1
|
Hu X, Huang Z, Li L. LDHB Mediates Histone Lactylation to Activate PD-L1 and Promote Ovarian Cancer Immune Escape. Cancer Invest 2024:1-10. [PMID: 39587817 DOI: 10.1080/07357907.2024.2430283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND To investigate the effects of LDHB on lactylation of programmed cell death 1 ligand (PD-L1) and immune evasion of ovarian cancer. METHODS Ovarian cancer cells were transfected with LDHB siRNA and cultured with primed T cells. Cell proliferation and viability were measured by cell counting kit 8 (CCK-8) and colony formation assay. The production of immune factors was detected by enzyme-linked immunosorbent assay (ELISA). The histone lactylation and activity of PD-L1 promoter were measured by chromatin immunoprecipitation (ChIP)-qPCR assay and luciferase reporter gene assay, respectively. RESULTS Knockdown of LDHB notably inhibited the growth, glucose uptake, lactate production, and ATP production of ovarian cancer cells. Knockdown of LDHB enhanced the killing effects of T cells, led to increased production of immune activation factors IL-2, TNF-α, and IFN-γ, as well as elevated the levels of granzyme B and perforin. Mechanical study identified that LDHB regulated the H3K18 lactylation (H3K18la) modification on PD-L1 promoter region to promote its expression. Overexpression of PD-L1 abolished the immune activation effects that induced by siLDHB. CONCLUSION The LDHB modulated lactate production and the histone lactylation on PD-L1 promoter, which ultimately regulated its expression and participated in the immune evasion of ovarian cancer cells.
Collapse
Affiliation(s)
- Xuemei Hu
- Department of Obstetrics and Gynecology, People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Zhenqiang Huang
- Department of Clinical Laboratory, People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Lingyun Li
- Department of Clinical Laboratory, People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
2
|
Kobayashi K, Sakano S, Matsumoto H, Yamamoto M, Tsuchida M, Tei Y, Nagao K, Oba K, Kitahara S, Yano S, Yoshihiro S, Yamamoto Y, Ohmi C, Komatsu H, Misumi T, Akao J, Shiraishi K. Prognostic risk score and index including the platelet-to-lymphocyte ratio and lactate dehydrogenase in patients with metastatic or unresectable urothelial carcinoma treated with immune checkpoint inhibitors. Jpn J Clin Oncol 2024:hyae137. [PMID: 39373462 DOI: 10.1093/jjco/hyae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Avelumab and pembrolizumab are administered after platinum-based chemotherapy for the treatment of metastatic urothelial carcinoma. We explored the prognostic factors and risk scores for predicting the outcomes of metastatic or unresectable urothelial carcinoma at the start of treatment with immune checkpoint inhibitors. METHODS This retrospective study included patients with metastatic or unresectable urothelial carcinoma treated with avelumab or pembrolizumab after platinum-based chemotherapy between January 2017 and December 2022. Prognostic factors, including patient and tumor characteristics and blood data at the initiation of immune checkpoint inhibitor therapy, were examined. RESULTS This study included 36 and 207 patients treated with avelumab and pembrolizumab, respectively, for metastatic or unresectable urothelial carcinoma. Eastern Cooperative Oncology Group performance status, presence of visceral metastases, platelet-to-lymphocyte ratio and lactate dehydrogenase levels were independent prognostic factors for predicting overall survival. The median overall survival of patients in the risk-score model was 58.5 months (score zero), 27.9 months (one), 13.1 months (two) and 3.9 months (three or higher). The C-index for overall survival was 0.718 for the newly developed risk score compared with 0.679 for the Bellmunt score and 0.703 for the Bellmunt-C-reactive protein score. Additionally, the C-index for overall survival using the immune prognostic index derived from lactate dehydrogenase and the platelet-to-lymphocyte ratio was 0.646 compared with 0.615 for the Lung Immune Prognostic Index. CONCLUSIONS A risk score that includes the platelet-to-lymphocyte ratio and lactate dehydrogenase may serve as a useful model for predicting prognosis following the initiation of immune checkpoint inhibitors in patients with metastatic or unresectable urothelial carcinoma.
Collapse
Affiliation(s)
- Keita Kobayashi
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Shigeru Sakano
- Department of Urology, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Hiroaki Matsumoto
- Department of Urology, Yamaguchi Prefectural Grand Medical Center, Hofu, Japan
| | - Mitsutaka Yamamoto
- Department of Urology, Yamaguchi Prefectural Grand Medical Center, Hofu, Japan
| | - Masahiro Tsuchida
- Department of Urology and Nephrology, Tokuyama Central Hospital, Shunan, Japan
| | - Yasuhide Tei
- Department of Urology, Kanmon Medical Center, Shimonoseki, Japan
| | - Kazuhiro Nagao
- Department of Urology, Shuto General Hospital, Yanai, Japan
| | - Kazuo Oba
- Department of Urology, Saiseikai Yamaguchi General Hospital, Yamaguchi, Japan
| | - Seiji Kitahara
- Department of Urology, Nagato General Hospital, Nagato, Japan
| | - Seiji Yano
- Department of Urology, Masuda Red Cross Hospital, Masuda, Japan
| | - Satoru Yoshihiro
- Department of Urology, Shimonoseki City Hospital, Shimonoseki, Japan
| | - Yoshiaki Yamamoto
- Department of Urology, Sanyo-Onoda Municipal Hospital, Sanyo-Onoda, Japan
| | - Chietaka Ohmi
- Department of Urology, Ube-kohsan Central Hospital Corp, Ube, Japan
| | - Hirotaka Komatsu
- Department of Urology, Shimonoseki Saiseikai Toyoura Hospital, Shimonoseki, Japan
| | - Taku Misumi
- Department of Urology, Ogori Daiichi General Hospital, Yamaguchi, Japan
| | - Jumpei Akao
- Department of Urology, Hikari Municipal Hikari General Hospital, Hikari, Japan
| | - Koji Shiraishi
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
3
|
Shi Z, Chen Y, Liu A, Zeng J, Xie W, Lin X, Cheng Y, Xu H, Zhou J, Gao S, Feng C, Zhang H, Sun Y. Application of random survival forest to establish a nomogram combining clinlabomics-score and clinical data for predicting brain metastasis in primary lung cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03688-x. [PMID: 39225959 DOI: 10.1007/s12094-024-03688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To establish a nomogram for predicting brain metastasis (BM) in primary lung cancer at 12, 18, and 24 months after initial diagnosis. METHODS In this study, we included 428 patients who were diagnosed with primary lung cancer at Harbin Medical University Cancer Hospital between January 2020 and January 2022. The endpoint event was BM. The patients were randomly categorized into two groups in a 7:3 ratio: training (n = 299) and validation (n = 129) sets. Least absolute shrinkage and selection operator was utilized to analyze the laboratory test results in the training set. Furthermore, clinlabomics-score was determined using regression coefficients. Then, clinlabomics-score was combined with clinical data to construct a nomogram using random survival forest (RSF) and Cox multivariate regression. Then, various methods were used to evaluate the performance of the nomogram. RESULTS Five independent predictive factors (pathological type, diameter, lymph node metastasis, non-lymph node metastasis and clinlabomics-score) were used to construct the nomogram. In the validation set, the bootstrap C-index was 0.7672 (95% CI 0.7092-0.8037), 12-month AUC was 0.787 (95% CI 0.708-0.865), 18-month AUC was 0.809 (95% CI 0.735-0.884), and 24-month AUC was 0.858 (95% CI 0.792-0.924). In addition, the calibration curve, decision curve analysis and Kaplan-Meier curves revealed a good performance of the nomogram. CONCLUSIONS Finally, we constructed and validated a nomogram to predict BM risk in primary lung cancer. Our nomogram can identify patients at high risk of BM and provide a reference for clinical decision-making at different disease time points.
Collapse
Affiliation(s)
- Zhongxiang Shi
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yixin Chen
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Aoyu Liu
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Wanlin Xie
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Xin Lin
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yangyang Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Huimin Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Jialing Zhou
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Shan Gao
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Chunyuan Feng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Hongxia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| | - Yihua Sun
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Bolat A, Gürsel O, Zeybek C, Kürekçi AE. The Relationship Between Serum Lactate Dehydrogenase Enzyme Levels and Myeloid Engraftment in Hematopoietic Stem Cell Transplantation. Transplant Proc 2024; 56:1665-1670. [PMID: 39214724 DOI: 10.1016/j.transproceed.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The early detection of myeloid engraftment after hematopoietic stem cell transplantation (HSCT) is of clinical importance for clinicians. In this study, we evaluated whether serum lactic dehydrogenase enzyme levels are significant predictors in the early detection of successful myeloid engraftment after HSCT. METHODS The study included 74 patients, all of whom underwent HSCT between February 2014 and June 2020. Serum lactic dehydrogenase (LDH) enzyme and complete blood parameters were evaluated at the start of the preparation regimen, on the day of product infusion, 5 days before myeloid engraftment, on the day of myeloid engraftment, and 5 days after engraftment. RESULTS LDH enzyme levels increased statistically significantly 5 days before myeloid engraftment (P = .005), and this increase was observed to continue on the day of engraftment, and 5 days after engraftment, but the differences between the measurements 5 days before engraftment and those on the day of engraftment, and 5 days after engraftment were statistically insignificant (P > .05). There was no significant difference in LDH enzyme levels between the measurements made at the beginning of the preparation regimen and those made on the infusion day (P > .05). CONCLUSIONS Increased LDH enzyme levels after HSCT are associated with increased myelopoiesis in the bone marrow. The monitoring of serum LDH levels and the detection of the onset of increase in enzyme levels in patients undergoing HSCT may be predictors of engraftment.
Collapse
Affiliation(s)
- Ahmet Bolat
- Department of Child Health and Diseases, University of Health Sciences Gülhane Medical Faculty, Ankara, Turkey.
| | - Orhan Gürsel
- Department of Pediatric Hematology, University of Health Sciences Gülhane Medical Faculty, Ankara, Turkey
| | - Cengiz Zeybek
- Department of Child Health and Diseases, University of Health Sciences Gülhane Medical Faculty, Ankara, Turkey
| | - Ahmet Emin Kürekçi
- Department of Pediatric Hematology, Private Lösante Children and Adult Hospital, Ankara, Turkey
| |
Collapse
|
5
|
Chen L, Zhang W, Shi H, Zhu Y, Chen H, Wu Z, Zhong M, Shi X, Li Q, Wang T. Metabolism score and machine learning models for the prediction of esophageal squamous cell carcinoma progression. Cancer Sci 2024; 115:3127-3142. [PMID: 38992901 PMCID: PMC11462955 DOI: 10.1111/cas.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarkers that can facilitate clinical management and treatment decisions. This study recruited 491 ESCC patients who underwent surgical treatment at Huashan Hospital, Fudan University. We incorporated 14 blood metabolic indicators and identified independent prognostic indicators for overall survival through univariate and multivariate analyses. Subsequently, a metabolism score formula was established based on the biochemical markers. We constructed a nomogram and machine learning models utilizing the metabolism score and clinically significant prognostic features, followed by an evaluation of their predictive accuracy and performance. We identified alkaline phosphatase, free fatty acids, homocysteine, lactate dehydrogenase, and triglycerides as independent prognostic indicators for ESCC. Subsequently, based on these five indicators, we established a metabolism score that serves as an independent prognostic factor in ESCC patients. By utilizing this metabolism score in conjunction with clinical features, a nomogram can precisely predict the prognosis of ESCC patients, achieving an area under the curve (AUC) of 0.89. The random forest (RF) model showed superior predictive ability (AUC = 0.90, accuracy = 86%, Matthews correlation coefficient = 0.55). Finally, we used an RF model with optimal performance to establish an online predictive tool. The metabolism score developed in this study serves as an independent prognostic indicator for ESCC patients.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - WenXin Zhang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Huanying Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Yongjun Zhu
- Department of Cardiovascular Thoracic Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Haifei Chen
- Department of Pharmacy, Baoshan Campus of Huashan HospitalFudan UniversityShanghaiChina
| | - Zimei Wu
- Department of Pharmacy, Baoshan Campus of Huashan HospitalFudan UniversityShanghaiChina
| | - Mingkang Zhong
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaojin Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Qunyi Li
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Tianxiao Wang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Yang FF, Liu JJ, Xu XL, Hu T, Liu JQ, He ZX, Zhao GY, Wei B, Ma LY. Discovery of Novel Imidazo[1,2- a]pyridine-Based HDAC6 Inhibitors as an Anticarcinogen with a Cardioprotective Effect. J Med Chem 2024; 67:14345-14369. [PMID: 39102466 DOI: 10.1021/acs.jmedchem.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cardiotoxicity associated with chemotherapy has gradually become the major cause of death in cancer patients. The development of bifunctional drugs with both cardioprotective and antitumor effects has become the future direction. HDAC6 plays important roles in the progression, treatment, and prognosis of cancer and cardiovascular diseases, but bifunctional inhibitors have not been reported. Herein, structure-activity relationship studies driven by pharmacophore-based remodification and fragment-based design were performed to yield highly potent HDAC6 inhibitor I-c4 containing imidazo[1,2-a]pyridine. Importantly, I-c4 effectively suppressed the growth of MGC-803 xenografts in vitro and in vivo by inhibiting the deacetylation pathway without causing myocardial damage after long-term administration. Meanwhile, I-c4 could mitigate severe myocardial damage against H2O2 or myocardial ischemia/reperfusion in vitro and in vivo. Further studies revealed that the cardioprotective effect of I-c4 was associated with reduction of inflammatory cytokines. Taken together, I-c4 may represent a novel lead compound for further development of an anticarcinogen with a cardioprotective effect.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Jing-Jing Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhang-Xu He
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Guang-Yuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- China Meheco Topfond Pharmaceutical Co.; Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian 463000, China
| |
Collapse
|
7
|
Mohapatra B, Pakala SB. Emerging roles of the chromatin remodeler MORC2 in cancer metabolism. Med Oncol 2024; 41:221. [PMID: 39117768 DOI: 10.1007/s12032-024-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Cancer is characterized by metabolic reprogramming in cancer cells, which is crucial for tumorigenesis. The highly deregulated chromatin remodeler MORC2 contributes to cell proliferation, invasion, migration, DNA repair, and chemoresistance. MORC2 also plays a key role in metabolic reprogramming, including lipogenesis, glucose, and glutamine metabolism. A recent study showed that MORC2-regulated glucose metabolism affects the expression of E-cadherin, a crucial protein in the epithelial-to-mesenchymal transition. This review discusses recent developments in MORC2 regulated cancer cell metabolism and its role in cancer progression.
Collapse
Affiliation(s)
- Bibhukalyan Mohapatra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Suresh B Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
8
|
Nan K, Zhong Z, Yue Y, Zhou W, Sun X, Shen Y, Qu M, Chen Z, Gu J, Sun C, Sun X, Lu L, Zhang J, Miao C, Sun M. HSK3486 Inhibits Colorectal Cancer Growth by Promoting Oxidative Stress and ATPase Inhibitory Factor 1 Activation. Dig Dis Sci 2024; 69:1214-1227. [PMID: 38376789 DOI: 10.1007/s10620-023-08213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/24/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND HSK3486 (ciprofol), a new candidate drug similar to propofol, exerts sedative and hypnotic effects through gamma-aminobutyric acid type A receptors; however, its potential role in colorectal cancer is currently unknown. AIMS This study aimed to evaluate the effects of HSK3486 on colorectal cancer cell proliferation. METHODS Imaging was performed to detect reactive oxygen species and mitochondrial membrane potential. Western blotting was used to determine the expression of target signals. The HSK3486 molecular mechanism was investigated through ATPase inhibitory factor 1 knockdown and xenograft model experiments to assess mitochondrial function in colorectal cancer cells. RESULTS Cell Counting Kit-8 and Annexin V/propidium iodide double staining assays showed that HSK3486 inhibited colorectal cancer cell proliferation in a concentration-dependent manner. In addition, HSK3486 treatment increased the expression of B-cell lymphoma-2-associated X, cleaved caspase 3, and cleaved poly (ADP-ribose) polymerase, whereas myeloid cell leukemia-1 and B-cell lymphoma 2 expression decreased. HSK3486 promoted mitochondrial dysfunction by inducing ATPase inhibitor factor 1 expression. Furthermore, HSK3486 promoted oxidative stress, as shown by the increase in reactive oxygen species and lactate dehydrogenase levels, along with a decrease in mitochondrial membrane potential and ATP levels. ATPase inhibitor factor 1 small interfering RNA pretreatment dramatically increased the mitochondrial membrane potential and tumor size in a xenograft model following exposure to HSK3486. CONCLUSION Collectively, our findings revealed that HSK3486 induces oxidative stress, resulting in colorectal cancer cell apoptosis, making it a potential candidate therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200438, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Caihong Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lihong Lu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No.180 Feng-Lin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
9
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
11
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
12
|
Ozturk A, Agbektas T, Huseynzada A, Guliyev R, Ganbarova R, Hasanova U, Tas A, Erkan S, Zontul C, Inandiklioglu N, Silig Y. In Silico and In Vitro Studies of Novel Azomethines on DNA Repair Genes in Gastric Cell Lines. Life (Basel) 2023; 13:1982. [PMID: 37895364 PMCID: PMC10607974 DOI: 10.3390/life13101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
We herein report the determination of the cytotoxic activity and expression profiles of some DNA repair genes of newly synthesized azomethines in the gastric cancer cell line (AGS). The studied novel compounds were synthesized by a condensation reaction and received compounds were characterized by 1H and 13C NMR spectroscopy methods. Furthermore, they were applied to the AGS cell line at eight different concentrations (0.1-50 µg/mL). Anticancer activities were determined using the MTT method. Expression levels of ATR, ERCC1, TOP2A, and ABCB1 genes were determined by the RT-PCR method. Biochemical parameters were also examined. The interaction of proteins with other proteins was investigated with the String v11 program. The IC50 values of compounds 1, 2, and 3 obtained after 72 h were 23.10, 8.93, and 1.58 µg/mL, respectively. The results demonstrate that the cytotoxic activity of compound 3 on AGS cancer cells is higher in comparison with other molecules. It was determined that the expression levels of ATR, TOP2A, and ABCB1 genes in compounds 1, 2, and 3 were decreased compared to the control group. In addition, it was determined that ERCC1 gene expression increased in compound 3, decreased in compound 2, and remained unchanged in compound 1 (p < 0.001). In AGS gastric cancer cells, a 64% decrease was detected for GST levels in compound 1, while a 38% decrease in GSH levels in compound 2. In addition, compounds 1-3 were examined at the molecular level with computational techniques and the docking studies revealed 4LN0 as a target protein.
Collapse
Affiliation(s)
- Alpaslan Ozturk
- Clinical Biochemistry, Etlik City Hospital, 06170 Ankara, Turkey
| | - Tugba Agbektas
- Department of Food Processing Technologies Services, Yıldızeli Vocational School, 58500 Sivas, Turkey;
| | - Alakbar Huseynzada
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
- Department of Chemistry, Azerbaijan Engineers Union, Bashir Safaroglu 118, Baku AZ1022, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan
| | - Ruslan Guliyev
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
| | - Rana Ganbarova
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
| | - Ulviyya Hasanova
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan
| | - Ayca Tas
- Department of Nutrition and Diet, Faculty of Health Sciences, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Sultan Erkan
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Cemile Zontul
- Department of Chemistry and Chemical Processing Technologies Services, Yıldızeli Vocational School, 58500 Sivas, Turkey;
| | - Nihal Inandiklioglu
- Department of Medical Biology, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey;
| | - Yavuz Silig
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| |
Collapse
|
13
|
Xiao X, Zhang J, Lang Y, Cai L, Yang Q, Liu K, Ji S, Ju X, Liu F. Associations of lactate dehydrogenase with risk of renal outcomes and cardiovascular mortality in individuals with diabetic kidney disease. Diabetes Res Clin Pract 2023; 203:110838. [PMID: 37478980 DOI: 10.1016/j.diabres.2023.110838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of the lactate dehydrogenase (LDH) in the development of end-stage renal disease (ESRD) and the cardiovascular mortality in individuals with diabetic kidney disease (DKD). METHODS Two cohorts were recruited in this study. We explored the correlation between LDH and renal injury in individuals with DKD in using a Cohort 1. Additionally, we validated this correlation in the NHANES database and further investigated its association with the risk of cardiovascular mortality in Cohort 2 which also comprised individuals with DKD. RESULTS In cohort 1, multivariate Cox regression analysis demonstrated that individuals in DKD with higher LDH were independently associated with an increased risk of ESRD compared to those with lower LDH (HR = 2.11; 95 % CI, 1.07-4.16). In cohort 2, linear regression models showed that LDH affects the level of albumin-creatinine ratio (ACR) (β = 2.95, P = 0.001). Additionally, multivariate Cox regression analysis results showed that an increase in LDH per 1-standard deviation (SD) was associated with a 27 % increased risk of cardiovascular mortality (HR = 1.27; 95 % CI, 1.09-1.48). CONCLUSIONS LDH levels are associated with renal injury and progression to ESRD, as well as being an independent risk factor for cardiovascular in individuals with DKD.
Collapse
Affiliation(s)
- Xiang Xiao
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, 610500 Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanling Lang
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Linli Cai
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Qing Yang
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Kai Liu
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Shuming Ji
- Department of Project Design and Statistics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuegui Ju
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, 610500 Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, 610041, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Aydın PK, Turkyılmaz IB, Gul IB, Bulan OK, Yanardag R. Drug repurposing: Metformin's effect against liver tissue damage in diabetes and prostate cancer model. J Diabetes Metab Disord 2023; 22:225-236. [PMID: 37255805 PMCID: PMC10225428 DOI: 10.1007/s40200-022-01109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Background There are evidences linking diabetes to the pathogenesis and progression of various cancers. Metformin is a well-known antidiabetic drug that reduces the levels of circulating glucose and insulin in patients with both insulin resistance and hyperinsulinemia. Aim of the present study was to evaluate the effect of metformin on the liver of rats bearing prostate cancer, diabetes and prostate cancer + diabetes via histopathological and biochemical methods. Methods Male Copenhagen rats were divided into six groups. Control group, diabetic group, cancer group, diabetic + cancer group, diabetic + cancer + metformin group, cancer + metformin group. Diabetes was induced by injecting single dose of streptozotocin (65 mg/kg) to Copenhagen rats, cancer induced 2 × 104 Mat-LyLu cells. Metformin treatment was administered daily by gavage following inocculation of the Mat- Lylu cells to fifth and sixth group. The experiment was terminated on the 14th day following Mat-LyLu cell injection. At the end of the experimental period, the rats were sacrificed, and liver tissue was taken. Liver damage was scored. Biochemically, serum prostate-specific antigen level was determined by employing Enzyme Linked Immuno Sorbent Assay method. In addition, the activities of different enzyme and biochemical parameters were determined spectrophotometrically inform the hepatic tissue specimens. Results The findings of this study reveal that histopathological and biochemical damage in cancer and diabetic + cancer groups decreased significantly in the metformin treated groups. Conclusion These highlights that the antidiabetic drug metformin can be repositioned for attenuating liver tissue damage associated with prostate cancer and diabetes.
Collapse
Affiliation(s)
- Pınar Koroglu Aydın
- Faculty of Medicine, Department of Histology and Embryology, Halic University, Istanbul, Turkey
| | - Ismet Burcu Turkyılmaz
- Faculty of Engineering, Department of Chemistry, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Ilknur Bugan Gul
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Omur Karabulut Bulan
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University- Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
15
|
Li LL, Yu CF, Xie HT, Chen Z, Jia BH, Xie FY, Cai YF, Xue P, Zhu SJ. Biomarkers and factors in small cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Cancer Med 2023. [PMID: 37161541 DOI: 10.1002/cam4.5800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVE The aim of this meta-analysis was to summarize the available results of immunotherapy predictors for small cell lung cancer (SCLC) and to provide evidence-based information for their potential predictive value of efficacy. METHODS We searched PubMed, EMBASE, Web of Science, The Cochrane Library, and ClinicalTrials (from January 1, 1975 to November 1, 2021). The hazard ratios (HR) and its 95% confidence intervals (CIs) and tumor response rate of the included studies were extracted. RESULTS Eleven studies were eventually included and the pooled results showed that programmed cell death ligand 1 (PD-L1) positive: objective response rate (ORR) (relative risk [RR] = 1.39, 95% CI [0.48, 4.03], p = 0.54), with high heterogeneity (p = 0.05, I2 = 56%); disease control rate [DCR] (RR = 1.31, 95% CI [0.04, 38.57], p = 0.88), with high heterogeneity (p = 0.04, I2 = 75%); overall survival (OS) (HR = 0.89, 95% CI [0.74, 1.07], p = 0.22); and progression-free survival (PFS) (HR = 0.83, 95% CI [0.59, 1.16], p = 0.27), with high heterogeneity (p = 0.005, I2 = 73.1%). TMB-High (TMB-H): OS (HR = 0.86, 95% CI [0.74, 1.00], p = 0.05); PFS (HR = 0.71, 95% CI [0.6, 0.85], p < 0.001). Lactate dehydrogenase (LDH) >upper limit of normal (ULN): OS (HR = 0.95, 95% CI [0.81, 1.11], p = 0.511). Asian patients: OS (HR = 0.87, 95% CI [0.72, 1.04], p = 0.135); White/Non-Asian patients: OS (HR = 0.83, 95% CI [0.76, 0.90], p < 0.001). Liver metastasis patients: OS (HR = 0.93, 95% CI [0.83, 1.05], p = 0.229); PFS (HR = 0.84, 95% CI [0.67, 1.06], p = 0.141). Central nervous system (CNS) metastasis patients: OS (HR = 0.91, 95% CI [0.71, 1.17], p = 0.474); PFS (HR = 1.03, 95% CI [0.66, 1.60], p = 0.903). CONCLUSION The available research results do not support the recommendation of PD-L1 positive and TMB-H as predictors for the application of immune checkpoint inhibitors (ICIs) in SCLC patients. LDH, baseline liver metastasis and CNS metastasis may be used as markers/influencing factors for predicting the efficacy of ICIs in SCLC patients. Non-Asian SCLC patients had better efficacy with ICIs in our results.
Collapse
Affiliation(s)
- Lin-Lu Li
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Cheng-Feng Yu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
| | - Hong-Ting Xie
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Zheng Chen
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Bo-Hui Jia
- Beijing Sihui West District Hospital, 100082, Beijing, China
| | - Fei-Yu Xie
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Ya-Fang Cai
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Peng Xue
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
| | - Shi-Jie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, 100102, Beijing, China
| |
Collapse
|
16
|
Gu S, Yang C. Serum lactate dehydrogenase level predicts the prognosis in bladder cancer patients. BMC Urol 2023; 23:65. [PMID: 37098538 PMCID: PMC10127081 DOI: 10.1186/s12894-023-01239-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/07/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Recently, several studies investigated the association between lactate dehydrogenase (LDH) level and the prognosis of urothelial carcinoma. However, no studies explored the role of serum LDH level in the survival of overall bladder cancer (BC). In this study, we intended to address the association of LDH level with the prognosis of BC. METHODS 206 patients with BC were included in this study. The clinical data and blood samples of patients were collected. The overall survival and progression-free survival were used. Kaplan-Meier method and Log rank test were used to evaluate the effects of LDH level on the survival of BC. Univariate and multivariate Cox regression analyses were utilized to identify prognosis predictors of BC. RESULTS Data indicated that serum LDH level in the BC patients was significantly higher than those in controls. In addition, this study suggested that serum LDH level was associated with T stage, N stage, tumor size, M stage, pathological type, and lymphovascular invasion. The Kaplan-Meier analysis found significant differences in the OS and PFS rate between lower and higher serum LDH level groups (LDH ≥ 225 U/L and < 225 U/L). Multivariate Cox regression indicated that pathological type, T2-3, and higher level of LDH were independently associated with adverse prognosis in BC patients. CONCLUSION The higher serum LDH level (≥ 225 U/L) is associated with poor prognosis in patients with BC. Serum LDH level could be used as a novel predictive biomarker for BC patients.
Collapse
Affiliation(s)
- Shuo Gu
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu, 223300, China.
| | - Chao Yang
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu, 223300, China
| |
Collapse
|
17
|
Shen Y, Wang X, Ni Z, Xu S, Qiu S, Zheng W, Zhang J. Identification of acetyl-CoA carboxylase alpha as a prognostic and targeted candidate for hepatocellular carcinoma. Clin Transl Oncol 2023:10.1007/s12094-023-03137-1. [PMID: 36976490 DOI: 10.1007/s12094-023-03137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown. METHODS The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines. RESULTS ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial-mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/β-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis. CONCLUSION ACACA could be a potential biomarker and molecular target for HCC.
Collapse
Affiliation(s)
- Yiping Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xin Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhiyu Ni
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shiyu Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shi Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
18
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
19
|
Yuan JQ, Wang SM, Guo L. S100A9 promotes glycolytic activity in HER2-positive breast cancer to induce immunosuppression in the tumour microenvironment. Heliyon 2023; 9:e13294. [PMID: 36755606 PMCID: PMC9900376 DOI: 10.1016/j.heliyon.2023.e13294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Purpose The purpose of this study was to investigate the correlation between S100 calcium binding protein A9 (S100A9), tumour glycolysis and tumour infiltrating lymphocytes (TIL) in human epidermal growth factor receptor 2 (HER2) - positive breast cancer (BRCA). Materials and methods A total of 667 BRCA patients in Xiangya Hospital of Central South University were enrolled in this study. Haematoxylin and eosin (H&E) staining were used to count TIN in tissues. Human breast cancer cell lines (SK-BR-3 cells and BT474 cells) were transfected with S100A9 specific small interfering RNA (siRNA). The expressions of S100A9, glycolytic enzymes and lymphocyte markers were detected by immunohistochemistry (IHC) staining, Western blot and immunofluorescence. Lactate production, glucose consumption and the extracellular acidification rate (ECAR) were detected to assess glycolysis activity. Results S100A9 was significantly overexpressed in HER2+ cases. The expressions of phosphoglycerol kinase 1 (PGK1), lactate dehydrogenase A (LDHA) and enolase α (ENO1) were significantly up-regulated in S100A9 dominant tissues. The expressions of PGK1, LDHA and ENO1 detected in S100A9 silenced cell lines were significantly down-regulated. Moreover, S100A9 silencing significantly altered lactate production, glucose uptake and ECAR levels in HER2+ cell lines. Co-expression of S100A9 and c-Myc was detected in HER2+ tissues. The absence of S100A9 greatly hindered β-catenin expression in cell lines, which later induced the phosphorylation of c-Myc.The amount of TILs in cases with abundant S100A9 and LDHA was much greater than in cases with low S100A9 levels and poorer LDHA. TIL deficiency and elevated S100A9 intensity are factors affecting the survival rate of HER2+ BRCA cases. Conclusions S100A9 overexpression upregulated the glycolysis activity of tumour cells through the c-Myc-related pathway, suppressing lymphocyte infiltration in the tumour stroma, affecting the efficacy of immune regulation and long-term survival of patients.
Collapse
|
20
|
Jiang YM, Huang ST, Pan XB, Ma JL, Zhu XD. The prognostic nutritional index represents a novel inflammation-nutrition-based prognostic factor for nasopharyngeal carcinoma. Front Nutr 2023; 10:1036572. [PMID: 36875852 PMCID: PMC9977787 DOI: 10.3389/fnut.2023.1036572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Purpose This study explored the relationship between the prognostic nutritional index (PNI) and overall survival rate (OS) in patients with nasopharyngeal carcinoma (NPC), and established and validated an effective nomogram to predict clinical outcomes. Methods This study included 618 patients newly diagnosed with locoregionally advanced NPC. They were divided into training and validation cohorts at a ratio of 2:1 based on random numbers. The primary endpoint of this study was OS, progression-free survival (PFS) was the second endpoint. A nomogram was drawn from the results of multivariate analyses. Harrell's concordance index (C-index), area under the receiver operator characteristic curve (AUC), and decision curve analysis (DCA) were used to evaluate the clinical usefulness and predictive ability of the nomogram and were compared to the current 8th edition of the International Union Against Cancer/American Joint Committee (UICC/AJCC) staging system. Results The PNI cutoff value was 48.1. Univariate analysis revealed that age (p < 0.001), T stage (p < 0.001), N stage (p = 0.036), tumor stage (p < 0.001), PNI (p = 0.001), lymphocyte-neutrophil ratio (NLR, p = 0.002), and lactate dehydrogenase (LDH, p = 0.009) were significantly associated with OS, age (p = 0.001), T-stage (p < 0.001), tumor stage (p < 0.001), N-stage (p = 0.011), PNI (p = 0.003), NLR (p = 0.051), and LDH (p = 0.03) were significantly associated with PFS. Multivariate analysis showed that age (p < 0.001), T-stage (p < 0.001), N-stage(p = 0.02), LDH (p = 0.032), and PNI (p = 0.006) were significantly associated with OS, age (p = 0.004), T-stage (<0.001), N-stage (<0.001), PNI (p = 0.022) were significantly associated with PFS. The C-index of the nomogram was 0.702 (95% confidence interval [CI]: 0.653-0.751). The Akaike information criterion (AIC) value of the nomogram for OS was 1142.538. The C-index of the TNM staging system was 0.647 (95% CI, 0.594-0.70) and the AIC was 1163.698. The C-index, DCA, and AUC of the nomogram demonstrated its clinical value and higher overall net benefit compared to the 8th edition of the TNM staging system. Conclusion The PNI represents a new inflammation-nutrition-based prognostic factor for patients with NPC. In the proposed nomogram, PNI and LDH were present, which led to a more accurate prognostic prediction than the current staging system for patients with NPC.
Collapse
Affiliation(s)
- Yan-Ming Jiang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shi-Ting Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xin-Bin Pan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jia-Lin Ma
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.,Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Huang L, Lu Z, Zhou X, He L, You X, Chen C, Zou C. U-Shaped Relationship Between Serum Lactate Dehydrogenase with All-Cause Mortality in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:305-316. [PMID: 36945707 PMCID: PMC10024872 DOI: 10.2147/copd.s386269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Purpose In the anaerobic metabolic pathway, lactate dehydrogenase (LDH) plays an important role in hypoxia, inflammation, and cell damage, making it a potential biomarker for the progression of chronic obstructive pulmonary disease (COPD). We aimed to examine the relationship between LDH levels and all-cause mortality in participants with COPD. Patients and Methods Data of participants in the US National Health and Nutrition Examination Surveys (NHANES) 2007-2012 aged ≥20 years who underwent spirometry tests were examined, and follow-up mortality data were obtained. According to serum LDH levels, participants with COPD were divided into five groups (59-111, 112-123, 124-135, 136-150, and 151-344 U/L). To evaluate whether LDH levels were independently associated with COPD mortality, we used multivariate Cox regression analysis and smooth curve fitting. Results We included 1320 subjects, 64 with stage III or IV COPD and 541 with stage II COPD. Over a median follow-up of 9.7 years (IQR: 7.8, 11.2), 252 of the 1320 subjects died. The mean LDH level was 132.5 U/L (standard deviation [SD], 27.0). A U-shaped relationship was observed between LDH levels and all-cause mortality. Below and above the inflection point, which was approximately 110 U/L, we found different slopes for the correlation between LDH and all-cause mortality of patients with COPD. Below the threshold, per 1-standard deviation (1SD) increase in LDH resulted in a 68% reduced risk of all-cause mortality (hazard ratio [HR] 0.32, 95% confidence interval [CI] 0.13-0.81, P=0.016); conversely, above the threshold, per 1SD increase in LDH accelerated the risk of all-cause mortality (HR 1.23, 95% CI: 1.08-1.41, P= 0.002). Conclusion Using the nationally representative NHANES data, we found a U-shaped association between LDH level and all-cause mortality in participants with COPD. An optimal LDH level of approximately 110 U/L was associated with the lowest risk of all-cause mortality.
Collapse
Affiliation(s)
- Lihua Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
- Correspondence: Lihua Huang, Department of Clinical Laboratory, The Second Affiliated Hospital of Gannan Medical University, 331 Yingbin Dadao, Xinfeng County, Ganzhou, Jiangxi Province, People’s Republic of China, Tel +86 18970771329, Email
| | - Zhanpeng Lu
- Department of Critical Care,The Eighth Affiliated Hospital of Sun Yat sen University, Shenzhen, People’s Republic of China
| | - Xiaoqing Zhou
- General Surgery Department, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Liuliu He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiaoyan You
- Department of Clinical Laboratory, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Chunmei Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Chunsheng Zou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
22
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
23
|
Abstract
High serum lactate dehydrogenase (LDH) levels are typically associated with a poor prognosis in many cancer types. Even the most effective drugs, which have radically improved outcomes in patients with melanoma over the past decade, provide only marginal benefit to those with high serum LDH levels. When viewed separately from the oncological, biochemical, biological and immunological perspectives, serum LDH is often interpreted in very different ways. Oncologists usually see high serum LDH only as a robust biomarker of a poor prognosis, and biochemists are aware of the complexity of the various LDH isoforms and of their key roles in cancer metabolism, whereas LDH is typically considered to be oncogenic and/or immunosuppressive by cancer biologists and immunologists. Integrating these various viewpoints shows that the regulation of the five LDH isoforms, and their enzymatic and non-enzymatic functions is closely related to key oncological processes. In this Review, we highlight that serum LDH is far more than a simple indicator of tumour burden; it is a complex biomarker associated with the activation of several oncogenic signalling pathways as well as with the metabolic activity, invasiveness and immunogenicity of many tumours, and constitutes an extremely attractive target for cancer therapy.
Collapse
|
24
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
25
|
Jang JH, Hong S, Ryu JA. Prognostic Value of C-Reactive Protein and Albumin in Neurocritically Ill Patients with Acute Stroke. J Clin Med 2022; 11:jcm11175067. [PMID: 36079002 PMCID: PMC9457411 DOI: 10.3390/jcm11175067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
We evaluated the prognostic value of C-reactive protein (CRP), albumin, CRP clearance (CRPc) and CRP/albumin ratio (CAR) in neurocritically ill patients with acute stroke. This is a retrospective, observational study. We included acute stroke patients who were hospitalized in the neurosurgical ICU from January 2013 to September 2019. The primary outcome was in-hospital mortality. A total of 307 patients were enrolled in the study. Among them, 267 (87.0%) survived until discharge from the hospital. CRP and CAR were significantly higher in non-survivors than in survivors (both p < 0.001). Serum albumin levels were significantly lower in the non-survivors than in the survivors (p < 0.001). In receiver operating characteristic curve analysis for prediction of in-hospital mortality, the area under the curve of CRP (C-statistic: 0.820) and CAR (C-statistic: 0.824) were greater than that of CRPc (C-statistic: 0.650) and albumin (C-statistic: 0.734) (all p < 0.005). However, there was no significant difference in the predictive performance between CRP and CAR (p = 0.287). In this study, CRP and CAR were more important than CRPc and albumin in predicting mortality of neurocritically ill patients with stroke. Early CRP level and CAR determination may help to predict the in-hospital mortality of these patients.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Division of Pulmonology and Critical Care, Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - SungMin Hong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Korea
| | - Jeong-Am Ryu
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-6399; Fax: +82-2-2148-7088
| |
Collapse
|
26
|
Levati L, Bassi C, Mastroeni S, Lupini L, Antonini Cappellini GC, Bonmassar L, Alvino E, Caporali S, Lacal PM, Narducci MG, Molineris I, De Galitiis F, Negrini M, Russo G, D’Atri S. Circulating miR-1246 and miR-485-3p as Promising Biomarkers of Clinical Response and Outcome in Melanoma Patients Treated with Targeted Therapy. Cancers (Basel) 2022; 14:cancers14153706. [PMID: 35954369 PMCID: PMC9367338 DOI: 10.3390/cancers14153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi. Selected miRNAs associated with response to therapy were subjected to validation by real-time quantitative RT-PCR . Receiver Operating Characteristics (ROC), Kaplan–Meier and univariate and multivariate Cox regression analyses were performed on the validated miR-1246 and miR-485-3p baseline levels. The median baseline levels of miR-1246 and miR-485-3p were significantly higher and lower, respectively, in the group of patients not responding to therapy (NRs) as compared with the group of responding patients (Rs). In Rs, a trend toward an increase in miR-1246 and a decrease in miR-485-3p was observed at progression. Baseline miR-1246 level and the miR-1246/miR-485-3p ratio showed a good ability to discriminate between Rs and NRs. Poorer PFS and OS were observed in patients with unfavorable levels of at least one miRNA. In multivariate analysis, a low level of miR-485-3p and a high miR-1246/miR-485-3p ratio remained independent negative prognostic factors for PFS, while a high miR-1246/miR-485-3p ratio was associated with an increased risk of mortality, although statistical significance was not reached. Evaluation of miR-1246 and miR-485-3p baseline plasma levels might help clinicians to identify melanoma patients most likely to be unresponsive to targeted therapy or at higher risk for short-term PFS and mortality, thus improving their management.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Cristian Bassi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Simona Mastroeni
- Clinical Epidemiology Unit, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Laura Lupini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Simona Caporali
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Maria Grazia Narducci
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Stefania D’Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
- Correspondence:
| |
Collapse
|
27
|
'Warburg effect' controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022; 86:334-346. [PMID: 35820598 DOI: 10.1016/j.semcancer.2022.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
The evolutionary pressure for life transitioning from extended periods of hypoxia to an increasingly oxygenated atmosphere initiated drastic selections for a variety of biochemical pathways supporting the robust life currently present on the planet. First, we discuss how fermentative glycolysis, a primitive metabolic pathway present at the emergence of life, is instrumental for the rapid growth of cancer, regenerating tissues, immune cells but also bacteria and viruses during infections. The 'Warburg effect', activated via Myc and HIF-1 in response to growth factors and hypoxia, is an essential metabolic and energetic pathway which satisfies nutritional and energetic demands required for rapid genome replication. Second, we present the key role of lactic acid, the end-product of fermentative glycolysis able to move across cell membranes in both directions via monocarboxylate transporting proteins (i.e. MCT1/4) contributing to cell-pH homeostasis but also to the complex immune response via acidosis of the tumour microenvironment. Importantly lactate is recycled in multiple organs as a major metabolic precursor of gluconeogenesis and energy source protecting cells and animals from harsh nutritional or oxygen restrictions. Third, we revisit the Warburg effect via CRISPR-Cas9 disruption of glucose-6-phosphate isomerase (GPI-KO) or lactate dehydrogenases (LDHA/B-DKO) in two aggressive tumours (melanoma B16-F10, human adenocarcinoma LS174T). Full suppression of lactic acid production reduces but does not suppress tumour growth due to reactivation of OXPHOS. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumour growth as a result of intracellular acidosis. Finally, we briefly discuss the current clinical developments of an MCT1 specific drug AZ3965, and the recent progress for a specific in vivo MCT4 inhibitor, two drugs of very high potential for future cancer clinical applications.
Collapse
|
28
|
Long Noncoding RNAs and Circular RNAs in the Metabolic Reprogramming of Lung Cancer: Functions, Mechanisms, and Clinical Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4802338. [PMID: 35757505 PMCID: PMC9217624 DOI: 10.1155/2022/4802338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
As key regulators of gene function, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are generally accepted to be involved in lung cancer pathogenesis and progression. Recent research has clarified the phenomenon of metabolic reprogramming in lung cancer because of its significant role in tumor proliferation, migration, invasion, metastasis, and other malignant biological behaviors. Emerging evidence has also shown a relationship between the aberrant expression of lncRNAs and circRNAs and metabolic reprogramming in lung cancer tumorigenesis. This review provides insight regarding the roles of different lncRNAs and circRNAs in lung cancer metabolic reprogramming, by how they target transporter proteins and key enzymes in glucose, lipid, and glutamine metabolic signaling pathways. The clinical potential of lncRNAs and circRNAs as early diagnostic biomarkers and components of therapeutic strategies in lung cancer is further discussed, including current challenges in their utilization from the bench to the bedside and how to adopt a proper delivery system for their therapeutic use.
Collapse
|
29
|
Oriaifo IA, Gerard JM, Thomas SM. Diagnostic Value of Lactate Dehydrogenase and Uric Acid as Screening Tools for Malignancies in Children. Pediatr Emerg Care 2022; 38:e1327-e1331. [PMID: 35477707 DOI: 10.1097/pec.0000000000002733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to determine the diagnostic value of lactate dehydrogenase (LDH) and uric acid (UA) in children undergoing evaluation for possible malignancies. METHODS This was a retrospective chart review of patients aged 0 to 18 years presenting to an urban, tertiary care, pediatric hospital between July 1, 2011, and July 1, 2016. Patients were included if they had an LDH and/or UA level drawn, and they were excluded if they had a known cancer diagnosis. Sensitivity, specificity, and receiver operating characteristic curves were calculated for each biomarker. RESULTS Six hundred five subjects were included in this study; 579 and 384 subjects had LDH and UA levels drawn, respectively; 15.7% had a final diagnosis of malignancy (49 leukemia, 46 nonleukemia). CONCLUSION The specificities of both biomarkers for all types of malignancies were lower than their respective sensitivities. Comparing leukemic versus nonleukemic malignancies, the areas under the curve were 0.848 and 0.719, respectively, for LDH and 0.681 and 0.555, respectively, for UA.
Collapse
Affiliation(s)
- Irene A Oriaifo
- From the Division of Pediatric Emergency Medicine, Department of Pediatrics, Saint Louis University School of Medicine and SSM Health Cardinal Glennon Children's Hospital, St Louis, MO
| | | | | |
Collapse
|
30
|
Fujibuchi T, Imai H, Kidani T, Morino T, Miura H. Serum lactate dehydrogenase levels predict the prognosis of patients with soft tissue sarcoma. Mol Clin Oncol 2022; 16:65. [PMID: 35154705 PMCID: PMC8822601 DOI: 10.3892/mco.2022.2498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
Several studies have reported the prognostic factors for soft tissue sarcoma. Although serum lactate dehydrogenase (LDH) levels are associated with poor prognosis in several types of cancer, their role in soft tissue sarcomas remains unclear. Therefore, the present study evaluated the association between serum LDH levels and the clinical characteristics and prognosis of soft tissue sarcoma. A total of 103 patients diagnosed with primary soft tissue sarcoma between 2003 and 2019 were retrospectively examined, and the association between serum LDH levels at the first visit and clinical characteristics were analysed. In high-grade soft tissue sarcoma, the association between survival and clinical characteristics, including stratified LDH levels, was also analysed. Serum LDH levels were stratified (>253 and ≤253 IU/l) according to the standard values used at our institution. High serum LDH levels were significantly associated with the presence of metastasis and histological grade (P<0.001 and 0.040, respectively). In both the univariate and multivariate analyses, disease-specific survival (DSS) was significantly worse in patients with high-grade soft tissue sarcoma and high serum LDH levels than in patients with normal serum LDH levels (univariate analysis: P=0.025; multivariate analysis: Hazard ratio, 4.60; 95% confidence interval, 1.16-18.2; P=0.030). In conclusion, high serum LDH levels at the first visit predicted the presence of distant metastasis, high histological grade and worse DSS in patients with high-grade soft tissue sarcoma. Therefore, in patients with high serum LDH levels at the first visit, these risks should be considered during pretreatment examinations and post-treatment follow-up.
Collapse
Affiliation(s)
- Taketsugu Fujibuchi
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hiroshi Imai
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Teruki Kidani
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Tadao Morino
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
31
|
Araki T, Tateishi K, Komatsu M, Sonehara K, Kanda S, Hanaoka M, Koizumi T. Association of lung immune prognostic index with survival outcome in advanced thymic carcinoma patients treated with palliative intent chemotherapy. Thorac Cancer 2022; 13:1006-1013. [PMID: 35156310 PMCID: PMC8977176 DOI: 10.1111/1759-7714.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Taisuke Araki
- First Department of Internal Medicine Shinshu University School of Medicine Matsumoto Japan
| | - Kazunari Tateishi
- First Department of Internal Medicine Shinshu University School of Medicine Matsumoto Japan
| | - Masamichi Komatsu
- First Department of Internal Medicine Shinshu University School of Medicine Matsumoto Japan
| | - Kei Sonehara
- First Department of Internal Medicine Shinshu University School of Medicine Matsumoto Japan
| | - Shintaro Kanda
- Department of Hematology and Medical Oncology Shinshu University School of Medicine Matsumoto Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine Shinshu University School of Medicine Matsumoto Japan
| | - Tomonobu Koizumi
- Department of Hematology and Medical Oncology Shinshu University School of Medicine Matsumoto Japan
| |
Collapse
|
32
|
Ma YY, Wang H, Zhao WD, Li YF, Wang JJ, Chen XY, Huang YQ, Wang WJ, Wang Y, Sun SC. Prognostic Value of Combined Lactate Dehydrogenase, C-Reactive Protein, Cancer Antigen 153 and Cancer Antigen 125 in Metastatic Breast Cancer. Cancer Control 2022; 29:10732748211053150. [PMID: 34989251 PMCID: PMC8743925 DOI: 10.1177/10732748211053150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Breast cancer (BC), especially metastatic BC, is one of the most lethal diseases in women. CA 125 and CA 15-3 are commonly used indicators for diagnosis and prognosis of BC. Some serological indicators, such as lactate dehydrogenase (LDH) and C-reactive protein (CRP), can also be used to assess the prognosis and progression in BC. Methods Univariate Cox regression analysis and LASSO regression analysis were performed to identify prognostic factors and build prognostic models. We distributed the patients into 2 groups based on the median risk score, analyzed prognosis by Kaplan–Meier curve, and screened independent prognostic factors by multivariate Cox regression analysis. Result We identified 4 indicators-LDH, CRP, CA 15-3, and CA 125—related to the prognosis in BC and established a prognostic model. The high LDH group showed worse overall survival (OS) than low LDH group (P = .017; hazard ratio (HR), 1.528; 95% confidence interval (CI), 1.055-2.215). The high CRP group showed worse OS than low CRP group (P = .004; HR, 1.666; 95% CI, 1.143-2.429). The high CA153 group showed worse OS than low CA 15-3 group (P=.011; HR, 1.563; 95% CI, 1.075-2.274). The high CA 125 group showed worse OS than low CA 125 group (P = .021; HR, 1.499; 95% CI, 1.031-2.181). The area under the curve for risk score was .824, Ki-67 was .628, age was .511, and grade was .545. Risk score was found to be an independent prognostic factor using multivariate Cox regression analysis. Conclusion We successfully established an optimization model by combining 4 prognosis-related indicators to assess the prognosis in patients with metastatic BC.
Collapse
Affiliation(s)
- Yu-Yuan Ma
- Department of Thyroid and Breast Surgery, 117958Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, P.R. China
| | - Wei-Dong Zhao
- Department of Oncology, 569222Yijishan Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Yi-Fan Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, P.R. China
| | - Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, P.R. China
| | - Xing-Yu Chen
- Department of General Surgery, Taizhou Fourth People's Hospital, Taizhou, P.R. China
| | - Yue-Qing Huang
- Department of General Medicine, Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Wen-Jie Wang
- Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Ying Wang
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Shi-Chang Sun
- Department of Oncology, Jining Cancer Hospital, Jining, P.R. China
| |
Collapse
|
33
|
Parkinson EK, Adamski J, Zahn G, Gaumann A, Flores-Borja F, Ziegler C, Mycielska ME. Extracellular citrate and metabolic adaptations of cancer cells. Cancer Metastasis Rev 2021; 40:1073-1091. [PMID: 34932167 PMCID: PMC8825388 DOI: 10.1007/s10555-021-10007-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
It is well established that cancer cells acquire energy via the Warburg effect and oxidative phosphorylation. Citrate is considered to play a crucial role in cancer metabolism by virtue of its production in the reverse Krebs cycle from glutamine. Here, we review the evidence that extracellular citrate is one of the key metabolites of the metabolic pathways present in cancer cells. We review the different mechanisms by which pathways involved in keeping redox balance respond to the need of intracellular citrate synthesis under different extracellular metabolic conditions. In this context, we further discuss the hypothesis that extracellular citrate plays a role in switching between oxidative phosphorylation and the Warburg effect while citrate uptake enhances metastatic activities and therapy resistance. We also present the possibility that organs rich in citrate such as the liver, brain and bones might form a perfect niche for the secondary tumour growth and improve survival of colonising cancer cells. Consistently, metabolic support provided by cancer-associated and senescent cells is also discussed. Finally, we highlight evidence on the role of citrate on immune cells and its potential to modulate the biological functions of pro- and anti-tumour immune cells in the tumour microenvironment. Collectively, we review intriguing evidence supporting the potential role of extracellular citrate in the regulation of the overall cancer metabolism and metastatic activity.
Collapse
Affiliation(s)
- E Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Experimental Genetics, Technical University of Munich, Munich, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Andreas Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, 87600, Kaufbeuren, Germany
| | - Fabian Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
34
|
Inhibition of FOSL2 aggravates the apoptosis of ovarian cancer cells by promoting the formation of inflammasomes. Genes Genomics 2021; 44:29-38. [PMID: 34773569 PMCID: PMC8727396 DOI: 10.1007/s13258-021-01152-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 11/04/2022]
Abstract
Background Ovarian cancer is a common gynecological malignancy among female patients and poses a serious threat to women’s health. Although it has been established that Fos-like antigen 2 (FOSL2) is linked to ovarian cancer (OC), its exact role in the development of OC remains unknown. Objective This article aims to investigate the role of FOSL2 in ovarian cancer development. Methods FOSL2 expression in ovarian carcinoma and adjacent tissues was assessed using real-time fluorescent quantitative PCR and western blot. We constructed OE/sh-FOSL2 plasmids and Caspase-1 specific inhibitors (Yvad-CMK) and transfected A 2780 cells with them to identify the relevant cell functions. Furthermore, we used western blot assay to determine the changes in expression of apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartate-specific proteasezymogen procaspase 1 (pro-caspase-1), cysteinyl aspartate-specific proteinase-1 (caspase-1), interleukin-1β precursor (pro-IL-1β), interleukin-1β (IL-1β), interleukin-18 precursor (pro-IL-18), and interleukin-18 (IL-18). In addition, we measured the concentration of IL-1β and IL-18 using an enzyme-linked immunosorbent assay (ELISA). Moreover, Tthe level of lactate dehydrogenase (LDH) in the cell supernatant was measured by LDH release assay kit. Results The expression of FOSL2 was significantly higher compared with the surrounding tissues. The proliferation, migration, and invasion of A2780 cells were enhanced after transfection with OE-FOSL2 plasmids; however, the cell apoptosis was significantly decreased. When FOSL2 was overexpressed, the inflammasome-associated proteins such as ASC, caspase-1, IL-1β, and IL-18 were downregulated. Furthermore, FOSL2 induced apoptosis and activated the production of inflammasomes in A2780 cells. Co-therapy with Yvad-CMK and substantially inhibited apoptosis and activation of inflammasomes. Conclusions Inhibition of FOSL2 promotes the apoptosis of OC cells by mediating the formation of an inflammasome.
Collapse
|
35
|
Bai L, Lin ZY, Lu YX, Chen Q, Zhou H, Meng Q, Lin CP, Huang WL, Wan YL, Pan ZZ, Wang DS. The prognostic value of preoperative serum lactate dehydrogenase levels in patients underwent curative-intent hepatectomy for colorectal liver metastases: A two-center cohort study. Cancer Med 2021; 10:8005-8019. [PMID: 34636145 PMCID: PMC8607270 DOI: 10.1002/cam4.4315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background The prognostic value of lactate dehydrogenase (LDH) in colorectal cancer patients has remained inconsistent between nonmetastatic and metastatic settings. So far, very few studies have included LDH in the prognostic analysis of curative‐intent surgery for colorectal liver metastases (CRLM). Patients and Methods Five hundred and eighty consecutive metastatic colorectal cancer patients who underwent curative‐intent CRLM resection from Sun Yat‐sen University Cancer Center (434 patients) and Sun Yat‐sen University Sixth Affiliated Hospital (146 patients) in 2000–2019 were retrospectively collected. Overall survival (OS) was the primary end point. Cox regression model was performed to identify the prognostic values of preoperative serum LDH levels and other clinicopathology variables. A modification of the established Fong CRS scoring system comprising LDH was developed within this Chinese population. Results At the median follow‐up time of 60.5 months, median OS was 59.5 months in the pooled cohort. In the multivariate analysis, preoperative LDH >upper limit of normal (250 U/L) was the strongest independent prognostic factor for OS (HR 1.73, 95% confidence interval [CI], 1.22–2.44; p < 0.001). Patients with elevated LDH levels showed impaired OS than patients with normal LDH levels (27.6 months vs. 68.8 months). Five‐year survival rates were 53.7% and 22.5% in the LDH‐normal group and LDH‐high group, respectively. Similar results were also confirmed in each cohort. In the subgroup analysis, LDH could distinguish the survival regardless of most established prognostic factors (number and size of CRLM, surgical margin, extrahepatic metastases, CEA, and CA19‐9 levels, etc.). Integrating LDH into the Fong score contributed to an improvement in the predictive value. Conclusion Our study implicates serum LDH as a reliable and independent laboratory biomarker to predict the clinical outcome of curative‐intent surgery for CRLM. Composite of LDH and Fong score is a potential stratification tool for CRLM resection. Prospective, international studies are needed to validate these results across diverse populations.
Collapse
Affiliation(s)
- Long Bai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.,Department of VIP region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ze-Yu Lin
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qin Chen
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Han Zhou
- Department of Medical Administration, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chun-Ping Lin
- Department of Oncology, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, China
| | - Wan-Lan Huang
- Department of Oncology, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, China
| | - Yun-Le Wan
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
36
|
Shikonin attenuates H 2O 2-induced oxidative injury in HT29 cells via antioxidant activities and the inhibition of mitochondrial pathway-mediated apoptosis. Exp Ther Med 2021; 22:1118. [PMID: 34504572 PMCID: PMC8383764 DOI: 10.3892/etm.2021.10552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Shikonin, a natural naphthoquinone extracted from the roots of Lithospermumery throrhizon, possesses multiple pharmacological properties, including antioxidant, anti-inflammatory and antitumor effects. It has been hypothesized that the properties of shikonin are associated with its oxygen free radical scavenging abilities. However, the mechanism underlying the antioxidant activity of shikonin is not completely understood. The aim of the present study was to investigate the effect of shikonin against H2O2-induced oxidative injury in HT29 cells and to explore the underlying molecular mechanism. The concentration and duration of H2O2 treatment to cause maximal damage, and the effects of shikonin (2.5, 5 or 10 µg/ml) on the activity of H2O2-induced HT29 cells were determined by MTT assay. The apoptotic rate in HT29 cells was determined by annexin V/propidium iodide staining. HT29 cell cycle alteration was also analyzed by propidium iodide staining. Reactive oxygen species (ROS) production was assessed by monitoring 2',7'-dichlorofluorescin in diacetate fluorescence. Mitochondrial membrane potentials were determined by JC-1 staining. The activities of malondialdehyde, superoxide dismutase, caspase-9 and caspase-3 were measured using spectrophotometric assays. The expression levels of Bcl-2, Bax and cytochrome c were determined by western blotting. The results suggested that shikonin increased cell viability, reduced cell apoptosis and increased the proliferation index in H2O2-treated HT29 cells. Shikonin also significantly inhibited increases in intracellular reactive oxygen species (ROS), restored the mitochondrial membrane potential, prevented the release of lactic dehydrogenase and decreased the levels of superoxide dismutase and malondialdehyde in H2O2-induced HT29 cells. Furthermore, shikonin significantly decreased caspase-9 and caspase-3 activities, increased Bcl-2 expression and decreased Bax and cytochrome c expression levels in H2O2-induced HT29 cells. The results indicated that shikonin protected against H2O2-induced oxidative injury by removing ROS, ameliorating mitochondrial dysfunction, attenuating DNA oxidative damage and inhibiting mitochondrial pathway-mediated apoptosis.
Collapse
|
37
|
Wang Z, Embaye KS, Yang Q, Qin L, Zhang C, Liu L, Zhan X, Zhang F, Wang X, Qin S. Establishment and validation of a prognostic signature for lung adenocarcinoma based on metabolism-related genes. Cancer Cell Int 2021; 21:219. [PMID: 33858449 PMCID: PMC8050921 DOI: 10.1186/s12935-021-01915-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Given that dysregulated metabolism has been recently identified as a hallmark of cancer biology, this study aims to establish and validate a prognostic signature of lung adenocarcinoma (LUAD) based on metabolism-related genes (MRGs). Methods The gene sequencing data of LUAD samples with clinical information and the metabolism-related gene set were obtained from The Cancer Genome Atlas (TCGA) and Molecular Signatures Database (MSigDB), respectively. The differentially expressed MRGs were identified by Wilcoxon rank sum test. Then, univariate cox regression analysis was performed to identify MRGs that related to overall survival (OS). A prognostic signature was developed by multivariate Cox regression analysis. Furthermore, the signature was validated in the GSE31210 dataset. In addition, a nomogram that combined the prognostic signature was created for predicting the 1-, 3- and 5-year OS of LUAD. The accuracy of the nomogram prediction was evaluated using a calibration plot. Finally, cox regression analysis was applied to identify the prognostic value and clinical relationship of the signature in LUAD. Results A total of 116 differentially expressed MRGs were detected in the TCGA dataset. We found that 12 MRGs were most significantly associated with OS by using the univariate regression analysis in LUAD. Then, multivariate Cox regression analyses were applied to construct the prognostic signature, which consisted of six MRGs-aldolase A (ALDOA), catalase (CAT), ectonucleoside triphosphate diphosphohydrolase-2 (ENTPD2), glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1), lactate dehydrogenase A (LDHA), and thymidylate synthetase (TYMS). The prognostic value of this signature was further successfully validated in the GSE31210 dataset. Furthermore, the calibration curve of the prognostic nomogram demonstrated good agreement between the predicted and observed survival rates for each of OS. Further analysis indicated that this signature could be an independent prognostic indicator after adjusting to other clinical factors. The high-risk group patients have higher levels of immune checkpoint molecules and are therefore more sensitive to immunotherapy. Finally, we confirmed six MRGs protein and mRNA expression in six lung cancer cell lines and firstly found that ENTPD2 might played an important role on LUAD cells colon formation and migration. Conclusions We established a prognostic signature based on MRGs for LUAD and validated the performance of the model, which may provide a promising tool for the diagnosis, individualized immuno-/chemotherapeutic strategies and prognosis in patients with LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01915-x.
Collapse
Affiliation(s)
- Zhihao Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kidane Siele Embaye
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Yang
- Department of Pharmacy, Hiser Medical Center of Qingdao, Qingdao, 266033, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoqian Zhan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengdi Zhang
- Department of Pathology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430030, China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Gîrd CE, Costea T, Mitran V. Evaluation of cytotoxic activity and anticancer potential of indigenous Rosemary (Rosmarinus officinalis L.) and Oregano (Origanum vulgare L.) dry extracts on MG-63 bone osteosarcoma human cell line. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:525-535. [PMID: 35024741 PMCID: PMC8848263 DOI: 10.47162/rjme.62.2.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We aimed to investigate the cytotoxic activity of indigenous Rosemary and Oregano freeze-dried extracts upon MG-63 osteosarcoma human cell line. We have determined the influence of analyzed dry extracts on cell morphology, cell survival and cell proliferation. The evaluation of dry extracts effect upon cell proliferation and viability was assessed by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) method. For cytotoxicity evaluation, Live & Dead and lactate dehydrogenase assays have been used. To further investigate the potential anticancer effect, we have studied the influence of dry extracts upon cells, by means of caspase-3/7 assay and proliferation cell nuclear antigen (PCNA) expression. Cells were incubated with extracts in the following concentration range (100–700 μg/mL) for 24 hours. According to our results, both dry extracts have shown cytotoxic effects by means of all used methods. Bone osteosarcoma cells viability significantly decreased with increasing concentration of analyzed extracts (beyond 300 μg/mL for Rosemary dry extract and only at 700 μg/mL for Oregano dry extract). According to our results, apoptosis is one of the main mechanisms involved in the cytotoxic properties of analyzed extracts. Moreover, Rosemary extract has also shown decreased expression of PCNA, when compared to control (untreated cells). Both extracts were standardized in phenolic compounds (being a rich source of flavones and phenolcarboxylic acids), so we assume that these are the main constituents involved in the cytotoxic effect. Still, further preclinical studies are needed to confirm the antitumor properties and to go deeply in the molecular mechanisms involved.
Collapse
Affiliation(s)
- Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | |
Collapse
|
39
|
Zhang Y, Zhao Q, Li X, Ji F. Dexmedetomidine reversed hypoxia/reoxygenation injury-induced oxidative stress and endoplasmic reticulum stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway. Mol Cell Biochem 2021; 476:2803-2812. [PMID: 33725228 DOI: 10.1007/s11010-021-04102-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023]
Abstract
We aimed to investigate the protective role and mechanism of dexmedetomidine (DEX) on H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R) injury. Six experimental groups were designed as follows: normal control group (group C), H/R group, H/R + DEX group, H/R + gastrodin group, H/R + Ex527 (SIRT1 inhibitor) group, and H/R + DEX + Ex527 group. Lactate dehydrogenase (LDH) activity and the levels of oxidative stress-related enzymes such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were measured using corresponding commercial kits. Cell counting kit (CCK)-8 assay was used to detect cell survival rate while flow cytometry and caspase 3/7 activity were used to determine cell apoptosis, respectively. Western blot was used to detect the expression of silent information regulator 1 (SIRT1), C/EBP homologous protein (CHOP), cleaved-caspase-12/3 and pro-caspase-12/3 in each group. From our findings, when compared with H/R, H/R + Ex527 and H/R + DEX + Ex527 groups, DEX pretreatment of cells in H/R + DEX group significantly increased cell survival rate, and simultaneously reduced LDH activity, oxidative stress and the apoptosis rate of H9c2 cells with H/R injury. Moreover, DEX up-regulated SIRT1 expression level and down-regulated the levels of endoplasmic reticulum (ER) stress-related markers such as CHOP, cleaved-caspase-12 and cleaved-caspase-3, respectively. Ex527 could completely block DEX-induced upregulated expression of SIRT1, and partially blocked the DEX-induced downregulated expression levels of CHOP, cleaved-caspase-12 and cleaved-caspase-3. These results proved that DEX reversed H/R injury-induced oxidative stress and ER stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China.,Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Qihong Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
40
|
Gallob F, Brcic L, Eidenhammer S, Rumpp F, Nerlich A, Popper H. Senescence and autophagy in usual interstitial pneumonia of different etiology. Virchows Arch 2021; 478:497-506. [PMID: 32851507 PMCID: PMC7973921 DOI: 10.1007/s00428-020-02917-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/15/2020] [Accepted: 08/19/2020] [Indexed: 01/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with a dismal prognosis. Currently, the causing agent(s) are poorly understood. Recent data suggest that senescence and autophagy might play a role in its development, as well as changes in metabolism due to hypoxic conditions. In this study, the expression of senescence markers in 23 cases of usual interstitial pneumonia (UIP)/IPF and UIP/chronic autoimmune diseases (UIP/AuD) was investigated. The status of autophagy was evaluated with respect to either antiinflammatory or antihypoxia function. Formalin-fixed paraffin-embedded tissues of UIP were selected for immunohistochemistry with antibodies for p21, p16, and β-galactosidase (senescence); for LC3, SIRT1, MAP1S, and pAMKα (autophagy); and for LDH and GLUT1 (metabolism). Epithelial cells in cystic remodeled areas of UIP stained for p16 and p21, p16 being more specific compared with p21. Myofibroblasts were negative in all cases. An upregulation of all four autophagy markers was seen not only in epithelia within remodeled areas and proliferating myofibroblasts, but also in bronchial epithelia and pneumocytes. Upregulated autophagy points to a compensatory mechanism for hypoxia; therefore, LDH and GLUT1 were investigated. Their expression was present in epithelia within cystic remodeling and in myofibroblasts. The cells within the remodeled areas stained for cytokeratin 5, but coexpressed TTF1, confirming their origin from basal cells of bronchioles. Within this population, senescent cells arise. Our results indicated that autophagy in UIP very likely helps cells to survive in hypoxic condition. By phagocytosis of cellular debris, they supplement their need for nutrition, and by upregulating LDH and GLUT1, they compensate for local hypoxia.
Collapse
Affiliation(s)
- Florian Gallob
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Sylvia Eidenhammer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Florian Rumpp
- Pulmonology Department, Clinics Munich-Bogenhausen, Munich, Germany
| | - Andreas Nerlich
- Pathology Department, Clinics Munich-Bogenhausen, Munich, Germany
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.
| |
Collapse
|
41
|
Song H, Chen X, Jiao Q, Qiu Z, Shen C, Zhang G, Sun Z, Zhang H, Luo QY. HIF-1α-Mediated Telomerase Reverse Transcriptase Activation Inducing Autophagy Through Mammalian Target of Rapamycin Promotes Papillary Thyroid Carcinoma Progression During Hypoxia Stress. Thyroid 2021; 31:233-246. [PMID: 32772829 DOI: 10.1089/thy.2020.0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: It is important to properly understand the molecular mechanisms of aggressive tumors among papillary thyroid carcinomas (PTCs) that are often the most indolent. Hypoxia inducible factor-1α (HIF-1α), induced by hypoxia, plays pivotal roles in the development and metastasis of the many tumors, including PTCs. Upregulation of telomerase reverse transcriptase (TERT) activity is found in highly invasive PTCs. Further, previous studies have reported that autophagy serves as a protective mechanism to facilitate PTC cell survival. We, therefore, hypothesized that there was a link between HIF-1α, TERT, and autophagy in promoting PTC progression. Methods: Immunohistochemistry staining was conducted to evaluate the expressions of HIF-1α, TERT, and autophagy marker, LC3-II, in matched PTC tumors and corresponding nontumor tissues. Two PTC cell lines (TPC-1 and BCPAP) were used in subsequent cytological function studies. Cell viability, proliferation, apoptosis, migration, and invasion were assessed during hypoxia, genetic enhancement and inhibition of TERT, and chemical and genetic inhibition of autophagy. The protein expression levels of the corresponding biomarkers were determined by Western blotting, and autophagy flow was detected. We characterized the molecular mechanism of PTC cell progression. Results: The protein expression levels of HIF-1α, TERT, and LC3-II were upregulated in PTCs and were significantly correlated with high tumor-node-metastasis stage. Further, an in vitro study indicated that HIF-1α induced by hypoxia functioned as a transcriptional activator by binding with sequences potentially located in the TERT promoter and was positively correlated with the malignant behavior of PTC cell lines. Overexpression of TERT inhibited the kinase activity of mammalian target of rapamycin (mTOR), resulting in the activation of autophagy. Functionally, TERT-induced autophagy provided a survival advantage to PTC cells during hypoxia stress. Conclusions: We identified a novel molecular mechanism involving the HIF-1α/TERT axis, which promoted PTC progression by inducing autophagy through mTOR during hypoxia stress. These findings may provide a basis for the new treatment of aggressive PTCs.
Collapse
Affiliation(s)
- Hongjun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyue Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiong Jiao
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenkui Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
42
|
Bilek AJ, Borodin O, Carmi L, Yakim A, Shtern M, Lerman Y. Older patients with active cancer have favorable inpatient rehabilitation outcomes. J Geriatr Oncol 2021; 12:799-807. [PMID: 33358109 DOI: 10.1016/j.jgo.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To investigate the characteristics and rehabilitation outcomes of older patients with active cancer (OPAC) undergoing post-acute inpatient rehabilitation (IR), and to evaluate which clinical factors are associated with poor rehabilitation outcomes. MATERIALS AND METHODS This is a retrospective study of patients aged ≥65 with active cancer undergoing IR following acute hospitalization at our tertiary hospital centre (N = 330). We collected data on patient, malignancy, and hospitalization characteristics, and IR outcomes including function, mobility, discharge destination, and mortality. Multivariate stepwise logistic regression was used to identify independent associations with the composite outcome of death within three months or discharge to long-term care (LTC). RESULTS Patient mean age was 80.1 ± 7.2 years. The most common malignancies were colon (30.9%) and hematologic (16.1%). Most patients were hospitalized urgently (64.8%) and underwent surgery (72.4%). From IR admission to discharge, patients ambulating independently increased from 14.0% to 52.0%. Discharge destination was to the community (80.4%), to LTC (7.6%), and transfer to an acute ward (7.2%), while 4.8% died during IR. One-year survival was 62.1%. The composite outcome was met by 24.8% of patients with multivariate logistic regression revealing independent associations (p < 0.05) with high baseline dependency, metastatic disease, low mobility score on IR admission, complications during acute care, and ≥ 75th percentile values for lactate dehydrogenase and alkaline phosphatase. CONCLUSION OPAC have favorable IR outcomes including high rate of community discharge, function and mobility gains, and lower mortality rates when compared with previously studied cancer rehabilitation populations. We identified several clinical markers associated with the composite outcome, which can guide post-acute discharge planning in patients with an unclear prognosis.
Collapse
Affiliation(s)
- Aaron Jason Bilek
- Tel Aviv Sourasky Medical Center, Geriatric Division, 6 Weizmann Street, Tel Aviv 62431, Israel.
| | - Oksana Borodin
- Tel Aviv Sourasky Medical Center, Geriatric Division, 6 Weizmann Street, Tel Aviv 62431, Israel; Tel Aviv University, Faculty of Medicine, P.O. box 39040, Tel Aviv 69978, Israel
| | - Liad Carmi
- Tel Aviv University, Faculty of Medicine, P.O. box 39040, Tel Aviv 69978, Israel
| | - Ariel Yakim
- Tel Aviv Sourasky Medical Center, Geriatric Division, 6 Weizmann Street, Tel Aviv 62431, Israel
| | - Michael Shtern
- Tel Aviv Sourasky Medical Center, Geriatric Division, 6 Weizmann Street, Tel Aviv 62431, Israel
| | - Yaffa Lerman
- Tel Aviv Sourasky Medical Center, Geriatric Division, 6 Weizmann Street, Tel Aviv 62431, Israel; Tel Aviv University, Faculty of Medicine, P.O. box 39040, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Huang L, Sim AYL, Wu Y, Liang Z, Li K, Du Y, Ong EHW, Tan HQ, Wee JTS, Xie Y, Shu X, Wang Y, Chua MLK, Zhu X. Lactate dehydrogenase kinetics predict chemotherapy response in recurrent metastatic nasopharyngeal carcinoma. Ther Adv Med Oncol 2020; 12:1758835920970050. [PMID: 33240398 PMCID: PMC7672732 DOI: 10.1177/1758835920970050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a known prognostic biomarker for the endemic variant of nasopharyngeal carcinoma (NPC). Here, we investigate whether serial changes in LDH level between chemotherapy (CT) cycles are associated with tumour response to CT. METHODS Patients with biopsy-proven, recurrent or treatment-naïve metastatic NPC (mNPC) were recruited. All patients had received at least two cycles of platinum-based doublet or triplet CT, with serial assessment of LDH prior to every cycle of chemotherapy (CT1-6). Patients harbouring conditions that affect LDH levels (IU/L) were excluded. Tumour response was assessed after every two cycles of CT by RECIST v1.1. RESULTS A total of 158 patients were analysed, including 77 with recurrent and 81 with treatment-naïve mNPC. High pre-CT LDH was associated with an inferior overall survival [hazard ratio 1.93 for ⩾240 versus <240 (1.34-2.77), p < 0.001], which is consistent with published literature. We found that both absolute LDH levels and LDH ratios (LDHCTn: LDHCTn-1) were associated with tumour response [partial response versus progressive disease: median value across CT1-6 = 168-190 versus 222-398 (absolute); 0.738-0.988 versus 1.039-1.406 (ratio)], albeit LDH ratio had a tighter variance between patients. Finally, we showed that an LDH ratio cut-off of 1.0 at CT1, CT3 and CT5 was predictive of progressive disease at CT2, CT4, CT6 [area under the curve of 0.73 (0.65-0.80)]. CONCLUSION Herein, we characterised the longitudinal variation of LDH in response to CT in mNPC. Our findings suggest the potential utility of interval LDH ratio to predict subsequent tumour response to CT.
Collapse
Affiliation(s)
- Luo Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Adelene Y. L. Sim
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhongguo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kaiguo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Youqin Du
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Enya H. W. Ong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Joseph T. S. Wee
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Yue Xie
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaolei Shu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, 181 Han Yu Road, Chongqing, 400030, China
| | - Melvin L. K. Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610, Singapore
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 77 He Di Road, Nanning, 530021, China
| |
Collapse
|
44
|
Dong Q, Zhou C, Ren H, Zhang Z, Cheng F, Xiong Z, Chen C, Yang J, Gao J, Zhang Y, Xu L, Fang J, Cao Y, Wei H, Wu Z. Lactate-induced MRP1 expression contributes to metabolism-based etoposide resistance in non-small cell lung cancer cells. Cell Commun Signal 2020; 18:167. [PMID: 33097055 PMCID: PMC7583203 DOI: 10.1186/s12964-020-00653-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metabolic reprogramming contributes significantly to tumor development and is tightly linked to drug resistance. The chemotherapeutic agent etoposide (VP-16) has been used clinically in the treatment of lung cancer but possess different sensitivity and efficacy towards SCLC and NSCLC. Here, we assessed the impact of etoposide on glycolytic metabolism in SCLC and NSCLC cell lines and investigated the role of metabolic rewiring in mediating etoposide resistance. METHODS glycolytic differences of drug-treated cancer cells were determined by extracellular acidification rate (ECAR), glucose consumption, lactate production and western blot. DNA damage was evaluated by the comet assay and western blot. Chemoresistant cancer cells were analyzed by viability, apoptosis and western blot. Chromatin immunoprecipitation (ChIP) was used for analysis of DNA-protein interaction. RESULTS Here we showed that exposure to chemotherapeutic drug etoposide induces an exacerbation of ROS production which activates HIF-1α-mediated the metabolic reprogramming toward increased glycolysis and lactate production in non-small cell lung cancer (NSCLC). We identified lactic acidosis as the key that confers multidrug resistance through upregulation of multidrug resistance-associated protein 1 (MRP1, encoded by ABCC1), a member of ATP-binding cassette (ABC) transporter family. Mechanistically, lactic acid coordinates TGF-β1/Snail and TAZ/AP-1 pathway to induce formation of Snail/TAZ/AP-1 complex at the MRP1/ABCC1 promoter. Induction of MRP1 expression inhibits genotoxic and apoptotic effects of chemotherapeutic drugs by increasing drug efflux. Furthermore, titration of lactic acid with NaHCO3 was sufficient to overcome resistance. CONCLUSIONS The chemotherapeutic drug etoposide induces the shift toward aerobic glycolysis in the NSCLC rather than SCLC cell lines. The increased lactic acid in extracellular environment plays important role in etoposide resistance through upregulation of MRP expression. These data provide first evidence for the increased lactate production, upon drug treatment, contributes to adaptive resistance in NSCLC and reveal potential vulnerabilities of lactate metabolism and/or pathway suitable for therapeutic targeting. Video Abstract The chemotherapeutic drug etoposide induces metabolic reprogramming towards glycolysis in the NSCLC cells. The secreted lactic acid coordinates TGF-β1/Snail and TAZ/AP-1 pathway to activate the expression of MRP1/ABCC1 protein, thus contributing to chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Qi Dong
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Chenkang Zhou
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China.,School of laboratory Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Haodong Ren
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China.,School of pharmacy, Wannan Medical College, Wuhu, 241001, China
| | - Zhijian Zhang
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Feng Cheng
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Zhenkai Xiong
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Medical Imageology, Wannan Medical College, Wuhu, 241001, China
| | - Chuantao Chen
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Medical Imageology, Wannan Medical College, Wuhu, 241001, China
| | - Jianke Yang
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Jiguang Gao
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Yao Zhang
- Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Lei Xu
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Jian Fang
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Yuxiang Cao
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of laboratory Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Huijun Wei
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China
| | - Zhihao Wu
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China. .,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China. .,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
45
|
Serum lactate dehydrogenase is a possible predictor of platinum resistance in ovarian cancer. Obstet Gynecol Sci 2020; 63:709-718. [PMID: 32937685 PMCID: PMC7677069 DOI: 10.5468/ogs.20117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/02/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The need for tailoring ovarian cancer treatments to individual patients is increasing. This study aimed to evaluate the prognostic value of pretreatment laboratory test data for predicting the response and survival outcomes of platinumbased chemotherapy in ovarian cancer. METHODS We enrolled 270 patients with ovarian cancer diagnosed at the Kyoto Medical Center (n=120; group A) and Kyoto University (n=150; group B). Data on 9 blood parameters (neutrophil to lymphocyte ratio [NLR], platelet to lymphocyte rate [PLR], C-reactive protein, lactate dehydrogenase [LDH], glucose, total cholesterol, high-density lipoprotein [HDL], low-density lipoprotein, and triglyceride levels), cancer pathology, cancer stage, cytoreduction outcomes, serum cancer antigen 125 levels, platinum-free interval (PFI), disease-free survival (DFS), and overall survival were assessed retrospectively. RESULTS NLR, PLR, LDH, and HDL were significantly different in advanced stage patients (P<0.001, <0.001, 0.029, and <0.001, respectively). The Kaplan-Meier curves revealed that high LDH level (≥250 U/L) was associated with reduced PFI (P=0.037 and 0.012) and DFS (P=0.007 and 0.002) in groups A and B, respectively. High NLR (≥4) was associated with reduced DFS in both groups (P=0.036 and 0.005, respectively). LDH showed higher area under the curve (AUC) values in predicting platinum resistance with a PFI of less than 6 months and 12 months (AUC=0.606 and 0.646, respectively) than NLR. In the multivariate analysis, LDH remained significant (P=0.019) after adjusting for the 9 blood parameters. CONCLUSION Serum LDH level may possibly predict platinum resistance and prognosis in ovarian cancer and may be useful when developing precision medicine for individual patients.
Collapse
|
46
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
47
|
Xiong Y, Xiong M, Li Y, Qian J, Li Y, Han X, Tan J, Luo Y, Wang Q, Qin C. Chitosan oligosaccharide combined with running benefited the immune status of rats. Int Immunopharmacol 2020; 88:106915. [PMID: 32890793 DOI: 10.1016/j.intimp.2020.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 11/17/2022]
Abstract
Chitosan oligosaccharide (COS) degraded by chitosan, is an easily accessible and biocompatible natural molecule, which can facilitate the immune system. Running is one of the most effective forms of exercise. Persistence in running can effectively improve the body's resistance against pathogens. However, whether the combination of COS and running could benefit immune status still remains to be elucidated. We used Sprague-Dawley (SD) rats to explore the combinatory effect of COS and running. The organs and blood of the rats were collected after four weeks and the organ body mass index, biochemical and blood routine examination, cytokines, and T cells in the spleen and blood were detected and analyzed. In the group intragastric administration of COS only, the level of blood lactate dehydrogenase was increased, while the blood creatinine, red blood cells, lymphocytes, and serum TNF were decreased. Furthermore, COS combined with running promoted the development of spleen and lung, the level of lymphocytes, T cell and CD8+ T cell ratio in the blood, and serum TNF level. At the same time, the level of lactate dehydrogenase, serum IL-2, and T cell ratio in spleen were decreased. Therefore, our study indicated that COS combined with running could improve the immune status of rats.
Collapse
Affiliation(s)
- Youming Xiong
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China; Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Meng Xiong
- School of Life Sciences and Biotechnology, Hubei Engineering University, Xiaogan, Hubei 432000, China; Hubei Key Laboratory of Biomass-Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China
| | - Yangyang Li
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jin Qian
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yuwei Li
- School of Life Sciences and Biotechnology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Xu Han
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jing Tan
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yanli Luo
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Qiuxiang Wang
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Caiqin Qin
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| |
Collapse
|
48
|
Pierce CF, Kwasnicki A, Lakka SS, Engelhard HH. Cerebral Microdialysis as a Tool for Assessing the Delivery of Chemotherapy in Brain Tumor Patients. World Neurosurg 2020; 145:187-196. [PMID: 32890850 DOI: 10.1016/j.wneu.2020.08.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/27/2022]
Abstract
The development of curative treatment for glioblastoma has been extremely challenging. Chemotherapeutic agents that have seemed promising have failed in clinical trials. Drugs that can successfully target cancer cells within the brain must first traverse the brain interstitial fluid. Cerebral microdialysis (CMD) is an invasive technique in which interstitial fluid can be directly sampled. CMD has primarily been used clinically in the setting of head trauma and subarachnoid hemorrhage. Our goal was to review the techniques, principles, and new data pertaining to CMD to highlight its use in neuro-oncology. We conducted a literature search using the PubMed database and selected studies in which the investigators had used CMD in either animal brain tumor models or clinical trials. The references were reviewed for additional information. Studies of CMD have shown its importance as a neurosurgical technique. CMD allows for the collection of pharmacokinetic data on drug penetrance across the blood-brain barrier and metabolic data to characterize the response to chemotherapy. Although no complications have been reported, the current CMD technique (as with any procedure) has risks and limitations, which we have described in the present report. Animal CMD experiments have been used to exclude central nervous system drug candidates from progressing to clinical trials. At present, patients undergoing CMD have been monitored in the intensive care unit, owing to the requisite tethering to the apparatus. This can be expected to change soon because of advances in microminiaturization. CMD is an extremely valuable, yet underused, technique. Future CMD applications will have central importance in assessing drug delivery to tumor cells in vivo, allowing a pathway to successful therapy for malignant brain tumors.
Collapse
Affiliation(s)
- Charles F Pierce
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amanda Kwasnicki
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sajani S Lakka
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
49
|
Tumour markers and their utility in imaging of abdominal and pelvic malignancies. Clin Radiol 2020; 76:99-107. [PMID: 32861463 DOI: 10.1016/j.crad.2020.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023]
Abstract
The utility of tumour biomarkers has increased considerably in the era of personalised medicine and individualised therapy in oncology. Biomarkers may be prognostic or predictive, and only a handful of markers are currently US Food and Drug Administration (FDA)-approved for clinical use. Tumour markers have a wide array of uses such as screening, establishing a differential diagnosis, assessing risk, prognosis, and treatment response, as well as monitoring disease status. Major overlap exists between biomarkers and their associated pathologies; therefore, despite suggestive imaging features, establishing a differential diagnosis may be challenging for the radiologist. We review common biomarkers that are of interest to radiologists such as carcinoembryonic antigen (CEA), lactate dehydrogenase (LDH), prostate-specific antigen (PSA), beta human chorionic gonadotropin (β-hCG), carbohydrate antigen 19-9 (CA 19-9), alpha fetoprotein (AFP), and carbohydrate or cancer antigen 125 (CA 125), as well as their associated malignant and non-malignant pathologies. We also present relevant case examples from our practice.
Collapse
|
50
|
Tasnim H, Landry AP, Fontenot CR, Ding H. Exploring the FMN binding site in the mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2020; 156:11-19. [PMID: 32445867 PMCID: PMC7434653 DOI: 10.1016/j.freeradbiomed.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
MitoNEET is a mitochondrial outer membrane protein that hosts a redox active [2Fe-2S] cluster in the C-terminal cytosolic domain. Increasing evidence has shown that mitoNEET has an essential role in regulating energy metabolism in human cells. Previously, we reported that the [2Fe-2S] clusters in mitoNEET can be reduced by the reduced flavin mononucleotide (FMNH2) and oxidized by oxygen or ubiquinone-2, suggesting that mitoNEET may act as a novel redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone. Here, we explore the FMN binding site in mitoNEET by using FMN analogs and find that lumiflavin, like FMN, at nanomolar concentrations can mediate the redox transition of the mitoNEET [2Fe-2S] clusters in the presence of flavin reductase and NADH (100 μM) under aerobic conditions. The electron paramagnetic resonance (EPR) measurements show that both FMN and lumiflavin can dramatically change the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters and form a covalently bound complex with mitoNEET under blue light exposure, suggesting that FMN/lumiflavin has specific interactions with the [2Fe-2S] clusters in mitoNEET. In contrast, lumichrome, another FMN analog, fails to mediate the redox transition of the mitoNEET [2Fe-2S] clusters and has no effect on the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters under blue light exposure. Instead, lumichrome can effectively inhibit the FMNH2-mediated reduction of the mitoNEET [2Fe-2S] clusters, indicating that lumichrome may act as a potential inhibitor to block the electron transfer activity of mitoNEET.
Collapse
Affiliation(s)
- Homyra Tasnim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|