1
|
Hussein M, Liu Y, Vink M, Kroon PZ, Das AT, Berkhout B, Herrera-Carrillo E. Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102278. [PMID: 39220269 PMCID: PMC11364014 DOI: 10.1016/j.omtn.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
Collapse
Affiliation(s)
- Mouraya Hussein
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ye Liu
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Monique Vink
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Atze T. Das
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Shao R, Visser I, Fros JJ, Yin X. Versatility of the Zinc-Finger Antiviral Protein (ZAP) As a Modulator of Viral Infections. Int J Biol Sci 2024; 20:4585-4600. [PMID: 39309436 PMCID: PMC11414379 DOI: 10.7150/ijbs.98029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is a restriction factor that proficiently impedes the replication of a variety of RNA and DNA viruses. In recent years, the affinity of ZAP's zinc-fingers for single-stranded RNA (ssRNA) rich in CpG dinucleotides was uncovered. High frequencies of CpGs in RNA may suggest a non-self origin, which underscores the importance of ZAP as a potential cellular sensor of (viral) RNA. Upon binding viral RNA, ZAP recruits cellular cofactors to orchestrate a finely tuned antiviral response that limits virus replication via distinct mechanisms. These include promoting degradation of viral RNA, inhibiting RNA translation, and synergizing with other immune pathways. Depending on the viral species and experimental set-up, different isoforms and cellular cofactors have been reported to be dominant in shaping the ZAP-mediated antiviral response. Here we review how ZAP differentially affects viral replication depending on distinct interactions with RNA, cellular cofactors, and viral proteins to discuss how these interactions shape the antiviral mechanisms that have thus far been reported for ZAP. Importantly, we zoom in on the unknown aspects of ZAP's antiviral system and its therapeutic potential to be employed in vaccine design.
Collapse
Affiliation(s)
- Ran Shao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Allan MF, Aruda J, Plung JS, Grote SL, des Taillades YJM, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. RESEARCH SQUARE 2024:rs.3.rs-4814547. [PMID: 39149495 PMCID: PMC11326378 DOI: 10.21203/rs.3.rs-4814547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
Affiliation(s)
- Matthew F. Allan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Justin Aruda
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Jesse S. Plung
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Scott L. Grote
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | | | - Albéric A. de Lajarte
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| |
Collapse
|
4
|
Allan MF, Aruda J, Plung JS, Grote SL, Martin des Taillades YJ, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591762. [PMID: 38746332 PMCID: PMC11092567 DOI: 10.1101/2024.04.29.591762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
|
5
|
Rahman MM, Ryan CA, Tessier BR, Rozners E. Peptide nucleic acids (PNAs) control function of SARS-CoV-2 frameshifting stimulatory element trough PNA-RNA-PNA triplex formation. Heliyon 2024; 10:e33914. [PMID: 39071573 PMCID: PMC11282987 DOI: 10.1016/j.heliyon.2024.e33914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
The highly structured nature of the SARS-CoV-2 genome provides many promising antiviral drug targets. One particularly promising target is a cis-acting RNA pseudoknot found within a critical region called the frameshifting stimulatory element (FSE). In this study, peptide nucleic acids (PNAs) binding to stem 2 of FSE RNA inhibited protein translation and frameshifting, as measured by a cell-free dual luciferase assay, more effectively than PNAs binding to stem 1, stem 3, or the slippery site. Surprisingly, simple antisense PNAs were stronger disruptors of frameshifting than PNA tail-clamps, despite higher thermal stability of the PNA-RNA-PNA triplexes formed by the latter. Another unexpected result was a strong and sequence non-specific enhancement of frameshifting inhibition when using a cationic triplex-forming PNA in conjunction with an antisense PNA targeting key regions of the frameshifting element. Our results illustrate both the potential and the challenges of using antisense PNAs to target highly structured RNAs, such as SARS-CoV-2 pseudoknots. While triplex forming PNAs, including PNA tail-clamps, are emerging as promising ligands for RNA recognition, the binding affinity enhancements when using cationic modifications in triplex-forming PNAs must be carefully balanced to avoid loss of sequence specificity in complex biological systems.
Collapse
Affiliation(s)
| | | | - Brandon R. Tessier
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, United States
| |
Collapse
|
6
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
7
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
8
|
Kariithi HM, Volkening JD, Chiwanga GH, Goraichuk IV, Msoffe PLM, Suarez DL. Molecular Characterization of Complete Genome Sequence of an Avian Coronavirus Identified in a Backyard Chicken from Tanzania. Genes (Basel) 2023; 14:1852. [PMID: 37895200 PMCID: PMC10606662 DOI: 10.3390/genes14101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
A complete genome sequence of an avian coronavirus (AvCoV; 27,663 bp excluding 3' poly(A) tail) was determined using nontargeted next-generation sequencing (NGS) of an oropharyngeal swab from a backyard chicken in a live bird market in Arusha, Tanzania. The open reading frames (ORFs) of the Tanzanian strain TZ/CA127/19 are organized as typical of gammaCoVs (Coronaviridae family): 5'UTR-[ORFs 1a/1b encoding replicase complex (Rep1ab) non-structural peptides nsp2-16]-[spike (S) protein]-[ORFs 3a/3b]-[small envelop (E) protein]-[membrane (M) protein]-[ORFs 4a/4c]-[ORFs 5a/5b]-[nucleocapsid (N) protein]-[ORF6b]-3'UTR. The structural (S, E, M and N) and Rep1ab proteins of TZ/CA127/19 contain features typically conserved in AvCoVs, including the cleavage sites and functional motifs in Rep1ab and S. Its genome backbone (non-spike region) is closest to Asian GI-7 and GI-19 infectious bronchitis viruses (IBVs) with 87.2-89.7% nucleotide (nt) identities, but it has a S gene closest (98.9% nt identity) to the recombinant strain ck/CN/ahysx-1/16. Its 3a, 3b E and 4c sequences are closest to the duck CoV strain DK/GD/27/14 at 99.43%, 100%, 99.65% and 99.38% nt identities, respectively. Whereas its S gene phylogenetically cluster with North American TCoVs and French guineafowl COVs, all other viral genes group monophyletically with Eurasian GI-7/GI-19 IBVs and Chinese recombinant AvCoVs. Detection of a 4445 nt-long recombinant fragment with breakpoints at positions 19,961 and 24,405 (C- and N-terminus of nsp16 and E, respectively) strongly suggested that TZ/CA127/19 acquired its genome backbone from an LX4-type (GI-19) field strain via recombination with an unknown AvCoV. This is the first report of AvCoV in Tanzania and leaves unanswered the questions of its emergence and the biological significance.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi 00200, Kenya
| | | | - Gaspar H. Chiwanga
- Tanzania Veterinary Laboratory Agency, South Zone, Mtwara P.O. Box 186, Tanzania
| | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
| | - Peter L. M. Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3021, Tanzania
- National Ranching Company Ltd., Dodoma P.O. Box 1819, Tanzania
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
| |
Collapse
|
9
|
Lafon-Hughes L. Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus. Pathogens 2023; 12:806. [PMID: 37375496 PMCID: PMC10301789 DOI: 10.3390/pathogens12060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite what its name suggests, the effects of the COVID-19 pandemic causative agent "Severe Acute Respiratory Syndrome Coronavirus-2" (SARS-CoV-2) were not always confined, neither temporarily (being long-term rather than acute, referred to as Long COVID) nor spatially (affecting several body systems). Moreover, the in-depth study of this ss(+) RNA virus is defying the established scheme according to which it just had a lytic cycle taking place confined to cell membranes and the cytoplasm, leaving the nucleus basically "untouched". Cumulative evidence shows that SARS-CoV-2 components disturb the transport of certain proteins through the nuclear pores. Some SARS-CoV-2 structural proteins such as Spike (S) and Nucleocapsid (N), most non-structural proteins (remarkably, Nsp1 and Nsp3), as well as some accessory proteins (ORF3d, ORF6, ORF9a) can reach the nucleoplasm either due to their nuclear localization signals (NLS) or taking a shuttle with other proteins. A percentage of SARS-CoV-2 RNA can also reach the nucleoplasm. Remarkably, controversy has recently been raised by proving that-at least under certain conditions-, SARS-CoV-2 sequences can be retrotranscribed and inserted as DNA in the host genome, giving rise to chimeric genes. In turn, the expression of viral-host chimeric proteins could potentially create neo-antigens, activate autoimmunity and promote a chronic pro-inflammatory state.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay; ; Tel.: +598-2-93779096
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto 50000, Uruguay
| |
Collapse
|
10
|
Strong MJ. SARS-CoV-2, aging, and Post-COVID-19 neurodegeneration. J Neurochem 2023; 165:115-130. [PMID: 36458986 PMCID: PMC9877664 DOI: 10.1111/jnc.15736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
As the world continues to experience the effects of SARS-CoV-2, there is evidence to suggest that the sequelae of viral infection (the post-COVID-19 condition; PCC) at both an individual and population level will be significant and long-lasting. The history of pandemics or epidemics in the last 100 years caused by members of the RNA virus family, of which coronaviruses are a member, provides ample evidence of the acute neurological effects. However, except for the H1N1 influenza pandemic of 1918/1919 (the Spanish flu) with its associated encephalitis lethargica, there is little information on long-term neurological sequelae. COVID-19 is the first pandemic that has occurred in a setting of an aging population, especially in several high-income countries. Its survivors are at the greatest risk for developing neurodegenerative conditions as they age, rendering the current pandemic a unique paradigm not previously witnessed. The SARS-CoV-2 virus, among the largest of the RNA viruses, is a single-stranded RNA that encodes for 29 proteins that include the spike protein that contains the key domains required for ACE2 binding, and a complex array of nonstructural proteins (NSPs) and accessory proteins that ensure the escape of the virus from the innate immune response, allowing for its efficient replication, translation, and exocytosis as a fully functional virion. Increasingly, these proteins are also recognized as potentially contributing to biochemical and molecular processes underlying neurodegeneration. In addition to directly being taken up by brain endothelium, the virus or key protein constituents can be transported to neurons, astrocytes, and microglia by extracellular vesicles and can accelerate pathological fibril formation. The SARS-CoV-2 nucleocapsid protein is intrinsically disordered and can participate in liquid condensate formation, including as pathological heteropolymers with neurodegenerative disease-associated RNA-binding proteins such as TDP-43, FUS, and hnRNP1A. As the SARS-CoV-2 virus continues to mutate under the immune pressure exerted by highly efficacious vaccines, it is evolving into a virus with greater transmissibility but less severity compared with the original strain. The potential of its lingering impact on the nervous system thus has the potential to represent an ongoing legacy of an even greater global health challenge than acute infection.
Collapse
Affiliation(s)
- Michael J. Strong
- Department of Clinical Neurological Sciences and The Robarts Research InstituteWestern UniversityLondonCanada
| |
Collapse
|
11
|
Szczesniak I, Baliga-Gil A, Jarmolowicz A, Soszynska-Jozwiak M, Kierzek E. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. Int J Mol Sci 2023; 24:ijms24021232. [PMID: 36674746 PMCID: PMC9860923 DOI: 10.3390/ijms24021232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.
Collapse
|
12
|
McCann N, Castellino FJ. Cell Entry and Unusual Replication of SARS-CoV-2. Curr Drug Targets 2022; 23:1539-1554. [PMID: 36239725 DOI: 10.2174/1389450124666221014102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND SARS-CoV-2 is the causative virus for the CoVID-19 pandemic that has frequently mutated to continue to infect and resist available vaccines. Emerging new variants of the virus have complicated notions of immunity conferred by vaccines versus immunity that results from infection. While we continue to progress from epidemic to endemic as a result of this collective immunity, the pandemic remains a morbid and mortal problem. OBJECTIVE The SARS-CoV-2 virus has a very complex manner of replication. The spike protein, one of the four structural proteins of the encapsulated virus, is central to the ability of the virus to penetrate cells to replicate. The objective of this review is to summarize these complex features of viral replication. METHODS A review of the recent literature was performed on the biology of SARS-CoV-2 infection from published work from PubMed and works reported to preprint servers, e.g., bioRxiv and medRxiv. RESULTS AND CONCLUSION The complex molecular and cellular biology involved in SARS-CoV-2 replication and the origination of >30 proteins from a single open reading frame (ORF) have been summarized, as well as the structural biology of spike protein, a critical factor in the cellular entry of the virus, which is a necessary feature for it to replicate and cause disease.
Collapse
Affiliation(s)
- Nathan McCann
- Department of Chemistry and Biochemistry and W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46530, USA
| | - Francis J Castellino
- Department of Chemistry and Biochemistry and W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46530, USA
| |
Collapse
|
13
|
Xu T, Li LX, Jia Y, Wu Q, Zhu W, Xu Z, Zheng B, Lu X. One microRNA has the potential to target whole viral mRNAs in a given human coronavirus. Front Microbiol 2022; 13:1035044. [PMID: 36439806 PMCID: PMC9686371 DOI: 10.3389/fmicb.2022.1035044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
MicroRNAs (miRNAs) can repress viral replication by targeting viral messenger RNA (mRNA), which makes them potential antiviral agents. The antiviral effects of miRNAs on infectious viruses have been explored extensively; however, recent studies mainly considered the action modes of miRNAs, neglecting another key factor, the molecular biology of viruses, which may be particularly important in the study of miRNA actions against a given virus. In this paper, the action modes of miRNAs and the molecular biology of viruses are jointly considered for the first time and based on the reported roles of miRNAs on viruses and human coronaviruses (HCoVs) molecular biology, the general and specific interaction modes of miRNAs-HCoVs are systematically reviewed. It was found that HCoVs transcriptome is a nested set of subgenomic mRNAs, sharing the same 5' leader, 3' untranslated region (UTR) and open reading frame (ORF). For a given HCoV, one certain miRNA with a target site in the 5' leader or 3' UTR has the potential to target all viral mRNAs, indicating tremendous antiviral effects against HCoVs. However, for the shared ORFs, some parts are untranslatable attributed to the translation pattern of HCoVs mRNA, and it is unknown whether the base pairing between the untranslated ORFs and miRNAs plays a regulatory effect on the local mRNAs where the untranslated ORFs are located; therefore, the regulatory effects of miRNAs with targets within the shared ORFs are complicated and need to be confirmed. Collectively, miRNAs may bepromising antiviral agents against HCoVs due to their intrinsically nested set of mRNAs, and some gaps are waiting to be filled. In this review, insight is provided into the exploration of miRNAs that can interrupt HCoVs infection.
Collapse
Affiliation(s)
- Tielong Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Long-xue Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Jia
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingni Wu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weifeng Zhu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhou Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bin Zheng
- National Institute of Parasitic Diseases Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xuexin Lu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
14
|
Lee SJ, Kim YJ, Ahn DG. Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. J Microbiol Biotechnol 2022; 32:1073-1085. [PMID: 36039385 PMCID: PMC9628960 DOI: 10.4014/jmb.2206.06064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARSCoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
15
|
Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. Recent insights into the structure and function of coronavirus ribonucleases. FEBS Open Bio 2022; 12:1567-1583. [PMID: 35445579 PMCID: PMC9110870 DOI: 10.1002/2211-5463.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.
Collapse
Affiliation(s)
- Meredith N. Frazier
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Amanda A. Riccio
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Isha M. Wilson
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - William C. Copeland
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Robin E. Stanley
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
16
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innate Immune Genes. mBio 2022; 13:e0081522. [PMID: 35604092 PMCID: PMC9239271 DOI: 10.1128/mbio.00815-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-infected cells to gain a deeper understanding of the translationally regulated events in infected cells. We found that although viral mRNAs are abundantly expressed, they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy and alternative translation initiation sites that help increase the coding potential of its RNAs. In permissive cells, SARS-CoV-2 infection induced the translational repression of numerous innate immune mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more subtle in primary airway cell cultures, we noted marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data provide new insight into how SARS-CoV-2 modulates innate host responses and highlight unique mechanisms for therapeutic intervention.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung R. Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean P. Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James B. Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven L. Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Ward JC, Lasecka-Dykes L, Neil C, Adeyemi OO, Gold S, McLean-Pell N, Wright C, Herod MR, Kealy D, Warner E, Jackson T, King DP, Tuthill TJ, Rowlands DJ, Stonehouse NJ. The RNA pseudoknots in foot-and-mouth disease virus are dispensable for genome replication, but essential for the production of infectious virus. PLoS Pathog 2022; 18:e1010589. [PMID: 35666744 PMCID: PMC9203018 DOI: 10.1371/journal.ppat.1010589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/16/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding regions of viral RNA (vRNA) genomes are critically important in the regulation of gene expression. In particular, pseudoknot (PK) structures, which are present in a wide range of RNA molecules, have a variety of roles. The 5' untranslated region (5' UTR) of foot-and-mouth disease virus (FMDV) vRNA is considerably longer than in other viruses from the picornavirus family and consists of a number of distinctive structural motifs that includes multiple (2, 3 or 4 depending on the virus strain) putative PKs linked in tandem. The role(s) of the PKs in the FMDV infection are not fully understood. Here, using bioinformatics, sub-genomic replicons and recombinant viruses we have investigated the structural conservation and importance of the PKs in the FMDV lifecycle. Our results show that despite the conservation of two or more PKs across all FMDVs, a replicon lacking PKs was replication competent, albeit at reduced levels. Furthermore, in competition experiments, GFP FMDV replicons with less than two (0 or 1) PK structures were outcompeted by a mCherry FMDV wt replicon that had 4 PKs, whereas GFP replicons with 2 or 4 PKs were not. This apparent replicative advantage offered by the additional PKs correlates with the maintenance of at least two PKs in the genomes of FMDV field isolates. Despite a replicon lacking any PKs retaining the ability to replicate, viruses completely lacking PK were not viable and at least one PK was essential for recovery of infections virus, suggesting a role for the PKs in virion assembly. Thus, our study points to roles for the PKs in both vRNA replication and virion assembly, thereby improving understanding the molecular biology of FMDV replication and the wider roles of PK in RNA functions.
Collapse
Affiliation(s)
- Joseph C. Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Chris Neil
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | - Oluwapelumi O. Adeyemi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah Gold
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | - Niall McLean-Pell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Caroline Wright
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | - Morgan R. Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Emma Warner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Terry Jackson
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | - Donald P. King
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | | | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NJS)
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NJS)
| |
Collapse
|
18
|
Li J, Jia H, Tian M, Wu N, Yang X, Qi J, Ren W, Li F, Bian H. SARS-CoV-2 and Emerging Variants: Unmasking Structure, Function, Infection, and Immune Escape Mechanisms. Front Cell Infect Microbiol 2022; 12:869832. [PMID: 35646741 PMCID: PMC9134119 DOI: 10.3389/fcimb.2022.869832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
As of April 1, 2022, over 468 million COVID-19 cases and over 6 million deaths have been confirmed globally. Unlike the common coronavirus, SARS-CoV-2 has highly contagious and attracted a high level of concern worldwide. Through the analysis of SARS-CoV-2 structural, non-structural, and accessory proteins, we can gain a deeper understanding of structure-function relationships, viral infection mechanisms, and viable strategies for antiviral therapy. Angiotensin-converting enzyme 2 (ACE2) is the first widely acknowledged SARS-CoV-2 receptor, but researches have shown that there are additional co-receptors that can facilitate the entry of SARS-CoV-2 to infect humans. We have performed an in-depth review of published papers, searching for co-receptors or other auxiliary membrane proteins that enhance viral infection, and analyzing pertinent pathogenic mechanisms. The genome, and especially the spike gene, undergoes mutations at an abnormally high frequency during virus replication and/or when it is transmitted from one individual to another. We summarized the main mutant strains currently circulating global, and elaborated the structural feature for increased infectivity and immune evasion of variants. Meanwhile, the principal purpose of the review is to update information on the COVID-19 outbreak. Many countries have novel findings on the early stage of the epidemic, and accruing evidence has rewritten the timeline of the outbreak, triggering new thinking about the origin and spread of COVID-19. It is anticipated that this can provide further insights for future research and global epidemic prevention and control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feifei Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Wan H, Adams RL, Lindenbach BD, Pyle AM. The In Vivo and In Vitro Architecture of the Hepatitis C Virus RNA Genome Uncovers Functional RNA Secondary and Tertiary Structures. J Virol 2022; 96:e0194621. [PMID: 35353000 PMCID: PMC9044954 DOI: 10.1128/jvi.01946-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus that remains one of the main contributors to chronic liver disease worldwide. Studies over the last 30 years have demonstrated that HCV contains a highly structured RNA genome and many of these structures play essential roles in the HCV life cycle. Despite the importance of riboregulation in this virus, most of the HCV RNA genome remains functionally unstudied. Here, we report a complete secondary structure map of the HCV RNA genome in vivo, which was studied in parallel with the secondary structure of the same RNA obtained in vitro. Our results show that HCV is folded extensively in the cellular context. By performing comprehensive structural analyses on both in vivo data and in vitro data, we identify compact and conserved secondary and tertiary structures throughout the genome. Genetic and evolutionary functional analyses demonstrate that many of these elements play important roles in the virus life cycle. In addition to providing a comprehensive map of RNA structures and riboregulatory elements in HCV, this work provides a resource for future studies aimed at identifying therapeutic targets and conducting further mechanistic studies on this important human pathogen. IMPORTANCE HCV has one of the most highly structured RNA genomes studied to date, and it is a valuable model system for studying the role of RNA structure in protein-coding genes. While previous studies have identified individual cases of regulatory RNA structures within the HCV genome, the full-length structure of the HCV genome has not been determined in vivo. Here, we present the complete secondary structure map of HCV determined both in cells and from corresponding transcripts generated in vitro. In addition to providing a comprehensive atlas of functional secondary structural elements throughout the genomic RNA, we identified a novel set of tertiary interactions and demonstrated their functional importance. In terms of broader implications, the pipeline developed in this study can be applied to other long RNAs, such as long noncoding RNAs. In addition, the RNA structural motifs characterized in this study broaden the repertoire of known riboregulatory elements.
Collapse
Affiliation(s)
- Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Rebecca L. Adams
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
20
|
Lan TCT, Allan MF, Malsick LE, Woo JZ, Zhu C, Zhang F, Khandwala S, Nyeo SSY, Sun Y, Guo JU, Bathe M, Näär A, Griffiths A, Rouskin S. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat Commun 2022; 13:1128. [PMID: 35236847 PMCID: PMC8891300 DOI: 10.1038/s41467-022-28603-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 is a betacoronavirus with a single-stranded, positive-sense, 30-kilobase RNA genome responsible for the ongoing COVID-19 pandemic. Although population average structure models of the genome were recently reported, there is little experimental data on native structural ensembles, and most structures lack functional characterization. Here we report secondary structure heterogeneity of the entire SARS-CoV-2 genome in two lines of infected cells at single nucleotide resolution. Our results reveal alternative RNA conformations across the genome and at the critical frameshifting stimulation element (FSE) that are drastically different from prevailing population average models. Importantly, we find that this structural ensemble promotes frameshifting rates much higher than the canonical minimal FSE and similar to ribosome profiling studies. Our results highlight the value of studying RNA in its full length and cellular context. The genomic structures detailed here lay groundwork for coronavirus RNA biology and will guide the design of SARS-CoV-2 RNA-based therapeutics.
Collapse
Affiliation(s)
- Tammy C T Lan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Matty F Allan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lauren E Malsick
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Jia Z Woo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Chi Zhu
- Department of Nutritional Sciences & Toxicology, University of California, Berkley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fengrui Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Stuti Khandwala
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sherry S Y Nyeo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anders Näär
- Department of Nutritional Sciences & Toxicology, University of California, Berkley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Anthony Griffiths
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Zafferani M, Muralidharan D, Montalvan NI, Hargrove AE. RT-qPCR as a screening platform for mutational and small molecule impacts on structural stability of RNA tertiary structures. RSC Chem Biol 2022; 3:905-915. [PMID: 35866161 PMCID: PMC9257624 DOI: 10.1039/d2cb00015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
The exponential increase in the discovery and characterization of RNA tertiary structures has highlighted their active role in a variety of human diseases, yet often their interactome and specific function remain unknown. Small molecules offer opportunities to both decode these cellular roles and develop therapeutics, however there are few examples of small molecules that target biologically relevant RNA tertiary structures. While RNA triple helices are a particularly attractive target, discovery of triple helix modulators has been hindered by the lack of correlation between small molecule affinity and effect on structural modulation, thereby limiting the utility of affinity-based screening as a primary filtering method. To address this challenge, we developed a high-throughput RT-qPCR screening platform that reports on the effect of mutations and additives, such as small molecules, on the stability of triple helices. Using the 3′-end of the oncogenic long non-coding RNA MALAT1 as a proof-of-concept, we demonstrated the applicability of both a two-step and a one-pot method to assess the impact of mutations and small molecules on the stability of the triple helix. We demonstrated the adaptability of the assay to diverse RNA tertiary structures by applying it to the SARS-CoV-2 pseudoknot, a key viral RNA structure recently identified as an attractive therapeutic target for the development of antivirals. Employment of a functional high-throughput assay as a primary screen will significantly expedite the discovery of probes that modulate the structural landscape of RNA structures and, consequently, help gain insight into the roles of these pervasive structures. RT-qPCR can be harnessed as a small molecule screening platform to read out the effect of small molecules on the structural stability of a variety of RNA targets.![]()
Collapse
Affiliation(s)
- Martina Zafferani
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | | | - Nadeska I. Montalvan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
22
|
IMTIAZ F, PASHA MK. A systematic review of RdRp of SARS-CoV-2 through artificial intelligence and machine learning utilizing structure-based drug design strategy. Turk J Chem 2021; 46:583-594. [PMID: 37720604 PMCID: PMC10503974 DOI: 10.55730/1300-0527.3355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 06/16/2022] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Since the coronavirus disease has been declared a global pandemic, it had posed a challenge among researchers and raised common awareness and collaborative efforts towards finding the solution. Caused by severe acute respiratory coronavirus syndrome-2 (SARS-CoV-2), coronavirus drug design strategy needs to be optimized. It is understandable that cognizance of the pathobiology of COVID-19 can help scientists in the development and discovery of therapeutically effective antiviral drugs by elucidating the unknown viral pathways and structures. Considering the role of artificial intelligence and machine learning with its advancements in the field of science, it is rational to use these methods which can aid in the discovery of new potent candidates in silico. Our review utilizes similar methodologies and focuses on RNA-dependent RNA polymerase (RdRp), based on its importance as an essential element for virus replication and also a promising target for COVID-19 therapeutics. Artificial neural network technique was used to shortlist articles with the support of PRISMA, from different research platforms including Scopus, PubMed, PubChem, and Web of Science, through a combination of keywords. "English language", from the year "2000" and "published articles in journals" were selected to carry out this research. We summarized that structural details of the RdRp reviewed in this analysis will have the potential to be taken into consideration when developing therapeutic solutions and if further multidisciplinary efforts are taken in this domain then potential clinical candidates for RdRp of SARS-CoV-2 could be successfully delivered for experimental validations.
Collapse
Affiliation(s)
- Fariha IMTIAZ
- Punjab University College of Pharmacy, University of the Punjab, Lahore,
Pakistan
| | | |
Collapse
|
23
|
Shiftless inhibits flavivirus replication in vitro and is neuroprotective in a mouse model of Zika virus pathogenesis. Proc Natl Acad Sci U S A 2021; 118:2111266118. [PMID: 34873063 DOI: 10.1073/pnas.2111266118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Flaviviruses such as Zika virus and West Nile virus have the potential to cause severe neuropathology if they invade the central nervous system. The type I interferon response is well characterized as contributing to control of flavivirus-induced neuropathogenesis. However, the interferon-stimulated gene (ISG) effectors that confer these neuroprotective effects are less well studied. Here, we used an ISG expression screen to identify Shiftless (SHFL, C19orf66) as a potent inhibitor of diverse positive-stranded RNA viruses, including multiple members of the Flaviviridae (Zika, West Nile, dengue, yellow fever, and hepatitis C viruses). In cultured cells, SHFL functions as a viral RNA-binding protein that inhibits viral replication at a step after primary translation of the incoming genome. The murine ortholog, Shfl, is expressed constitutively in multiple tissues, including the central nervous system. In a mouse model of Zika virus infection, Shfl -/- knockout mice exhibit reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain and spinal cord. These studies demonstrate that Shfl is an important antiviral effector that contributes to host protection from Zika virus infection and virus-induced neuropathological disease.
Collapse
|
24
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The translational landscape of SARS-CoV-2 and infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.03.367516. [PMID: 33173862 PMCID: PMC7654850 DOI: 10.1101/2020.11.03.367516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hung R Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sean P Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James B Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
25
|
Zhan X, Deng L, Chen G. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA. Biopolymers 2021; 113:e23476. [PMID: 34581432 DOI: 10.1002/bip.23476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
RNAs form secondary structures containing double-stranded base paired regions and single-stranded regions. Probing, detecting and modulating RNA structures and dynamics requires the development of molecular sensors that can differentiate the sequence and structure of RNAs present in viruses and cells, as well as in extracellular space. In this review, we summarize the recent progress on the development of chemically modified peptide nucleic acids (PNAs) for the selective recognition of double-stranded RNA (dsRNA) sequences over both single-stranded RNA (ssRNA) and double-stranded DNA (dsDNA) sequences. We also briefly discuss the applications of sequence-specific dsRNA-binding PNAs in sensing and stabilizing dsRNA structures and inhibiting dsRNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Zhan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Liping Deng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
26
|
Rao S, Hoskins I, Tonn T, Garcia PD, Ozadam H, Sarinay Cenik E, Cenik C. Genes with 5' terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein. RNA (NEW YORK, N.Y.) 2021; 27:1025-1045. [PMID: 34127534 PMCID: PMC8370740 DOI: 10.1261/rna.078661.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/08/2021] [Indexed: 05/05/2023]
Abstract
Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a nonstructural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation levels. We discover that a functionally coherent subset of human genes is preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of Nsp1. Finally, we found that LARP1, a key effector protein in the mTOR pathway, may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine-tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.
Collapse
Affiliation(s)
- Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - P Daniela Garcia
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
27
|
Li Y, Garcia G, Arumugaswami V, Guo F. Structure-based design of antisense oligonucleotides that inhibit SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.23.457434. [PMID: 34462746 PMCID: PMC8404888 DOI: 10.1101/2021.08.23.457434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antisense oligonucleotides (ASOs) are an emerging class of drugs that target RNAs. Current ASO designs strictly follow the rule of Watson-Crick base pairing along target sequences. However, RNAs often fold into structures that interfere with ASO hybridization. Here we developed a structure-based ASO design method and applied it to target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our method makes sure that ASO binding is compatible with target structures in three-dimensional (3D) space by employing structural design templates. These 3D-ASOs recognize the shapes and hydrogen bonding patterns of targets via tertiary interactions, achieving enhanced affinity and specificity. We designed 3D-ASOs that bind to the frameshift stimulation element and transcription regulatory sequence of SARS-CoV-2 and identified lead ASOs that strongly inhibit viral replication in human cells. We further optimized the lead sequences and characterized structure-activity relationship. The 3D-ASO technology helps fight coronavirus disease-2019 and is broadly applicable to ASO drug development.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, CA 90095, U.S.A
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, U.S.A
| | - Feng Guo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, U.S.A
| |
Collapse
|
28
|
A Novel Frameshifting Inhibitor Having Antiviral Activity against Zoonotic Coronaviruses. Viruses 2021; 13:v13081639. [PMID: 34452503 PMCID: PMC8402677 DOI: 10.3390/v13081639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent outbreaks of zoonotic coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have caused tremendous casualties and great economic shock. Although some repurposed drugs have shown potential therapeutic efficacy in clinical trials, specific therapeutic agents targeting coronaviruses have not yet been developed. During coronavirus replication, a replicase gene cluster, including RNA-dependent RNA polymerase (RdRp), is alternatively translated via a process called -1 programmed ribosomal frameshift (−1 PRF) by an RNA pseudoknot structure encoded in viral RNAs. The coronavirus frameshifting has been identified previously as a target for antiviral therapy. In this study, the frameshifting efficiencies of MERS-CoV, SARS-CoV and SARS-CoV-2 were determined using an in vitro −1 PRF assay system. Our group has searched approximately 9689 small molecules to identify potential −1 PRF inhibitors. Herein, we found that a novel compound, 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline (KCB261770), inhibits the frameshifting of MERS-CoV and effectively suppresses viral propagation in MERS-CoV-infected cells. The inhibitory effects of 87 derivatives of furo[2,3-b]quinolines were also examined showing less prominent inhibitory effect when compared to compound KCB261770. We demonstrated that KCB261770 inhibits the frameshifting without suppressing cap-dependent translation. Furthermore, this compound was able to inhibit the frameshifting, to some extent, of SARS-CoV and SARS-CoV-2. Therefore, the novel compound 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline may serve as a promising drug candidate to interfere with pan-coronavirus frameshifting.
Collapse
|
29
|
Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nat Commun 2021; 12:4749. [PMID: 34362921 PMCID: PMC8346527 DOI: 10.1038/s41467-021-25085-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
The RNA pseudoknot that stimulates programmed ribosomal frameshifting in SARS-CoV-2 is a possible drug target. To understand how it responds to mechanical tension applied by ribosomes, thought to play a key role during frameshifting, we probe its structural dynamics using optical tweezers. We find that it forms multiple structures: two pseudoknotted conformers with different stability and barriers, and alternative stem-loop structures. The pseudoknotted conformers have distinct topologies, one threading the 5′ end through a 3-helix junction to create a knot-like fold, the other with unthreaded 5′ end, consistent with structures observed via cryo-EM and simulations. Refolding of the pseudoknotted conformers starts with stem 1, followed by stem 3 and lastly stem 2; Mg2+ ions are not required, but increase pseudoknot mechanical rigidity and favor formation of the knot-like conformer. These results resolve the SARS-CoV-2 frameshift signal folding mechanism and highlight its conformational heterogeneity, with important implications for structure-based drug-discovery efforts. The RNA pseudoknot of SARS-CoV-2 promotes -1 programmed ribosomal frameshifting. Here the authors use single molecule force spectroscopy to study the folding of this pseudoknot, showing that it forms at least two different pseudoknot conformers with distinct fold topologies.
Collapse
|
30
|
Gil Martínez V, Avedillo Salas A, Santander Ballestín S. Antiviral Therapeutic Approaches for SARS-CoV-2 Infection: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:736. [PMID: 34451833 PMCID: PMC8398077 DOI: 10.3390/ph14080736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the lack of an etiologic treatment for SARS-CoV-2 and the difficulties involved in developing new drugs, some drugs already approved for other diseases or with efficacy against SARS and MERS, have been used in patients with COVID-19. This systematic review aims to summarize evidence on the efficacy and safety of five antivirals applied to patients with COVID-19, that have proven to be effective either in vitro studies or in studies on SARS-CoV and MERS.; An intensive search of different databases (Pub Med, WoS, MEDLINE and Cochrane COVID-19 Study Register) has been carried out until the end of April 2021. This systematic review has been conducted according to the PRISMA statement. From each of the included studies, the characteristics of the intervention and comparison groups, demographic data and results were extracted independently; Remdesivir is well tolerated and helps to accelerate clinical improvement but is ineffective in reducing mortality. Favipiravir is safe and shows promising results regarding symptom resolution but does not improve viral clearance. The use of lopinavir/ritonavir has been associated with an increased risk of gastrointestinal adverse events and it has not proven to be effective. No significant differences were observed between patients treated with ribavirin or umifenovir and their respective control groups; Remdesivir and favipiravir are well tolerated and effective in accelerating clinical improvement. This systematic review does not support the use of lopinavir/ritonavir, ribavirin and umifenovir in hospitalized patients with COVID-19.
Collapse
Affiliation(s)
| | | | - Sonia Santander Ballestín
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain; (V.G.M.); (A.A.S.)
| |
Collapse
|
31
|
Li X, Zhang L, Chen S, Ouyang H, Ren L. Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Microorganisms 2021; 9:1479. [PMID: 34361915 PMCID: PMC8306356 DOI: 10.3390/microorganisms9071479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which caused Coronaviruses Disease 2019 (COVID-19) and a worldwide pandemic, is the seventh human coronavirus that has been cross-transmitted from animals to humans. It can be predicted that with continuous contact between humans and animals, more viruses will spread from animals to humans. Therefore, it is imperative to develop universal coronavirus or pan-coronavirus vaccines or drugs against the next coronavirus pandemic. However, a suitable target is critical for developing pan-coronavirus antivirals against emerging or re-emerging coronaviruses. In this review, we discuss the latest progress of possible targets of pan-coronavirus antiviral strategies for emerging or re-emerging coronaviruses, including targets for pan-coronavirus inhibitors and vaccines, which will provide prospects for the current and future research and treatment of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Linzhu Ren
- Key Laboratory for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, 5333 Xi’An Road, Changchun 130062, China; (X.L.); (L.Z.); (S.C.); (H.O.)
| |
Collapse
|
32
|
Abstract
RNAs are involved in an enormous range of cellular processes, including gene regulation, protein synthesis, and cell differentiation, and dysfunctional RNAs are associated with disorders such as cancers, neurodegenerative diseases, and viral infections. Thus, the identification of compounds with the ability to bind RNAs and modulate their functions is an exciting approach for developing next-generation therapies. Numerous RNA-binding agents have been reported over the past decade, but the design of synthetic molecules with selectivity for specific RNA sequences is still in its infancy. In this perspective, we highlight recent advances in targeting RNAs with synthetic molecules, and we discuss the potential value of this approach for the development of innovative therapeutic agents.
Collapse
Affiliation(s)
- Farzad Zamani
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
33
|
Rao S, Hoskins I, Tonn T, Garcia PD, Ozadam H, Cenik ES, Cenik C. Genes with 5' terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.13.295493. [PMID: 32995776 PMCID: PMC7523102 DOI: 10.1101/2020.09.13.295493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of NSP1. Finally, we found that LARP1, a key effector protein in the mTOR pathway may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.
Collapse
Affiliation(s)
- Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - P. Daniela Garcia
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
34
|
Yan S, Wu G. Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development. FASEB J 2021; 35:e21573. [PMID: 33913206 PMCID: PMC8206714 DOI: 10.1096/fj.202100280rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus (CoV) 3-chymotrypsin (C)-like cysteine protease (3CLpro ) is a target for anti-CoV drug development and drug repurposing because along with papain-like protease, it cleaves CoV-encoded polyproteins (pp1a and pp1ab) into nonstructural proteins (nsps) for viral replication. However, the cleavage sites of 3CLpro and their relevant nsps remain unclear, which is the subject of this perspective. Here, we address the subject from three standpoints. First, we explore the inconsistency in the cleavage sites and relevant nsps across CoVs, and investigate the function of nsp11. Second, we consider the nsp16 mRNA overlapping of the spike protein mRNA, and analyze the effect of this overlapping on mRNA vaccines. Finally, we study nsp12, whose existence depends on ribosomal frameshifting, and investigate whether 3CLpro requires a large number of inhibitors to achieve full inhibition. This perspective helps us to clarify viral replication and is useful for developing anti-CoV drugs with 3CLpro as a target in the current coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Shaomin Yan
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| | - Guang Wu
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| |
Collapse
|
35
|
Rangan R, Watkins AM, Chacon J, Kretsch R, Kladwang W, Zheludev IN, Townley J, Rynge M, Thain G, Das R. De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures. Nucleic Acids Res 2021; 49:3092-3108. [PMID: 33693814 PMCID: PMC8034642 DOI: 10.1093/nar/gkab119] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta's FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5' UTR; the reverse complement of the 5' UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3' UTR. For eleven of these elements (the stems in SL1-8, reverse complement of SL1-4, FSE, s2m and 3' UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets ('FARFAR2-SARS-CoV-2', https://github.com/DasLab/FARFAR2-SARS-CoV-2; and 'FARFAR2-Apo-Riboswitch', at https://github.com/DasLab/FARFAR2-Apo-Riboswitch') include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules.
Collapse
Affiliation(s)
- Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Jose Chacon
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Rachael Kretsch
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Ivan N Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
| | | | - Mats Rynge
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA 90292, USA
| | - Gregory Thain
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Chiara M, D’Erchia AM, Gissi C, Manzari C, Parisi A, Resta N, Zambelli F, Picardi E, Pavesi G, Horner DS, Pesole G. Next generation sequencing of SARS-CoV-2 genomes: challenges, applications and opportunities. Brief Bioinform 2021; 22:616-630. [PMID: 33279989 PMCID: PMC7799330 DOI: 10.1093/bib/bbaa297] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Various next generation sequencing (NGS) based strategies have been successfully used in the recent past for tracing origins and understanding the evolution of infectious agents, investigating the spread and transmission chains of outbreaks, as well as facilitating the development of effective and rapid molecular diagnostic tests and contributing to the hunt for treatments and vaccines. The ongoing COVID-19 pandemic poses one of the greatest global threats in modern history and has already caused severe social and economic costs. The development of efficient and rapid sequencing methods to reconstruct the genomic sequence of SARS-CoV-2, the etiological agent of COVID-19, has been fundamental for the design of diagnostic molecular tests and to devise effective measures and strategies to mitigate the diffusion of the pandemic. Diverse approaches and sequencing methods can, as testified by the number of available sequences, be applied to SARS-CoV-2 genomes. However, each technology and sequencing approach has its own advantages and limitations. In the current review, we will provide a brief, but hopefully comprehensive, account of currently available platforms and methodological approaches for the sequencing of SARS-CoV-2 genomes. We also present an outline of current repositories and databases that provide access to SARS-CoV-2 genomic data and associated metadata. Finally, we offer general advice and guidelines for the appropriate sharing and deposition of SARS-CoV-2 data and metadata, and suggest that more efficient and standardized integration of current and future SARS-CoV-2-related data would greatly facilitate the struggle against this new pathogen. We hope that our 'vademecum' for the production and handling of SARS-CoV-2-related sequencing data, will contribute to this objective.
Collapse
Affiliation(s)
- Matteo Chiara
- molecular biology and bioinformatics at the University of Milan
| | - Anna Maria D’Erchia
- molecular biology at the University of Bari and research associate at the Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies of the National Research Council in Bari
| | - Carmela Gissi
- molecular biology at the University of Bari and research associate at the Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies of the National Research Council in Bari
| | - Caterina Manzari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies of the National Research Council in Bari
| | - Antonio Parisi
- Genetic and Molecular Epidemiology Laboratory at the Experimental Zooprophylactic Institute of Apulia and Basilicata
| | - Nicoletta Resta
- Medical Genetics at the University of Bari. She heads the Laboratory Unit of Medical Genetics and the School of Specialization in Medical Genetics
| | | | - Ernesto Picardi
- molecular biology and bioinformatics at the University of Bari and research associate at the Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies of the National Research Council in Bari
| | - Giulio Pavesi
- Associate Professor of bioinformatics at the University of Milan (Italy)
| | - David S Horner
- molecular biology and bioinformatics at the University of Milan
| | - Graziano Pesole
- molecular biology at the University of Bari and Research Associate at the Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies of the National Research Council in Bari
| |
Collapse
|
37
|
Colina SE, Serena MS, Echeverría MG, Metz GE. Clinical and molecular aspects of veterinary coronaviruses. Virus Res 2021; 297:198382. [PMID: 33705799 PMCID: PMC7938195 DOI: 10.1016/j.virusres.2021.198382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina.
| |
Collapse
|
38
|
Schmidt N, Lareau CA, Keshishian H, Ganskih S, Schneider C, Hennig T, Melanson R, Werner S, Wei Y, Zimmer M, Ade J, Kirschner L, Zielinski S, Dölken L, Lander ES, Caliskan N, Fischer U, Vogel J, Carr SA, Bodem J, Munschauer M. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat Microbiol 2021; 6:339-353. [PMID: 33349665 PMCID: PMC7906908 DOI: 10.1038/s41564-020-00846-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023]
Abstract
Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spectrometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections. We demonstrated by genetic perturbation that cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1), two of the most strongly enriched viral RNA binders, restrict SARS-CoV-2 replication in infected cells and provide a global map of their direct RNA contact sites. Pharmacological inhibition of three other RNA interactome members, PPIA, ATP1A1, and the ARP2/3 complex, reduced viral replication in two human cell lines. The identification of host dependency factors and defence strategies as presented in this work will improve the design of targeted therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Nora Schmidt
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Caleb A Lareau
- School of Medicine, Stanford University, Palo Alto, CA, USA
| | | | - Sabina Ganskih
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Cornelius Schneider
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Department of Biochemistry, University of Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Simone Werner
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Yuanjie Wei
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Matthias Zimmer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Jens Ade
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Luisa Kirschner
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sebastian Zielinski
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Lars Dölken
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Utz Fischer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
- Department of Biochemistry, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jochen Bodem
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Mathias Munschauer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany.
| |
Collapse
|
39
|
Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell 2021; 81:584-598.e5. [PMID: 33444546 PMCID: PMC7775661 DOI: 10.1016/j.molcel.2020.12.041] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) is the positive-sense RNA virus that causes coronavirus disease 2019 (COVID-19). The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form RNA structures, yet as much as 97% of its 30 kilobases have not been structurally explored. Here, we apply a novel long amplicon strategy to determine the secondary structure of the SARS-CoV-2 RNA genome at single-nucleotide resolution in infected cells. Our in-depth structural analysis reveals networks of well-folded RNA structures throughout Orf1ab and reveals aspects of SARS-CoV-2 genome architecture that distinguish it from other RNA viruses. Evolutionary analysis shows that several features of the SARS-CoV-2 genomic structure are conserved across β-coronaviruses, and we pinpoint regions of well-folded RNA structure that merit downstream functional analysis. The native, secondary structure of SARS-CoV-2 presented here is a roadmap that will facilitate focused studies on the viral life cycle, facilitate primer design, and guide the identification of RNA drug targets against COVID-19.
Collapse
Affiliation(s)
- Nicholas C Huston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | | | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
40
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
41
|
Omar SI, Zhao M, Sekar RV, Moghadam SA, Tuszynski JA, Woodside MT. Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers. PLoS Comput Biol 2021; 17:e1008603. [PMID: 33465066 PMCID: PMC7845960 DOI: 10.1371/journal.pcbi.1008603] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/29/2021] [Accepted: 12/02/2020] [Indexed: 01/26/2023] Open
Abstract
The coronavirus causing the COVID-19 pandemic, SARS-CoV-2, uses -1 programmed ribosomal frameshifting (-1 PRF) to control the relative expression of viral proteins. As modulating -1 PRF can inhibit viral replication, the RNA pseudoknot stimulating -1 PRF may be a fruitful target for therapeutics treating COVID-19. We modeled the unusual 3-stem structure of the stimulatory pseudoknot of SARS-CoV-2 computationally, using multiple blind structural prediction tools followed by μs-long molecular dynamics simulations. The results were compared for consistency with nuclease-protection assays and single-molecule force spectroscopy measurements of the SARS-CoV-1 pseudoknot, to determine the most likely conformations. We found several possible conformations for the SARS-CoV-2 pseudoknot, all having an extended stem 3 but with different packing of stems 1 and 2. Several conformations featured rarely-seen threading of a single strand through junctions formed between two helices. These structural models may help interpret future experiments and support efforts to discover ligands inhibiting -1 PRF in SARS-CoV-2.
Collapse
Affiliation(s)
- Sara Ibrahim Omar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
42
|
de Breyne S, Vindry C, Guillin O, Condé L, Mure F, Gruffat H, Chavatte L, Ohlmann T. Translational control of coronaviruses. Nucleic Acids Res 2020; 48:12502-12522. [PMID: 33264393 PMCID: PMC7736815 DOI: 10.1093/nar/gkaa1116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.
Collapse
Affiliation(s)
- Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Olivia Guillin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lionel Condé
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| |
Collapse
|
43
|
Nomburg J, Meyerson M, DeCaprio JA. Pervasive generation of non-canonical subgenomic RNAs by SARS-CoV-2. Genome Med 2020; 12:108. [PMID: 33256807 PMCID: PMC7704119 DOI: 10.1186/s13073-020-00802-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND SARS-CoV-2, a positive-sense RNA virus in the family Coronaviridae, has caused a worldwide pandemic of coronavirus disease 2019 or COVID-19. Coronaviruses generate a tiered series of subgenomic RNAs (sgRNAs) through a process involving homology between transcriptional regulatory sequences (TRS) located after the leader sequence in the 5' UTR (the TRS-L) and TRS located near the start of ORFs encoding structural and accessory proteins (TRS-B) near the 3' end of the genome. In addition to the canonical sgRNAs generated by SARS-CoV-2, non-canonical sgRNAs (nc-sgRNAs) have been reported. However, the consistency of these nc-sgRNAs across viral isolates and infection conditions is unknown. The comprehensive definition of SARS-CoV-2 RNA products is a key step in understanding SARS-CoV-2 pathogenesis. METHODS Here, we report an integrative analysis of eight independent SARS-CoV-2 transcriptomes generated using three sequencing strategies, five host systems, and seven viral isolates. Read-mapping to the SARS-CoV-2 genome was used to determine the 5' and 3' coordinates of all junctions in viral RNAs identified in these samples. RESULTS Using junctional abundances, we show nc-sgRNAs make up as much as 33% of total sgRNAs in cell culture models of infection, are largely consistent in abundance across independent transcriptomes, and increase in abundance over time during infection. By assessing the homology between sequences flanking the 5' and 3' junction points, we show that nc-sgRNAs are not associated with TRS-like homology. By incorporating read coverage information, we find strong evidence for subgenomic RNAs that contain only 5' regions of ORF1a. Finally, we show that non-canonical junctions change the landscape of viral open reading frames. CONCLUSIONS We identify canonical and non-canonical junctions in SARS-CoV-2 sgRNAs and show that these RNA products are consistently generated by many independent viral isolates and sequencing approaches. These analyses highlight the diverse transcriptional activity of SARS-CoV-2 and offer important insights into SARS-CoV-2 biology.
Collapse
Affiliation(s)
- Jason Nomburg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Abstract
Many research teams all over the world focus their research on the SARS-CoV-2, the new coronavirus that causes the so-called COVID-19 disease. Most of the studies identify the main protease or 3C-like protease (Mpro/3CLpro) as a valid target for large-spectrum inhibitors. Also, the interaction of the human receptor angiotensin-converting enzyme 2 (ACE2) with the viral surface glycoprotein (S) is studied in depth. Structural studies tried to identify the residues responsible for enhancement/weaken virus-ACE2 interactions or the cross-reactivity of the neutralizing antibodies. Although the understanding of the immune system and the hyper-inflammatory process in COVID-19 are crucial for managing the immediate and the long-term consequences of the disease, not many X-ray/NMR/cryo-EM crystals are available. In addition to 3CLpro, the crystal structures of other nonstructural proteins offer valuable information for elucidating some aspects of the SARS-CoV-2 infection. Thus, the structural analysis of the SARS-CoV-2 is currently mainly focused on three directions-finding Mpro/3CLpro inhibitors, the virus-host cell invasion, and the virus-neutralizing antibody interaction.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349, Cluj-Napoca, Romania.
- Department of Microbiology, County Emergency Clinical Hospital, 400006, Cluj-Napoca, Romania.
| |
Collapse
|
45
|
Asrani P, Hasan GM, Sohal SS, Hassan MI. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:634-644. [PMID: 32940573 DOI: 10.1089/omi.2020.0131] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the first quarter of the 21st century, we are already facing the third emergence of a coronavirus outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic. Comparative genomics can inform a deeper understanding of the pathogenesis of COVID-19. Previous strains of coronavirus, SARS-CoV, and Middle-East respiratory syndrome-coronavirus (MERS-CoV), have been known to cause acute lung injuries in humans. SARS-CoV-2 shares genetic similarity with SARS-CoV with some modification in the S protein leading to their enhanced binding affinity toward the angiotensin-converting enzyme 2 (ACE2) receptors of human lung cells. This expert review examines the features of all three coronaviruses through a conceptual lens of comparative genomics. In particular, the life cycle of SARS-CoV-2 that enables its survival within the host is highlighted. Susceptibility of humans to coronavirus outbreaks in the 21st century calls for comparisons of the transmission history, hosts, reservoirs, and fatality rates of these viruses so that evidence-based and effective planetary health interventions can be devised to prevent future zoonotic outbreaks. Comparative genomics offers new insights on putative and novel viral targets with an eye to both therapeutic innovation and prevention. We conclude the expert review by (1) articulating the lessons learned so far, whereas the research is still being actively sought after in the field, and (2) the challenges and prospects in deciphering the linkages among multiomics biological variability and COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Purva Asrani
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
46
|
Neupane K, Munshi S, Zhao M, Ritchie DB, Ileperuma SM, Woodside MT. Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot. J Mol Biol 2020; 432:5843-5847. [PMID: 32920049 PMCID: PMC7483078 DOI: 10.1016/j.jmb.2020.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/23/2023]
Abstract
SARS-CoV-2 uses −1 programmed ribosomal frameshifting (−1 PRF) to control expression of key viral proteins. Because modulating −1 PRF can attenuate the virus, ligands binding to the RNA pseudoknot that stimulates −1 PRF may have therapeutic potential. Mutations in the pseudoknot have occurred during the pandemic, but how they affect −1 PRF efficiency and ligand activity is unknown. Studying a panel of six mutations in key regions of the pseudoknot, we found that most did not change −1 PRF levels, even when base-pairing was disrupted, but one led to a striking 3-fold decrease, suggesting SARS-CoV-2 may be less sensitive to −1 PRF modulation than expected. Examining the effects of a small-molecule −1 PRF inhibitor active against SARS-CoV-2, it had a similar effect on all mutants tested, regardless of basal −1 PRF efficiency, indicating that anti-frameshifting activity can be resistant to natural pseudoknot mutations. These results have important implications for therapeutic strategies targeting SARS-CoV-2 through modulation of −1 PRF.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sneha Munshi
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
47
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
48
|
Maranon DG, Anderson JR, Maranon AG, Wilusz J. The interface between coronaviruses and host cell RNA biology: Novel potential insights for future therapeutic intervention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1614. [PMID: 32638509 PMCID: PMC7361139 DOI: 10.1002/wrna.1614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
Coronaviruses, including SARS-Cov-2, are RNA-based pathogens that interface with a large variety of RNA-related cellular processes during infection. These processes include capping, polyadenylation, localization, RNA stability, translation, and regulation by RNA binding proteins or noncoding RNA effectors. The goal of this article is to provide an in-depth perspective on the current state of knowledge of how various coronaviruses interact with, usurp, and/or avoid aspects of these cellular RNA biology machineries. A thorough understanding of how coronaviruses interact with RNA-related posttranscriptional processes in the cell should allow for new insights into aspects of viral pathogenesis as well as identify new potential avenues for the development of anti-coronaviral therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- David G. Maranon
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - John R. Anderson
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Abril G. Maranon
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
49
|
Keshavarzi Arshadi A, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, Collins J, Diez-Cecilia E, Kelly B, Goodarzi H, Yuan JS. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Front Artif Intell 2020; 3:65. [PMID: 33733182 PMCID: PMC7861281 DOI: 10.3389/frai.2020.00065] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
SARS-COV-2 has roused the scientific community with a call to action to combat the growing pandemic. At the time of this writing, there are as yet no novel antiviral agents or approved vaccines available for deployment as a frontline defense. Understanding the pathobiology of COVID-19 could aid scientists in their discovery of potent antivirals by elucidating unexplored viral pathways. One method for accomplishing this is the leveraging of computational methods to discover new candidate drugs and vaccines in silico. In the last decade, machine learning-based models, trained on specific biomolecules, have offered inexpensive and rapid implementation methods for the discovery of effective viral therapies. Given a target biomolecule, these models are capable of predicting inhibitor candidates in a structural-based manner. If enough data are presented to a model, it can aid the search for a drug or vaccine candidate by identifying patterns within the data. In this review, we focus on the recent advances of COVID-19 drug and vaccine development using artificial intelligence and the potential of intelligent training for the discovery of COVID-19 therapeutics. To facilitate applications of deep learning for SARS-COV-2, we highlight multiple molecular targets of COVID-19, inhibition of which may increase patient survival. Moreover, we present CoronaDB-AI, a dataset of compounds, peptides, and epitopes discovered either in silico or in vitro that can be potentially used for training models in order to extract COVID-19 treatment. The information and datasets provided in this review can be used to train deep learning-based models and accelerate the discovery of effective viral therapies.
Collapse
Affiliation(s)
- Arash Keshavarzi Arshadi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Julia Webb
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Milad Salem
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| | | | | | - Niloofar Ghadirian
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Jennifer Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jiann Shiun Yuan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
50
|
Rangan R, Zheludev IN, Hagey RJ, Pham EA, Wayment-Steele HK, Glenn JS, Das R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look. RNA (NEW YORK, N.Y.) 2020; 26:937-959. [PMID: 32398273 PMCID: PMC7373990 DOI: 10.1261/rna.076141.120] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 05/11/2023]
Abstract
As the COVID-19 outbreak spreads, there is a growing need for a compilation of conserved RNA genome regions in the SARS-CoV-2 virus along with their structural propensities to guide development of antivirals and diagnostics. Here we present a first look at RNA sequence conservation and structural propensities in the SARS-CoV-2 genome. Using sequence alignments spanning a range of betacoronaviruses, we rank genomic regions by RNA sequence conservation, identifying 79 regions of length at least 15 nt as exactly conserved over SARS-related complete genome sequences available near the beginning of the COVID-19 outbreak. We then confirm the conservation of the majority of these genome regions across 739 SARS-CoV-2 sequences subsequently reported from the COVID-19 outbreak, and we present a curated list of 30 "SARS-related-conserved" regions. We find that known RNA structured elements curated as Rfam families and in prior literature are enriched in these conserved genome regions, and we predict additional conserved, stable secondary structures across the viral genome. We provide 106 "SARS-CoV-2-conserved-structured" regions as potential targets for antivirals that bind to structured RNA. We further provide detailed secondary structure models for the extended 5' UTR, frameshifting stimulation element, and 3' UTR. Lastly, we predict regions of the SARS-CoV-2 viral genome that have low propensity for RNA secondary structure and are conserved within SARS-CoV-2 strains. These 59 "SARS-CoV-2-conserved-unstructured" genomic regions may be most easily accessible by hybridization in primer-based diagnostic strategies.
Collapse
Affiliation(s)
- Ramya Rangan
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| | - Ivan N Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Rachel J Hagey
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, California 94305, USA
| | - Edward A Pham
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, California 94305, USA
| | | | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, California 94305, USA
- Palo Alto Veterans Administration, Palo Alto, California 94304, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, California 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|