1
|
Gu J, Yan Y, Zeng Z, Liu D, Hu J, Hu S, Wang X, Gu M, Liu X. Hemagglutinin with a polybasic cleavage site confers high virulence on H7N9 avian influenza viruses. Poult Sci 2025; 104:104832. [PMID: 39862488 PMCID: PMC11803838 DOI: 10.1016/j.psj.2025.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs). Notably, the polybasic cleavage site motifs are diversified, of which PEVPKRKRTAR↓GLF motif is prevalent. To elucidate the reasons accounting for its dominance, recombinant H7N9 virus carrying PEVPKRKRTAR↓GLF (rJT157-2) motif was generated based on LP H7N9 virus A/chicken/Eastern China/JT157/2016 (JT157). Besides, another two viruses containing PEVPKGKRTAR↓GLF (rJT157-1) and PEIPKRKRTAR↓GLF (rJT157-3) cleavage site motifs were also constructed as comparisons. We found that rJT157-2 showed better biological characterizations in vitro including replication kinetics, plaque size, thermal and acid stability. In addition, animal experiments demonstrated that rJT157-2 was more pathogenic to both chickens and mice with higher virus titers and induced more severe changes in the lungs. These results suggested that HP H7N9 viruses carrying PEVPKRKRTAR↓GLF motif in the HA cleavage site were most likely adaptive mutants during the evolution of H7N9 AIVs.
Collapse
Affiliation(s)
- Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, PR China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Dong Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
2
|
Zhao Y, Chen P, Hu Y, Liu J, Jiang Y, Zeng X, Deng G, Shi J, Li Y, Tian G, Liu J, Chen H. Recombinant duck enteritis virus bearing the hemagglutinin genes of H5 and H7 influenza viruses is an ideal multivalent live vaccine in ducks. Emerg Microbes Infect 2024; 13:2284301. [PMID: 37966272 PMCID: PMC10769552 DOI: 10.1080/22221751.2023.2284301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
Due to the fact that many avian influenza viruses that kill chickens are not lethal to ducks, farmers are reluctant to use avian influenza inactivated vaccines on ducks. Large numbers of unvaccinated ducks play an important role in the transmission of avian influenza viruses from wild birds to domestic poultry, creating a substantial challenge to vaccination strategies for avian influenza control. To solve this problem, we constructed a recombinant duck enteritis virus (DEV), rDEV-dH5/H7, using a live attenuated DEV vaccine strain (vDEV) as a vector. rDEV-dH5/H7 carries the hemagglutinin gene of two H5 viruses [GZ/S4184/17 (H5N6) (clade 2.3.4.4 h) and LN/SD007/17 (H5N1) (clade 2.3.2.1d)] and an H7 virus [GX/SD098/17 (H7N9)]. These three hemagglutinin genes were stably inherited in rDEV-dH5/H7 and expressed in rDEV-dH5/H7-infected cells. Animal studies revealed that rDEV-dH5/H7 and vDEV induced similar neutralizing antibody responses and protection against lethal DEV challenge. Importantly, rDEV-dH5/H7 induced strong and long-lasting hemagglutinin inhibition antibodies against different H5 and H7 viruses and provided complete protection against challenges with homologous and heterologous highly pathogenic H5 and H7 influenza viruses in ducks. Our study shows that rDEV-dH5/H7 could serve as an ideal live attenuated vaccine to protect ducks against infection with lethal DEV and highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
- Yubo Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Pucheng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jinxiong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Daidoji T, Sadakane H, Garan K, Kawashita N, Arai Y, Watanabe Y, Nakaya T. The host tropism of current zoonotic H7N9 viruses depends mainly on an acid-labile hemagglutinin with a single amino acid mutation in the stalk region. PLoS Pathog 2024; 20:e1012427. [PMID: 39436936 PMCID: PMC11495601 DOI: 10.1371/journal.ppat.1012427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/15/2024] [Indexed: 10/25/2024] Open
Abstract
The incidence of human infection by zoonotic avian influenza viruses, especially H5N1 and H7N9 viruses, has increased. Current zoonotic H7N9 avian influenza viruses (identified since 2013) emerged during reassortment of viruses belonging to different subtypes. Despite analyses of their genetic background, we do not know why current H7N9 viruses are zoonotic. Therefore, there is a need to identify the factor(s) responsible for the extended host tropism that enables these viruses to infect humans as well as birds. To identify H7N9-specific amino acids that confer zoonotic properties on H7N9 viruses, we performed multiple alignment of the hemagglutinin (HA) amino acid sequences of A/Shanghai/1/2013 (H7N9) and A/duck/Zhejiang/12/2011(H7N3) (a putative, non- or less zoonotic HA donor to the zoonotic H7N9 virus). We also analyze the function of an H7N9 HA-specific amino acid with respect to HA acid stability, and evaluated the effect of acid stability on viral infectivity and virulence in a mouse model. HA2-116D, preserved in current zoonotic H7N9 viruses, was crucial for loss of HA acid stability. The acid-labile HA protein in H7 viruses played an important role in infection of human airway epithelial cells; HA2-116D contributed to infection and replication of H7 viruses. Finally, HA2-116D served as a H7 virulence factor in mice. These results suggest that acid-labile HA harboring HA2-116D confers zoonotic characteristics on H7N9 virus and that future novel zoonotic avian viruses could emerge from non-zoonotic H7 viruses via acquisition of mutations that remove HA acid stability.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Sadakane
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Garan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Luo S, Xie Z, Li M, Li D, Zhang M, Ruan Z, Xie L, Wang S, Fan Q, Zhang Y, Huang J, Zeng T. Simultaneous Differential Detection of H5, H7, H9 and Nine NA Subtypes of Avian Influenza Viruses via a GeXP Assay. Microorganisms 2024; 12:143. [PMID: 38257970 PMCID: PMC10819249 DOI: 10.3390/microorganisms12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
H5, H7 and H9 are the most important subtypes of avian influenza viruses (AIVs), and nine neuraminidase (NA) subtypes (N1-N9) of AIVs have been identified in poultry. A method that can simultaneously detect H5, H7, H9 and the nine NA subtypes of AIVs would save time and effort. In this study, 13 pairs of primers, including 12 pairs of subtype-specific primers for detecting particular subtypes (H5, H7, H9 and N1-N9) and one pair of universal primers for detecting all subtypes of AIVs, were designed and screened. The 13 pairs of primers were mixed in the same reaction, and the 13 target genes were simultaneously detected. A GeXP assay using all 13 pairs of primers to simultaneously detect H5, H7, H9 and the nine NA subtypes of AIVs was developed. The GeXP assay showed specific binding to the corresponding target genes for singlet and multiplex templates, and no cross-reactivity was observed between AIV subtypes and other related avian pathogens. Detection was observed even when only 102 copies of the 13 target genes were present. This study provides a high-throughput, rapid and labor-saving GeXP assay for the simultaneous rapid identification of three HA subtypes (H5, H7 and N9) and nine NA subtypes (N1-N9) of AIVs.
Collapse
Affiliation(s)
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEANCross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning 530001, China; (S.L.); (M.L.); (D.L.); (M.Z.); (Z.R.); (L.X.); (S.W.); (Q.F.); (Y.Z.); (J.H.); (T.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Status and Challenges for Vaccination against Avian H9N2 Influenza Virus in China. Life (Basel) 2022; 12:life12091326. [PMID: 36143363 PMCID: PMC9505450 DOI: 10.3390/life12091326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
In China, H9N2 avian influenza virus (AIV) has become widely prevalent in poultry, causing huge economic losses after secondary infection with other pathogens. Importantly, H9N2 AIV continuously infects humans, and its six internal genes frequently reassort with other influenza viruses to generate novel influenza viruses that infect humans, threatening public health. Inactivated whole-virus vaccines have been used to control H9N2 AIV in China for more than 20 years, and they can alleviate clinical symptoms after immunization, greatly reducing economic losses. However, H9N2 AIVs can still be isolated from immunized chickens and have recently become the main epidemic subtype. A more effective vaccine prevention strategy might be able to address the current situation. Herein, we analyze the current status and vaccination strategy against H9N2 AIV and summarize the progress in vaccine development to provide insight for better H9N2 prevention and control.
Collapse
|
6
|
Effect of the Interaction between Viral PB2 and Host SphK1 on H9N2 AIV Replication in Mammals. Viruses 2022; 14:v14071585. [PMID: 35891566 PMCID: PMC9322132 DOI: 10.3390/v14071585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
The H9N2 avian influenza virus (AIV) is currently widespread worldwide, posing a severe threat to the poultry industry and public health. Reassortment is an important way for influenza viruses to adapt to a new host. In 2007, the PB2 gene of H9N2 AIV in China was reassorted, and the DK1-like lineage replaced the F/98-like lineage, forming a dominant genotype of G57. This genotype and its reassortants (such as H7N9, H10N8 and H5N6) showed higher mammalian adaptation, and caused increased human infections. However, the adaptive mechanisms of the DK1-like lineage PB2 gene remain unclear. Here, we confirmed that the PB2 lineage of the H9N2 AIV currently prevalent in China still belongs to the DK1-like lineage and, compared with the previously predominant F/98-like lineage, the DK1-like lineage PB2 gene significantly enhances H9N2 AIV to mammalian adaptation. Through transcriptomic analysis and qRT–PCR and western blot experiments, we identified a host factor, sphingosine kinase 1 (SphK1), that is closely related to viral replication. SphK1 inhibits the replication of DK1-like PB2 gene H9N2 AIV, but the ability of SphK1 protein to bind DK1-like PB2 protein is weaker than that of F/98-like PB2 protein, which may contribute to H9N2 AIV containing the DK1-like PB2 gene to escape the inhibitory effect of host factor SphK1 for efficient infection. This study broadens our understanding of the adaptive evolution of H9N2 AIV and highlights the necessity to pay close attention to the AIV that contains the adaptive PB2 protein in animals and humans.
Collapse
|
7
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
8
|
Luo S, Zhao X, Wang Y, Duan L. Theoretical investigating mechanisms of drug-resistance generated by mutation-induced changes in influenza viruses. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Yihui Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
9
|
Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, Bi Y, Shi Y, Gao GF, Liu Y. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med 2021; 15:507-527. [PMID: 33860875 PMCID: PMC8190734 DOI: 10.1007/s11684-020-0814-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaopeng Qi
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
| |
Collapse
|
10
|
Chiang YW, Li CJ, Su HY, Hsieh KT, Weng CW, Chen HW, Chang SC. Development of mouse monoclonal antibody for detecting hemagglutinin of avian influenza A(H7N9) virus and preventing virus infection. Appl Microbiol Biotechnol 2021; 105:3235-3248. [PMID: 33770244 PMCID: PMC7995400 DOI: 10.1007/s00253-021-11253-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/29/2022]
Abstract
Abstract Many cases of avian influenza A(H7N9) virus infection in humans have been reported since its first emergence in 2013. The disease is of concern because most patients have become severely ill with roughly 30% mortality rate. Because the threat in public health caused by H7N9 virus remains high, advance preparedness is essentially needed. In this study, the recombinant H7N9 hemagglutinin (HA) was expressed in insect cells and purified for generation of two monoclonal antibodies, named F3-2 and 1C6B. F3-2 can only recognize the H7N9 HA without having cross-reactivity with HA proteins of H1N1, H3N2, H5N1, and H7N7. 1C6B has the similar specificity with F3-2, but 1C6B can also bind to H7N7 HA. The binding epitope of F3-2 is mainly located in the region of H7N9 HA(299–307). The binding epitope of 1C6B is located in the region of H7N9 HA(489–506). F3-2 and 1C6B could not effectively inhibit the hemagglutination activity of H7N9 HA. However, F3-2 can prevent H7N9 HA from trypsin cleavage and can bind to H7N9 HA which has undergone pH-induced conformational change. F3-2 also has the ability of binding to H7N9 viral particles and inhibiting H7N9 virus infection to MDCK cells with the IC50 value of 22.18 μg/mL. In addition, F3-2 and 1C6B were utilized for comprising a lateral flow immunochromatographic test strip for specific detection of H7N9 HA. Key points • Two mouse monoclonal antibodies, F3-2 and 1C6B, were generated for recognizing the novel binding epitopes in H7N9 HA. • F3-2 can prevent H7N9 HA from trypsin cleavage and inhibit H7N9 virus infection to MDCK cells. • F3-2 and 1C6B were developed as a lateral flow immunochromatographic test for specific detection of H7N9 HA.
Collapse
Affiliation(s)
- Yi-Wei Chiang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Heng-Yi Su
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Kai-Ting Hsieh
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Wei Weng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
11
|
Affiliation(s)
-
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| |
Collapse
|
12
|
Jeong JH, Choi WS, Antigua KJC, Choi YK, Govorkova EA, Webby RJ, Baek YH, Song MS. In Vitro Profiling of Laninamivir-Resistant Substitutions in N3 to N9 Avian Influenza Virus Neuraminidase Subtypes and Their Association with In Vivo Susceptibility. J Virol 2020; 95:e01679-20. [PMID: 33055248 PMCID: PMC7737746 DOI: 10.1128/jvi.01679-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Laninamivir (LAN) is a long-acting neuraminidase (NA) inhibitor (NAI) with a similar binding profile in the influenza NA enzyme active site as those of other NAIs, oseltamivir (OS), zanamivir (ZAN), and peramivir, and may share common resistance markers with these NAIs. We screened viruses with NA substitutions previously found during OS and ZAN selection in avian influenza viruses (AIVs) of the N3 to N9 subtypes for LAN susceptibility. Of the 72 NA substitutions, 19 conferred resistance to LAN, which ranged from 11.2- to 549.8-fold-decreased inhibitory activity over that of their parental viruses. Ten NA substitutions reduced the susceptibility to all four NAIs, whereas the remaining 26 substitutions yielded susceptibility to one or more NAIs. To determine whether the in vitro susceptibility of multi-NAI-resistant AIVs is associated with in vivo susceptibility, we infected BALB/c mice with recombinant AIVs with R292K (ma81K-N3R292K) or Q136K (ma81K-N8Q136K) NA substitutions, which impart in vitro susceptibility only to LAN or OS, respectively. Both ma81K-N3R292K and ma81K-N8Q136K virus-infected mice exhibited reduced weight loss, mortality, and lung viral titers when treated with their susceptible NAIs, confirming the in vitro susceptibility of these substitutions. Together, LAN resistance profiling of AIVs of a range of NA subtypes improves the understanding of NAI resistance mechanisms. Furthermore, the association of in vitro and in vivo NAI susceptibility indicates that our models are useful tools for monitoring NAI susceptibility of AIVs.IMPORTANCE The chemical structures of neuraminidase inhibitors (NAIs) possess similarities, but slight differences can result in variable susceptibility of avian influenza viruses (AIVs) carrying resistance-associated NA substitutions. Therefore, comprehensive susceptibility profiling of these substitutions in AIVs is critical for understanding the mechanism of antiviral resistance. In this study, we profiled resistance to the anti-influenza drug laninamivir in AIVs with substitutions known to impart resistance to other NAIs. We found 10 substitutions that conferred resistance to all four NAIs tested. On the other hand, we found that the remaining 26 NA substitutions were susceptible to at least one or more NAIs and showed for a small selection that in vitro data predicted in vivo behavior. Therefore, our findings highlight the usefulness of screening resistance markers in NA enzyme inhibition assays and animal models of AIV infections.
Collapse
Affiliation(s)
- Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Khristine Joy C Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| |
Collapse
|
13
|
Alqazlan N, Astill J, Taha-Abdelaziz K, Nagy É, Bridle B, Sharif S. Probiotic Lactobacilli Enhance Immunogenicity of an Inactivated H9N2 Influenza Virus Vaccine in Chickens. Viral Immunol 2020; 34:86-95. [PMID: 33236974 DOI: 10.1089/vim.2020.0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Avian influenza viruses (AIVs) infect a wide range of hosts, including humans and many avian species. Efforts have been made to control this pathogen in chickens using vaccination programs, but that has been met with varying degrees of success. Therefore, identification of more efficacious vaccination strategies is warranted. This study was undertaken to investigate the potential effects of probiotics on the immunogenicity of a beta-propiolactone-whole inactivated virus (WIV) vaccine of H9N2 subtype adjuvanted with the Toll-like receptor-21 ligand, CpG oligodeoxynucleotides 2007 (CpG). Eighty-four 1-day-old White Leghorn layers were allocated into six groups. Two out of six groups received a mixture of probiotic Lactobacillus spp. (PROB) biweekly from days 1 35 of age. Chickens were intramuscularly vaccinated with WIV either alone or adjuvanted with AddaVax™ (WIV+Add) or CpG (WIV+CpG), and one group received saline (phosphate-buffered saline). Primary and secondary vaccinations occurred at days 14 and 28 of age, respectively. The results revealed that the group that received probiotics and was vaccinated with CpG-adjuvanted WIV H9N2 vaccine had higher hemagglutination inhibition titers than the other treatment groups at days 14 and 21 postprimary vaccination. Probiotics did not induce higher IgM or IgY titers in chickens receiving the WIV vaccine only. Concerning their effect on cell-mediated immune responses, probiotics enhanced interferon-gamma (IFN-γ) gene expression and significantly increased secretion of IFN-γ protein by splenocytes in chickens vaccinated with CpG-adjuvanted WIV H9N2. Together, these findings suggest the use of probiotics to enhance the immunogenicity of CpG-adjuvanted WIV H9N2 vaccines. Additional studies are required to better understand the specific interactions between probiotics and the gut microbiota and different types of cells of the gastrointestinal tract to decipher the underlying mechanisms of how probiotics modulate immune responses to vaccines.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Byram Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Lee EK, Tian H, Nakaya HI. Antigenicity prediction and vaccine recommendation of human influenza virus A (H3N2) using convolutional neural networks. Hum Vaccin Immunother 2020; 16:2690-2708. [PMID: 32750260 PMCID: PMC7734114 DOI: 10.1080/21645515.2020.1734397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The rapid evolution of influenza A viruses poses a great challenge to vaccine development. Analytical and machine learning models have been applied to facilitate the process of antigenicity determination. In this study, we designed deep convolutional neural networks (CNNs) to predict Influenza antigenicity. Our model is the first that systematically analyzed 566 amino acid properties and 141 amino acid substitution matrices for their predictability. We then optimized the structure of the CNNs using particle swarm optimization. The optimal neural networks outperform other predictive models with a blind validation accuracy of 95.8%. Further, we applied our model to vaccine recommendations in the period 1997 to 2011 and contrasted the performance of previous vaccine recommendations using traditional experimental approaches. The results show that our model outperforms the WHO recommendation and other existing models and could potentially improve the vaccine recommendation process. Our results show that WHO often selects virus strains with small variation from year to year and learns slowly and recovers once coverage dips very low. In contrast, the influenza strains selected via our CNN model can differ quite drastically from year to year and exhibit consistently good coverage. In summary, we have designed a comprehensive computational pipeline for optimizing a CNN in the modeling of Influenza A antigenicity and vaccine recommendation. It is more cost and time-effective when compared to traditional hemagglutination inhibition assay analysis. The modeling framework is flexible and can be adopted to study other type of viruses.
Collapse
Affiliation(s)
- Eva K Lee
- Center for Operations Research in Medicine and Healthcare, Georgia Institute of Technology , Atlanta, GA, USA.,Center for Computational Biology and Bioinformatics, Georgia Institute of Technology , Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA, USA.,School of Industrial and Systems Engineering, Georgia Institute of Technology , Atlanta, GA, USA
| | - Haozheng Tian
- Center for Operations Research in Medicine and Healthcare, Georgia Institute of Technology , Atlanta, GA, USA.,Center for Computational Biology and Bioinformatics, Georgia Institute of Technology , Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA, USA
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo , Sao Paulo, Brazil
| |
Collapse
|
15
|
A human cell polarity protein Lgl2 regulates influenza A virus nucleoprotein exportation from nucleus in MDCK cells. J Biosci 2020. [DOI: 10.1007/s12038-020-00039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Low replicative fitness of neuraminidase inhibitor-resistant H7N9 avian influenza a virus with R292K substitution in neuraminidase in cynomolgus macaques compared with I222T substitution. Antiviral Res 2020; 178:104790. [PMID: 32272175 DOI: 10.1016/j.antiviral.2020.104790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
Abstract
Human cases of H7N9 influenza A virus infection have been increasing since 2013. The first choice of treatment for influenza is neuraminidase (NA) inhibitors (NAIs), but there is a concern that NAI-resistant viruses are selected in the presence of NAIs. In our previous study, an H7N9 virus carrying AA substitution of threonine (T) for isoleucine (I) at residue 222 in NA (NA222T, N2 numbering) and an H7N9 virus carrying AA substitution of lysine (K) for arginine (R) at residue 292 in NA (NA292K, N2 numbering) were found in different macaques that had been infected with A/Anhui/1/2013 (H7N9) and treated with NAIs. In the present study, the variant with NA292K showed not only resistance to NAIs but also lower replication activity in MDCK cells than did the virus with wild-type NA, whereas the variant with NA222T, which was less resistant to NAIs, showed replication activity similar to that of the wild-type virus. Next, we examined the pathogenicity of these H7N9 NAI-resistant viruses in macaques. The variants caused clinical signs similar to those caused by the wild-type virus with similar replication potency. However, the virus with NA292K was replaced within 7 days by that with NA292R (same as the wild-type) in nasal samples from macaques infected with the virus with NA292K, i.e. the so-called revertant (wild-type virus) became dominant in the population in the absence of an NAI. These results suggest that the clinical signs observed in macaques infected with the NA292K virus are caused by the NA292K virus and the NA292R virus and that the virus with NA292K may not replicate continuously in the upper respiratory tract of patients without treatment as effectively as the wild-type virus.
Collapse
|
17
|
Butler J, Middleton D, Haining J, Layton R, Rockman S, Brown LE, Sapats S. Insights into the Acquisition of Virulence of Avian Influenza Viruses during a Single Passage in Ferrets. Viruses 2019; 11:v11100915. [PMID: 31590265 PMCID: PMC6832663 DOI: 10.3390/v11100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/27/2022] Open
Abstract
Circulating avian influenza viruses pose a significant threat, with human infections occurring infrequently but with potentially severe consequences. To examine the dynamics and locale of the adaptation process of avian influenza viruses when introduced to a mammalian host, we infected ferrets with H5N1 viruses. As expected, all ferrets infected with the human H5N1 isolate A/Vietnam/1203/2004 showed severe disease and virus replication outside the respiratory tract in multiple organs including the brain. In contrast infection of ferrets with the avian H5N1 virus A/Chicken/Laos/Xaythiani-26/2006 showed a different collective pattern of infection; many ferrets developed and cleared a mild respiratory infection but a subset (25–50%), showed extended replication in the upper respiratory tract and developed infection in distal sites. Virus from these severely infected ferrets was commonly found in tissues that included liver and small intestine. In most instances the virus had acquired the common virulence substitution PB2 E627K but, in one case, a previously unidentified combination of two amino acid substitutions at PB2 S489P and NP V408I, which enhanced polymerase activity, was found. We noted that virus with high pathogenicity adaptations could be dominant in an extra-respiratory site without being equally represented in the nasal wash. Further ferret passage of these mutated viruses resulted in high pathogenicity in all ferrets. These findings illustrate the remarkable ability of avian influenza viruses that avoid clearance in the respiratory tract, to mutate towards a high pathogenicity phenotype during just a single passage in ferrets and also indicate a window of less than 5 days in which treatment may curtail systemic infection.
Collapse
Affiliation(s)
- Jeffrey Butler
- The Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory (CSIRO-AAHL), Geelong 3219, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne 3000, Victoria, Australia
| | - Deborah Middleton
- The Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory (CSIRO-AAHL), Geelong 3219, Victoria, Australia
| | - Jessica Haining
- The Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory (CSIRO-AAHL), Geelong 3219, Victoria, Australia
| | - Rachel Layton
- The Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory (CSIRO-AAHL), Geelong 3219, Victoria, Australia
| | - Steven Rockman
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne 3000, Victoria, Australia
- Seqirus, 63 Poplar Rd, Parkville 3052, Victoria, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne 3000, Victoria, Australia.
| | - Sandra Sapats
- The Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory (CSIRO-AAHL), Geelong 3219, Victoria, Australia
| |
Collapse
|
18
|
Diversity and distribution of type A influenza viruses: an updated panorama analysis based on protein sequences. Virol J 2019; 16:85. [PMID: 31242907 PMCID: PMC6595669 DOI: 10.1186/s12985-019-1188-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 01/09/2023] Open
Abstract
Background Type A influenza viruses (IAVs) cause significant infections in humans and multiple species of animals including pigs, horses, birds, dogs and some marine animals. They are of complicated phylogenetic diversity and distribution, and analysis of their phylogenetic diversity and distribution from a panorama view has not been updated for multiple years. Methods 139,872 protein sequences of IAVs from GenBank were selected, and they were aligned and phylogenetically analyzed using the software tool MEGA 7.0. Lineages and subordinate lineages were classified according to the topology of the phylogenetic trees and the host, temporal and spatial distribution of the viruses, and designated using a novel universal nomenclature system. Results Large phylogenetic trees of the two external viral genes (HA and NA) and six internal genes (PB2, PB1, PA, NP, MP and NS) were constructed, and the diversity and the host, temporal and spatial distribution of these genes were calculated and statistically analyzed. Various features regarding the diversity and distribution of IAVs were confirmed, revised or added through this study, as compared with previous reports. Lineages and subordinate lineages were classified and designated for each of the genes based on the updated panorama views. Conclusions The panorama views of phylogenetic diversity and distribution of IAVs and their nomenclature system were updated and assumed to be of significance for studies and communication of IAVs. Electronic supplementary material The online version of this article (10.1186/s12985-019-1188-7) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Regulations of organism by materials: a new understanding of biological inorganic chemistry. J Biol Inorg Chem 2019; 24:467-481. [DOI: 10.1007/s00775-019-01673-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
20
|
Soli R, Kaabi B, Barhoumi M, Maktouf C, Ahmed SBH. Bayesian phylogenetic analysis of the influenza-A virus genomes isolated in Tunisia, and determination of potential recombination events. Mol Phylogenet Evol 2019; 134:253-268. [DOI: 10.1016/j.ympev.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 11/24/2022]
|
21
|
Zheng H, Xinhua O, Rusheng Z, Dong Y, Lingzhi L, Ruchun L, Yelan L, Jingfang C, Biancheng S. Evolved avian influenza virus (H7N9) isolated from human cases in a middle Yangtze River city in China, from February to April 2017. Heliyon 2019; 5:e01253. [PMID: 30899824 PMCID: PMC6407145 DOI: 10.1016/j.heliyon.2019.e01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022] Open
Abstract
Seven cases of avian influenza A H7N9 virus infection were reported from February to April 2017 in Changsha City. Viral genome was acquired by RT-PCR, aligned with other H7N9 viruses using Clustal W, and phylogenetic trees were constructed using the neighbor-joining method. Our results showed the representativeness of H7N9 virus infections in Middle Yangtze River City. The hemagglutinin segment contained Thr160Ala, Gly186Val and Gln226Leu substitutions, which are associated with increased binding affinity in humans. Phylogenetic analysis indicated that H7N9 viruses had an avian origin, and belonged to the Yangtze River Delta lineage. The proportion of PB2 Ala588Val substitutions in viruses revealed a significantly increasing in recent years, from 0.8 % (1 of 128 cases) to 84.9 % (275 of 324 cases). The data indicate that H7N9 viruses may be more capable of infecting mammals, even though they are still considered low pathogenic avian influenza virus. Hence, the prevalence and genetic evolution of this virus should be closely monitored to prevent more severe human pandemics.
Collapse
Affiliation(s)
- Huang Zheng
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Ou Xinhua
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Zhang Rusheng
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Yao Dong
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Li Lingzhi
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Liu Ruchun
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Li Yelan
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Chen Jingfang
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| | - Sun Biancheng
- Changsha Center for Disease Control and Prevention, Changsha 410004, Hunan, China
| |
Collapse
|
22
|
Characterization of Mouse Monoclonal Antibodies Against the HA of A(H7N9) Influenza Virus. Viruses 2019; 11:v11020149. [PMID: 30754701 PMCID: PMC6410113 DOI: 10.3390/v11020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
Many cases of human infection with the H7N9 virus have been detected in China since 2013. H7N9 viruses are maintained in chickens and are transmitted to humans at live bird markets. During circulation in birds, H7N9 viruses have accumulated amino acid substitutions in their hemagglutinin (HA), which resulted in an antigenically change in the recent H7N9 viruses. Here, we characterized 46 mouse monoclonal antibodies against the HA of the prototype strain. 16 H7-HA-specific monoclonal antibodies (mAbs) possessed hemagglutination inhibition (HI) and neutralization activities by recognizing the major antigenic site A; four other H7-HA-specific clones also showed HI and neutralizing activities via recognition of the major antigenic sites A and D; seven mAbs that reacted with several HA subtypes and possibly recognized the HA stem partially protected mice from lethal infection with prototype H7N9 virus; and the remaining 19 mAbs had neither HI nor neutralization activity. All human H7N9 viruses tested showed a similar neutralization sensitivity to the first group of 16 mAbs, whereas human H7N9 viruses isolated in 2016–2017 were not neutralized by a second group of 4 mAbs. These results suggest that amino acid substitutions at the epitope of the second mAb group appear to be involved in the antigenic drift of the H7N9 viruses. Further analysis is required to fully understand the antigenic change in H7N9 viruses.
Collapse
|
23
|
Oliveira M, Amorim A. Microbial forensics: new breakthroughs and future prospects. Appl Microbiol Biotechnol 2018; 102:10377-10391. [PMID: 30302518 PMCID: PMC7080133 DOI: 10.1007/s00253-018-9414-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Recent advances in genetic data generation, through massive parallel sequencing (MPS), storage and analysis have fostered significant progresses in microbial forensics (or forensic microbiology). Initial applications in circumstances of biocrime, bioterrorism and epidemiology are now accompanied by the prospect of using microorganisms (i) as ancillary evidence in criminal cases; (ii) to clarify causes of death (e.g., drownings, toxicology, hospital-acquired infections, sudden infant death and shaken baby syndromes); (iii) to assist human identification (skin, hair and body fluid microbiomes); (iv) for geolocation (soil microbiome); and (v) to estimate postmortem interval (thanatomicrobiome and epinecrotic microbial community). When compared with classical microbiological methods, MPS offers a diverse range of advantages and alternative possibilities. However, prior to its implementation in the forensic context, critical efforts concerning the elaboration of standards and guidelines consolidated by the creation of robust and comprehensive reference databases must be undertaken.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal. .,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4200-135, Porto, Portugal.
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
24
|
Zheng D, Gao F, Zhao C, Ding Y, Cao Y, Yang T, Xu X, Chen Z. Comparative effectiveness of H7N9 vaccines in healthy individuals. Hum Vaccin Immunother 2018; 15:80-90. [PMID: 30148691 DOI: 10.1080/21645515.2018.1515454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Avian H7N9 influenza viruses possess a potential pandemic threat to public health worldwide, and have caused severe infection and high mortality in humans. A series of clinical trials of H7N9 vaccines have been completed. Meta-analyses need to be performed to assess the immunogenicity and safety of H7N9 vaccines. METHODS Database research with defined selection criteria was conducted in PubMed, Cochrane Central Register of Controlled Trials, the World Health Organization's International Clinical Trials Registry Platform, ClinicalTrials.gov, etc. Data from randomized clinical trials regarding the immunogenicity and safety of H7N9 vaccines were collected and meta-analyzed. RESULTS For non-adjuvanted H7N9 vaccines, high dose formulations induced limited immunogenicity and increased the risk of local and systemic adverse events, simultaneously. For adjuvanted H7N9 vaccines, on the one hand, ISCOMATRIX, MF59, AS03 and aluminium adjuvants applied in H7N9 vaccines could improve immune responses effectively, and non-aluminium adjuvants had superior performance in saving vaccine dose; on the other hand, aluminium adjuvant had the advantages of safety amongst these adjuvants applied in H7N9 vaccines. CONCLUSION H7N9 influenza vaccines with adjuvant might represent the optimal available option in an influenza pandemic, at present.
Collapse
Affiliation(s)
- Dan Zheng
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China.,b Shanghai TCM-Integrated Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Department of Vascular Disease , Shanghai TCM-Integrated Institute of Vascular Disease , Shanghai , China
| | - Feixia Gao
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| | - Cheng Zhao
- b Shanghai TCM-Integrated Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Department of Vascular Disease , Shanghai TCM-Integrated Institute of Vascular Disease , Shanghai , China
| | - Yahong Ding
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| | - Yemin Cao
- b Shanghai TCM-Integrated Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Department of Vascular Disease , Shanghai TCM-Integrated Institute of Vascular Disease , Shanghai , China
| | - Tianhan Yang
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| | - Xuesong Xu
- d Huadong Hospital Affiliated to Fudan University , Shanghai , China
| | - Ze Chen
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| |
Collapse
|
25
|
Sivanandy P, Zi Xien F, Woon Kit L, Tze Wei Y, Hui En K, Chia Lynn L. A review on current trends in the treatment of human infection with H7N9-avian influenza A. J Infect Public Health 2018; 12:153-158. [PMID: 30213468 DOI: 10.1016/j.jiph.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
The H7N9 subtype of avian influenza is an enzootic and airborne virus which caused an influenza outbreak in China. Infected individuals mostly worked with poultry, suggesting H7N9 virus-infected poultry as the primary source of human infection. Significantly increased levels of proinflammatory mediators (chemokines, cytokines) during virus infection could hamper the immune system and aggravate the infection. Severe cases are marked by fulminant pneumonia, acute respiratory distress syndrome (ARDS) and encephalopathy. Left untreated, the condition may rapidly progress to multi-organ failure and death. Reverse transcription polymerase chain reaction (rRT-PCR) is the gold standard diagnostic test for H7N9 avian influenza. Use of neurominidase inhibitor antivirals remain the main treatment. New antivirals are developed to counteract neurominidase inhibitor resistance H7N9 viral strains. Corticosteroid use in viral pneumonia may provoke mortality and longer viral shedding time. Subjects at high risk of contracting avian influenza H7N9 infection are recommended to receive annual seasonal influenza vaccination.
Collapse
Affiliation(s)
- Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | - Foong Zi Xien
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Woon Kit
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yeoh Tze Wei
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kuan Hui En
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lian Chia Lynn
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Goneau LW, Mehta K, Wong J, L'Huillier AG, Gubbay JB. Zoonotic Influenza and Human Health-Part 1: Virology and Epidemiology of Zoonotic Influenzas. Curr Infect Dis Rep 2018; 20:37. [PMID: 30069735 DOI: 10.1007/s11908-018-0642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Zoonotic influenza viruses are those that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. They have also been implicated in the causation of deadly pandemics in recent history. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this first part of a two-part review, we describe the structure of zoonotic influenza viruses, the relationship between mutation and pandemic capacity, pathogenesis of infection, and also discuss history and epidemiology. RECENT FINDINGS We are currently witnessing the fifth and the largest wave of the avian influenza A(H7N9) epidemic. Also in circulation are a number of other zoonotic influenza viruses, including avian influenza A(H5N1) and A(H5N6); avian influenza A(H7N2); and swine influenza A(H1N1)v, A(H1N2)v, and A(H3N2)v viruses. Most recently, the first human case of avian influenza A(H7N4) infection has been documented. By understanding the virology and epidemiology of emerging zoonotic influenzas, we are better prepared to face a new pandemic. However, continued effort is warranted to build on this knowledge in order to efficiently combat the constant threat posed by the zoonotic influenza viruses.
Collapse
Affiliation(s)
- L W Goneau
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada.,University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada
| | - K Mehta
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Wong
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.,Department of Paediatrics, North York General Hospital, Toronto, ON, Canada
| | - A G L'Huillier
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J B Gubbay
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada. .,University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada. .,Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
27
|
Zhou P, Cao Z, Zeng W, Hao X, Zheng Q, Lin X, He Y, Zhang X, Zheng Y, Wang L, Zhang G, Li S. PB2 E627K or D701N substitution does not change the virulence of canine influenza virus H3N2 in mice and dogs. Vet Microbiol 2018; 220:67-72. [PMID: 29885803 DOI: 10.1016/j.vetmic.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/09/2022]
Abstract
Recently, canine influenza virus H3N2 (CIV H3N2) has circulated continuously in the dog populations of Asia and the United States (US). As humans have close contact with pet dogs, the circulation of CIV H3N2 is a cause for concern. Previous studies have reported that the E627K and D701N substitutions in the PB2 subunit enhanced viral pathogenicity to mammals in various influenza viruses. However, how the E627K and D701N substitutions in the PB2 subunit might affect the virulence of CIV H3N2 is unclear. Here, we constructed recombinant viruses by introducing E627K or D701N into the PB2 gene in the genetic background of A/Canine/Guangdong/02/2011H3N2 using a reverse-genetic system. The results showed that the E627K or D701N substitutions in the PB2 subunit of CIV H3N2 enhanced polymerase activity, but these substitutions did not impact viral pathogenicity in mice or beagles.
Collapse
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Zhenpeng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Qingxu Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Xi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Yuwei He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Hsu ACY. Influenza Virus: A Master Tactician in Innate Immune Evasion and Novel Therapeutic Interventions. Front Immunol 2018; 9:743. [PMID: 29755452 PMCID: PMC5932403 DOI: 10.3389/fimmu.2018.00743] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
Influenza is a contagion that has plagued mankind for many decades, and continues to pose concerns every year, with millions of infections globally. The frequent mutations and recombination of the influenza A virus (IAV) cast a looming threat that antigenically novel strains/subtypes will rise with unpredictable pathogenicity and fear of it evolving into a pandemic strain. There have been four major influenza pandemics, since the beginning of twentieth century, with the great 1918 pandemic being the most severe, killing more than 50 million people worldwide. The mechanisms of IAV infection, host immune responses, and how viruses evade from such defensive responses at the molecular and structural levels have been greatly investigated in the past 30 years. While this has advanced our understanding of virus–host interactions and human immunology, and has led to the development of several antiviral drugs, they have minimal impact on the clinical outcomes of infection. The heavy use of these drugs has also imposed selective pressure on IAV to evolve and develop resistance. Vaccination remains the cornerstone of public health efforts to protect against influenza; however, rapid mass-production of sufficient vaccines is unlikely to occur immediately after the beginning of a pandemic. This, therefore, requires novel therapeutic strategies against this continually emerging infectious virus with higher specificity and cross-reactivity against multiple strains/subtypes of IAVs. This review discusses essential virulence factors of IAVs that determine sustainable human-to-human transmission, the mechanisms of viral hijacking of host cells and subversion of host innate immune responses, and novel therapeutic interventions that demonstrate promising antiviral properties against IAV. This hopefully will promote discussions and investigations on novel avenues of prevention and treatment strategies of influenza, that are effective and cross-protective against multiple strains/subtypes of IAV, in preparation for the advent of future IAVs and pandemics.
Collapse
Affiliation(s)
- Alan Chen-Yu Hsu
- Viruses, Infections/Immunity, Vaccines & Asthma, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
29
|
Jie Y, Zheng H, Xiaolei L, Xinhua O, Dong Y, Yingchun S, Lingzhi L, Rengui Y. Full-length genome analysis of an avian influenza A virus (H9N2) from a human infection in Changsha City. Future Virol 2018. [DOI: 10.2217/fvl-2017-0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Sequencing and phylogenetic analysis of avian influenza A (H9N2) virus strain, which was isolated from a 2-year-old child presenting influenza-like symptoms. Methods: Viral genome was acquired by RT-PCR, and phylogenetic trees were constructed using the neighbor-joining method. Results: A/Hunan/44557/2015 sequence shared identity with the RSSRGLF motif – first reported in low-pathogenic avian influenza in birds. Polymerase L336M and hemagglutinin Q226L mutation was found in the strain. Two newly mutation sites, T197D and D483N in hemagglutinin gene, were found. Phylogenetic tree analysis revealed that the eight gene segments of this virus contained three lineages. Conclusion: A/Hunan/44557/2015 may have acquired the ability to infect humans via genetic exchange with other H9N2 viruses, indicating that the H9N2 genome can generate pandemic isolates.
Collapse
Affiliation(s)
- Yuan Jie
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| | - Huang Zheng
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| | - Liu Xiaolei
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| | - Ou Xinhua
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| | - Yao Dong
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| | - Song Yingchun
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| | - Li Lingzhi
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| | - Yang Rengui
- Changsha Center for Disease Control & Prevention, Changsha, Hunan, PR China
| |
Collapse
|
30
|
Saito LB, Diaz-Satizabal L, Evseev D, Fleming-Canepa X, Mao S, Webster RG, Magor KE. IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. J Gen Virol 2018; 99:464-474. [PMID: 29458524 DOI: 10.1099/jgv.0.001015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ducks, the reservoir host, are generally permissive to influenza A virus infection without disease symptoms. This natural ecology was upset by the emergence of H5N1 strains, which can kill ducks. To better understand host-virus interactions in the reservoir host, and influenza strain-specific molecular contributions to virulence, we infected White Pekin ducks with three similar H5N1 viruses, with known differences in pathogenicity and replication rate. We quantified viral replication and innate immune gene activation by qPCR, in lung and spleen tissues, isolated on each of the first 3 days of infection. The three viruses replicated well, as measured by accumulation of matrix gene transcript, and viral load declined over time in the spleen. The ducks produced rapid, but temporally limited, IFN and cytokine responses, peaking on the first day post-infection. IFN and proinflammatory cytokine gene induction were greater in response to infection with the more lethal viruses, compared to an attenuated strain. We conclude that a well-regulated IFN response, with the ability to overcome early viral immune inhibition, without hyperinflammation, contributes to the ability of ducks to survive H5N1 influenza replication in their airways, and yet clear systemic infection and limit disease.
Collapse
Affiliation(s)
- Leina B Saito
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Danyel Evseev
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Ximena Fleming-Canepa
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sai Mao
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Institute of Preventative Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, PR China
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Liu L, Lu J, Li Z, Zhou J, Guo J, Li X, Liu J, Shu Y, Wang D. 220 mutation in the hemagglutinin of avian influenza A (H7N9) virus alters antigenicity during vaccine strain development. Hum Vaccin Immunother 2018; 14:532-539. [PMID: 29300686 PMCID: PMC5861781 DOI: 10.1080/21645515.2017.1419109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Since the first confirmed case of H7N9 infection was reported in China, there have been five epidemic waves of human H7N9 infections between 2013 and 2017. The fifth wave differed from the previous four waves in that highly pathogenic avian influenza (HPAI) H7N9 viruses with multiple basic amino acids at the cleavage site were detected in humans, poultry and environmental samples. The HPAI H7N9 viruses were genetically and antigenically distinct from previous H7N9 viruses. Therefore, a new candidate vaccine virus(CVV) derived from a HPAI A/Guangdong/17SF003/2016-like virus was proposed by the World Health Organization(WHO). According to the WHO recommendations, we constructed a new CVV using reverse genetic technology, with a (6+2) gene constitution. The (6+2) reassortant virus possessed hemagglutinin(HA) with multiple basic amino acids removed and the neuraminidase from A/Guangdong/SF003/2016 in a high-yield A/Puerto Rico/8/34 virus backbone. Sequence analysis confirmed that no mutations had occurred in the HA of V1E1(the initial CVV rescued in Vero cells and followed by passage in eggs), but a mixture of arginine (R)/glycine (G)/isoleucine (I) was detected at position 220 (H3 numbering) in the HA of V1E2 to V1E5 with different percentages. Furthermore, V1E5 showed improved growth characteristics and immunogenicity compared with V1E1, and retained low pathogenicity in chickens and chicken embryos, but the mutation changed its antigenicity. Our study indicates that antigenic changes should be closely monitored during the development of H7N9 CVV in eggs. Additionally, although V1E5 changes the antigenicity, the antisera had some reactivity to previous H7N9 CVVs.
Collapse
Affiliation(s)
- Liqi Liu
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| | - Jian Lu
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| | - Zi Li
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| | - Jianfang Zhou
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| | - Junfeng Guo
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| | - Xiyan Li
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| | - Jia Liu
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| | - Yuelong Shu
- b Public Health School(Shenzhen), Sun Yat-sen University , P. R. China
| | - Dayan Wang
- a Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention , Beijing , China CDC
| |
Collapse
|
32
|
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int J Mol Sci 2017; 18:ijms18122706. [PMID: 29236050 PMCID: PMC5751307 DOI: 10.3390/ijms18122706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals.
Collapse
|
33
|
Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, Zeng X, Cui P, Chen Y, Yang H, Wan X, Wang X, Liu L, Chen P, Jiang Y, Liu J, Guan Y, Suzuki Y, Li M, Qu Z, Guan L, Zang J, Gu W, Han S, Song Y, Hu Y, Wang Z, Gu L, Yang W, Liang L, Bao H, Tian G, Li Y, Qiao C, Jiang L, Li C, Bu Z, Chen H. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res 2017; 27:1409-1421. [PMID: 29151586 PMCID: PMC5717404 DOI: 10.1038/cr.2017.129] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Certain low pathogenic avian influenza viruses can mutate to highly pathogenic viruses when they circulate in domestic poultry, at which point they can cause devastating poultry diseases and severe economic damage. The H7N9 influenza viruses that emerged in 2013 in China had caused severe human infections and deaths. However, these viruses were nonlethal in poultry. It is unknown whether the H7N9 viruses can acquire additional mutations during their circulation in nature and become lethal to poultry and more dangerous for humans. Here, we evaluated the evolution of H7N9 viruses isolated from avian species between 2013 and 2017 in China and found 23 different genotypes, 7 of which were detected only in ducks and were genetically distinct from the other 16 genotypes that evolved from the 2013 H7N9 viruses. Importantly, some H7N9 viruses obtained an insertion of four amino acids in their hemagglutinin (HA) cleavage site and were lethal in chickens. The index strain was not lethal in mice or ferrets, but readily obtained the 627K or 701N mutation in its PB2 segment upon replication in ferrets, causing it to become highly lethal in mice and ferrets and to be transmitted efficiently in ferrets by respiratory droplet. H7N9 viruses bearing the HA insertion and PB2 627K mutation have been detected in humans in China. Our study indicates that the new H7N9 mutants are lethal to chickens and pose an increased threat to human health, and thus highlights the need to control and eradicate the H7N9 viruses to prevent a possible pandemic.
Collapse
Affiliation(s)
- Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunyang Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Mei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhiyuan Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lizheng Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinkai Zang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shuyu Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yangming Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Linlin Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenyu Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongmei Bao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chuanling Qiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
34
|
Phylogenetic and genetic characterization of a 2017 clinical isolate of H7N9 virus in Guangzhou, China during the fifth epidemic wave. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1331-1339. [PMID: 29019145 DOI: 10.1007/s11427-017-9152-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022]
Abstract
Pathogenic H7N9 influenza viruses continue to pose a public health concern. The H7N9 virus has caused five outbreak waves of human infections in China since 2013. In the present study, a novel H7N9 strain (A/Guangdong/8H324/2017) was isolated from a female patient with severe respiratory illness during the fifth wave of the 2017 H7N9 epidemic. Phylogenetic analysis showed that the H7N9 viruses collected during the fifth wave belong to two different lineages: the Pearl River Delta lineage and the Yangtze River Delta lineage. The novel isolate is closely related to the Pearl River Delta H7N9 viruses, which were isolated from patients in Guangdong Province. The novel H7N9 isolate has an insertion of three basic amino acids in the cleavage site of hemagglutinin (HA), which may enhance virulence in poultry. The 2017 isolate also possesses an R292K substitution in the neuraminidase (NA) protein, which confers oseltamivir resistance. This study highlights the pandemic potential of the novel H7N9 virus in mammals; thus, future characterization and surveillance is warranted.
Collapse
|
35
|
Ding X, Luo J, Quan L, Wu A, Jiang T. Evolutionary genotypes of influenza A (H7N9) viruses over five epidemic waves in China. INFECTION GENETICS AND EVOLUTION 2017; 55:269-276. [PMID: 28943407 DOI: 10.1016/j.meegid.2017.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
Since the first human case of influenza A (H7N9) infection was identified in March 2013, five epidemics have emerged in China. Diverse H7N9 virus genotypes created through reassortments were already detected in the first epidemic wave, but how the H7N9 virus genetic diversities have evolved during the subsequent epidemics remained unclear. Here, to assess the ongoing genetic evolution of H7N9 viruses, we performed in-depth investigations of the dynamic H7N9 genotypes in these waves. We found that the H7N9 genotypes in the second and third epidemic waves are more diverse than those in the first wave, due to new reassortments that occurred during the second wave. However, the number of different H7N9 genotypes identified in the fourth and fifth waves decreased significantly. Furthermore, we found that different dominant genotypes existed in each of the five epidemic waves, and these wave-specific genotypes possess unique mutations that are enriched in the PB2 protein.
Collapse
Affiliation(s)
- Xiao Ding
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Jiejian Luo
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Quan
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China.
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
36
|
Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017; 48:49. [PMID: 28915920 PMCID: PMC5603032 DOI: 10.1186/s13567-017-0453-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022] Open
Abstract
In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.
Collapse
Affiliation(s)
- Min Gu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lijun Xu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Yangzhou Entry-Exit Inspection and Quarantine Bureau, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
37
|
Zhou H, Wang G, Wang X, Song Z, Tang R. Mineralized State of the Avian Influenza Virus in the Environment. Angew Chem Int Ed Engl 2017; 56:12908-12912. [DOI: 10.1002/anie.201705769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Hangyu Zhou
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Guangchuan Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Zhiyong Song
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| |
Collapse
|
38
|
Zhou H, Wang G, Wang X, Song Z, Tang R. Mineralized State of the Avian Influenza Virus in the Environment. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hangyu Zhou
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Guangchuan Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| | - Zhiyong Song
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways; Depart of Chemistry; Zhejiang University; Hangzhou Zhejiang Province 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang Uiversity; Hangzhou Zhejiang Province 310027 China
| |
Collapse
|
39
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
40
|
Choi EJ, Lee HS, Noh JY, Song JY, Cheong HJ, Shin OS, Lee H, Jeong M, Kim WJ. Humoral and Cellular Immunogenicity Induced by Avian Influenza A (H7N9) DNA Vaccine in Mice. Infect Chemother 2017; 49:117-122. [PMID: 28681576 PMCID: PMC5500266 DOI: 10.3947/ic.2017.49.2.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/09/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND In March 2013, human infection with avian influenza A (H7N9) virus emerged in China, causing serious public health concerns and raising the possibility of avian-source pandemic influenza. Thus, the development of an effective vaccine for preventing and rapidly controlling avian influenza A (H7N9) virus is needed. In this study, we evaluated the immunogenicity of a synthetic DNA vaccine against H7 HA antigens in mice. MATERIALS AND METHODS The synthetic consensus H7 HA DNA vaccine (25 or 50 μg) was administered to BALB/c mice at 0, 14, and 28 days by intramuscular injection followed by electroporation. Humoral and cellular immune responses were analyzed in a hemagglutination inhibition test and interferon-gamma enzyme-linked immunospot (ELISpot) assay, respectively. RESULTS H7 HA-vaccinated mice showed 100% seroprotection and seroconversion rate against H7N9 reassortant influenza virus after both second and third immunizations. The geometric mean titer by the hemagglutination inhibition test increased with an increasing number of immunizations. However, there was no significant difference in geometric titer between the two groups injected with 25 and 50 μg of H7 HA DNA vaccine after two (79.98 vs. 107.65, P = 0.39) and three (159.96 vs. 215.28, P = 0.18) doses. In addition, the ELISpot assay revealed that administration of H7 HA DNA vaccine induced potent interferon-gamma production from mouse splenocytes. CONCLUSIONS This study demonstrated the humoral and cellular immunogenicity of synthetic consensus H7 HA DNA vaccine in mice. This work demonstrates the potential of the H7 HA DNA vaccine as an efficient tool for the rapid control of emerging influenza A (H7N9) virus.
Collapse
Affiliation(s)
- Eun Jin Choi
- BK21 Plus Graduate Program Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.,Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.,Transgovernmental Enterprise for Pandemic Influenza in Korea, Seoul, Korea
| | - Han Sol Lee
- BK21 Plus Graduate Program Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.,Transgovernmental Enterprise for Pandemic Influenza in Korea, Seoul, Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.,Transgovernmental Enterprise for Pandemic Influenza in Korea, Seoul, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.,Transgovernmental Enterprise for Pandemic Influenza in Korea, Seoul, Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.,Transgovernmental Enterprise for Pandemic Influenza in Korea, Seoul, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.,Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul, Korea
| | | | - Woo Joo Kim
- BK21 Plus Graduate Program Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.,Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.,Transgovernmental Enterprise for Pandemic Influenza in Korea, Seoul, Korea.
| |
Collapse
|
41
|
Kargarfard F, Sami A, Mohammadi-Dehcheshmeh M, Ebrahimie E. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments. BMC Genomics 2016; 17:925. [PMID: 27852224 PMCID: PMC5112743 DOI: 10.1186/s12864-016-3250-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. METHODS To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. RESULT We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. CONCLUSION Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.
Collapse
Affiliation(s)
- Fatemeh Kargarfard
- Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Ashkan Sami
- Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Manijeh Mohammadi-Dehcheshmeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
- School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
42
|
Chan LLY, Bui CTH, Mok CKP, Ng MMT, Nicholls JM, Peiris JSM, Chan MCW, Chan RWY. Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Sci Rep 2016; 6:35401. [PMID: 27739468 PMCID: PMC5064379 DOI: 10.1038/srep35401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Novel avian H7N9 virus emerged in China in 2013 resulting in a case fatality rate of around 39% and continues to pose zoonotic and pandemic risk. Amino acid substitutions in PB2 protein were shown to influence the pathogenicity and transmissibility of H7N9 following experimental infection of ferrets and mice. In this study, we evaluated the role of amino acid substitution PB2-627K or compensatory changes at PB2-591K and PB2-701N, on the tropism and replication competence of H7N9 viruses for human and swine respiratory tracts using ex vivo organ explant cultures. Recombinant viruses of A/Shanghai/2/2013 (rgH7N9) and its mutants with PB2-K627E, PB2-K627E + Q591K and PB2-K627E + D701N were generated by plasmid-based reverse genetics. PB2-E627K was essential for efficient replication of rgH7N9 in ex vivo cultures of human and swine respiratory tracts. Mutant rgPB2-K627E + D701N replicated better than rgPB2-K627E in human lung but not as well as rgH7N9 virus. The rgPB2-K627E mutant failed to replicate in human type I-like pneumocytes (ATI) and peripheral blood monocyte-derived macrophages (PMϕ) at 37 °C while the compensatory mutant rgPB2-K627E + Q591K and rgPB2-K627E + D701N had partly restored replication competence in PMϕ. Our results demonstrate that PB2-E627K was important for efficient replication of influenza H7N9 in both human and swine respiratory tracts.
Collapse
Affiliation(s)
- Louisa L. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Christine T. H. Bui
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris K. P. Mok
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mandy M. T. Ng
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John M. Nicholls
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - J. S. Malik Peiris
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C. W. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Renee W. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
43
|
Quantitative risk analysis of the novel H7N9 virus in environments associated with H9 avian influenza virus, Zhejiang province, China. Epidemiol Infect 2016; 145:133-140. [PMID: 27678396 DOI: 10.1017/s0950268816002168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H9 avian influenza virus played a key role during generation of the novel H7N9 virus. A surveillance programme was conducted to assess the H9 virus in relation to the risk of H7N9 virus contamination in the environment. Risk of H7N9 virus contamination in the presence of H9 virus was higher than without (adjusted odds ratio 4·49, 95% confidence interval 3·79-5·31). Adjusted odds ratios of the H7N9 virus associated with co-presence of H9 virus and interacting factors were 4·93 (rural vs. urban area), 46·80 (live poultry markets vs. other premises), 6·86 (Huzhou vs. Hangzhou prefecture), 40·67 (year 2015 vs. 2013), and 9·63 (sewage from cleaning poultry vs. poultry faeces). Regular surveillance on gene variability of H7N9 and H9 viruses should be conducted and extra measures are needed to reduce co-circulation of H7N9 and H9 viruses in the environment.
Collapse
|
44
|
Wang X, Sun Q, Ye Z, Hua Y, Shao N, Du Y, Zhang Q, Wan C. Computational approach for predicting the conserved B-cell epitopes of hemagglutinin H7 subtype influenza virus. Exp Ther Med 2016; 12:2439-2446. [PMID: 27703505 PMCID: PMC5038878 DOI: 10.3892/etm.2016.3636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2016] [Indexed: 01/24/2023] Open
Abstract
An avian-origin influenza H7N9 virus epidemic occurred in China in 2013–2014, in which >422 infected people suffered from pneumonia, respiratory distress syndrome and septic shock. H7N9 viruses belong to the H7 subtype of avian-origin influenza viruses (AIV-H7). Hemagglutinin (HA) is a vital membrane protein of AIV that has an important role in host recognition and infection. The epitopes of HA are significant determinants of the regularity of epidemic and viral mutation and recombination mechanisms. The present study aimed to predict the conserved B-cell epitopes of AIV-H7 HA using a bioinformatics approach, including the three most effective epitope prediction softwares available online: Artificial Neural Network based B-cell Epitope Prediction (ABCpred), B-cell Epitope Prediction (BepiPred) and Linear B-cell Epitope Prediction (LBtope). A total of 24 strains of Euro-Asiatic AIV-H7 that had been associated with a serious poultry pandemic or had infected humans in the past 30 years were selected to identify the conserved regions of HA. Sequences were obtained from the National Center for Biotechnology Information and Global Initiative on Sharing Avian Influenza Data databases. Using a combination of software prediction and sequence comparisons, the conserved epitopes of AIV-H7 were predicted and clarified. A total of five conserved epitopes [amino acids (aa) 37–52, 131–142, 215–234, 465–484 and 487–505] with a suitable length, high antigenicity and minimal variation were predicted and confirmed. Each obtained a score of >0.80 in ABCpred, 60% in LBtope and a level of 0.35 in Bepipred. In addition, a representative amino acid change (glutamine235-to-leucine235) in the HA protein of the 2013 AIV-H7N9 was discovered. The strategy adopted in the present study may have profound implications on the rapid diagnosis and control of infectious disease caused by H7N9 viruses, as well as by other virulent viruses, such as the Ebola virus.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Sun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhonghua Ye
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Hua
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Na Shao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanli Du
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiwei Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chengsong Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
45
|
El Houadfi M, Fellahi S, Nassik S, Guérin JL, Ducatez MF. First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco. Virol J 2016; 13:140. [PMID: 27527708 PMCID: PMC4986173 DOI: 10.1186/s12985-016-0596-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Background H9N2 avian influenza viruses continue to spread in poultry and wild birds worldwide. Morocco just faced its first H9N2 influenza virus outbreaks early 2016 affecting different types of poultry production. After its introduction, the virus spread very rapidly throughout the country. Methods Samples were collected from 11 chicken flocks with high morbidity and mortality rates. Four viruses were successfully isolated from broiler chickens and one from broiler breeders and fully sequenced. Results Phylogenetic and molecular markers analyses showed the Moroccan viruses belonged to the G1 lineage and likely originated from the Middle East. As known for H9N2 viruses, the Moroccanisolates possess several genetic markers that enhance virulence in poultry and transmission to humans. Conclusion The present study demonstrated that under field conditions H9N2 could have a devastating effect on egg production and mortalities and highlighted a lack of surveillance data on the pathogen in the region.
Collapse
Affiliation(s)
- Mohammed El Houadfi
- Unité de Pathologie Aviaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco, 10000. .,Avian Pathology Unit, Department of Pathology and Veterinary Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat- Instituts, Rabat, Morocco.
| | - Siham Fellahi
- Unité de Pathologie Aviaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco, 10000
| | - Saadia Nassik
- Unité de Pathologie Aviaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco, 10000
| | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRA, ENVT, F-31076, Toulouse, France
| | | |
Collapse
|
46
|
Lenny BJ, Shanmuganatham K, Sonnberg S, Feeroz MM, Alam SMR, Hasan MK, Jones-Engel L, McKenzie P, Krauss S, Webster RG, Jones JC. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerg Infect Dis 2016; 21:2174-7. [PMID: 26583371 PMCID: PMC4672412 DOI: 10.3201/eid2112.151152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Avian influenza A(H9N2) is an agricultural and public health threat. We characterized an H9N2 virus from a pet market in Bangladesh and demonstrated replication in samples from pet birds, swine tissues, human airway and ocular cells, and ferrets. Results implicated pet birds in the potential dissemination and zoonotic transmission of this virus.
Collapse
|
47
|
Masoud S, Bagherpour A, Akbarnejad F. Roll of hemagglutinin gene in the biology of avian influenza virus. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
48
|
Wu Z, Sha J, Yu Z, Zhao N, Cheng W, Chan TC, Amer S, Zhang Z, Liu S. Epidemiological and virological differences in human clustered and sporadic infections with avian influenza A H7N9. Int J Infect Dis 2016; 49:9-17. [PMID: 27235087 DOI: 10.1016/j.ijid.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous research has suggested that avian influenza A H7N9 has a greater potential pandemic risk than influenza A H5N1. This research investigated the difference in human clustered and sporadic cases of H7N9 virus and estimated the relative risk of clustered infections. METHODS Comparative epidemiology and virology studies were performed among 72 sporadic confirmed cases, 17 family clusters (FCs) caused by human-to-human transmission, and eight live bird market clusters (LCs) caused by co-exposure to the poultry environment. RESULTS The case fatality of FCs, LCs and sporadic cases (36%, 26%, and 29%, respectively) did not differ among the three groups (p>0.05). The average age (36 years, 60 years, and 58 years), co-morbidities (31%, 60%, and 54%), exposure to birds (72%, 100%, and 83%), and H7N9-positive rate (20%, 64%, and 35%) in FCs, LCs, and sporadic cases, respectively, differed significantly (p<0.05). These higher risks were associated with increased mortality. There was no difference between primary and secondary cases in LCs (p>0.05). However, exposure to a person with confirmed avian influenza A H7N9 (primary 12% vs. secondary 95%), history of visiting a live bird market (100% vs. 59%), multiple exposures (live bird exposure and human-to-human transmission history) (12% vs. 55%), and median days from onset to antiviral treatment (6 days vs. 3 days) differed significantly between primary and secondary cases in FCs (p<0.05). Mild cases were found in 6% of primary cases vs. 32% of secondary cases in FCs (p<0.05). Twenty-five isolates from the three groups showed 99.1-99.9% homology and increased human adaptation. CONCLUSIONS There was no statistical difference in the case fatality rate and limited transmission between FCs and LCs. However, the severity of the primary cases in FCs was much higher than that of the secondary cases due to the older age and greater underlying disease of the latter patients.
Collapse
Affiliation(s)
- Zuqun Wu
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Sha
- Department of Endocrinology, The 421 Hospital of the Chinese People's Liberation Army, Guangzhou, China
| | - Zhao Yu
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Na Zhao
- National Research Centre for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Cheng
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Ta-Chien Chan
- Research Centre for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Said Amer
- Department of Zoology, Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 Chongqing South Road, Shanghai 200025, China.
| | - Shelan Liu
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
49
|
Fang S, Wang X, Dong F, Jin T, Liu G, Lu X, Peng B, Wu W, Liu H, Kong D, Tang X, Qin Y, Mei S, Xie X, He J, Ma H, Zhang R, Cheng J. Genomic characterization of influenza A (H7N9) viruses isolated in Shenzhen, Southern China, during the second epidemic wave. Arch Virol 2016; 161:2117-32. [PMID: 27169600 DOI: 10.1007/s00705-016-2872-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
There were three epidemic waves of human infection with avian influenza A (H7N9) virus in 2013-2014. While many analyses of the genomic origin, evolution, and molecular characteristics of the influenza A (H7N9) virus have been performed using sequences from the first epidemic wave, genomic characterization of the virus from the second epidemic wave has been comparatively less reported. In this study, an in-depth analysis was performed with respect to the genomic characteristics of 11 H7N9 virus strains isolated from confirmed cases and four H7N9 virus strains isolated from environmental samples in Shenzhen during the second epidemic wave. Phylogenetic analysis demonstrated that six internal segments of the influenza A (H7N9) virus isolated from confirmed cases and environmental samples in Shenzhen were clustered into two different clades and that the origin of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen was different from that of viruses isolated during the first wave. In addition, H9N2 viruses, which were prevalent in southern China, played an important role in the reassortment of the influenza A (H7N9) virus isolated in Shenzhen. HA-R47K and -T122A, PB2-V139I, PB1-I397M, and NS1-T216P were the signature amino acids of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen. We found that the HA, NA, M, and PA genes of the A(H7N9) viruses underwent positive selection in the human population. Therefore, enhanced surveillance should be carried out to determine the origin and mode of transmission of the novel influenza A (H7N9) virus and to facilitate the formulation of effective policies for prevention and containment of a human infection epidemics.
Collapse
Affiliation(s)
- Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Fangyuan Dong
- College of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guang Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xing Lu
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Weihua Wu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Dongfeng Kong
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xiujuan Tang
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Yanmin Qin
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Shujiang Mei
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xu Xie
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Jianfan He
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| |
Collapse
|
50
|
Marion T, Elbahesh H, Thomas PG, DeVincenzo JP, Webby R, Schughart K. Respiratory Mucosal Proteome Quantification in Human Influenza Infections. PLoS One 2016; 11:e0153674. [PMID: 27088501 PMCID: PMC4835085 DOI: 10.1371/journal.pone.0153674] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/01/2016] [Indexed: 01/08/2023] Open
Abstract
Respiratory influenza virus infections represent a serious threat to human health. Underlying medical conditions and genetic make-up predispose some influenza patients to more severe forms of disease. To date, only a few studies have been performed in patients to correlate a selected group of cytokines and chemokines with influenza infection. Therefore, we evaluated the potential of a novel multiplex micro-proteomics technology, SOMAscan, to quantify proteins in the respiratory mucosa of influenza A and B infected individuals. The analysis included but was not limited to quantification of cytokines and chemokines detected in previous studies. SOMAscan quantified more than 1,000 secreted proteins in small nasal wash volumes from infected and healthy individuals. Our results illustrate the utility of micro-proteomic technology for analysis of proteins in small volumes of respiratory mucosal samples. Furthermore, when we compared nasal wash samples from influenza-infected patients with viral load ≥ 28 and increased IL-6 and CXCL10 to healthy controls, we identified 162 differentially-expressed proteins between the two groups. This number greatly exceeds the number of DEPs identified in previous studies in human influenza patients. Most of the identified proteins were associated with the host immune response to infection, and changes in protein levels of 151 of the DEPs were significantly correlated with viral load. Most important, SOMAscan identified differentially expressed proteins heretofore not associated with respiratory influenza infection in humans. Our study is the first report for the use of SOMAscan to screen nasal secretions. It establishes a precedent for micro-proteomic quantification of proteins that reflect ongoing response to respiratory infection.
Collapse
Affiliation(s)
- Tony Marion
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, United States of America
| | - Husni Elbahesh
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, United States of America
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, United States of America
| | - John P. DeVincenzo
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, United States of America
- University of Tennessee Health Science Center, Department of Pediatrics, Memphis, United States of America
- Children’s Foundation Research Center at Le Bonheur Children’s Hospital, Memphis, United States of America
| | - Richard Webby
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, United States of America
| | - Klaus Schughart
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, United States of America
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|