1
|
Loeffler CR, Spielmeyer A. Faster ciguatoxin extraction methods for toxicity screening. Sci Rep 2024; 14:21715. [PMID: 39289443 PMCID: PMC11408646 DOI: 10.1038/s41598-024-72708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Ciguatera poisoning (CP) is a severe global public health problem caused by the consumption of seafood products contaminated with ciguatoxins (CTXs). The growing demand for seafood products requires high-throughput testing for CTX-susceptible seafood, however complex extraction and slow cleanup methods inhibit this goal. Herein, several methods for extracting CTXs from fish tissue were established and compared; these methods are sensitive, specific, and valid while achieving higher sample extraction throughput than currently established protocols. The trial fish material was generated from multiple species, with different physical conditions (wet and freeze-dried tissue), and naturally contaminated with various CTXs (i.e., CTX-1B, CTX-3C, and C-CTX-1), thus ensuring these methods are robust and broadly applicable. The extraction methods used were based on mechanical maceration with acetone or methanol or enzymatic digestion followed by acetone and ethyl acetate extraction. Crude extracts were investigated for CTX-like toxicity using an in vitro mouse neuroblastoma (N2a) cell-based assay (CBA). Among the three methods, there was no significant difference in toxin estimates (p = 0.219, two-way ANOVA), indicating their interchangeability. For speed (> 16 samples/day), accuracy (100%), and CTX analog retention confirmation by liquid chromatography-tandem mass spectrometry (LC‒MS/MS), the preferred extraction methods were both methanol and enzyme-based. All extraction methods post hoc confirmation of CTX analogs successfully met international seafood market-based CTX contaminant guidance. These methods can drastically increase global CTX screening capabilities and subsequently relieve sample processing bottlenecks, inhibiting environmental and human health-based CTX analysis.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Astrid Spielmeyer
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Zhu J, Li J, Wu J, Liu X, Lin Y, Deng H, Qin X, Wong MH, Chan LL. The Prevalence of Marine Lipophilic Phycotoxins Causes Potential Risks in a Tropical Small Island Developing State. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9815-9827. [PMID: 38768015 DOI: 10.1021/acs.est.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tropical small island developing states (SIDS), with their geographical isolation and limited resources, heavily rely on the fisheries industry for food and revenue. The presence of marine lipophilic phycotoxins (MLPs) poses risks to their economy and human health. To understand the contamination status and potential risks, the Republic of Kiribati was selected as the representative tropical SIDS and 55 species of 256 coral reef fish encompassing multiple trophic levels and feeding strategies were collected to analyze 17 typical MLPs. Our results showed that the potential risks of ciguatoxins were the highest and approximately 62% of fish species may pose risks for consumers. Biomagnification of ciguatoxins was observed in the food web with a trophic magnification factor of 2.90. Brevetoxin-3, okadaic acid, and dinophysistoxin-1 and -2 were first reported, but the risks posed by okadaic acid and dinophysistoxins were found to be negligible. The correlation analysis revealed that fish body size and trophic position are unreliable metrics to indicate the associated risks and prevent the consumption of contaminated fish. The potential risks of MLPs in Kiribati are of concern, and our findings can serve as valuable inputs for developing food safety policies and fisheries management strategies specific to tropical SIDS contexts.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiaowan Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Yuchen Lin
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Hongzhen Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po , Hong Kong 999077, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong , Hong Kong 999077, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Estevez P, Oses-Prieto J, Castro D, Penin A, Burlingame A, Gago-Martinez A. First Detection of Algal Caribbean Ciguatoxin in Amberjack Causing Ciguatera Poisoning in the Canary Islands (Spain). Toxins (Basel) 2024; 16:189. [PMID: 38668614 PMCID: PMC11054928 DOI: 10.3390/toxins16040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
| | - David Castro
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Alejandro Penin
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
| | - Ana Gago-Martinez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| |
Collapse
|
4
|
Kobayashi M, Masuda J, Oshiro N. Detection of Extremely Low Level Ciguatoxins through Monitoring of Lithium Adduct Ions by Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. Toxins (Basel) 2024; 16:170. [PMID: 38668595 PMCID: PMC11053878 DOI: 10.3390/toxins16040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on the food chain that have accumulated CTXs in their flesh. CTXs in trace amounts are found in natural samples, and they mainly induce neurotoxic effects in consumers at concentrations as low as 0.2 µg/kg. The U.S. Food and Drug Administration has established CTX maximum permitted levels of 0.01 µg/kg for CTX1B and 0.1 µg/kg for C-CTX1 based on toxicological data. More than 20 variants of the CTX1B and CTX3C series have been identified, and the simultaneous detection of trace amounts of CTX analogs has recently been required. Previously published works using LC-MS/MS achieved the safety levels by monitoring the sodium adduct ions of CTXs ([M+Na]+ > [M+Na]+). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium or lithium adducts, [M+Na]+ or [M+Li]+, by adding alkali metals such as Na+ or Li+ to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by the FDA with good chromatographic separation using LC-MS/MS. It also reports on the method's new analytical conditions and accuracy using [M+Li]+.
Collapse
Affiliation(s)
- Manami Kobayashi
- Shimadzu Corporation, 3-25-40, Tonomachi, Kawasaki-Ku, Kawasaki 210-0821, Kanagawa, Japan;
| | - Junichi Masuda
- Shimadzu Corporation, 3-25-40, Tonomachi, Kawasaki-Ku, Kawasaki 210-0821, Kanagawa, Japan;
| | - Naomasa Oshiro
- Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki 210-9501, Kanagawa, Japan;
| |
Collapse
|
5
|
Raposo-Garcia S, Costas C, Louzao MC, Vieytes MR, Vale C, Botana LM. Synergistic Effect of Brevetoxin BTX-3 and Ciguatoxin CTX3C in Human Voltage-Gated Na v1.6 Sodium Channels. Chem Res Toxicol 2023; 36:1990-2000. [PMID: 37965843 PMCID: PMC10845145 DOI: 10.1021/acs.chemrestox.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Emerging marine biotoxins such as ciguatoxins and brevetoxins have been widely and independently studied as food pollutants. Their maximum levels in food components were set without considering their possible synergistic effects as consequence of their coexistence in seafood and their action at the same cellular target. The absolute lack of data and regulations of the possible combined effects that both marine biotoxins may have raised the need to analyze their direct in vitro effects using electrophysiology techniques. The results presented in this study indicate that ciguatoxins and brevetoxins had a synergistic effect on human Nav1.6 voltage-gated sodium channels by hyperpolarizing their activation and inactivation states. The results presented here indicate that brevetoxin 3 (BTX-3) acts as partial agonist of human sodium channels, while ciguatoxin 3C (CTX3C) was a full agonist, explaining the differences in the effect of each toxin in the channel. Therefore, this work sets the cellular basis to further apply this type of studies to other food toxicants that may act synergistically and thus implement the corresponding regulatory limits considering their coexistence and the risks to human and animal health derived from it.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Celia Costas
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - M. Carmen Louzao
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Carmen Vale
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Luis M. Botana
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| |
Collapse
|
6
|
Raposo-Garcia S, Cao A, Costas C, Louzao MC, Vilariño N, Vale C, Botana LM. Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection. Mar Drugs 2023; 21:590. [PMID: 37999414 PMCID: PMC10672529 DOI: 10.3390/md21110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| |
Collapse
|
7
|
Estevez P, Gago-Martinez A. Contribution of Mass Spectrometry to the Advances in Risk Characterization of Marine Biotoxins: Towards the Characterization of Metabolites Implied in Human Intoxications. Toxins (Basel) 2023; 15:toxins15020103. [PMID: 36828418 PMCID: PMC9964301 DOI: 10.3390/toxins15020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
A significant spread and prevalence of algal toxins and, in particular, marine biotoxins have been observed worldwide over the last decades. Marine biotoxins are natural contaminants produced during harmful algal blooms being accumulated in seafood, thus representing a threat to human health. Significant progress has been made in the last few years in the development of analytical methods able to evaluate and characterize the different toxic analogs involved in the contamination, Liquid Chromatography coupled to different detection modes, including Mass Spectrometry, the method of choice due to its potential for separation, identification, quantitation and even confirmation of the different above-mentioned analogs. Despite this, the risk characterization in humans is still limited, due to several reasons, including the lack of reference materials or even the limited access to biological samples from humans intoxicated during these toxic events and episodes, which hampered the advances in the evaluation of the metabolites responsible for the toxicity in humans. Mass Spectrometry has been proven to be a very powerful tool for confirmation, and in fact, it is playing an important role in the characterization of the new biotoxins analogs. The toxin metabolization in humans is still uncertain in most cases and needs further research in which the implementation of Mass Spectrometric methods is critical. This review is focused on compiling the most relevant information available regarding the metabolization of several marine biotoxins groups, which were identified using Mass Spectrometry after the in vitro exposition of these toxins to liver microsomes and hepatocytes. Information about the presence of metabolites in human samples, such as human urine after intoxication, which could also be used as potential biomarkers for diagnostic purposes, is also presented.
Collapse
|
8
|
Mudge EM, Robertson A, McCarron P, Miles CO. Selective and Efficient Capture and Release of vic-Diol-Containing Pacific and Caribbean Ciguatoxins from Fish Extracts with a Boronate Affinity Polymer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12946-12952. [PMID: 36191081 DOI: 10.1021/acs.jafc.2c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ciguatera poisoning can occur following the consumption of fish contaminated with trace levels of ciguatoxins (CTXs). These trace levels represent an analytical challenge for confirmation by LC-MS due to matrix interferences and the high instrument sensitivity required. Sample preparation procedures are laborious and require extensive cleanup procedures to address these issues. The application of a selective isolation technique employing boronate affinity polymers was therefore investigated for the capture of vic-diol-containing Caribbean and Pacific CTXs from fish extracts. A dispersive SPE procedure was developed where nearly complete binding of CTXs in fish extracts occurred with boric acid gel in less than 1 h. Release of the bound CTXs resulted in >95% recovery of C-CTX1/2, C-CTX3/4, CTX1B, 54-deoxyCTX1B, and 52-epi-54-deoxyCTX1B from the extracts. This selective extraction tool has the potential to greatly simplify both analytical sample preparation and preparative extraction and isolation of CTXs for structure elucidation and production of standards.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Alison Robertson
- School of Marine and Environmental Sciences, University of South Alabama, 600 Clinic Drive, Mobile, Alabama 36688, United States
- Marine Ecotoxicology, Dauphin Island Sea Lab, Dauphin Island, Dauphin Island, Alabama 36528, United States
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| |
Collapse
|
9
|
Reductive Amination for LC-MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins (Basel) 2022; 14:toxins14060399. [PMID: 35737060 PMCID: PMC9245599 DOI: 10.3390/toxins14060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.
Collapse
|
10
|
Darius HT, Revel T, Viallon J, Sibat M, Cruchet P, Longo S, Hardison DR, Holland WC, Tester PA, Litaker RW, McCall JR, Hess P, Chinain M. Comparative Study on the Performance of Three Detection Methods for the Quantification of Pacific Ciguatoxins in French Polynesian Strains of Gambierdiscus polynesiensis. Mar Drugs 2022; 20:md20060348. [PMID: 35736151 PMCID: PMC9229625 DOI: 10.3390/md20060348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Manoëlla Sibat
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Sébastien Longo
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Donnie Ransom Hardison
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | - William C. Holland
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | | | - R. Wayne Litaker
- CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, National Ocean Service, Beaufort, NC 28516, USA;
| | - Jennifer R. McCall
- Center for Marine Science, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA;
| | - Philipp Hess
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| |
Collapse
|
11
|
Darius HT, Paillon C, Mou-Tham G, Ung A, Cruchet P, Revel T, Viallon J, Vigliola L, Ponton D, Chinain M. Evaluating Age and Growth Relationship to Ciguatoxicity in Five Coral Reef Fish Species from French Polynesia. Mar Drugs 2022; 20:md20040251. [PMID: 35447924 PMCID: PMC9027493 DOI: 10.3390/md20040251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths’ yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Christelle Paillon
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Gérard Mou-Tham
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Laurent Vigliola
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Dominique Ponton
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, P.O. Box 141, Toliara 601, Madagascar;
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| |
Collapse
|
12
|
Tudó À, Rambla-Alegre M, Flores C, Sagristà N, Aguayo P, Reverté L, Campàs M, Gouveia N, Santos C, Andree KB, Marques A, Caixach J, Diogène J. Identification of New CTX Analogues in Fish from the Madeira and Selvagens Archipelagos by Neuro-2a CBA and LC-HRMS. Mar Drugs 2022; 20:md20040236. [PMID: 35447910 PMCID: PMC9031360 DOI: 10.3390/md20040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg−1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A.
Collapse
Affiliation(s)
- Àngels Tudó
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
- Correspondence: ; Tel.: +34-977-74-54-27 (ext. 1824)
| | - Cintia Flores
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Núria Sagristà
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Paloma Aguayo
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Laia Reverté
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Mònica Campàs
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Neide Gouveia
- Regional Fisheries Management-Madeira Government, Direção de Serviços de Investigação das Pescas (DSI-DRP), Estrada da Pontinha, 9004-562 Funchal, Portugal;
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente e Recursos Naturais, Regional Government of Madeira, IFCN IP-RAM, 9050-027 Funchal, Portugal;
| | - Karl B. Andree
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Antonio Marques
- Portuguese Institute of Sea and Atmosphere (IPMA), Division of Aquaculture, Seafood Upgrading and Bioprospection (DivAV), Avenida de Brasília, 1449-006 Lisbon, Portugal;
| | - Josep Caixach
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| |
Collapse
|
13
|
Zhu J, Lee WH, Wu J, Zhou S, Yip KC, Liu X, Kirata T, Chan LL. The Occurrence, Distribution, and Toxicity of High-Risk Ciguatera Fish Species (Grouper and Snapper) in Kiritimati Island and Marakei Island of the Republic of Kiribati. Toxins (Basel) 2022; 14:toxins14030208. [PMID: 35324705 PMCID: PMC8952361 DOI: 10.3390/toxins14030208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Ciguatera is one of the most widespread food poisonings caused by the ingestion of fish contaminated by ciguatoxins (CTXs). Snapper and grouper with high palatable and economic value are the primary food source and fish species for exportation in the Republic of Kiribati, but they are highly suspected CTX-contaminated species due to their top predatory characteristics. In this study, 60 fish specimens from 17 species of snappers and groupers collected from the Kiritimati Island and Marakei Island of the Republic of Kiribati were analyzed using mouse neuroblastoma (N2a) assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine Pacific CTX-1, -2 and -3 (P-CTX-1, -2 and -3). The LC-MS/MS results show that CTXs were detected in 74.5% of specimens from Marakei Island and 61.5% of specimens from Kiritimati Island. The most toxic fish Epinephelus coeruleopunctatus from Marakei Island and Cephalopholis miniata from Kiritimati Island were detected as 53-fold and 28-fold P-CTX-1 equivalents higher than the safety level of 10 pg/g P-CTX-1 equivalents, respectively. CTX levels and composition profiles varied with species and location. The N2a results suggested that fish specimens also contain high levels of other CTX-like toxins or sodium channel activators. The distribution patterns for ciguatoxic fish of the two islands were similar, with fish sampled from the northwest being more toxic than the southwest. This study shows that groupers and snappers are high-risk species for ciguatera in the Republic of Kiribati, and these species can further be used as indicator species in ciguatera endemic areas for risk assessment.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Wai-Hin Lee
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Shiwen Zhou
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Ki-Chun Yip
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Xiaowan Liu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Taratau Kirata
- Ministry of Fisheries & Marine Resources Development, Kiribati Government, Tarawa 276123, Kiribati;
| | - Leo-Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-34424125
| |
Collapse
|
14
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
15
|
Darius HT, Revel T, Cruchet P, Viallon J, Gatti CMI, Sibat M, Hess P, Chinain M. Deep-Water Fish Are Potential Vectors of Ciguatera Poisoning in the Gambier Islands, French Polynesia. Mar Drugs 2021; 19:md19110644. [PMID: 34822515 PMCID: PMC8621427 DOI: 10.3390/md19110644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Ciguatera poisoning (CP) cases linked to the consumption of deep-water fish occurred in 2003 in the Gambier Islands (French Polynesia). In 2004, on the request of two local fishermen, the presence of ciguatoxins (CTXs) was examined in part of their fish catches, i.e., 22 specimens representing five deep-water fish species. Using the radioactive receptor binding assay (rRBA) and mouse bioassay (MBA), significant CTX levels were detected in seven deep-water specimens in Lutjanidae, Serranidae, and Bramidae families. Following additional purification steps on the remaining liposoluble fractions for 13 of these samples (kept at -20 °C), these latter were reanalyzed in 2018 with improved protocols of the neuroblastoma cell-based assay (CBA-N2a) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Using the CBA-N2a, the highest CTX-like content found in a specimen of Eumegistus illustris (Bramidae) was 2.94 ± 0.27 µg CTX1B eq. kg-1. Its toxin profile consisted of 52-epi-54-deoxyCTX1B, CTX1B, and 54-deoxyCTX1B, as assessed by LC-MS/MS. This is the first study demonstrating that deep-water fish are potential ciguatera vectors and highlighting the importance of a systematic monitoring of CTXs in all exploited fish species, especially in ciguatera hotspots, including deep-water fish, which constitute a significant portion of the commercial deep-sea fisheries in many Asian-Pacific countries.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Clémence Mahana iti Gatti
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Manoëlla Sibat
- Ifremer, DYNECO, Laboratoire Phycotoxines, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Philipp Hess
- Ifremer, DYNECO, Laboratoire Phycotoxines, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| |
Collapse
|
16
|
Katikou P. Digital Technologies and Open Data Sources in Marine Biotoxins' Risk Analysis: The Case of Ciguatera Fish Poisoning. Toxins (Basel) 2021; 13:692. [PMID: 34678985 PMCID: PMC8539326 DOI: 10.3390/toxins13100692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, digital technologies influence information dissemination in all business sectors, with great emphasis put on exploitation strategies. Public administrations often use information systems and establish open data repositories, primarily supporting their operation but also serving as data providers, facilitating decision-making. As such, risk analysis in the public health sector, including food safety authorities, often relies on digital technologies and open data sources. Global food safety challenges include marine biotoxins (MBs), being contaminants whose mitigation largely depends on risk analysis. Ciguatera Fish Poisoning (CFP), in particular, is a MB-related seafood intoxication attributed to the consumption of fish species that are prone to accumulate ciguatoxins. Historically, CFP occurred endemically in tropical/subtropical areas, but has gradually emerged in temperate regions, including European waters, necessitating official policy adoption to manage the potential risks. Researchers and policy-makers highlight scientific data inadequacy, under-reporting of outbreaks and information source fragmentation as major obstacles in developing CFP mitigation strategies. Although digital technologies and open data sources provide exploitable scientific information for MB risk analysis, their utilization in counteracting CFP-related hazards has not been addressed to date. This work thus attempts to answer the question, "What is the current extent of digital technologies' and open data sources' utilization within risk analysis tasks in the MBs field, particularly on CFP?", by conducting a systematic literature review of the available scientific and grey literature. Results indicate that the use of digital technologies and open data sources in CFP is not negligible. However, certain gaps are identified regarding discrepancies in terminology, source fragmentation and a redundancy and downplay of social media utilization, in turn constituting a future research agenda for this under-researched topic.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate General of Rural Development, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
| |
Collapse
|
17
|
Leite IDP, Sdiri K, Taylor A, Viallon J, Gharbia HB, Mafra Júnior LL, Swarzenski P, Oberhaensli F, Darius HT, Chinain M, Bottein MYD. Experimental Evidence of Ciguatoxin Accumulation and Depuration in Carnivorous Lionfish. Toxins (Basel) 2021; 13:toxins13080564. [PMID: 34437435 PMCID: PMC8402466 DOI: 10.3390/toxins13080564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Ciguatera poisoning is a food intoxication associated with the consumption of fish or shellfish contaminated, through trophic transfer, with ciguatoxins (CTXs). In this study, we developed an experimental model to assess the trophic transfer of CTXs from herbivorous parrotfish, Chlorurus microrhinos, to carnivorous lionfish, Pterois volitans. During a 6-week period, juvenile lionfish were fed naturally contaminated parrotfish fillets at a daily dose of 0.11 or 0.035 ng CTX3C equiv. g−1, as measured by the radioligand-receptor binding assay (r-RBA) or neuroblastoma cell-based assay (CBA-N2a), respectively. During an additional 6-week depuration period, the remaining fish were fed a CTX-free diet. Using r-RBA, no CTXs were detectable in muscular tissues, whereas CTXs were measured in the livers of two out of nine fish sampled during exposure, and in four out of eight fish sampled during depuration. Timepoint pooled liver samples, as analyzed by CBA-N2a, confirmed the accumulation of CTXs in liver tissues, reaching 0.89 ng CTX3C equiv. g−1 after 41 days of exposure, followed by slow toxin elimination, with 0.37 ng CTX3C equiv. g−1 measured after the 6-week depuration. These preliminary results, which need to be pursued in adult lionfish, strengthen our knowledge on CTX transfer and kinetics along the food web.
Collapse
Affiliation(s)
- Isabel do Prado Leite
- Center for Marine Studies, Federal University of Paraná. Av. Beira-mar, s/n, Pontal do Paraná P.O. Box 61, Brazil;
- Correspondence: (I.d.P.L.); (M.-Y.D.B.)
| | - Khalil Sdiri
- Université Côte d’Azur, CNRS, ECOSEAS, UMR7035, Parc Valrose, CEDEX 2, 06103 Nice, France;
| | - Angus Taylor
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; (A.T.); (P.S.); (F.O.)
| | - Jérôme Viallon
- Laboratory of Marine Biotoxins, Institut Louis Malardé, UMR EIO (IFREMER, IRD, ILM, UPF), P.O. Box 30 Papeete, Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Hela Ben Gharbia
- MMS Laboratory (EA 2160), Sciences and Techniques Faculty, Le Mans University, Avenue Olivier Messiaen, 72085 Le Mans, France;
| | - Luiz Laureno Mafra Júnior
- Center for Marine Studies, Federal University of Paraná. Av. Beira-mar, s/n, Pontal do Paraná P.O. Box 61, Brazil;
- Visiting Scientist Ifremer, Laboratoire Phycotoxines, Rue de I’lle d’Yeu, 44311 Nantes, France
| | - Peter Swarzenski
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; (A.T.); (P.S.); (F.O.)
| | - François Oberhaensli
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; (A.T.); (P.S.); (F.O.)
| | - Hélène Taiana Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé, UMR EIO (IFREMER, IRD, ILM, UPF), P.O. Box 30 Papeete, Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Mireille Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé, UMR EIO (IFREMER, IRD, ILM, UPF), P.O. Box 30 Papeete, Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Marie-Yasmine Dechraoui Bottein
- Université Côte d’Azur, CNRS, ECOSEAS, UMR7035, Parc Valrose, CEDEX 2, 06103 Nice, France;
- Correspondence: (I.d.P.L.); (M.-Y.D.B.)
| |
Collapse
|
18
|
Li J, Ruan Y, Mak YL, Zhang X, Lam JCW, Leung KMY, Lam PKS. Occurrence and Trophodynamics of Marine Lipophilic Phycotoxins in a Subtropical Marine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8829-8838. [PMID: 34142818 DOI: 10.1021/acs.est.1c01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine lipophilic phycotoxins (MLPs) are produced by toxigenic microalgae and cause foodborne illnesses. However, there is little information on the trophic transfer potential of MLPs in marine food webs. In this study, various food web components including 17 species of mollusks, crustaceans, and fishes were collected for an analysis of 17 representative MLPs, including azaspiracids (AZAs), brevetoxins (BTXs), gymnodimine (GYM), spirolides (SPXs), okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), yessotoxins (YTXs), and ciguatoxins (CTXs). Among the 17 target MLPs, 12, namely, AZAs1-3, BTX3, GYM, SPX1, OA, DTXs1-2, PTX2, YTX, and the YTX derivative homoYTX, were detected, and the total MLP concentrations ranged from 0.316 to 20.3 ng g-1 wet weight (ww). The mean total MLP concentrations generally decreased as follows: mollusks (8.54 ng g-1, ww) > crustaceans (1.38 ng g-1, ww) > fishes (0.914 ng g-1, ww). OA, DTXs, and YTXs were the predominant MLPs accumulated in the studied biota. Trophic dilution of the total MLPs was observed with a trophic magnification factor of 0.109. The studied MLPs might not pose health risks to residents who consume contaminated seafood; however, their potential risks to the ecosystem can be a cause for concern.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Office of the President, The Open University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| |
Collapse
|
19
|
Asynchrony of Gambierdiscus spp. Abundance and Toxicity in the U.S. Virgin Islands: Implications for Monitoring and Management of Ciguatera. Toxins (Basel) 2021; 13:toxins13060413. [PMID: 34200870 PMCID: PMC8230442 DOI: 10.3390/toxins13060413] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/30/2023] Open
Abstract
Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February-May) when the mean water temperatures were approximately 26-28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.
Collapse
|
20
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
21
|
Oshiro N, Tomikawa T, Kuniyoshi K, Kimura K, Kojima T, Yasumoto T, Asakura H. Detection of Ciguatoxins from Fish Introduced into a Wholesale Market in Japan. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2021; 62:8-13. [DOI: 10.3358/shokueishi.62.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Takumi Tomikawa
- National Institute of Health Sciences
- Graduate School of Science and Technology, Teikyo University of Science
| | | | | | - Takashi Kojima
- Fuculty of Life & Environmental Sciences, Teikyo University of Science
| | | | | |
Collapse
|
22
|
Sanchez-Henao A, García-Álvarez N, Padilla D, Ramos-Sosa M, Silva Sergent F, Fernández A, Estévez P, Gago-Martínez A, Diogène J, Real F. Accumulation of C-CTX1 in Muscle Tissue of Goldfish ( Carassius auratus) by Dietary Experience. Animals (Basel) 2021; 11:ani11010242. [PMID: 33477985 PMCID: PMC7835822 DOI: 10.3390/ani11010242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Ciguatoxins (CTXs) are produced by dinoflagellates usually present in tropical and subtropical waters. These toxins are bioaccumulated and transformed in fish causing ciguatera fish poisoning (CFP) in humans. Few trials have been performed to understand how CTXs are incorporated into fish. This study developed an experimental model of goldfish (Carassius auratus) fed flesh contaminated with Caribbean ciguatoxin (C-CTX1). Fourteen goldfish were fed 0.014 ng CTX1B (Eq. g-1 of body weight) daily, and control goldfish received non-toxic flesh. CTX presence was determined by a cell-based assay on days 1, 8, 15, 29, 36, 43, and 84. Toxicity was detected in muscle from the second sampling and then seemed to stabilize at ~0.03 ng CTX1B Eq. g-1. After two weeks, all experimental goldfish developed lethargy and loss of brightness, but only two of them displayed erratic swimming and jerking movements near the sixth sampling. One of these fish had its toxic diet replaced by commercial food for 60 more days; the fish showed recovery signs within the first weeks and no CTX activity was detected. These results indicate that C-CTX1 could accumulate in goldfish muscle tissue and produce toxic symptoms, but also remarked on the detoxification and recovery capacity of this species.
Collapse
Affiliation(s)
- Andres Sanchez-Henao
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Natalia García-Álvarez
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Daniel Padilla
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - María Ramos-Sosa
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Freddy Silva Sergent
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Antonio Fernández
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Pablo Estévez
- Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Ana Gago-Martínez
- Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Jorge Diogène
- Marine and Continental Waters Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Fernando Real
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| |
Collapse
|
23
|
Chinain M, Gatti CMI, Ung A, Cruchet P, Revel T, Viallon J, Sibat M, Varney P, Laurent V, Hess P, Darius HT. Evidence for the Range Expansion of Ciguatera in French Polynesia: A Revisit of the 2009 Mass-Poisoning Outbreak in Rapa Island (Australes Archipelago). Toxins (Basel) 2020; 12:E759. [PMID: 33271904 PMCID: PMC7759781 DOI: 10.3390/toxins12120759] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/14/2023] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of seafood contaminated with ciguatoxins (CTXs). This disease is highly prevalent in French Polynesia with several well-identified hotspots. Rapa Island, the southernmost inhabited island in the country, was reportedly free of CP until 2007. This study describes the integrated approach used to investigate the etiology of a fatal mass-poisoning outbreak that occurred in Rapa in 2009. Symptoms reported in patients were evocative of ciguatera. Several Gambierdiscus field samples collected from benthic assemblages tested positive by the receptor binding assay (RBA). Additionally, the toxicity screening of ≈250 fish by RBA indicated ≈78% of fish could contain CTXs. The presence of CTXs in fish was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential link between climate change and this range expansion of ciguatera to a subtropical locale of French Polynesia was also examined based on the analysis of temperature time-series data. Results are indicative of a global warming trend in Rapa area. A five-fold reduction in incidence rates was observed between 2009 and 2012, which was due in part to self-regulating behavior among individuals (avoidance of particular fish species and areas). Such observations underscore the prominent role played by community outreach in ciguatera risk management.
Collapse
Affiliation(s)
- Mireille Chinain
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Clémence Mahana iti Gatti
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - André Ung
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Philippe Cruchet
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Taina Revel
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Jérôme Viallon
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Manoëlla Sibat
- Institut Français de Recherche Pour l’Exploitation de la Mer, Phycotoxins Laboratory, 44311 Nantes, France; (M.S.); (P.H.)
| | - Patrick Varney
- Météo France, Direction Inter-Régionale en Polynésie Française, P.O. Box 6005, 98702 Faa’a, Tahiti, French Polynesia; (P.V.); (V.L.)
| | - Victoire Laurent
- Météo France, Direction Inter-Régionale en Polynésie Française, P.O. Box 6005, 98702 Faa’a, Tahiti, French Polynesia; (P.V.); (V.L.)
| | - Philipp Hess
- Institut Français de Recherche Pour l’Exploitation de la Mer, Phycotoxins Laboratory, 44311 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| |
Collapse
|
24
|
Advances in Detecting Ciguatoxins in Fish. Toxins (Basel) 2020; 12:toxins12080494. [PMID: 32752046 PMCID: PMC7472146 DOI: 10.3390/toxins12080494] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/28/2023] Open
Abstract
Ciguatera fish poisoning (CFP) is currently the most common marine biotoxin food poisoning worldwide, associated with human consumption of circumtropical fish and marine invertebrates that are contaminated with ciguatoxins. Ciguatoxins are very potent sodium-channel activator neurotoxins, that pose risks to human health at very low concentrations (>0.01 ng per g of fish flesh in the case of the most potent Pacific ciguatoxin). Symptoms of CFP are nonspecific and intoxication in humans is often misdiagnosed. Presently, there is no medically approved treatment of ciguatera. Therefore, to mitigate the risks of CFP, reliable detection of ciguatoxins prior to consumption of fish tissue is acutely needed, which requires application of highly sensitive and quantitative analytical tests. During the last century a number of methods have been developed to identify and quantify the concentration of ciguatoxins, including in vivo animal assays, cell-based assays, receptor binding assays, antibody-based immunoassays, electrochemical methods, and analytical techniques based on coupling of liquid chromatography with mass spectrometry. Development of these methods, their various advantages and limitations, as well as future challenges are discussed in this review.
Collapse
|
25
|
Castro D, Manger R, Vilariño O, Gago-Martínez A. Evaluation of Matrix Issues in the Applicability of the Neuro-2a Cell Based Assay on the Detection of CTX in Fish Samples. Toxins (Basel) 2020; 12:toxins12050308. [PMID: 32397386 PMCID: PMC7290336 DOI: 10.3390/toxins12050308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022] Open
Abstract
Ciguatoxins (CTXs) are a group of neurotoxins responsible for the syndrome ciguatera fish poisoning (CFP) as a result of the consumption of contaminated fish. The presence of these toxins has been detected around the Pacific, Caribbean and Indian coasts. Recent reports indicate the emergence of CFP in other geographic areas, in particular in European coasts, of the Canary Islands (Spain) and Madeira (Portugal). A neuroblastoma cell line of murine origin (N2a) has been applied to assay different groups of neurotoxins, acting on voltage-gated sodium channel (VGSC) of excitable cells, N2a-MTT. The great potential of N2a-MTT as a sensitive tool for the CTXs screening is clearly recognized, notably because it allows the detection of these toxins at levels below recommended as security levels. However, the complexity of the matrix is a critical point on the application of N2a-MTT, which needs to be evaluated. The aim of this work is to provide recommendations for an implemented N2a-MTT method for CTXs determination in fish that avoids matrix effects, particularly those related to high lipid content.
Collapse
Affiliation(s)
- David Castro
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (D.C.); (O.V.)
| | - Ronald Manger
- Fred Hutchinson Cancer Research Center (retired), Seattle, WA 98109, USA;
| | - Oscar Vilariño
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (D.C.); (O.V.)
| | - Ana Gago-Martínez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (D.C.); (O.V.)
- Correspondence: ; Tel.: +34-647-343-417
| |
Collapse
|
26
|
Lehel J, Yaucat-Guendi R, Darnay L, Palotás P, Laczay P. Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi). Crit Rev Food Sci Nutr 2020; 61:867-888. [PMID: 32270692 DOI: 10.1080/10408398.2020.1749024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is undeniable that with the popularity of sushi and sashimi over the last decade the consumption of raw fish has extremely increased. Raw fish is very appreciated worldwide and has become a major component of human diet because of its fine taste and nutritional properties. Possible hazards concerning fish safety and quality are classified as biological and chemical hazards. They are contaminants that often accumulate in edible tissue of fish and transmit to humans via the food chain affecting the consumer's health. Although their concentration in fish and fishery products are found at non-alarming level of a daily basis period, they induce hazardous outcome on human health due to long and continuous consumption of raw fish. Regular sushi and sashimi eaters have to be aware of the contaminants found in the other components of their dish that often add up to acceptable residue limits found in fish. Hence, there is the urge for effective analytical methods to be developed as well as stricter regulations to be put in force between countries to monitor the safety and quality of fish for the interest of public health.
Collapse
Affiliation(s)
- József Lehel
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | | | - Lívia Darnay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | | | - Péter Laczay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
27
|
Li J, Mak YL, Chang YH, Xiao C, Chen YM, Shen J, Wang Q, Ruan Y, Lam PKS. Uptake and Depuration Kinetics of Pacific Ciguatoxins in Orange-Spotted Grouper ( Epinephelus coioides). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4475-4483. [PMID: 32142610 DOI: 10.1021/acs.est.9b07888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ciguatoxins (CTXs), produced by toxic benthic dinoflagellates, can bioaccumulate in marine organisms at higher trophic levels. The current study evaluated the uptake and depuration kinetics of some of the most potent CTXs, Pacific CTX-1, -2, and -3 (P-CTX-1, -2, and -3), in orange-spotted grouper (Epinephelus coioides) exposed to 1 ng P-CTXs g-1 fish daily. Over a 30 d exposure, P-CTX-1, -2, and -3 were consistently detected in various tissues of exposed fish, and the concentrations of the total P-CTXs in tissues generally ranked following the order of liver, intestine, gill, skin, brain, and muscle. Relatively higher uptake rates of P-CTX-1 in the groupers were observed compared with those of P-CTX-2 and -3. The depuration rate constants of P-CTX-1, -2, and -3 in different tissues were (0.996-16.5) × 10-2, (1.51-16.1) × 10-2, and (0.557-10.6) × 10-2 d-1, respectively. The accumulation efficiencies of P-CTX-1, -2, and -3 in whole groupers were 6.13%, 2.61%, and 1.15%, respectively. The increasing proportion of P-CTX-1 and the decreasing proportion of P-CTX-2 and -3 over the exposure phase suggest a likely biotransformation of P-CTX-2 and -3 to P-CTX-1, leading to higher levels of P-CTX-1 in fish and possibly a higher risk of CTXs in long-term exposed fish.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Yu-Han Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chengui Xiao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Key Laboratory of Detection Technology R & D on Food Safety, Shenzhen Academy of Inspection and Quarantine, Shenzhen, Guangdong 518045, China
| | - Yi-Min Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jincan Shen
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Key Laboratory of Detection Technology R & D on Food Safety, Shenzhen Academy of Inspection and Quarantine, Shenzhen, Guangdong 518045, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
28
|
Soliño L, Costa PR. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. ENVIRONMENTAL RESEARCH 2020; 182:109111. [PMID: 31927300 DOI: 10.1016/j.envres.2020.109111] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Ciguatera fish poisoning (CFP) is one of the most devastating food-borne illnesses caused by fish consumption. Ciguatoxins (CTXs) are potent neurotoxins synthesized by the benthic microalgae Gambierdiscus spp. and Fukuyoa spp. that are transmitted to fish by grazing and predation. Despite the high incidence of CFP, affecting an estimated number of 50,000 persons per year in tropical and subtropical latitudes, the factors underlying CTXs occurrence are still not well understood. Toxin transfer and dynamics in fish and food-webs are complex. Feeding habits and metabolic pathways determine the toxin profile and toxicity of fish, and migratory species may transport and spread the hazard. Furthermore, CTX effect on fish may be a limiting factor for fish recruitment and toxin prevalence. Recently, new occurrences of Gambierdiscus spp. in temperate areas have been concomitant with the detection of toxic fish and CFP incidents in non-endemic areas. CFP cases in Europe have led to implementation of monitoring programs and fisheries restrictions with considerable impact on local economies. More than 400 species of fish can be vectors of CTXs, and most of them are high-valued commercial species. Thus, the risk uncertainty and the spread of Gambierdiscus have serious consequences for fisheries and food safety. Here, we present a critical review of CTXs impacts on fish, fisheries, and humans, based on the current knowledge on CFP incidence and CTXs prevalence in microalgae and fish.
Collapse
Affiliation(s)
- Lucía Soliño
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
29
|
Rossignoli AE, Tudó A, Bravo I, Díaz PA, Diogène J, Riobó P. Toxicity Characterisation of Gambierdiscus Species from the Canary Islands. Toxins (Basel) 2020; 12:toxins12020134. [PMID: 32098095 PMCID: PMC7076799 DOI: 10.3390/toxins12020134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023] Open
Abstract
In the last decade, several outbreaks of ciguatera fish poisoning (CFP) have been reported in the Canary Islands (central northeast Atlantic Ocean), confirming ciguatera as an emerging alimentary risk in this region. Five Gambierdiscus species, G. australes, G. excentricus, G. silvae, G. carolinianus and G. caribaeus, have been detected in macrophytes from this area and are known to produce the ciguatoxins (CTXs) that cause CFP. A characterization of the toxicity of these species is the first step in identifying locations in the Canary Islands at risk of CFP. Therefore, in this study the toxicity of 63 strains of these five Gambierdiscus species were analysed using the erythrocyte lysis assay to evaluate their maitotoxin (MTX) content. In addition, 20 of the strains were also analysed in a neuroblastoma Neuro-2a (N2a) cytotoxicity assay to determine their CTX-like toxicity. The results allowed the different species to be grouped according to their ratios of CTX-like and MTX-like toxicity. MTX-like toxicity was especially high in G. excentricus and G. australes but much lower in the other species and lowest in G. silvae. CTX-like toxicity was highest in G. excentricus, which produced the toxin in amounts ranging between 128.2 ± 25.68 and 510.6 ± 134.2 fg CTX1B equivalents (eq) cell−1 (mean ± SD). In the other species, CTX concentrations were as follows: G. carolinianus (100.84 ± 18.05 fg CTX1B eq cell−1), G. australes (31.1 ± 0.56 to 107.16 ± 21.88 fg CTX1B eq cell−1), G. silvae (12.19 ± 0.62 to 76.79 ± 4.97 fg CTX1B eq cell−1) and G. caribaeus (<LOD to 90.37 ± 15.89 fg CTX1B eq cell−1). Unlike the similar CTX-like toxicity of G. australes and G. silvae strains from different locations, G. excentricus and G. caribaeus differed considerably according to the origin of the strain. These differences emphasise the importance of species identification to assess the regional risk of CFP.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
- Correspondence: ; Tel.: +34-986492111; Fax: +34-986498626
| | - Angels Tudó
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Isabel Bravo
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
| | - Patricio A. Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile;
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Pilar Riobó
- Department of Photobiology and Toxinology of Phytoplankton, Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
30
|
Ciguatera Fish Poisoning: The Risk from an Aotearoa/New Zealand Perspective. Toxins (Basel) 2020; 12:toxins12010050. [PMID: 31952334 PMCID: PMC7020403 DOI: 10.3390/toxins12010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gambierdiscus and Fukuyoa species have been identified in Aotearoa/New Zealand's coastal waters and G. polynesiensis, a known producer of ciguatoxins, has been isolated from Rangitāhua/Kermadec Islands (a New Zealand territory). The warming of the Tasman Sea and the waters around New Zealand's northern subtropical coastline heighten the risk of Gambierdiscus proliferating in New Zealand. If this occurs, the risk of ciguatera fish poisoning due to consumption of locally caught fish will increase. Research, including the development and testing of sampling methods, molecular assays, and chemical and toxicity tests, will continue. Reliable monitoring strategies are important to manage and mitigate the risk posed by this emerging threat. The research approaches that have been made, many of which will continue, are summarised in this review.
Collapse
|
31
|
Estevez P, Leao JM, Yasumoto T, Dickey RW, Gago-Martinez A. Caribbean Ciguatoxin-1 stability under strongly acidic conditions: Characterisation of a new C-CTX1 methoxy congener. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:519-529. [PMID: 31881166 DOI: 10.1080/19440049.2019.1705400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The recent emergence of ciguatera in the eastern Atlantic, particularly in the Canary Islands (Spain) and Madeira (Portugal) prompted the development and implementation of liquid chromatography tandem-mass spectrometry (LC/MS-MS) methods for the detection of ciguatoxins in fish. The complexity of fish tissue matrices, low concentrations of ciguatoxins in hazardous fish, and the scarcity of ciguatoxin standards present challenging issues for successful implementation of routine ciguatoxin analysis. A laboratory reference material of Caribbean Ciguatoxin-1 (C-CTX1), which was previously confirmed in fish responsible for ciguatera outbreaks in the Canary Islands, was used to assess the toxin's stability under strongly acidic conditions and solvent systems commonly used in LC-MS/MS. It was observed that strongly acidic conditions caused the transformation of C-CTX1 to a C56 methoxy congener, C-CTX1-Me. C-CTX1 was structurally characterised by LC-MS/MS and fragmentation pathways are presented showing the same fragmentation pattern as C-CTX1-Me. These results suggest that the use of strongly acidic conditions during sample pretreatment for C-CTX analysis, might produce significant artefacts, and risks failing to detect the presence of C-CTX1.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Vigo, Spain
| | - Jose Manuel Leao
- Department of Analytical and Food Chemistry, University of Vigo, Vigo, Spain
| | - Takeshi Yasumoto
- Tama Laboratory, Japan Food Research Laboratories, Tama, Tokyo, Japan
| | - Robert W Dickey
- Department of Marine Science, University of Texas at Austin Marine Science Institute, Port Aransas, TX, USA
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Vigo, Spain
| |
Collapse
|
32
|
Sanchez-Henao JA, García-Álvarez N, Fernández A, Saavedra P, Silva Sergent F, Padilla D, Acosta-Hernández B, Martel Suárez M, Diogène J, Real F. Predictive score and probability of CTX-like toxicity in fish samples from the official control of ciguatera in the Canary Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:576-584. [PMID: 30999098 DOI: 10.1016/j.scitotenv.2019.03.445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
This research identifies factors associated with the contamination by ciguatoxins (CTXs) in a population of fish and proposes a predictive score of the presence of CTX-like toxicity in amberjack samples from the official control program of ciguatera in the Canary Islands of the Directorate-General (DG) Fisheries (Canary Government). Out of the 970 samples of fish studied, 177 (18.2%) samples showed CTX-like toxicity. The fish were classified according to the species, amberjack (Seriola dumerili and S. rivoliana) (n = 793), dusky grouper (Epinephelus marginatus) (n = 145) and wahoo (Acanthocybium solandri) (n = 32). The data were separated by species category and statistically examined, resulting in 137 (17.3%) amberjack and 39 (26.9%) grouper samples showing CTX-like toxicity; regarding wahoo species, only 1 toxic sample (3.1%) was found. According to fishing location the contamination rates suggested grouping the islands in four clusters; namely: {El Hierro: HI; La Gomera: LG; La Palma: LP}, {Gran Canaria: GC; Tenerife: TF}, {Fuerteventura: FU} and {Lanzarote: LZ}. For the amberjack species, the multivariate logistic regression showed the factors that maintained independent association with the outcome, which were the warm season (OR = 3.617; 95% CI = 1.249-10.474), the weight (per kg, 1.102; 95% CI = 1.069-1.136) and the island of fish catching. A prediction score was obtained for the probability of contamination by CTX in amberjack fish samples. The area under de curve (AUC) obtained using the validation data was 0.747 (95% CI = 0.662-0.833). Regarding grouper species, the island of fishing was the only factor that showed significant differences associated with the presence of CTX-like toxicity. We provide herein data for a better management and prediction of ciguatera in the Canary Islands, suggesting a review of the minimum limits of fish weight established by the Canary Government for the control program.
Collapse
Affiliation(s)
- J Andres Sanchez-Henao
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Natalia García-Álvarez
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain.
| | - Antonio Fernández
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Pedro Saavedra
- Department of Mathematics, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Freddy Silva Sergent
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Daniel Padilla
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Begoña Acosta-Hernández
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Manuela Martel Suárez
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Jorge Diogène
- Marine and Continental Waters Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Fernando Real
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| |
Collapse
|
33
|
Cagnasso I, Tonachini G, Berto S, Giacomino A, Mandrile L, Maranzana A, Durbiano F. Comprehensive study on the degradation of ochratoxin A in water by spectroscopic techniques and DFT calculations. RSC Adv 2019; 9:19844-19854. [PMID: 35519402 PMCID: PMC9065388 DOI: 10.1039/c9ra02086a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
Ochratoxin A (OTA) is one of the most important dietary risk factors and is classified as a possible carcinogen to humans. Assessing the conditions to remove it from foodstuffs in a simple and effective way is of the utmost importance. OTA behaviour in water in the pH range 1.0-12.5 was elucidated to investigate the conditions for irreversible toxicity inactivation of OTA. The results indicate that four forms, from neutral to trianionic, intervene depending on the pH. pK a1,2 were rigorously established by independent spectroscopic techniques to overcome the scarcity of literature. Then, Density Functional Theory (DFT) calculations were used to determine the most probable degradation mechanism and this was confirmed by fluorescence spectroscopy. At pH 12.5, hydrolyzation of the lactone ring starts in less than one hour, but only after two hours does the degradation process lead to fragmentation. After one week this process is not yet completed. The reaction products occurring upon re-acidification were also investigated. OTA degradation is still reversible if acidic conditions are promptly restored, yielding again a hazardous molecule. However, degradation becomes irreversible after fragmentation. This finding suggests proceeding with due caution if a base is exploited to remove the toxin.
Collapse
Affiliation(s)
- Iris Cagnasso
- Metrology for Quality of Life Division, Istituto Nazionale di Ricerca Metrologica Strada Delle Cacce 91 10135 Torino Italy
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca Degli Abruzzi 24 10129 Torino Italy
| | - Glauco Tonachini
- Chemistry Department, Università di Torino Via Giuria 7 10125 Torino Italy
| | - Silvia Berto
- Chemistry Department, Università di Torino Via Giuria 7 10125 Torino Italy
| | - Agnese Giacomino
- Drug Science and Technology Department, Università di Torino Via Giuria 9 10125 Torino Italy
| | - Luisa Mandrile
- Metrology for Quality of Life Division, Istituto Nazionale di Ricerca Metrologica Strada Delle Cacce 91 10135 Torino Italy
| | - Andrea Maranzana
- Chemistry Department, Università di Torino Via Giuria 7 10125 Torino Italy
| | - Francesca Durbiano
- Metrology for Quality of Life Division, Istituto Nazionale di Ricerca Metrologica Strada Delle Cacce 91 10135 Torino Italy
| |
Collapse
|
34
|
Eskola M, Elliott CT, Hajšlová J, Steiner D, Krska R. Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Crit Rev Food Sci Nutr 2019; 60:1890-1911. [PMID: 31094210 DOI: 10.1080/10408398.2019.1612320] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An informed opinion to a hugely important question, whether the food on the Europeans' plate is safe to eat, is provided. Today, the Europeans face food-borne health risks from non-communicable diseases induced by excess body weight, outbreaks caused by pathogens, antimicrobial resistance and exposures to chemical contaminants. In this review, these risks are first put in an order of importance. Then, not only potentially injurious dietary chemicals are discussed but also beneficial factors of the food. This review can be regarded as an attempt towards a dietary-exposome evaluation of the chemicals, the average European adult consumers could chronically expose to during their life-times. Risk ranking reveals that currently the European adults are chronically exposed to a mixture of potentially genotoxic-carcinogenic contaminants, particularly food process contaminants, at the potential risk levels. Furthermore, several of the contaminants whose dietary exposures pose risks appear to be carcinogens operating with a genotoxic mode of action targeting the liver. This suggests that combined health risks from the exposure to a mixture of the chemical contaminants poses a greater potential risk than the risks assessed for single compounds. Over 100 European-level risk assessments are examined. Finally, the importance of a diversified and balanced diet is emphasized.
Collapse
Affiliation(s)
- Mari Eskola
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - David Steiner
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
35
|
Estevez P, Castro D, Pequeño-Valtierra A, Giraldez J, Gago-Martinez A. Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges. Foods 2019; 8:E149. [PMID: 31052406 PMCID: PMC6560407 DOI: 10.3390/foods8050149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
The presence of emerging contaminants in food and the sources of the contamination are relevant issues in food safety. The impact of climate change on these contaminations is a topic widely debated; however, the consequences of climate change for the food system is not as deeply studied as other human and animal health and welfare issues. Projections of climate change in Europe have been evaluated through the EU Commission, and the impact on the marine environment is considered a priority issue. Marine biotoxins are produced by toxic microalgae and are natural contaminants of the marine environment. They are considered to be an important contaminant that needs to be evaluated. Their source is affected by oceanographic and environmental conditions; water temperature, sunlight, salinity, competing microorganisms, nutrients, and wind and current directions affect the growth and proliferation of microalgae. Although climate change should not be the only reason for this increase and other factors such as eutrophication, tourism, fishery activities, etc. could be considered, the influence of climate change has been observed through increased growth of dinoflagellates in areas where they have not been previously detected. An example of this is the recent emergence of ciguatera fish poisoning toxins, typically found in tropical or subtropical areas from the Pacific and Caribbean and in certain areas of the Atlantic Sea such as the Canary Islands (Spain) and Madeira (Portugal). In addition, the recent findings of the presence of tetrodotoxins, typically found in certain areas of the Pacific, are emerging in the EU and contaminating not only the fish species where these toxins had been found before but also bivalve mollusks. The emergence of these marine biotoxins in the EU is a reason for concern in the EU, and for this reason, the risk evaluation and characterization of these toxins are considered a priority for the European Food Safety Authorities (EFSA), which also emphasize the search for occurrence data using reliable and efficient analytical methods.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Giraldez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
- EU Reference Laboratory for marine biotoxins, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
36
|
Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts. Food Chem 2019; 280:8-14. [DOI: 10.1016/j.foodchem.2018.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022]
|
37
|
Murk AJ, Nicolas J, Smulders FJ, Bürk C, Gerssen A. Marine biotoxins: types of poisoning, underlying mechanisms of action and risk management programmes. CHEMICAL HAZARDS IN FOODS OF ANIMAL ORIGIN 2019. [DOI: 10.3920/978-90-8686-877-3_09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology group, Wageningen University and Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - Jonathan Nicolas
- 68300 Saint-Louis, France, formerly affiliated with Division of Toxicology, Wageningen University and Research Centre, the Netherlands
| | - Frans J.M. Smulders
- Institute of Meat Hygiene, Meat Technology and Food Science, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Christine Bürk
- Milchwirstschaftliche Untersuchungs- und Versuchsanstalt (MUVA) Kempten, GmbH, Ignaz-Kiechle-Straße 20-22, 87437 Kempten (Allgäu), Germany
| | - Arjen Gerssen
- RIKILT, Wageningen University & Research, P.O. Box 230, 6708 WB Wageningen, the Netherlands
| |
Collapse
|
38
|
Moreiras G, Leão JM, Gago-Martínez A. Design of experiments for the optimization of electrospray ionization in the LC-MS/MS analysis of ciguatoxins. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1059-1069. [PMID: 30109731 DOI: 10.1002/jms.4281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Liquid chromatography (LC) coupled to mass spectrometry (MS) is being widely applied as an analytical tool in the field of marine biotoxins both for regulated and for new and emerging compounds. LC-MS/MS recently became the reference method for the control of lipophilic toxins in the European Union, and new methods are being developed and optimized to extend the applicability of this technique to other toxin groups. In this work, conditions for the analysis of ciguatoxins (CTXs) by LC-MS/MS were investigated using standard solutions of CTX1B and CTX3C, which are structurally representative compounds for the rest of the main congeners of Pacific group toxins (P-CTXs). Preliminary studies were carried out for the selection of precursor and product ions used for multiple reaction monitoring. Two transitions based on the chemical structures of CTXs were set up, and mass spectrometer parameters were adjusted for selected reactions monitored. The electrospray ionization source has been carefully optimized through a design of experiments that consisted of a two-level fractional factorial design of resolution IV for the screening of adequate source conditions and of response surface designs for optimization of the main interactions between factors. The statistical approach allowed maximizing the sensitivity on the MS analyzer that provides a good specificity in P-CTX detection, which can be also used for confirmation purposes.
Collapse
Affiliation(s)
- Guillermo Moreiras
- Faculty of Chemistry, Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310, Vigo, Spain
| | - José Manuel Leão
- Faculty of Chemistry, Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310, Vigo, Spain
- European Union Reference Laboratory for Marine Biotoxins (EURLMB), CITEXVI, Campus Universitario de Vigo, 36310, Vigo, Spain
| | - Ana Gago-Martínez
- Faculty of Chemistry, Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310, Vigo, Spain
- European Union Reference Laboratory for Marine Biotoxins (EURLMB), CITEXVI, Campus Universitario de Vigo, 36310, Vigo, Spain
| |
Collapse
|
39
|
Friedemann M. Ciguatera fish poisoning outbreaks from 2012 to 2017 in Germany caused by snappers from India, Indonesia, and Vietnam. J Verbrauch Lebensm 2018. [DOI: 10.1007/s00003-018-1191-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Pinzaru SC, Müller C, Ujević I, Venter MM, Chis V, Glamuzina B. Lipophilic marine biotoxins SERS sensing in solutions and in mussel tissue. Talanta 2018; 187:47-58. [DOI: 10.1016/j.talanta.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/25/2022]
|
41
|
Sibat M, Herrenknecht C, Darius HT, Roué M, Chinain M, Hess P. Detection of pacific ciguatoxins using liquid chromatography coupled to either low or high resolution mass spectrometry (LC-MS/MS). J Chromatogr A 2018; 1571:16-28. [PMID: 30100527 DOI: 10.1016/j.chroma.2018.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 02/01/2023]
Abstract
Ciguatera Fish Poisoning (CFP) is primarily caused by consumption of tropical and sub-tropical fish contaminated by Ciguatoxins (CTXs). These lipid-soluble, polyether neurotoxins are produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. While there is no regulatory level in Europe for CTXs, the European Food Safety Authority (EFSA) adopted the United States guidance level of 0.01 μg P-CTX1B eq.kg-1 of fish. This limit is extremely low and requires significant improvement in the detection of CTXs. In this study, we compared analytical protocols based on liquid chromatography coupled to tandem low or high resolution mass spectrometry (LC-LRMS or HRMS) to find the best conditions for sensitivity and/or selectivity. Different approaches such as LC conditions, ion choice and acquisition modes, were evaluated to detect the Pacific-ciguatoxins (P-CTXs) on a triple quadrupole (API4000 Qtrap, Sciex) or a quadrupole time of flight (QTOF 6550, Agilent Technologies) spectrometer. Moreover, matrix effects were calculated using matrix-matched calibration solutions of P-CTX1B and P-CTX3C prepared in purified fish extract. Subsequently, the method performance was assessed on naturally contaminated samples of seafood and phytoplankton. With LRMS, the ammoniated adduct ion used as a precursor ion showed an advantage for selectivity through confirmatory transitions, without affecting signal-to-noise ratios, and hence limits of detection (LODs). As also reported by some studies in the literature, methanol-based mobile phase gave better selectivity and sensitivity for the detection of P-CTXs. While the LOD for P-CTX1B and P-CTX3C met the EFSA recommendation level when using LRMS, the findings suggested careful evaluation of instrumental parameters for determination of CTXs. LODs were significantly higher for HRMS, which currently results in the need for a significantly higher sample intake. Nevertheless, HRMS allowed for the identification of artefacts and may allow for improved confirmation of the identity of P-CTXs analogues. Consequently, LRMS and HRMS are considered complementary to ensure adequate quantitation and identification of P-CTXs.
Collapse
Affiliation(s)
- Manoella Sibat
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311, Nantes, France.
| | - Christine Herrenknecht
- LUNAM, Université de Nantes, MMS EA2160, Faculté de Pharmacie, 9 rue Bias, 44035 Nantes, France.
| | - Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241-EIO, PO box 30, 98713, Papeete, Tahiti, French Polynesia.
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD) - UMR 241-EIO, PO box 53267, 98716, Pirae, Tahiti, French Polynesia.
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae - UMR 241-EIO, PO box 30, 98713, Papeete, Tahiti, French Polynesia.
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311, Nantes, France.
| |
Collapse
|
42
|
Clausing RJ, Losen B, Oberhaensli FR, Darius HT, Sibat M, Hess P, Swarzenski PW, Chinain M, Dechraoui Bottein MY. Experimental evidence of dietary ciguatoxin accumulation in an herbivorous coral reef fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:257-265. [PMID: 29803968 DOI: 10.1016/j.aquatox.2018.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Ciguatoxins (CTXs) are potent algal toxins that cause widespread ciguatera poisoning and are found ubiquitously in coral reef food webs. Here we developed an environmentally-relevant, experimental model of CTX trophic transfer involving dietary exposure of herbivorous fish to the CTX-producing microalgae Gambierdiscus polynesiensis. Juvenile Naso brevirostris were fed a gel-food embedded with microalgae for 16 weeks (89 cells g-1 fish daily, 0.4 μg CTX3C equiv kg-1 fish). CTXs in muscle tissue were detectable after 2 weeks at levels above the threshold for human intoxication (1.2 ± 0.2 μg CTX3C equiv kg-1). Although tissue CTX concentrations stabilized after 8 weeks (∼3 ± 0.5 μg CTX3C equiv kg-1), muscle toxin burden (total μg CTX in muscle tissue) continued to increase linearly through the end of the experiment (16 weeks). Toxin accumulation was therefore continuous, yet masked by somatic growth dilution. The observed CTX concentrations, accumulation rates, and general absence of behavioural signs of intoxication are consistent with field observations and indicate that this method of dietary exposure may be used to develop predictive models of tissue-specific CTX uptake, metabolism and depuration. Results also imply that slow-growing fish may accumulate higher CTX flesh concentrations than fast-growing fish, which has important implications for global seafood safety.
Collapse
Affiliation(s)
- Rachel J Clausing
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - Barbara Losen
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - Francois R Oberhaensli
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - H Taiana Darius
- Institut Louis Malardé- UMR 241 EIO, Laboratoire des Micro-algues Toxiques, BP 30, 98713, Papeete-Tahiti, French Polynesia
| | - Manoella Sibat
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Peter W Swarzenski
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - Mireille Chinain
- Institut Louis Malardé- UMR 241 EIO, Laboratoire des Micro-algues Toxiques, BP 30, 98713, Papeete-Tahiti, French Polynesia
| | | |
Collapse
|
43
|
Roué M, Darius HT, Ung A, Viallon J, Sibat M, Hess P, Amzil Z, Chinain M. Tissue Distribution and Elimination of Ciguatoxins in Tridacna maxima ( Tridacnidae, Bivalvia) Fed Gambierdiscus polynesiensis. Toxins (Basel) 2018; 10:E189. [PMID: 29747460 PMCID: PMC5983245 DOI: 10.3390/toxins10050189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 01/20/2023] Open
Abstract
Ciguatera is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs). Ciguatera-like poisoning events involving giant clams (Tridacna maxima) are reported occasionally from Pacific islands communities. The present study aimed at providing insights into CTXs tissue distribution and detoxification rate in giant clams exposed to toxic cells of Gambierdiscus polynesiensis, in the framework of seafood safety assessment. In a first experiment, three groups of tissue (viscera, flesh and mantle) were dissected from exposed individuals, and analyzed for their toxicity using the neuroblastoma cell-based assay (CBA-N2a) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. The viscera, flesh, and mantle were shown to retain 65%, 25%, and 10% of the total toxin burden, respectively. All tissues reached levels above the safety limit recommended for human consumption, suggesting that evisceration alone, a practice widely used among local populations, is not enough to ensure seafood safety. In a second experiment, the toxin content in contaminated giant clams was followed at different time points (0, 2, 4, and 6 days post-exposure). Observations suggest that no toxin elimination is visible in T. maxima throughout 6 days of detoxification.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement (IRD)-UMR 241 EIO, PO box 53267, 98716 Pirae, Tahiti, French Polynesia.
| | - Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Manoella Sibat
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes CEDEX, France.
| | - Philipp Hess
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes CEDEX, France.
| | - Zouher Amzil
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes CEDEX, France.
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
44
|
Darius HT, Roué M, Sibat M, Viallon J, Gatti CMII, Vandersea MW, Tester PA, Litaker RW, Amzil Z, Hess P, Chinain M. Toxicological Investigations on the Sea Urchin Tripneustes gratilla (Toxopneustidae, Echinoid) from Anaho Bay (Nuku Hiva, French Polynesia): Evidence for the Presence of Pacific Ciguatoxins. Mar Drugs 2018; 16:E122. [PMID: 29642418 PMCID: PMC5923409 DOI: 10.3390/md16040122] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 01/17/2023] Open
Abstract
The sea urchin Tripneustes gratilla (Toxopneustidae, Echinoids) is a source of protein for many islanders in the Indo-West Pacific. It was previously reported to occasionally cause ciguatera-like poisoning; however, the exact nature of the causative agent was not confirmed. In April and July 2015, ciguatera poisonings were reported following the consumption of T.gratilla in Anaho Bay (Nuku Hiva Island, Marquesas archipelago, French Polynesia). Patient symptomatology was recorded and sea urchin samples were collected from Anaho Bay in July 2015 and November 2016. Toxicity analysis using the neuroblastoma cell-based assay (CBA-N2a) detected the presence of ciguatoxins (CTXs) in T.gratilla samples. Gambierdiscus species were predominant in the benthic assemblages of Anaho Bay, and G.polynesiensis was highly prevalent in in vitro cultures according to qPCR results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses revealed that P-CTX-3B was the major ciguatoxin congener in toxic sea urchin samples, followed by 51-OH-P-CTX-3C, P-CTX-3C, P-CTX-4A, and P-CTX-4B. Between July 2015 and November 2016, the toxin content in T.gratilla decreased, but was consistently above the safety limit allowed for human consumption. This study provides evidence of CTX bioaccumulation in T.gratilla as a cause of ciguatera-like poisoning associated with a documented symptomatology.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD)-UMR 241-EIO, PO Box 53267, 98716 Pirae, Tahiti, French Polynesia.
| | - Manoella Sibat
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France.
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Clémence Mahana Iti Iti Gatti
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mark W Vandersea
- National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA.
| | | | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA.
| | - Zouher Amzil
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France.
| | - Philipp Hess
- IFREMER, Phycotoxins Laboratory, F-44311 Nantes, France.
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Toxic Microalgae-UMR 241-EIO, PO Box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
45
|
Martin-Yken H, Gironde C, Derick S, Darius HT, Furger C, Laurent D, Chinain M. Ciguatoxins activate the Calcineurin signalling pathway in Yeasts: Potential for development of an alternative detection tool? ENVIRONMENTAL RESEARCH 2018; 162:144-151. [PMID: 29306662 DOI: 10.1016/j.envres.2017.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/05/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Ciguatoxins (CTXs) are lipid-soluble polyether compounds produced by dinoflagellates from the genus Gambierdiscus spp. typically found in tropical and subtropical zones. This endemic area is however rapidly expanding due to environmental perturbations, and both toxic Gambierdiscus spp. and ciguatoxic fishes have been recently identified in the North Atlantic Ocean (Madeira and Canary islands) and Mediterranean Sea. Ciguatoxins bind to Voltage Gated Sodium Channels on the membranes of sensory neurons, causing Ciguatera Fish Poisoning (CFP) in humans, a disease characterized by a complex array of gastrointestinal, neurological, neuropsychological, and cardiovascular symptoms. Although CFP is the most frequently reported non bacterial food-borne poisoning worldwide, there is still no simple and quick way of detecting CTXs in contaminated samples. In the prospect to engineer rapid and easy-to-use CTXs live cells-based tests, we have studied the effects of CTXs on the yeast Saccharomyces cerevisiae, a unicellular model which displays a remarkable conservation of cellular signalling pathways with higher eukaryotes. Taking advantage of this high level of conservation, yeast strains have been genetically modified to encode specific transcriptional reporters responding to CTXs exposure. These yeast strains were further exposed to different concentrations of either purified CTX or micro-algal extracts containing CTXs. Our data establish that CTXs are not cytotoxic to yeast cells even at concentrations as high as 1μM, and cause an increase in the level of free intracellular calcium in yeast cells. Concomitantly, a dose-dependent activation of the calcineurin signalling pathway is observed, as assessed by measuring the activity of specific transcriptional reporters in the engineered yeast strains. These findings offer promising prospects regarding the potential development of a yeast cells-based test that could supplement or, in some instances, replace current methods for the routine detection of CTXs in seafood products.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP INSA Université de Toulouse, UMR CNRS 5504, UMR INRA 792, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Camille Gironde
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Sylvain Derick
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Hélène Taiana Darius
- Laboratoire des Micro-Algues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30 98713 Papeete, Tahiti, Polynésie Française
| | - Christophe Furger
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Dominique Laurent
- Université Paul Sabatier Toulouse 3 UMR 152 et IRD Polynésie Française, BP 529 98713 Papeete, Tahiti, Polynésie Française
| | - Mireille Chinain
- Laboratoire des Micro-Algues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30 98713 Papeete, Tahiti, Polynésie Française
| |
Collapse
|
46
|
Bodero M, Bovee TFH, Wang S, Hoogenboom RLAP, Klijnstra MD, Portier L, Hendriksen PJM, Gerssen A. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:351-365. [PMID: 28884655 DOI: 10.1080/19440049.2017.1368720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins, and also lipophilic marine biotoxins (LMBs). However, the neuro-2a assay is rarely used for routine testing of samples due to matrix effects that, for example, lead to false positives when testing for LMBs. As a result there are only limited data on validation and evaluation of its performance on real samples. In the present study, the standard extraction procedure for LMBs was adjusted by introducing an additional clean-up step with n-hexane. Recovery losses due to this extra step were less than 10%. This wash step was a crucial addition in order to eliminate false-positive outcomes due to matrix effects. Next, the applicability of this assay was assessed by testing a broad range of shellfish samples contaminated with various LMBs, including diarrhetic shellfish toxins/poisons (DSPs). For comparison, the samples were also analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. Extracts of 87 samples, both blank and contaminated with various toxins, were tested. The neuro-2a outcomes were in line with those of LC-MS/MS analysis and support the applicability of this assay for the screening of samples for LMBs. However, for use in a daily routine setting, the test might be further improved and we discuss several recommended modifications which should be considered before a full validation is carried out.
Collapse
Affiliation(s)
- Marcia Bodero
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands.,b Division of Toxicology , Wageningen University and Research , Wageningen , the Netherlands
| | - Toine F H Bovee
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Si Wang
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Ron L A P Hoogenboom
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Mirjam D Klijnstra
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Liza Portier
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Peter J M Hendriksen
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| | - Arjen Gerssen
- a BU Bioassays and Authenticity, RIKILT Wageningen University & Research , Wageningen , the Netherlands
| |
Collapse
|
47
|
Catania D, Richlen ML, Mak YL, Morton SL, Laban EH, Xu Y, Anderson DM, Chan LL, Berumen ML. The prevalence of benthic dinoflagellates associated with ciguatera fish poisoning in the central Red Sea. HARMFUL ALGAE 2017; 68:206-216. [PMID: 28962981 DOI: 10.1016/j.hal.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
This study confirms the presence of the toxigenic benthic dinoflagellates Gambierdiscus belizeanus and Ostreopsis spp. in the central Red Sea. To our knowledge, this is also the first report of these taxa in coastal waters of Saudi Arabia, indicating the potential occurrence of ciguatera fish poisoning (CFP) in that region. During field investigations carried out in 2012 and 2013, a total of 100 Turbinaria and Halimeda macroalgae samples were collected from coral reefs off the Saudi Arabian coast and examined for the presence of Gambierdiscus and Ostreopsis, two toxigenic dinoflagellate genera commonly observed in coral reef communities around the world. Both Gambierdiscus and Ostreopsis spp. were observed at low densities (<200 cells g-1 wet weight algae). Cell densities of Ostreopsis spp. were significantly higher than Gambierdiscus spp. at most of the sampling sites, and abundances of both genera were negatively correlated with seawater salinity. To assess the potential for ciguatoxicity in this region, several Gambierdiscus isolates were established in culture and examined for species identity and toxicity. All isolates were morphologically and molecularly identified as Gambierdiscus belizeanus. Toxicity analysis of two isolates using the mouse neuroblastoma cell-based assay for ciguatoxins (CTX) confirmed G. belizeanus as a CTX producer, with a maximum toxin content of 6.50±1.14×10-5pg P-CTX-1 eq. cell-1. Compared to Gambierdiscus isolates from other locations, these were low toxicity strains. The low Gambierdiscus densities observed along with their comparatively low toxin contents may explain why CFP is unidentified and unreported in this region. Nevertheless, the presence of these potentially toxigenic dinoflagellate species at multiple sites in the central Red Sea warrants future study on their possible effects on marine food webs and human health in this region.
Collapse
Affiliation(s)
- Daniela Catania
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Kingdom of Saudi Arabia; Université Côte d'Azur, CNRS, FRE 3729 ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France
| | - Mindy L Richlen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Yim Ling Mak
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong
| | - Steve L Morton
- NOAA/NOS, Marine Biotoxins Program, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Elizabeth H Laban
- NOAA/NOS, Marine Biotoxins Program, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Yixiao Xu
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 530001, China
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Leo Lai Chan
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, City University of Hong Kong, Hong Kong
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Diogène J, Reverté L, Rambla-Alegre M, Del Río V, de la Iglesia P, Campàs M, Palacios O, Flores C, Caixach J, Ralijaona C, Razanajatovo I, Pirog A, Magalon H, Arnich N, Turquet J. Identification of ciguatoxins in a shark involved in a fatal food poisoning in the Indian Ocean. Sci Rep 2017; 7:8240. [PMID: 28811602 PMCID: PMC5557899 DOI: 10.1038/s41598-017-08682-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
Severe food poisoning events after the consumption of sharks have been reported since the 1940s; however, there has been no clear understanding of their cause. Herein, we report for the first time the presence of ciguatoxins (CTXs) in sharks. The identification by mass spectrometry of CTXs, including two new analogues, in a bull shark (Carcharhinus leucas) that was consumed by humans, causing the poisoning and death of 11 people in Madagascar in 2013 is described. Typical neurotoxic ciguatera symptoms were recorded in patients, and toxicological assays on extracts of the shark demonstrated CTX-like activity. These results confirm this episode as a ciguatera poisoning event and expand the range of pelagic fish species that are involved in ciguatera in the Indian Ocean. Additionally, gambieric acid D, a molecule originally described in CTX-producing microalgae, was identified for the first time in fish. This finding can contribute to a better understanding of trophic relations within food webs. The present work confirms that consumption of sharks from the Indian Ocean should be considered a ciguatera risk, and actions should be taken to evaluate its magnitude and risk in order to manage shark fisheries.
Collapse
Affiliation(s)
- Jorge Diogène
- Marine Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la, Ràpita, Spain.
| | - Laia Reverté
- Marine Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la, Ràpita, Spain
| | - Maria Rambla-Alegre
- Marine Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la, Ràpita, Spain
| | - Vanessa Del Río
- Marine Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la, Ràpita, Spain
| | - Pablo de la Iglesia
- Marine Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la, Ràpita, Spain
| | - Mònica Campàs
- Marine Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la, Ràpita, Spain
| | - Oscar Palacios
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Christian Ralijaona
- IHSM, Institut Halieutique des Sciences Marines de Tuléar, Université de Toliara, Toliara, Madagascar
| | - Iony Razanajatovo
- IPM Institut Pasteur Madagascar, Laboratoire d'Epidémio-Surveillance, BP 1274 - Avaradoha, 101, Antananarivo, Madagascar
| | - Agathe Pirog
- UMR ENTROPIE Univ. Réunion/IRD/CNRS, Faculté des Sciences et Technologies, Université de La Réunion, 15 Bd René Cassin, CS 92003, 97744 St Denis Cedex 09, La Réunion, France
| | - Hélène Magalon
- UMR ENTROPIE Univ. Réunion/IRD/CNRS, Faculté des Sciences et Technologies, Université de La Réunion, 15 Bd René Cassin, CS 92003, 97744 St Denis Cedex 09, La Réunion, France
| | - Nathalie Arnich
- ANSES French Agency for Food, Environmental and Occupational Health & Safety, Unit on Food Risk Assessment, Risk Assessment Department, 14 rue Pierre et Marie Curie - 94701, Maisons-Alfort Cedex, France
| | - Jean Turquet
- HYDROREUNION, CBEM, C/O CYROI, 2, Rue Maxime Rivière, 97490, Sainte Clotilde, La Réunion, France
| |
Collapse
|
49
|
Shmukler YB, Nikishin DA. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge. Mar Drugs 2017; 15:E232. [PMID: 28726749 PMCID: PMC5532674 DOI: 10.3390/md15070232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.
Collapse
Affiliation(s)
- Yuri B Shmukler
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| | - Denis A Nikishin
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| |
Collapse
|
50
|
Chan TYK. Regional Variations in the Risk and Severity of Ciguatera Caused by Eating Moray Eels. Toxins (Basel) 2017; 9:toxins9070201. [PMID: 28672845 PMCID: PMC5535148 DOI: 10.3390/toxins9070201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/19/2022] Open
Abstract
Moray eels (Gymnothorax species) from tropical waters have long been known to be high-risk species, and the consumption of particularly the viscera or ungutted eels can result in severe ciguatera (known as Gymnothorax or moray eel poisoning), characterized by prominent neurological features. In this review, the main objective was to describe the risk and severity of ciguatera caused by eating moray eels in different parts of the world. Moray eels can accumulate very high ciguatoxin (CTX) levels in the flesh and particularly the liver. Therefore, even the smaller ones can be toxic and the consumption of an average portion (particularly liver) can result in severe or fatal ciguatera. Moray eels (particularly when ungutted) must never be served in gatherings since they can cause mass poisoning because of their large sizes and high CTX levels. Apart from regulatory measures restricting or excluding access, the public should be repeatedly warned to avoid eating moray eels.
Collapse
Affiliation(s)
- Thomas Y K Chan
- Division of Clinical Pharmacology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
- Centre for Food and Drug Safety, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|