1
|
Chae B, Poaty Ditengou JIC, Lee AL, Tak J, Cheon I, Choi NJ. An Estimation of the Requirements of the Standardized Ileal Digestible Tryptophan, Valine, Isoleucine and Methionine on Young Pigs' (Up to 50 kg) Feed Efficiency: A Meta-Regression Analysis. Animals (Basel) 2024; 14:2884. [PMID: 39409833 PMCID: PMC11482568 DOI: 10.3390/ani14192884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Currently, the NRC amino acid (AA) requirements for pigs published in 2012 are used as a reference in variable swine industries. However, recent results in several articles suggest that the standardized ileal digestible (SID) AA-lysine (Lys) ratio significantly evolved over the last two decades, while some publications report inconsistent outcomes. Therefore, the present study used a meta-regression analysis to assess the relative ratio to lysine to maximize the feed efficiency of four essential amino acids (tryptophan, valine, isoleucine, and methionine) in pig diets. According to the PRISMA guidelines, articles examining the target AA requirement using a basal diet supplemented with varying levels of crystalline AA (tryptophan, valine, isoleucine, or methionine) were identified across Scopus, PubMed, and Science Direct. As a result, 23, 22, 16, and 9 articles using tryptophan, valine, isoleucine, and methionine were selected and categorized into experiments for inclusion in our meta-analysis. The results suggested that the requirements of tryptophan, valine, isoleucine, and methionine in our meta-regression analysis were superior to NRC recommendations, regardless of the regression models and the growth phases with significant RSQ values (RSQ ≈ 1). Also, the QUAD and CLP regression models emphasized higher requirements than the LP model for the great majority of amino acids and growth phases. The results of the QUAD and CLP models were selected as estimations of the amino acid requirements for pigs under challenged conditions, whereas the LP model was chosen to estimate the amino acid requirements of genetically improved pigs under a modern housing system. The results of this meta-regression analysis could be used to refresh the information on the NRC amino acids (AA) requirements for swine.
Collapse
Affiliation(s)
- Byungho Chae
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| | | | - A-Leum Lee
- CJ Cheiljedang, Seoul 04560, Republic of Korea; (A.-L.L.); (J.T.)
| | - Jisoo Tak
- CJ Cheiljedang, Seoul 04560, Republic of Korea; (A.-L.L.); (J.T.)
| | - Inhyeok Cheon
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| |
Collapse
|
2
|
Jing XJ, Zan ZY, Zhou X, Xiong YL, Ren SJ, Zhang H. Associations of Serum Isoleucine with Mild Cognitive Impairment and Alzheimer's Disease. Ann Geriatr Med Res 2024; 28:273-283. [PMID: 38651272 PMCID: PMC11467509 DOI: 10.4235/agmr.23.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Advances in blood biomarker discovery have enabled the improved diagnosis and prognosis of Alzheimer's disease (AD). Most branched-chain amino acids, except isoleucine (Ile), are correlated with both mild cognitive impairment (MCI) and AD. Therefore, this study investigated the association between serum Ile levels and MCI/AD. METHODS This study stratified 700 participants from the Alzheimer's Disease Neuroimaging Initiative database into four diagnostic groups: cognitively normal, stable MCI, progressive MCI, and AD. Analysis of covariance and chi-square analyses were used to test the demographic data. Receiver operating curve analyses were used to calculate the diagnostic accuracy of different biomarkers and were compared by MedCalc 20. Additionally, Cox proportional hazards models were used to measure the ability of serum Ile levels to predict disease conversion. Finally, a linear mixed-effects model was used to evaluate the associations between serum Ile levels and cognition, brain structure, and metabolism. RESULTS Serum Ile concentration was decreased in AD and demonstrated significant diagnostic efficacy. The combination of serum Ile and cerebrospinal fluid (CSF) phosphorylated tau (P-tau) improved the diagnostic accuracy in AD compared to total tau (T-tau) alone. Serum Ile levels significantly predicted the conversion from MCI to AD (cutoff value of 78.3 μM). Finally, the results of this study also revealed a correlation between serum Ile levels and the Alzheimer's Disease Assessment Scale cognitive subscale Q4. CONCLUSIONS Serum Ile may be a potential biomarker of AD. Ile had independent diagnostic efficacy and significantly improved the diagnostic accuracy of CSF P-tau in AD. MCI patients with a lower serum Ile level had a higher risk of progression to AD and a worse cognition assessment.
Collapse
Affiliation(s)
- Xiao-jun Jing
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-yuan Zan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong-lan Xiong
- Department of Neurology, the Banan Hospital of Chongqing Medical University, Chongqing, China
| | - Shu-jiang Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - the Alzheimer’s Disease Neuroimaging Initiative
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, the Banan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Marín-García PJ, Llobat L, Cambra-López M, Blas E, Larsen T, Pascual JJ, Hedemann MS. Biomarkers for ideal protein: rabbit diet metabolomics varying key amino acids. Commun Biol 2024; 7:712. [PMID: 38858508 PMCID: PMC11164918 DOI: 10.1038/s42003-024-06322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
With the main aim of identifying biomarkers that contribute to defining the concept of ideal protein in growing rabbits under the most diverse conditions possible this work describes two different experiments. Experiment 1: 24 growing rabbits are included at 56 days of age. The rabbits are fed ad libitum one of the two experimental diets only differing in lysine levels. Experiment 2: 53 growing rabbits are included at 46 days of age, under a fasting and eating one of the five experimental diets, with identical chemical composition except for the three typically limiting amino acids (being fed commercial diets ad libitum in both experiments). Blood samples are taken for targeted and untargeted metabolomics analysis. Here we show that the metabolic phenotype undergoes alterations when animals experience a rapid dietary shift in the amino acid levels. While some of the differential metabolites can be attributed directly to changes in specific amino acids, creatinine, urea, hydroxypropionic acid and hydroxyoctadecadienoic acid are suggested as a biomarker of amino acid imbalances in growing rabbits' diets, since its changes are not attributable to a single amino acid. The fluctuations in their levels suggest intricate amino acid interactions. Consequently, we propose these metabolites as promising biomarkers for further research into the concept of the ideal protein using rabbit as a model.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain.
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - María Cambra-López
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Enrique Blas
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Torben Larsen
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Juan José Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Mette Skou Hedemann
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
4
|
Goodarzi P, Wileman CM, Habibi M, Walsh K, Sutton J, Shili CN, Chai J, Zhao J, Pezeshki A. Effect of Isoleucine and Added Valine on Performance, Nutrients Digestibility and Gut Microbiota Composition of Pigs Fed with Very Low Protein Diets. Int J Mol Sci 2022; 23:14886. [PMID: 36499225 PMCID: PMC9740036 DOI: 10.3390/ijms232314886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Little is known whether a combination Ile and added Val improves the growth of pigs offered very low protein (VLP) diets through changes in nutrients digestibility and gut microbiota. The objective of this study was to investigate the effect of a mixture of Val above and Ile at NRC levels on growth, nutrient digestibility and gut microbiota in pigs fed with VLP diets. Forty, weaned piglets were assigned to: positive control: normal-protein-diet; negative control (NC): VLP diet supplemented with first four limiting amino acids; VA: NC with Val above NRC; IL: NC with Ile at NRC level; VAIL: NC with Val above and Ile at NRC levels. While both VAIL and VA groups completely recovered the inhibitory effects of VLP diets on feed intake, only VAIL partially recovered the negative effects of VLP diets on growth performance. VAIL and VA increased the thermal radiation and decreased the digestibility of nitrogen. NC increased the relative abundance of Pasteurellaceae and Enterobacteriaceae in the colon. VAIL had a higher abundance of colonic Actinobacteria, Enterococcus, and Brevibacillus and the colon content of VA was more enriched with Mogibacterium. Overall, VAIL partially improved the growth performance which is likely linked with alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Caitlyn Marie Wileman
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Katherine Walsh
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Cedrick Ndhumba Shili
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jianmin Chai
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Marín-García PJ, Llobat L, López-Lujan MC, Cambra-López M, Blas E, Pascual JJ. Urea Nitrogen Metabolite Can Contribute to Implementing the Ideal Protein Concept in Monogastric Animals. Animals (Basel) 2022; 12:ani12182344. [PMID: 36139206 PMCID: PMC9495106 DOI: 10.3390/ani12182344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Can urea nitrogen metabolite contribute to implementing the ideal protein concept in monogastric animals? This work aims to critically analyse how this metabolite can contribute to accurately implementing the ideal protein concept in monogastric animals, particularly in pig, poultry, and rabbit nutrition. This information will contribute to evaluating its potential and limitations as biomarker, as well as to standardizing the use of this metabolite in precise amino acidic monogastric nutrition. Abstract The ideal protein concept refers to dietary protein with an amino acid profile that exactly meets an animal’s requirement. Low-quality protein levels in the diet have negative implications for productive and reproductive traits, and a protein oversupply is energetically costly and leads to an excessive N excretion, with potentially negative environmental impact. Urea Nitrogen (UN), which corresponds to the amount of nitrogen in the form of urea circulating in the bloodstream, is a metabolite that has been widely used to detect amino acid imbalances and deficiencies and protein requirements. This review aims to critically analyse how UN can contribute to accurately implementing the ideal protein concept in monogastric animals, particularly in pig, poultry, and rabbit nutrition (14,000 animals from 76 published trials). About 59, 37, and 4% of trials have been conducted in pigs, poultry, and rabbits, respectively. UN level was negatively correlated to main performance traits (Pearson Correlation Coefficient [PCC] of −0.98 and −0.76, for average daily gain and feed conversion ratio, respectively), and lower UN level was related to higher milk yield and concentration. High level of UN was positively correlated to N excretion (PCC = 0.99) and negatively correlated to protein retention (PCC = −0.99). Therefore, UN in blood seems to be a proper indicator of amino acid imbalance in monogastric animals. Great variability in the use of UN was observed in the literature, including uses as determination medium (blood, plasma, or serum), units, and feeding system used (ad libitum or restricted), among others. A standardization of the methods in each of the species, with the aim to harmonize comparison among works, is suggested. After review, UN measurement in plasma and, whenever possible, the utilization of the same nutritional methodology (ad libitum conditions or restriction with blood sampling after refeeding at standardised time) are recommended. More studies are necessary to know the potential of UN and other bioindicators for amino acid deficiencies evaluation to get closer to the ideal protein concept.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
- Correspondence: (P.J.M.-G.); (L.L.)
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
- Correspondence: (P.J.M.-G.); (L.L.)
| | - Mari Carmen López-Lujan
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Cambra-López
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Enrique Blas
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan José Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Clizer DA, Tostenson BJ, Tauer SK, Samuel RS, Cline PM. The effect of standardized ileal digestible isoleucine:lysine in diets containing 20% dried distillers grains with solubles on finishing pig performance and carcass characteristics. J Anim Sci 2022; 100:skac234. [PMID: 35776121 PMCID: PMC9486908 DOI: 10.1093/jas/skac234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 01/09/2023] Open
Abstract
In order to determine the standardized ileal digestible (SID) Ile:Lys requirement in finishing diets containing 20% DDGS, a 56-d study was conducted utilizing 2,268 pigs (DNA 600 x Topigs Norsvin 70, initially 82.3 kg). A total of six dietary treatments were fed, including a standard corn-soybean meal (SBM) diet and five diets containing 20% DDGS with SID Ile:Lys ratios of 55%, 60%, 65%, 70%, and 75%. Dietary treatments were assigned to pens, incompletely balancing for previous treatment, with each treatment being replicated 14 times. Pair-wise comparisons were used to evaluate the impact of dietary treatment on performance and carcass traits, whereas single degree of freedom orthogonal polynomials were used to evaluate dose response of SID Ile:Lys in 20% DDGS diets. Increasing the SID Ile:Lys ratio in diets containing 20% DDGS did not impact pig growth performance criteria in a quadratic or linear fashion (P ≥ 0.18). However, increasing the SID Ile:Lys ratio in 20% DDGS diets resulted in decreased back fat (BF; Quadratic, P = 0.01), increased loin depth (Quadratic, P = 0.03), and tended to increase percent lean (Quadratic, P = 0.07) with optimal carcass parameters occurring when 65% SID Ile:Lys was supplied in 20% DDGS diets. Pigs fed the corn-SBM diet had a similar final body weight (BW; P = 0.26) and cumulative average daily gain (ADG; P = 0.12) compared to pigs fed a 20% DDGS diet containing 70% SID Ile:Lys ratio and 3% greater cumulative average daily feed intake (ADFI) compared to pigs receiving diets with SID Ile:Lys ratios of 65% and 75% (P ≤ 0.01). In conclusion, these results suggest that when feeding 20% DDGS in late finishing swine diets, a SID Ile:Lys ratio of 70% should be utilized when attempting to achieve similar overall growth performance relative to a corn-SBM diet.
Collapse
Affiliation(s)
| | | | - Sam K Tauer
- Christensen Farms, Sleepy Eye, MN 56085, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
7
|
Clizer DA, Tostenson BJ, Tauer SK, Samuel RS, Cline PM. Impact of increasing standardized ileal digestible valine: lysine in diets containing 30% dried distiller grains with solubles on growing pig performance. J Anim Sci 2022; 100:skac228. [PMID: 35751856 PMCID: PMC9486887 DOI: 10.1093/jas/skac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
A total of 2,430 pigs (DNA 600 × Topigs Norsvin 70, initially 39.4 kg) were used in a 28-d trial to determine the standardized ileal digestible (SID) Val:Lys requirement for pigs fed with diets containing 30% DDGS. Treatments included five diets containing 30% DDGS with SID Val:Lys ratios of 60%, 65%, 70%, 75%, and 80%, plus a corn soybean meal (SBM) diet, for a total of six dietary treatments. Diets were formulated to be isocaloric through the inclusion of fat and to contain equal amounts of SID Lys within phase. Pens were assigned to dietary treatment in a randomized complete block design with initial body weight (BW) as the random blocking factor. Each dietary treatment was replicated 15 times and pens contained 27 pigs, balanced for sex. Increasing the SID Val:Lys ratio in diets containing 30% DDGS increased (Quadratic; P ≤ 0.007) 14-d BW, final BW, average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F) for all periods. Providing an SID Val:Lys ratio of 75% resulted in the heaviest 14-d BW and final BW as well as greater ADG and ADFI of pigs fed with 30% DDGS for all periods. The G:F response was maximized when an SID Val:Lys ratio of 70% was provided from day 0 to 14 while an SID Val:Lys ratio of 75% maximized G:F from day 14 to 28 and for the cumulative period. The SID Val:Lys requirement was estimated at 66.6% (95% CI [65.9, 67.4]), 65.7 (95% CI: [64.8, 66.5]), and 68.4% (95% CI [66.0, 70.8]) for ADG, ADFI, and G:F, respectively, using the straight broken line (SBL) method and 69.9% (95% CI [68.2, 71.5]), 67.6 (95% CI [65.4, 69.8]), and 72.8% (95% CI [69.8, 75.8]) for the quadratic broken line (QBL) method. Pigs fed the corn-SBM diet had heavier 14-d BW, final BW, and greater ADG, ADFI, G:F (P ≤ 0.032) compared to pigs fed diets containing 30% DDGS, except for cumulative ADFI compared to pigs receiving 75% SID Val:Lys (P = 0.167). In conclusion, these results suggest that when feeding 30% DDGS during the growing period, an SID Val:Lys ratio of 68% would yield more than 99% and 97% of the maximum ADG and G:F response for the 39 to 68 kg pigs. However, growth performance of pigs fed diets containing 30% DDGS did not equate to pigs consuming the corn-SBM diet regardless of the SID Val:Lys ratio.
Collapse
Affiliation(s)
| | | | - Sam K Tauer
- Christensen Farms, Sleepy Eye, MN 56085, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
8
|
A Mixture of Valine and Isoleucine Restores the Growth of Protein-Restricted Pigs Likely through Improved Gut Development, Hepatic IGF-1 Pathway, and Plasma Metabolomic Profile. Int J Mol Sci 2022; 23:ijms23063300. [PMID: 35328720 PMCID: PMC8955368 DOI: 10.3390/ijms23063300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Valine (Val) alone or in combination with isoleucine (Ile) improves the growth under severe protein restriction; however, the underlying mechanisms remain unknown. In this study, we assessed whether Val/Ile-induced growth in protein-restricted pigs is associated with changes in gut development, hepatic insulin-like growth factor 1 (IGF-1) production, and blood metabolomics. Forty piglets were assigned to five dietary groups: positive control (PC) with standard protein content; low protein (LP) with very low protein content; and LP supplemented with Val (LPV), Ile (LPI), and Val and Ile (LPVI). LPVI reversed the negative effects of VLP diets on growth and gut morphology. Both LPV and LPVI restored the reduced transcript of IGF-1 while decreasing the transcript of insulin-like growth factor binding protein 1 (IGFBP1) in the liver. LPV and LPVI recovered the reduced plasma Val, glycine, and leucine concentrations, which were positively correlated with improved gut morphology and the hepatic IGF-1 gene expression and negatively correlated with hepatic IGFBP1 mRNA abundance. In conclusion, supplementation with a combination of Val and Ile into the VLP diets restored the decreased growth performance of pigs fed with these diets likely through improved gut development, hepatic IGF-1 expression and bioavailability, and plasma metabolomics profile.
Collapse
|
9
|
Individual responses of growing pigs to diets with valine and isoleucine to lysine ratios. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Marín-García PJ, Llobat L. How Does Protein Nutrition Affect the Epigenetic Changes in Pig? A Review. Animals (Basel) 2021; 11:ani11020544. [PMID: 33669864 PMCID: PMC7923233 DOI: 10.3390/ani11020544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic mechanisms regulate gene expression and depend of nutrition. In farm animals, and concretely, in pigs, some papers on protein nutrition have been realized to improve several productive traits. Changes in protein diet influence on epigenetic mechanisms that could affect productive and reproductive traits in individuals and their offspring. The purpose of this review was to update the current knowledge about the effects of these nutritional changes on epigenetic mechanisms in pigs. Abstract Epigenetic changes regulate gene expression and depend of external factors, such as environment and nutrition. In pigs, several studies on protein nutrition have been performed to improve productive and reproductive traits. Indeed, these studies aimed not only to determine broad protein requirements but also pigs’ essential amino acids requirements. Moreover, recent studies tried to determine these nutritional requirements for each individual, which is known as protein precision nutrition. However, nutritional changes could affect different epigenetic mechanisms, modifying metabolic pathways both in a given individual and its offspring. Modifications in protein nutrition, such as change in the amino acid profile, increase or decrease in protein levels, or the addition of metabolites that condition protein requirements, could affect the regulation of some genes, such as myostatin, insulin growth factor, or genes controlling cholesterol and glucose metabolism pathways. This review summarizes the impact of most common protein nutritional strategies on epigenetic changes and describes their effects on regulation of gene expression in pigs. In a context where animal nutrition is shifting towards precision protein nutrition (PPN), further studies evaluating the effects of PPN on animal epigenetic are necessary.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain;
| | - Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
11
|
Standardized ileal digestible lysine and valine-to-lysine requirements for optimal performance of 4 to 9-week-old Piétrain cross piglets. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Kwon WB, Touchette KJ, Simongiovanni A, Syriopoulos K, Wessels A, Stein HH. Excess dietary leucine in diets for growing pigs reduces growth performance, biological value of protein, protein retention, and serotonin synthesis1. J Anim Sci 2020; 97:4282-4292. [PMID: 31410464 DOI: 10.1093/jas/skz259] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Abstract
An experiment was conducted to test the hypothesis that excess dietary Leu affects metabolism of branched-chain amino acids (BCAA) in growing pigs. Forty barrows (initial body weight [BW]: 30.0 ± 2.7 kg) were housed individually in metabolism crates and allotted to 5 dietary treatments (8 replicates per treatment) in a randomized complete block design. The 5 diets were based on identical quantities of corn, soybean meal, wheat, and barley and designed to contain 100%, 150%, 200%, 250%, or 300% of the requirement for standardized ileal digestible Leu. Initial and final (day 15) BW of pigs were recorded. Daily feed consumption was also recorded. Urine and fecal samples were collected for 5 d following 7 d of adaptation to the diets. At the end of the experiment, blood and tissue samples were collected to analyze plasma urea N (PUN), plasma and hypothalamic serotonin, tissue BCAA, serum and tissue branched-chain α-keto acids, and messenger ribonucleic acid abundance of genes involved in BCAA metabolism. Results indicated that acid detergent fiber, average daily feed intake, and gain-to-feed ratio decreased (linear, P < 0.05) as dietary Leu increased. A trend (linear, P = 0.082) for decreased N retention and decreased (linear, P < 0.05) biological value of dietary protein was also observed, and PUN increased (linear, P < 0.05) as dietary Leu increased. A quadratic reduction (P < 0.05) in plasma serotonin and a linear reduction (P < 0.05) in hypothalamic serotonin were observed with increasing dietary Leu. Concentrations of BCAA in liver increased (linear, P < 0.001), whereas concentrations of BCAA in skeletal muscle decreased (linear, P < 0.05) as dietary Leu increased. Concentration of α-ketoisovalerate was reduced (linear and quadratic, P < 0.001) in liver, skeletal muscle, and serum, and α-keto-β-methylvalerate was reduced (linear, P < 0.001; quadratic, P < 0.001) in skeletal muscle and serum. In contrast, α-keto isocaproate increased (linear, P < 0.05) in liver and skeletal muscle and also in serum (linear and quadratic, P < 0.001) with increasing dietary Leu. Expression of mitochondrial BCAA transaminase and of the E1α subunit of branched-chain α-keto acid dehydrogenase increased (linear, P < 0.05) in skeletal muscle as dietary Leu increased. In conclusion, excess dietary Leu impaired growth performance and nitrogen retention, which is likely a result of increased catabolism of Ile and Val, which in turn reduces availability of these amino acids resulting in reduced protein retention, and excess dietary Leu also reduced hypothalamic serotonin synthesis.
Collapse
Affiliation(s)
- Woong B Kwon
- Department of Animal Sciences, University of Illinois, Urbana
| | - Kevin J Touchette
- Department of Veterinary Medicine, Ajinomoto Animal Nutrition North America Inc., Chicago, IL
| | - Aude Simongiovanni
- Department of Veterinary Medicine, Ajinomoto Animal Nutrition North America Inc., Chicago, IL
| | - Kostas Syriopoulos
- Innovation and Customer Success Department, Ajinomoto Animal Nutrition Europe, Paris, France
| | | | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana
| |
Collapse
|
13
|
Ma W, Mao P, Guo L, Qiao S. Crystalline amino acids supplementation improves the performance and carcass traits in late-finishing gilts fed low-protein diets. Anim Sci J 2019; 91:e13317. [PMID: 31797485 DOI: 10.1111/asj.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of amino acids (AA) supplementation in low-crude protein (CP) diets on the growth performance and carcass characteristics in late-finishing gilts. Ninety gilts (93.8 ± 5.5 kg) were randomly allotted to one of the five diets which consisted of a normal-CP (137 g/kg) or four low-CP (105 g/kg) diets for 28 days. The low-CP diets were supplemented with lysine + threonine + methionine (LCM), LCM + tryptophan (LCT), LCT + valine (LCV) or LCV + isoleucine (LCI), respectively. Non-significant difference in average daily gain (ADG) was obtained in gilts receiving the control and LCV diet, which was higher than that of gilts fed the LCM diet (p < .05). The additions of crystalline AA in the low-CP diet resulted in the improvements in ADG (linear and quadratic effect, p < .05) and fat-free lean gain (quadratic effect, p < .05) and influenced the valine concentration (linear and quadratic effect, p < .05) and proportion of saturated fatty acid (linear effect, p < .05) in longissimus muscle. The results indicated that the valine supplementation could further improve the performance in 94 to 118 kg gilts fed the 105 g/kg CP diet.
Collapse
Affiliation(s)
- Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Pei Mao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liang Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Cemin HS, Tokach MD, Dritz SS, Woodworth JC, DeRouchey JM, Goodband RD. Meta-regression analysis to predict the influence of branched-chain and large neutral amino acids on growth performance of pigs1. J Anim Sci 2019; 97:2505-2514. [PMID: 30959521 PMCID: PMC6541811 DOI: 10.1093/jas/skz118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
A meta-analysis was conducted to evaluate the effects of branched-chain amino acids (BCAA), their interactions, and interactions with large neutral amino acids (LNAA) to develop prediction equations for growth performance of pigs. Data from 25 papers, published from 1995 to 2018, for a total of 44 trials and 210 observations were recorded in a database. Diets were reformulated using the NRC (2012) loading values to estimate nutrient concentrations. The response variables were average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F). The predictor variables tested included average body weight (BW), crude protein, neutral detergent fiber, Ile:Lys, Leu:Lys, Val:Lys, BCAA:Lys, Ile:Leu, Val:Leu, Ile:Val, (Ile+Val):Leu, Trp:Lys, Leu:Trp, Ile:Trp, Val:Trp, BCAA:Trp, Met:Lys, Leu:Met, Ile:Met, Val:Met, BCAA:Met, His:Lys, Leu:His, Ile:His, Val:His, BCAA:His, Thr:Lys, Leu:Thr, Ile:Thr, Val:Thr, BCAA:Thr, (Phe+Tyr):Lys, Leu:(Phe+Tyr), Ile:(Phe+Tyr), Val:(Phe+Tyr), BCAA:(Phe+Tyr), LNAA:Lys, Leu:LNAA, Ile:LNAA, Val:LNAA, and BCAA:LNAA. Amino acids were expressed on standardized ileal digestible basis. The MIXED procedure of SAS (SAS Institute Inc., Cary, NC) was used to develop the equations. The inverse of squared SEM was used to account for heterogeneous errors using the WEIGHT statement. Models were selected with a step-wise manual forward selection. In order to be included in the final model, predictor variables had to be statistically significant (P < 0.05) and provide an improvement of at least 2 points in Bayesian information criterion. The optimum equations were: ADG, g = - 985.94 + (15.2499 × average BW (kg)) - (0.08885 × average BW × average BW) + (1.063 × Leu:Lys) + (20.2659 × Ile:Lys) - (0.1479 × Ile:Lys × Ile:Lys) + (9.2243 × (Ile+Val):Leu) - (0.03321 × (Ile+Val):Leu × (Ile+Val):Leu) - (0.4413 × Ile:Trp); G:F, g/kg = 648.3 - (6.2974 × average BW (kg)) + (0.02051 × average BW × average BW) + (0.5396 × Ile:Lys) + (1.7284 × Val:Lys) - (0.00795 × Val:Lys × Val:Lys) - (1.7594 × Met:Lys); and ADFI, kg = predicted ADG/predicted G:F. Overall, the prediction equations suggest that increasing Leu:Lys negatively impacts ADG due to a reduction in G:F and ADFI caused by insufficient levels of other BCAA and LNAA relative to Leu. According to the model, the addition of Val, Ile, and Trp, alone or in combination, has the potential to counteract the negative effects of high dietary Leu concentrations on growth performance.
Collapse
Affiliation(s)
- Henrique S Cemin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| |
Collapse
|
15
|
Gonçalves MAD, Tokach MD, Dritz SS, Bello NM, Touchette KJ, Goodband RD, DeRouchey JM, Woodworth JC. Standardized ileal digestible valine:lysine dose response effects in 25- to 45-kg pigs under commercial conditions. J Anim Sci 2018; 96:591-599. [PMID: 29401290 DOI: 10.1093/jas/skx059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/12/2017] [Indexed: 11/14/2022] Open
Abstract
Two experiments were conducted to estimate the standardized ileal digestible valine:lysine (SID Val:Lys) dose response effects in 25- to 45-kg pigs under commercial conditions. In experiment 1, a total of 1,134 gilts (PIC 337 × 1050), initially 31.2 kg ± 2.0 kg body weight (BW; mean ± SD) were used in a 19-d growth trial with 27 pigs per pen and seven pens per treatment. In experiment 2, a total of 2,100 gilts (PIC 327 × 1050), initially 25.4 ± 1.9 kg BW were used in a 22-d growth trial with 25 pigs per pen and 12 pens per treatment. Treatments were blocked by initial BW in a randomized complete block design. In experiment 1, there were a total of six dietary treatments with SID Val at 59.0, 62.5, 65.9, 69.6, 73.0, and 75.5% of Lys and for experiment 2 there were a total of seven dietary treatments with SID Val at 57.0, 60.6, 63.9, 67.5, 71.1, 74.4, and 78.0% of Lys. Experimental diets were formulated to ensure that Lys was the second limiting amino acid throughout the experiments. Initially, linear mixed models were fitted to data from each experiment. Then, data from the two experiments were combined to estimate dose-responses using a broken-line linear ascending (BLL) model, broken-line quadratic ascending (BLQ) model, or quadratic polynomial (QP). Model fit was compared using Bayesian information criterion (BIC). In experiment 1, ADG increased linearly (P = 0.009) with increasing SID Val:Lys with no apparent significant impact on G:F. In experiment 2, ADG and ADFI increased in a quadratic manner (P < 0.002) with increasing SID Val:Lys whereas G:F increased linearly (P < 0.001). Overall, the best-fitting model for ADG was a QP, whereby the maximum mean ADG was estimated at a 73.0% (95% CI: [69.5, >78.0%]) SID Val:Lys. For G:F, the overall best-fitting model was a QP with maximum estimated mean G:F at 69.0% (95% CI: [64.0, >78.0]) SID Val:Lys ratio. However, 99% of the maximum mean performance for ADG and G:F were achieved at, 68% and 63% SID Val:Lys ratio, respectively. Therefore, the SID Val:Lys requirement ranged from73.0% for maximum ADG to 63.2% SID Val:Lys to achieve 99% of maximum G:F in 25- to 45-kg BW pigs.
Collapse
Affiliation(s)
- Marcio A D Gonçalves
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Manhattan, KS
| | - Nora M Bello
- Department of Statistics, College of Arts and Sciences, Manhattan, KS
| | | | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS
| |
Collapse
|
16
|
Clark AB, Tokach MD, DeRouchey JM, Dritz SS, Goodband RD, Woodworth JC, Touchette KJ, Bello NM. Modeling the effects of standardized ileal digestible valine to lysine ratio on growth performance of nursery pigs . Transl Anim Sci 2017; 1:448-457. [PMID: 32704668 PMCID: PMC7204984 DOI: 10.2527/tas2017.0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Two experiments evaluated the effects of increasing Lys and Val on growth performance of nursery pigs. In Exp. 1,300 nursery pigs (PIC 327 × 1,050, initially 6.7 ± 1.4 kg BW) were randomly allotted to 1 of 6 diets containing 1.10, 1.20, 1.30, 1.40, 1.50, or 1.60% standardized ileal digestible (SID) Lys, with 10 pens per dietary treatment and 5 pigs per pen. Linear and nonlinear mixed models were fitted to estimate dose responses. From d 0 to 14, and for the overall 28 d period, ADG and G:F increased (linear, P < 0.001) as SID Lys increased, with no evidence of differences in ADFI. Dose response modeling indicated the SID Lys requirement for ADG and G:F was at 1.45% using a broken line linear (BLL) and greater than 1.60% using a quadratic polynomial (QP) model. In Exp. 2, 280 nursery pigs (PIC 327 × 1,050, initially 6.5 ± 1.3 kg BW) were allotted to 1 of 7 diets containing SID Val:Lys ratios of 50, 57, 63, 68, 73, 78, or 85%. The dietary SID Lys concentration 1.24% SID Lys which was below the estimated requirement from Exp. 1 and ensured the Val:Lys ratio was not underestimated. From d 0 to 14, ADG, ADFI, and G:F increased (quadratic, P < 0.039) with increasing SID Val:Lys. For ADG, the best fitting model was a BLL, with a breakpoint estimate of 62.9% SID Val:Lys [52.2, 73.7] ratio while for G:F the best fit model was a quadratic polynomial with a maximum G:F at 71.7% SID Val:Lys (95%CI:[58, > 85]). Average daily feed intake was also modeled with a quadratic polynomial and maximized at 73.7% Val:Lys (95% CI: [61, > 85]). In conclusion, the Val requirement ranged from approximately 63 to 74% of Lys depending on the response criteria modeled.
Collapse
Affiliation(s)
- A B Clark
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan 66506
| | - M D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan 66506
| | - J M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan 66506
| | - S S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506
| | - R D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan 66506
| | - J C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan 66506
| | | | - N M Bello
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan 66506
| |
Collapse
|
17
|
Liu XT, Ma WF, Zeng XF, Xie CY, Thacker PA, Htoo JK, Qiao SY. Estimation of the standardized ileal digestible valine to lysine ratio required for 25- to 120-kilogram pigs fed low crude protein diets supplemented with crystalline amino acids1. J Anim Sci 2015; 93:4761-73. [DOI: 10.2527/jas.2015-9308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Agyekum AK, Sands JS, Regassa A, Kiarie E, Weihrauch D, Kim WK, Nyachoti CM. Effect of supplementing a fibrous diet with a xylanase and β-glucanase blend on growth performance, intestinal glucose uptake, and transport-associated gene expression in growing pigs. J Anim Sci 2015; 93:3483-93. [PMID: 26440017 DOI: 10.2527/jas.2015-9027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The present study evaluated supplemental carbohydrase effect on performance, intestinal nutrient uptake, and transporter mRNA expressions in growing pigs offered a high-fiber diet manufactured with distillers dried grains with solubles (DDGS). Twenty-four pigs (22.4 ± 0.7 kg BW) were randomly assigned to 1of 3 nutritionally adequate diets (8 pigs per diet) based on corn and soybean meal (SBM) with either 0 (control) or 30% DDGS (high fiber [HF]). The third diet was supplemented with a xylanase and β-glucanase blend (XB) in addition to the 30% DDGS (HF+XB). Parameters determined were ADFI, ADG, G:F, plasma glucose and plasma urea nitrogen (PUN) concentrations, jejunal tissue electrophysiological properties, and mRNA expressions of the sodium-dependent glucose transport 1 (SGLT1) and cationic AA transporter, bo,+AT, in the jejunal and ileal tissues. In addition, mRNA expressions of the short-chain fatty acid transporters, monocarboxylate transporter 1 (MCT1) and sodium-coupled monocarboxylate transporter, and mucin genes were quantified in the ileum. Feed intake, plasma glucose, and jejunal tissue electrophysiological properties were not affected (P > 0.05) by diet. However, control-fed pigs had superior growth rate and feed efficiency and higher PUN (P < 0.05) than HF- and HF+XB-fed pigs. The HF diet increased (P < 0.05) SGLT1 mRNA expression in the jejunum and decreased (P < 0.05) bo,+ mRNA expression in the ileum. The XB supplementation also increased bo,+ mRNA expression in the ileum relative to HF-fed pigs. Additionally, MCT1 mRNA expression was greater (P < 0.05) in the ileum of the HF- and HF+XB-fed pigs. In the present study, XB supplementation influenced nutrient transporter mRNA expression, although it was not accompanied by improved pig performance.
Collapse
|
19
|
Abstract
The objective was to define the Val requirement for weaned piglets in the context of reducing the dietary protein content. A dose-response experiment was conducted to estimate the standardized ileal digestible (SID) Val to Lys ratio required to support the optimum growth of post-weaned piglets. In this study, 96 pigs weighing 8 kg were allotted to one of six dietary treatments (16 pigs for each dietary treatment) and were housed individually. Diets were formulated to provide 0.58, 0.62, 0.66, 0.70, 0.74 and 0.78 SID Val : Lys by adding graded levels of crystalline l-Val to the 0.58 SID Val : Lys diet. Lysine was sub-limiting and supplied 90% of the recommendation (10.95 g SID Lys/kg equal to 11.8 g/kg total Lys). Average daily feed intake (ADFI), average daily gain (ADG) and gain to feed ratio (G : F) were determined during a 14-day period of ad libitum feeding. Blood and urine samples were taken at the end of each week (day 7 and 14 of the experiment) 3 h after feeding the experimental diets. The maximum ADFI and ADG were obtained in pigs fed the 0.78 SID Val : Lys diet; it was not different from the results of pigs fed 0.70 SID Val : Lys diet. The highest G : F was obtained in pigs fed 0.70 SID Val : Lys. The plasma concentration of Val increased linearly (P<0.001) as the dietary SID Val : Lys increased. The increasing dietary Val : Lys also resulted in a linear increase in Cys (P<0.001) and a quadratic increase in Arg (P=0.003), Lys (P=0.05) and Phe (P=0.009). The plasma Gly showed a quadratic decrease (P=0.05) as the dietary Val : Lys increased. Neither plasma nor urinary urea to creatinine ratio was affected by treatment. The minimum SID Val : Lys required to maximize ADFI, ADG and G : F was estimated at 0.67 SID Val : Lys by a broken-line model, and at 0.71 SID Val : Lys by a curvilinear plateau model. The Val deficiency caused a reduction in ADFI, and Val supplementation above the requirement did not impair animal performance. In conclusion, 0.70 SID Val : Lys is suggested as the Val requirement for 8 to 14 kg individually housed pigs.
Collapse
|
20
|
Htoo JK, Zhu CL, Huber L, de Lange CFM, Quant AD, Kerr BJ, Cromwell GL, Lindemann MD. Determining the optimal isoleucine:lysine ratio for ten- to twenty-two-kilogram and twenty-four- to thirty-nine-kilogram pigs fed diets containing nonexcess levels of leucine. J Anim Sci 2014; 92:3482-90. [PMID: 24987070 DOI: 10.2527/jas.2013-6934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three 21-d experiments were conducted to determine the optimum standardized ileal digestible (SID) Ile:Lys ratio in 10- to 22-kg and 24- to 39-kg pigs. In Exp. 1, 144 Yorkshire pigs (initial BW = 10.2 kg) were assigned to 6 diets with 6 pens per treatment. Diets 1 to 5 were formulated to contain 5 graded SID Ile:Lys (44, 51, 57, 63, and 70%), 1.18% SID Leu, and 0.90% SID Lys (second limiting). Diet 6 (diet 5 with added Lys) was formulated (1.06% SID Lys) as a positive control. Pigs fed diet 6 had higher (P < 0.05) ADG and G:F and lower (P < 0.05) plasma urea N (PUN) than pigs fed diet 5 (P < 0.02), indicating that Lys was limiting in diets 1 to 5. Final BW, ADG, and ADFI increased (linear and quadratic, P < 0.05) while G:F and PUN at d 21 were not affected (P > 0.10) by dietary Ile:Lys. Overall, ADG and ADFI were highest for pigs fed diet 2 (51% SID Ile:Lys). In Exp. 2, 216 Yorkshire pigs (initial BW = 9.6 kg) were assigned to 9 diets with 6 pens per treatment. Diets 1 to 4 contained 0.40, 0.47, 0.54, and 0.61% SID Ile, respectively, and 1.21% SID Lys; diets 5 to 8 contained 0.72, 0.84, 0.96, and 1.08% SID Lys, respectively, and 0.68% SID Ile. Diet 9 was high in both Ile and Lys (0.68% SID Ile and 1.21% SID Lys). All diets contained 1.21% SID Leu. The ADG and G:F increased (linear and quadratic, P < 0.05) as SID Ile:Lys increased (diets 1 to 4 and 9). The ADG and G:F increased (linear, P < 0.05) as SID Lys increased (diets 5 to 9). The PUN at d 21 decreased (linear, P < 0.05) by increasing dietary Ile:Lys. The SID Ile:Lys to optimize ADG was 46% by curvilinear plateau or exponential regression. For G:F, the optimal SID Ile:Lys was 47 and 51% by curvilinear plateau and exponential regressions, respectively. In Exp. 3, 80 pigs (PIC 327 × C23; initial BW = 24.0 kg) were allotted to 5 treatments with 4 pigs per pen. Diets 1 to 5 were formulated to contain 5 graded SID Ile:Lys (39, 46, 53, 61, and 68%), 1.17% SID Leu, and 0.91% SID Lys (second limiting). Final BW and ADG increased (linear and quadratic, P < 0.05) and ADFI increased (linear, P = 0.047) as SID Ile:Lys increased. Using ADG and G:F, the optimum SID Ile:Lys was 54 and 53%, respectively, by curvilinear plateau and exponential regression. The PUN was minimized at 53 and 59% SID Ile:Lys by curvilinear plateau and broken line regression. Overall, the average optimum SID Ile:Lys was approximately 51% for 10- to 22-kg pigs and 54% for 24- to 39-kg pigs fed diets containing nonexcess levels of Leu.
Collapse
Affiliation(s)
- J K Htoo
- Evonik Industries AG, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - C L Zhu
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - L Huber
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - C F M de Lange
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - A D Quant
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546-0215
| | - B J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011-3310
| | - G L Cromwell
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546-0215
| | - M D Lindemann
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546-0215
| |
Collapse
|
21
|
Morales A, García H, Araiza A, Htoo JK, Cota M, Arce N, Cervantes M. Effect of L-valine supplementation to a wheat-based diet with leucine excess on performance, gene expression, and serum concentration of amino acids. J Anim Sci 2013; 90 Suppl 4:89-91. [PMID: 23365292 DOI: 10.2527/jas.51189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excess Leu in the diet reduces the expression of the cationic AA transporter b(0,+), absorption of Lys and Arg, feed intake, and ADG of pigs. Because Val competes with Leu for absorption, surplus Val may correct some of these effects. An experiment was conducted to analyze the effect of surplus Val in a basal wheat (Triticum aestivum) diet fortified with free Lys, Thr, and Met and containing excess Leu and Ile on performance, expression of genes encoding b(0,+), and serum concentrations of AA. Sixteen pigs (30.3 ± 2.1 kg BW) were used. Treatments were wheat based with excess Leu and Ile (T1) and T1 plus 0.44% L-Val (T2). At the end of the 21-d study, 12 pigs were euthanized; jugular blood was collected to analyze serum AA and jejunal mucosa to measure expression of b(0,+). Surplus Val increased (P < 0.05) ADG and G:F and serum Val, Lys, and Arg but did not affect (P > 0.10) b(0,+) expression. Although analyzed Val content in the basal diet was lower than calculated, the increased serum Lys and improved pig performance may suggest that excess Leu limits Val availability and that surplus Val could correct some of the negative effects of excess Leu.
Collapse
Affiliation(s)
- A Morales
- ICA, Universidad Autónoma de Baja California, Mexicali, México
| | | | | | | | | | | | | |
Collapse
|