11:4117. [PMID: 36553859 PMCID: PMC9777713 DOI: 10.3390/foods11244117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The thermal processing of food relies heavily on determining the right time and temperature regime required to inactivate bacterial contaminants to an acceptable limit. To design a thermal processing regime with an accurate time and temperature combination, the D-values of targeted microorganisms are either referred to or estimated. The D-value is the time required at a given temperature to reduce the bacterial population by 90%. The D-value can vary depending on various factors such as the food matrix, the bacterial strain, and the conditions it has previously been exposed to; the intrinsic properties of the food (moisture, water activity, fat content, and pH); the method used to expose the microorganism to the thermal treatment either at the laboratory or commercial scale; the approach used to estimate the number of survivors; and the statistical model used for the analysis of the data. This review focused on Bacillus cereus, Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, and Clostridium perfringens owing to their pathogenicity and the availability of publications on their thermal resistance. The literature indicates a significant variation in D-values reported for the same strain, and it is concluded that when designing thermal processing regimes, the impact of multiple factors on the D-values of a specific microorganism needs to be considered. Further, owing to the complexity of the interactions involved, the effectiveness of regimes derived laboratory data must be confirmed within industrial food processing settings.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Palmerston North 4414, New Zealand
| | - Phil Bremer
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North 4474, New Zealand
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Palmerston North 4414, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North 4474, New Zealand
| |
Collapse
|
32
|
Wu J, Zeng H, Qian X, Li Y, Xue F, Ren J, Dai J, Tang F. Pre-treatment with phages achieved greater protection of mice against infection with Shiga toxin-producing Escherichia coli than post-treatment. Res Vet Sci 2022; 150:72-78. [PMID: 35809415 DOI: 10.1016/j.rvsc.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/20/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogen that can cause various diseases in both humans and animals, such as watery diarrhea, hemorrhagic colitis, and uremia syndrome. Due to the serious situation of antibiotic resistance, phage therapy is considered to have a great potential in combating bacterial diseases. In this study, three phages (NJ-10, NJ-20, and NJ-38) with strong abilities to lyse virulent STEC strain CVCC193 cells in vitro were isolated. Subsequently, the therapeutic effects of the three phages were investigated in mice infected with CVCC193 cells. The results showed that the survival rates of mice injected with the phages at 3 h after challenge with CVCC193 cells were 40%-50%, while the survival rates of mice injected with the phages at 24 h before challenge were 80%-100%, indicating that pre-treatment with phages had better therapeutic effects than post-treatment. Pathological changes, bacterial loads in different organs, and serum levels of inflammatory factors of the infected mice were also detected. The results showed that the mice injected with the phages at 3 h after or 24 h before challenge with CVCC193 cells had significantly decreased organ lesions, bacterial loads, and serum levels of inflammatory factors as compared to infected mice without phage treatment. These results suggested that phages NJ-10, NJ-20, and NJ-38 can potentially protect against STEC infections.
Collapse
Affiliation(s)
- Jiaoling Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hang Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Persad AK, Rajashekara G, LeJeune JT. Shiga toxin (stx) encoding genes in sheep and goats reared in Trinidad and Tobago. PLoS One 2022; 17:e0277564. [PMID: 36378686 PMCID: PMC9665368 DOI: 10.1371/journal.pone.0277564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/29/2022] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is estimated to cause over two million cases of human disease annually. Trinidad and Tobago is one of the largest livestock producer and consumer of sheep and goat meat in the Caribbean, however, the potential role of these animals in the epidemiology of STEC infections has not been previously described. To fill this critical gap in knowledge, the prevalence of Shiga toxin genes (stx1 and stx2) shed in the faeces of healthy sheep (n = 204) and goats (n = 105) in Trinidad was investigated. Based on PCR screening, goats had a higher stx prevalence than sheep (46% vs 35%, P = 0.06). Most of the recovered STEC isolates were positive for stx1 only; and only three isolates were positive for the eae gene. None of the recovered isolates belonged to the O157 serogroup. In both species, the prevalence of stx was higher in young animals versus older animals. Sheep reared on deep litter flooring (43%) had a higher prevalence than sheep reared other flooring types, however this was not the same for goats. The presence of cows on the same premise was not an associated predictor for STEC carriage in sheep or goats. This study demonstrates that although sheep and goats in Trinidad are reservoirs for stx-positive E. coli isolates, no fecal samples tested positive for O157 STEC, harbored. Furthermore, it appears that non-O157 stx-positive isolates harbored by these animals do not pose a significant threat to human health.
Collapse
Affiliation(s)
- Anil K. Persad
- Center for Food Animal Health, Ohio Agriculture Research and Development Center, The Ohio State University, Wooster, Ohio, United State of America
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, Eric Williams Medical Sciences Complex, Mt. Hope, Trinidad and Tobago, West Indies
| | - Gireesh Rajashekara
- Center for Food Animal Health, Ohio Agriculture Research and Development Center, The Ohio State University, Wooster, Ohio, United State of America
| | - Jeffrey T. LeJeune
- Center for Food Animal Health, Ohio Agriculture Research and Development Center, The Ohio State University, Wooster, Ohio, United State of America
- * E-mail:
| |
Collapse
|
34
|
Alharbi MG, Al-Hindi RR, Esmael A, Alotibi IA, Azhari SA, Alseghayer MS, Teklemariam AD. The "Big Six": Hidden Emerging Foodborne Bacterial Pathogens. Trop Med Infect Dis 2022; 7:356. [PMID: 36355898 PMCID: PMC9693546 DOI: 10.3390/tropicalmed7110356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 04/20/2024] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging serogroups that often result in diseases ranging from diarrhea to severe hemorrhagic colitis in humans. The most common non-O157 STEC are O26, O45, O103, O111, O121, and O145. These serogroups are known by the name "big six" because they cause severe illness and death in humans and the United States Department of Agriculture declared these serogroups as food contaminants. The lack of fast and efficient diagnostic methods exacerbates the public impact of the disease caused by these serogroups. Numerous outbreaks have been reported globally and most of these outbreaks were caused by ingestion of contaminated food or water as well as direct contact with reservoirs. Livestock harbor a variety of non-O157 STEC serovars that can contaminate meat and dairy products, or water sources when used for irrigation. Hence, effective control and prevention approaches are required to safeguard the public from infections. This review addresses the disease characteristics, reservoirs, the source of infections, the transmission of the disease, and major outbreaks associated with the six serogroups ("big six") of non-O157 STEC encountered all over the globe.
Collapse
Affiliation(s)
- Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Esmael
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ibrahim A. Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazen S. Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Jaudou S, Deneke C, Tran ML, Schuh E, Goehler A, Vorimore F, Malorny B, Fach P, Grützke J, Delannoy S. A step forward for Shiga toxin-producing Escherichia coli identification and characterization in raw milk using long-read metagenomics. Microb Genom 2022; 8:mgen000911. [PMID: 36748417 PMCID: PMC9836091 DOI: 10.1099/mgen.0.000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a cause of severe human illness and are frequently associated with haemolytic uraemic syndrome (HUS) in children. It remains difficult to identify virulence factors for STEC that absolutely predict the potential to cause human disease. In addition to the Shiga-toxin (stx genes), many additional factors have been reported, such as intimin (eae gene), which is clearly an aggravating factor for developing HUS. Current STEC detection methods classically rely on real-time PCR (qPCR) to detect the presence of the key virulence markers (stx and eae). Although qPCR gives an insight into the presence of these virulence markers, it is not appropriate for confirming their presence in the same strain. Therefore, isolation steps are necessary to confirm STEC viability and characterize STEC genomes. While STEC isolation is laborious and time-consuming, metagenomics has the potential to accelerate the STEC characterization process in an isolation-free manner. Recently, short-read sequencing metagenomics have been applied for this purpose, but assembly quality and contiguity suffer from the high proportion of mobile genetic elements occurring in STEC strains. To circumvent this problem, we used long-read sequencing metagenomics for identifying eae-positive STEC strains using raw cow's milk as a causative matrix for STEC food-borne outbreaks. By comparing enrichment conditions, optimizing library preparation for MinION sequencing and generating an easy-to-use STEC characterization pipeline, the direct identification of an eae-positive STEC strain was successful after enrichment of artificially contaminated raw cow's milk samples at a contamination level as low as 5 c.f.u. ml-1. Our newly developed method combines optimized enrichment conditions of STEC in raw milk in combination with a complete STEC analysis pipeline from long-read sequencing metagenomics data. This study shows the potential of the innovative methodology for characterizing STEC strains from complex matrices. Further developments will nonetheless be necessary for this method to be applied in STEC surveillance.
Collapse
Affiliation(s)
- Sandra Jaudou
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mai-Lan Tran
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| | - Elisabeth Schuh
- National Reference Laboratory for Escherichia coli including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - André Goehler
- National Reference Laboratory for Escherichia coli including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Fabien Vorimore
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| | - Burkhard Malorny
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Patrick Fach
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| | - Josephine Grützke
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sabine Delannoy
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| |
Collapse
|
36
|
Montalbano Di Filippo M, Boni A, Chiani P, Marra M, Carollo M, Cristofari L, Minelli F, Knijn A, Morabito S. Exploring the nature of interaction between shiga toxin producing Escherichia coli (STEC) and free-living amoeba - Acanthamoeba sp. Front Cell Infect Microbiol 2022; 12:926127. [PMID: 36159652 PMCID: PMC9504058 DOI: 10.3389/fcimb.2022.926127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Free-living amoebae (FLA) are widely distributed protozoa in nature, known to cause severe eye infections and central nervous system disorders. There is growing attention to the potential role that these protozoa could act as reservoirs of pathogenic bacteria and, consequently, to the possibility that, the persistence and spread of the latter may be facilitated, by exploiting internalization into amoebae. Shiga toxin-producing strains of Escherichia coli (STEC) are zoonotic agents capable of causing serious diseases, such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Cattle represent the main natural reservoir of STEC, which are frequently found also in other domestic and wild ruminants, often without causing any evident symptoms of disease. The aspects related to the ecology of STEC strains in animal reservoirs and the environment are poorly known, including the persistence of these microorganisms within niches unfavorable to survival, such as soils or waters. In this study we investigated the interaction between STEC strains of serotype O157: H7 with different virulence gene profiles, and a genus of a wild free-living amoeba, Acanthamoeba sp. Our results confirm the ability of STEC strains to survive up to 20 days within a wild Acanthamoeba sp., in a quiescent state persisting in a non-cultivable form, until they reactivate following some stimulus of an unknown nature. Furthermore, our findings show that during their internalization, the E. coli O157 kept the set of the main virulence genes intact, preserving their pathogenetic potential. These observations suggest that the internalization in free-living amoebae may represent a means for STEC to resist in environments with non-permissive growth conditions. Moreover, by staying within the protozoa, STEC could escape their detection in the vehicles of infections and resist to the treatments used for the disinfection of the livestock environment.
Collapse
Affiliation(s)
- Margherita Montalbano Di Filippo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Margherita Montalbano Di Filippo,
| | - Arianna Boni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Marra
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Carollo
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Cristofari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Minelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Arnold Knijn
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
37
|
Gelfat I, Aqeel Y, Tremblay JM, Jaskiewicz JJ, Shrestha A, Lee JN, Hu S, Qian X, Magoun L, Sheoran A, Bedenice D, Giem C, Manjula-Basavanna A, Pulsifer AR, Tu HX, Li X, Minus ML, Osburne MS, Tzipori S, Shoemaker CB, Leong JM, Joshi NS. Single domain antibodies against enteric pathogen virulence factors are active as curli fiber fusions on probiotic E. coli Nissle 1917. PLoS Pathog 2022; 18:e1010713. [PMID: 36107831 PMCID: PMC9477280 DOI: 10.1371/journal.ppat.1010713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.
Collapse
Affiliation(s)
- Ilia Gelfat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yousuf Aqeel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Justyna J. Jaskiewicz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - James N. Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Xi Qian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Loranne Magoun
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Abhineet Sheoran
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniela Bedenice
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Colter Giem
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Avinash Manjula-Basavanna
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Amanda R. Pulsifer
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hann X. Tu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Xiaoli Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marilyn L. Minus
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Neel S. Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Gambushe SM, Zishiri OT, El Zowalaty ME. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect Drug Resist 2022; 15:4645-4673. [PMID: 36039321 PMCID: PMC9420067 DOI: 10.2147/idr.s365269] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne and water-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans and may cause serious morbidity and large outbreaks worldwide. People with bloody diarrhea have an increased risk of developing serious complications such as acute renal failure and neurological damage. The hemolytic-uremic syndrome (HUS) is a serious condition, and up to 50% of HUS patients can develop long-term renal dysfunction or blood pressure-related complications. Children aged two to six years have an increased risk of developing HUS. Clinical enteropathogenic Escherichia coli (EPEC) infections show fever, vomiting, and diarrhea. The EPEC reservoir is unknown but is suggested to be an asymptomatic or symptomatic child or an asymptomatic adult carrier. Spreading is often through the fecal-oral route. The prevalence of EPEC in infants is low, and EPEC is highly contagious in children. EPEC disease in children tends to be clinically more severe than other diarrheal infections. Some children experience persistent diarrhea that lasts for more than 14 days. Enterotoxigenic Escherichia coli (ETEC) strains are a compelling cause of the problem of diarrheal disease. ETEC strains are a global concern as the bacteria are the leading cause of acute watery diarrhea in children and the leading cause of traveler’s diarrhea. It is contagious to children and can cause chronic diarrhea that can affect the development and well-being of children. Infections with diarrheagenic E. coli are more common in African countries. Antimicrobial agents should be avoided in the acute phase of the disease since studies showed that antimicrobial agents may increase the risk of HUS in children. The South African National Veterinary Surveillance and Monitoring Programme for Resistance to Antimicrobial Drugs has reported increased antimicrobial resistance in E. coli. Pathogenic bacterial strains have developed resistance to a variety of antimicrobial agents due to antimicrobial misuse. The induced heavy metal tolerance may also enhance antimicrobial resistance. The prevalence of antimicrobial resistance depends on the type of the antimicrobial agent, bacterial strain, dose, time, and mode of administration. Developing countries are severely affected by increased resistance to antimicrobial agents due to poverty, lack of proper hygiene, and clean water, which can lead to bacterial infections with limited treatment options due to resistance.
Collapse
Affiliation(s)
- Sydney M Gambushe
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mohamed E El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75 123, Sweden
| |
Collapse
|
39
|
Prevalence of virulence genes among Escherichia coli strains isolated from food and carcass swabs of different animal origins in Croatia. J Vet Res 2022; 66:395-402. [PMID: 36349139 PMCID: PMC9597930 DOI: 10.2478/jvetres-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Escherichia coli is present in the normal intestinal flora but some strains can cause intestinal and extraintestinal diseases, and research on its presence in food of animal origin is in the interests of public health. This study was designed to characterise E. coli strains according to their origin, their carriage of virulence genes specific for certain pathogroups, and phylogenetic group affiliation.
Material and Methods
The study was carried out on 100 E. coli strains isolated from food samples of various animal origin as well as pig and cattle carcass swabs. Isolation of the strains was performed using two methods. One method included colony count and the other an overnight enrichment of the samples. Isolation was followed by DNA extraction and detection of virulence genes and phylogenetic group with conventional and multiplex PCRs.
Results
In this study, the most prevalent gene was EAST1 (20%) and strains which carried it were identified as enteroadherent E. coli. Other pathogroups were represented in lower incidences. Phylogenetic group analysis revealed the prevalence of the A and B1 groups, with B1 mainly present in game and cattle strains, while the majority of pig and poultry strains were assigned to group A.
Conclusion
This study provides an overview of the presence of potentially pathogenic strains and E. coli phylogenetic groups in Croatia, for which the data are limited. Further microbiological and molecular research is required to examine the epidemiological situation in the country.
Collapse
|
40
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
41
|
Comparison between LASSO and RT methods for prediction of generic E. coli concentration in pasture poultry farms. Food Res Int 2022; 161:111860. [DOI: 10.1016/j.foodres.2022.111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
42
|
Lin CS, Huang CH, Adi VSK, Huang CW, Cheng YI, Chen JH, Liu YC. A statistical approach to identify prevalent virulence factors responsible for post-weaning diarrhoeic piglets. VET MED-CZECH 2022; 67:430-439. [PMID: 38846158 PMCID: PMC11154881 DOI: 10.17221/84/2021-vetmed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 04/12/2022] [Indexed: 06/09/2024] Open
Abstract
A statistical approach was carried out to identify the prevalent virulence factors responsible for post-weaning diarrhoea (PWD). Healthy piglets' faecal samples and diarrhoeic piglets' rectal swab specimens were secured. Twenty-six (26) and 100 independent enterotoxigenic Escherichia coli (ETEC) strains were subsequently isolated. These strains were assessed utilising polymerase chain reaction to identify the encoding genes of six virulence factors: heat-labile enterotoxin (LT; encoded by eltAB), heat-stable enterotoxin A (STa; encoded by estA), heat-stable enterotoxin B (STb; encoded by estB), enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1; encoded by astA), Shiga toxin 2e (Stx2e; encoded by stx2e), and F18 fimbriae (encoded by fedA). The LT and ST secretions were investigated using enzyme-linked immunosorbent assays. From direct observation, no stx2e was evident in the 126 strains. Among the 26 strains retrieved from the healthy piglets, none harboured fedA or secreted LT; 23% (6/26) secreted ST, and 50% (13/26) carried astA. A statistical regression was applied on the 100 E. coli strains retrieved from the diarrhoeic piglets, where fedA was set as the dependent variable and the enterotoxin secretions were set as the independent variables. The results exhibit that the LT secretion was the only significant factor (P < 0.000 1) correlated to fedA in the diarrhoeic piglets; thus, it is concluded that the prevalent virulence factors for PWD were the ECET strain with F18 fimbriae adhesion and LT secretion, but not astA or stx2e.
Collapse
Affiliation(s)
- Chuan-Shun Lin
- Animal Technology Research Center, Agricultural Technology Research Institute, Taiwan, R.O.C
| | - Chiao-Hsia Huang
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, R.O.C
| | | | - Chien-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taiwan, R.O.C
| | - Yen-I Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, R.O.C
| | - Jiann-Hwa Chen
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, R.O.C
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taiwan, R.O.C
| |
Collapse
|
43
|
Draft Genome Sequences of Tetracycline-Resistant Shiga Toxin-Producing Escherichia coli Isolates from Food. Microbiol Resour Announc 2022; 11:e0021822. [PMID: 35695554 PMCID: PMC9302058 DOI: 10.1128/mra.00218-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen transmitted from animal to humans through contaminated food. Here, we report the draft genome sequences of six STEC isolates (six serotypes) from food (cheese, coriander, and pea protein pellets) in different countries; these isolates were resistant to tetracycline, with MIC values ranging from <1.5 to 256 μg/mL.
Collapse
|
44
|
Occurrence and Reduction of Shiga Toxin-Producing Escherichia coli in Wastewaters in the Kathmandu Valley, Nepal. WATER 2022. [DOI: 10.3390/w14142224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inadequately treated effluents discharged from wastewater treatment plants (WWTPs) severely affect the environment and the surrounding population. This study analyzed the presence of the Shiga toxin-producing Escherichia coli (STEC) genes, stx1, and stx2, and the E. coli gene, sfmD, in municipal WWTP A (n = 11) and B (n = 11) where the reductions were also evaluated; hospitals (n = 17), sewage treatment plants (STPs) (n = 4) and non-functional WWTPs (not-working WWTPs) (n = 5) in the Kathmandu Valley, Nepal. The sfmD gene was detected in 100% of the samples in WWTPs, hospitals, and not-working WWTPs and 50% of STP samples. The highest detection of stx1 and stx2 was shown in the WWTP influents, followed by WWTP effluents, not-working WWTP wastewater, hospital wastewater, and STP wastewater. Log10 reduction values of sfmD, stx1, and stx2 in WWTP A were 1.7 log10, 1.7 log10, 1.4 log10, whereas those in WWTP B were 0.5 log10, 0.6 log10, 0.5 log10, respectively, suggesting the ineffective treatment of STEC in the wastewater in the Kathmandu Valley. The high concentrations of the stx genes in the wastewaters suggest the increasing presence of aggressive STEC in the Kathmandu Valley, which should be a major public health concern.
Collapse
|
45
|
Otero V, Santos JA, Rodríguez-Calleja JM, García-López ML. Behavior of Shiga-toxin-producing Escherichia coli in ewe milk stored at different temperatures and during the manufacture and ripening of a raw milk sheep cheese (Zamorano style). J Dairy Sci 2022; 105:6527-6535. [PMID: 35717333 DOI: 10.3168/jds.2021-21613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
This study was conducted to assess the survival of 2 wild Shiga toxin-producing Escherichia coli strains (one serotype O157:H7 and one non-O157:H7) in ewe milk stored at different conditions and to examine the fate of the O157 strain during the manufacture and ripening of a Spanish sheep hard variety of raw milk cheese (Zamorano). The strains were selected among a population of 50 isolates, which we obtained from ewe milk, because of their high resistance to 0.3% lactic acid. Both strains were inoculated (approximately 2 log10 cfu/mL) in raw and heat-treated (low-temperature holding, LTH; 63°C/30 min) ewe milk and stored for 5 d at 6, 8, and 10°C and also according to a simulation approach for assessing the effects of failures in the cold chain. The minimum growth temperature for the O157:H7 strain in LTH and raw ewe milk was 8°C. For the non-O157:H7 strain, the lowest temperature showing bacterial growth in LTH ewe milk was 6°C, but it did not grow at any of the tested conditions in raw milk. It appears that the O157 strain was more susceptible to cold stress but was likely a better competitor than the non-O157 strain against the milk autochthonous microbiota. For manufacture of Zamorano cheese, raw milk was inoculated with approximately 3 log10 cfu/mL, and after 2 mo of ripening at 10 to 12°C, the cheeses showed the expected general characteristics for this variety. The O157:H7 strain increased 0.9 log10 cfu/g after whey drainage and during ripening and storage decreased by 2.9 log10 cfu/g. Nevertheless, its detectable level (estimated at 6.2 cfu/g) after 2 mo of ripening suggests that Zamorano cheese manufactured from raw ewe milk contaminated with E. coli O157:H7 could represent a public health concern.
Collapse
Affiliation(s)
- Verónica Otero
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007
| | - Jose M Rodríguez-Calleja
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007.
| | - María-Luisa García-López
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007
| |
Collapse
|
46
|
Isothermal Amplification and Lateral Flow Nucleic Acid Test for the Detection of Shiga Toxin-Producing Bacteria for Food Monitoring. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Foodborne bacteria have persisted as a significant threat to public health and to the food and agriculture industry. Due to the widespread impact of these pathogens, there has been a push for the development of strategies that can rapidly detect foodborne bacteria on-site. Shiga toxin-producing E. coli strains (such as E. coli O157:H7, E. coli O121, and E. coli O26) from contaminated food have been a major concern. They carry genes stx1 and/or stx2 that produce two toxins, Shiga toxin 1 and Shiga toxin 2, which are virulent proteins. In this work, we demonstrate the development of a rapid test based on an isothermal recombinase polymerase amplification reaction for two Shiga toxin genes in a single reaction. Results of the amplification reaction are visualized simultaneously for both Shiga toxins on a single lateral flow paper strip. This strategy targets the DNA encoding Shiga toxin 1 and 2, allowing for broad detection of any Shiga toxin-producing bacterial species. From sample to answer, this method can achieve results in approximately 35 min with a detection limit of 10 CFU/mL. This strategy is sensitive and selective, detecting only Shiga toxin-producing bacteria. There was no interference observed from non-pathogenic or pathogenic non-Shiga toxin-producing bacteria. A detection limit of 10 CFU/mL for Shiga toxin-producing E. coli was also obtained in a food matrix. This strategy is advantageous as it allows for timely identification of Shiga toxin-related contamination for quick initial food contamination assessments.
Collapse
|
47
|
Dester E, Kao K, Alocilja EC. Detection of Unamplified E. coli O157 DNA Extracted from Large Food Samples Using a Gold Nanoparticle Colorimetric Biosensor. BIOSENSORS 2022; 12:bios12050274. [PMID: 35624575 PMCID: PMC9138483 DOI: 10.3390/bios12050274] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 05/10/2023]
Abstract
Rapid detection of foodborne pathogens such as E. coli O157 is essential in reducing the prevalence of foodborne illness and subsequent complications. Due to their unique colorimetric properties, gold nanoparticles (GNPs) can be applied in biosensor development for affordability and accessibility. In this work, a GNP biosensor was designed for visual differentiation between target (E. coli O157:H7) and non-target DNA samples. Results of DNA extracted from pure cultures indicate high specificity and sensitivity to as little as 2.5 ng/µL E. coli O157 DNA. Further, the biosensor successfully identified DNA extracted from flour contaminated with E. coli O157, with no false positives for flour contaminated with non-target bacteria. After genomic extraction, this assay can be performed in as little as 30 min. In addition, food sample testing was successful at detecting approximately 103 CFU/mL of E. coli O157 magnetically extracted from flour after only a 4 h incubation step. As a proof of concept, these results demonstrate the capabilities of this GNP biosensor for low-cost and rapid foodborne pathogen detection.
Collapse
Affiliation(s)
- Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Kaily Kao
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
| | - Evangelyn C. Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-432-8672
| |
Collapse
|
48
|
Sy BM, Tree JJ. The Small RNA CyaR Activates Translation of the Outer Membrane Haem Receptor chuA in Enterohemorrhagic Escherichia coli. Front Microbiol 2022; 13:821196. [PMID: 35422774 PMCID: PMC9002310 DOI: 10.3389/fmicb.2022.821196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
To sense the transition from environment to host, bacteria use a range of environmental cues to control expression of virulence genes. Iron is tightly sequestered in host tissues and in the human pathogen enterohemorrhagic Escherichia coli (EHEC) iron-limitation induces transcription of the outer membrane haem transporter encoded by chuAS. ChuA expression is post-transcriptionally activated at 37°C by a FourU RNA thermometer ensuring that the haem receptor is only expressed under low iron, high temperature conditions that indicate the host. Here we demonstrate that expression of chuA is also independently regulated by the cAMP-responsive small RNA (sRNA) CyaR and transcriptional terminator Rho. These results indicate that chuAS expression is regulated at the transcription initiation, transcript elongation, and translational level. We speculate that additional sensing of the gluconeogenic environment allows further precision in determining when EHEC is at the gastrointestinal epithelium of the host. With previous studies, it appears that the chuAS transcript is controlled by eight regulatory inputs that control expression through six different transcriptional and post-transcriptional mechanisms. The results highlight the ability of regulatory sRNAs to integrate multiple environmental signals into a layered hierarchy of signal input.
Collapse
Affiliation(s)
- Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
49
|
Weinroth MD, Clawson ML, Arthur TM, Wells JE, Brichta-Harhay DM, Strachan N, Bono JL. Rates of evolutionary change of resident Escherichia coli O157:H7 differ within the same ecological niche. BMC Genomics 2022; 23:275. [PMID: 35392797 PMCID: PMC8991562 DOI: 10.1186/s12864-022-08497-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a pathogen known to reside in cattle feedlots. This retrospective study examined 181 STEC O157:H7 strains collected over 23 years from a closed-system feedlot. All strains were subjected to short-read sequencing, with a subset of 36 also subjected to long-read sequencing. Results Over 96% of the strains fell into four phylogenetically distinct clades. Clade membership was associated with multiple factors including stx composition and the alleles of a well-characterized polymorphism (tir 255 T > A). Small plasmids (2.7 to 40 kb) were found to be primarily clade specific. Within each clade, chromosomal rearrangements were observed along with a core phageome and clade specific phages. Across both core and mobile elements of the genome, multiple SNP alleles were in complete linkage disequilibrium across all strains within specific clades. Clade evolutionary rates varied between 0.9 and 2.8 SNP/genome/year with two tir A allele clades having the lowest evolutionary rates. Investigation into possible causes of the differing rates was not conclusive but revealed a synonymous based mutation in the DNA polymerase III of the fastest evolving clade. Phylogenetic trees generated through our bioinformatic pipeline versus the NCBI’s pathogen detection project were similar, with the two tir A allele clades matching individual NCBI SNP clusters, and the two tir T allele clades assigned to multiple closely-related SNP clusters. Conclusions In one ecological niche, a diverse STEC O157:H7 population exhibited different rates of evolution that associated with SNP alleles in linkage disequilibrium in the core genome and mobile elements, including tir 255 T > A. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08497-6.
Collapse
Affiliation(s)
- Margaret D Weinroth
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.,Present address: U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, 30605, USA
| | - Michael L Clawson
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - James E Wells
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Dayna M Brichta-Harhay
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Norval Strachan
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, Scotland, AB24 3UU, UK
| | - James L Bono
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA.
| |
Collapse
|
50
|
Isolation and characterization of Escherichia coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Res 2022; 315:198754. [PMID: 35346752 DOI: 10.1016/j.virusres.2022.198754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022]
Abstract
Escherichia coli O157: H7 is known as a high-risk food-born pathogen, and its removal is vital for maintaining food safety. The increasing trend of food-borne diseases caused by this bacterium and other pathogens indicates the low efficiency of the methods to remove pathogens from foodstuffs. One of the new and effective methods is to use of a bio-control agent called bacteriophage, which has shown good function in eliminating and reducing pathogens. In this study, a novel bacteriophage was isolated and identified from the slaughterhouse wastewater to control E. coli O157: H7. This bacteriophage belonged to the Myoviridae family. Two bacterial genera including E. coli and Salmonella, were allocated to determine the bacteriophage host range; the result showed that the anti- Salmonella effect of phage was low. The phage was stable at high temperature (80°C) and caused an acceptable reduction in the E. coli O157: H7 (4.18 log CFU / mL for 10 hours). The isolated bacteriophage was corroborated to be completely safe based on the whole genome sequencing and lack of any virulence factor from the host bacteria. Considering the characteristics of this phage and its function in vitro, this bacteriophage may be used as an effective bio-control agent in foods with the possible E. coli O157: H7 -induced contamination.
Collapse
|