1
|
Di Piazza G, Ru G, Simmons M, Lanfranchi B, Ortiz‐Peláez A. Evaluation of the application of Slovenia to be recognised as having a negligible risk of classical scrapie. EFSA J 2024; 22:e9042. [PMID: 39434782 PMCID: PMC11491759 DOI: 10.2903/j.efsa.2024.9042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Slovenia submitted a request to the European Commission to be recognised as a Member State with negligible risk of classical scrapie. EFSA has been asked to assess if Slovenia has demonstrated that, between 2016 and 2022, a sufficient number of ovine and caprine animals over 18 months old, representative of those slaughtered, culled or found dead have been tested, and will continue to be tested annually, to provide a 95% confidence of detecting classical scrapie if it is present at a prevalence rate exceeding 0.1%. A risk-based approach using stochastic scenario tree modelling accounting for surveillance stream and species was applied. Globally, there is still a lack of data on the performance of the approved diagnostic screening tests under field conditions, specifically for sheep. Therefore, alternative scenarios were explored extending the range from the sensitivity (99.6%) provided by the past European Union evaluations to a sensitivity of 50%, more consistent with published data obtained under field conditions in infected goat populations. It was concluded that during the period 2016-2023, Slovenia has tested annually a sufficient number of ovine and caprine animals over 18 months of age, sourced from the NSHC and SHC populations, to ensure a 95% level of confidence of detecting CS if it is present in that population at a prevalence rate exceeding 0.1%, assuming a test sensitivity of 90% or above. The same holds for the years 2016, 2021 and 2023, assuming a test sensitivity of at least 80%. Based on the proposed number of samples for 2024 and future years, Slovenia would continue to meet the testing requirements assuming a test sensitivity of at least 80%.
Collapse
|
2
|
Ernst S, Piestrzyńska-Kajtoch A, Gethmann J, Natonek-Wiśniewska M, Sadeghi B, Polak MP, Keller M, Gavier-Widén D, Moazami-Goudarzi K, Houston F, Groschup MH, Fast C. Prion protein gene (PRNP) variation in German and Danish cervids. Vet Res 2024; 55:98. [PMID: 39095901 PMCID: PMC11297704 DOI: 10.1186/s13567-024-01340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.
Collapse
Affiliation(s)
- Sonja Ernst
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Miroslaw P Polak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | | | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany.
| |
Collapse
|
3
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Adkin A, Andreoletti O, Griffin J, Lanfranchi B, Ortiz‐Pelaez A, Ordonez AA. BSE risk posed by ruminant collagen and gelatine derived from bones. EFSA J 2024; 22:e8883. [PMID: 39015303 PMCID: PMC11249823 DOI: 10.2903/j.efsa.2024.8883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.
Collapse
|
4
|
Sola D, Betancor M, Marco Lorente PA, Pérez Lázaro S, Barrio T, Sevilla E, Marín B, Moreno B, Monzón M, Acín C, Bolea R, Badiola JJ, Otero A. Diagnosis in Scrapie: Conventional Methods and New Biomarkers. Pathogens 2023; 12:1399. [PMID: 38133284 PMCID: PMC10746075 DOI: 10.3390/pathogens12121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Scrapie, a naturally occurring prion disease affecting goats and sheep, comprises classical and atypical forms, with classical scrapie being the archetype of transmissible spongiform encephalopathies. This review explores the challenges of scrapie diagnosis and the utility of various biomarkers and their potential implications for human prion diseases. Understanding these biomarkers in the context of scrapie may enable earlier prion disease diagnosis in humans, which is crucial for effective intervention. Research on scrapie biomarkers bridges the gap between veterinary and human medicine, offering hope for the early detection and improved management of prion diseases.
Collapse
Affiliation(s)
- Diego Sola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Paula A. Marco Lorente
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Sonia Pérez Lázaro
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Tomás Barrio
- Unité Mixte de Recherche de l’Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement1225 Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, 31076 Toulouse, France
| | - Eloisa Sevilla
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Bernardino Moreno
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Cristina Acín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| |
Collapse
|
5
|
Pakpahan S, Widayanti R, Artama WT, Budisatria IGS, Lühken G. Genetic variability of the prion protein gene in Indonesian goat breeds. Trop Anim Health Prod 2023; 55:87. [PMID: 36806784 PMCID: PMC9938069 DOI: 10.1007/s11250-023-03486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy in sheep and goats. Resistance or susceptibility of small ruminants to classical scrapie is influenced by polymorphisms in the prion protein gene (PRNP). PRNP variability in Indonesian indigenous goat breeds has not been investigated so far and therefore was the goal of this study. Sanger sequencing of the PRNP gene coding region in 72 goats of the seven Indonesian breeds Kacang, Gembrong, Samosir, Kejobong, Benggala, Jawarandu, and Peranakan Etawah revealed three amino acid substitutions, namely W102G, H143R, and S240P. Some silent mutations were also found at codons 42 (a/g), 138 (c/t), and 179 (g/t). The PRNP alleles K222 and D/S146 known to have significant protective effects on resistance to classical scrapie in goats were not detected. The allele R143, which may have a moderate protective effect, had a frequency of 12% among the analyzed Indonesian goat breeds. While R143 was missing in Kacang and Benggala, its frequency was highest in the breed Gembrong (32%). No scrapie cases have been reported in Indonesia until now. However, in the case that selection for protective PRNP variants would become a breeding goal, the analyzed breeds will not be very useful resources. Other goat breeds which are present in the country should be investigated regarding resistance to scrapie, too.
Collapse
Affiliation(s)
- Suhendra Pakpahan
- Research Center for Applied Zoology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jl. Jakarta-Bogor Km.46, Cibinong, 16911 West Java Indonesia
| | - Rini Widayanti
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - Wayan Tunas Artama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - I. Gede Suparta Budisatria
- Department of Animal Production, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus-Liebig University, 35390, Giessen, Germany.
| |
Collapse
|
6
|
Valiant WG, Cai K, Vallone PM. A history of adventitious agent contamination and the current methods to detect and remove them from pharmaceutical products. Biologicals 2022; 80:6-17. [DOI: 10.1016/j.biologicals.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
|
7
|
Esteves A, Vieira-Pinto M, Quintas H, Orge L, Gama A, Alves A, Seixas F, Pires I, Pinto MDL, Mendonça AP, Lima C, Machado CN, Silva JC, Tavares P, Silva F, Bastos E, Pereira J, Gonçalves-Anjo N, Carvalho P, Sargo R, Matos A, Figueira L, Pires MDA. Scrapie at Abattoir: Monitoring, Control, and Differential Diagnosis of Wasting Conditions during Meat Inspection. Animals (Basel) 2021; 11:3028. [PMID: 34827761 PMCID: PMC8614523 DOI: 10.3390/ani11113028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Wasting disease in small ruminants is frequently detected at slaughterhouses. The wasting disorder is manifested by the deterioration of the nutritional and physiological state of the animal indicated by thinness, emaciation, and cachexia. Evidence of emaciation and cachexia, alone, are pathological conditions leading to carcass condemnation during an inspection. Several diseases are associated with a wasting condition, including scrapie, pseudotuberculosis, tuberculosis, paratuberculosis, Maedi Visna, and tumor diseases. On the other hand, parasitic diseases, nutrition disorders, exposure or ingestion of toxins, metabolic conditions, inadequate nutrition due to poor teeth, or poor alimentary diet are conditions contributing to poor body condition. Classical and atypical scrapie is naturally occurring transmissible spongiform encephalopathies in small ruminants. The etiological agent for each one is prions. However, each of these scrapie types is epidemiologically, pathologically, and biochemically different. Though atypical scrapie occurs at low incidence, it is consistently prevalent in the small ruminant population. Hence, it is advisable to include differential diagnosis of this disease, from other possibilities, as a cause of wasting conditions detected during meat inspection at the abattoir. This manuscript is a review of the measures in force at the abattoir for scrapie control, focusing on the differential diagnosis of gross lesions related to wasting conditions detected in small ruminants during meat inspection.
Collapse
Affiliation(s)
- Alexandra Esteves
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Madalena Vieira-Pinto
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Hélder Quintas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Leonor Orge
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Anabela Alves
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Maria de Lurdes Pinto
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Ana Paula Mendonça
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Carla Lima
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal; (C.L.); (P.T.)
| | - Carla Neves Machado
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - João Carlos Silva
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Paula Tavares
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal; (C.L.); (P.T.)
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Estela Bastos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Genetic Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Jorge Pereira
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Nuno Gonçalves-Anjo
- Genetic Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Paulo Carvalho
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (A.P.M.); (C.N.M.); (J.C.S.); (P.C.)
| | - Roberto Sargo
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| | - Ana Matos
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), 6000-767 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-Rural), Polytechnic Institute of Castelo Branco (IPCB), 6000-767 Castelo Branco, Portugal;
| | - Luís Figueira
- Quality of Life in the Rural World (Q-Rural), Polytechnic Institute of Castelo Branco (IPCB), 6000-767 Castelo Branco, Portugal;
| | - Maria dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.V.-P.); (L.O.); (A.G.); (A.A.); (F.S.); (I.P.); (M.d.L.P.); (F.S.); (J.P.); (R.S.)
| |
Collapse
|
8
|
Arnold M, Ru G, Simmons M, Vidal‐Diez A, Ortiz‐Pelaez A, Stella P. Scientific report on the analysis of the 2-year compulsory intensified monitoring of atypical scrapie. EFSA J 2021; 19:e06686. [PMID: 34262626 PMCID: PMC8265166 DOI: 10.2903/j.efsa.2021.6686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The European Commission asked EFSA whether the scientific data on the 2-year intensified monitoring in atypical scrapie (AS) outbreaks (2013-2020) provide any evidence on the contagiousness of AS, and whether they added any new knowledge on the epidemiology of AS. An ad hoc data set from intensified monitoring in 22 countries with index case/s of AS in sheep and/or goats (742 flocks from 20 countries, 76 herds from 11 countries) was analysed. No secondary cases were confirmed in goat herds, while 35 secondary cases were confirmed in 28 sheep flocks from eight countries. The results of the calculated design prevalence and of a model simulation indicated that the intensified monitoring had limited ability to detect AS, with no difference between countries with or without secondary cases. A regression model showed an increased, but not statistically significant, prevalence (adjusted by surveillance stream) of secondary cases in infected flocks compared with that of index cases in the non-infected flocks (general population). A simulation model of within-flock transmission, comparing a contagious (i.e. transmissible between animals under natural conditions) with a non-contagious scenario, produced a better fit of the observed data with the non-contagious scenario, in which each sheep in a flock had the same probability of developing AS in the first year of life. Based on the analyses performed, and considering uncertainties and data limitations, it was concluded that there is no new evidence that AS can be transmitted between animals under natural conditions, and it is considered more likely (subjective probability range 50-66%) that AS is a non-contagious, rather than a contagious disease. The analysis of the data of the EU intensified monitoring in atypical scrapie infected flocks/herds confirmed some of the known epidemiological features of AS but identified that major knowledge gaps still remain.
Collapse
|
9
|
Alarcon P, Marco-Jimenez F, Horigan V, Ortiz-Pelaez A, Rajanayagam B, Dryden A, Simmons H, Konold T, Marco C, Charnley J, Spiropoulos J, Cassar C, Adkin A. A review of cleaning and disinfection guidelines and recommendations following an outbreak of classical scrapie. Prev Vet Med 2021; 193:105388. [PMID: 34098231 DOI: 10.1016/j.prevetmed.2021.105388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Classical scrapie is a prion disease of small ruminants, the infectious agent of which has been shown to be extremely persistent in the environment. Cleaning and disinfection (C&D) after a scrapie outbreak is currently recommended by many governments' veterinary advisors and implemented in most farms affected. Yet, the effectiveness of these procedures remains unclear. The aim of this study was to review existing literature and guidelines regarding farm C&D protocols following classical scrapie outbreaks and assess their effectiveness and the challenges that translation of policy and legislative requirements present at a practical level. A review of the literature was conducted to identify the on-farm C&D protocols used following outbreaks of scrapie, assess those materials with high risk for persistence of the scrapie agent on farms, and review the existing evidence of the effectiveness of recommended C&D protocols. An expert workshop was also organised in Great Britain (GB) to assess: the decision-making process used when implementing C&D protocols on GB farms, the experts' perceptions on the effectiveness of these protocols and changes needed, and their views on potential recommendations for policy and research. Outputs of the literature review revealed that the current recommended protocol for C&D [1 h treatment with sodium hypochlorite containing 20,000 ppm free chlorine or 2 M sodium hydroxide (NaOH)] is based on laboratory experiments. Only four field farm experiments have been conducted, indicating a lack of data on effectiveness of C&D protocols on farms by the re-occurrence of scrapie infection post re-stocking. Recommendations related to the control of outdoor environment, which are difficult and expensive to implement, vary between countries. The expert workshop concluded that there are no practical, cost-effective C&D alternatives to be considered at this time, with control therefore based on C&D only in combination with additional time restrictions on re-stocking and replacement with non-susceptible livestock or more genetically resistant types, where available. Participants agreed that C&D should still be completed on scrapie affected farms, as it is considered to be "good disease practice" and likely to reduce the levels of the prion protein. Participants felt that any additional protocols developed should not be "too prescriptive" (should not be written down in specific policies) because of significant variation in farm types, farm equipment and installations. Under this scenario, control of classical scrapie on farms should be designed with a level of C&D in combination with re-stocking temporal ban and replacement with livestock of limited susceptibility.
Collapse
Affiliation(s)
- Pablo Alarcon
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| | - Francisco Marco-Jimenez
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Department of Animal Sciences, Universitat Politècnica de València, C/Camino de vera s/n, Valencia, 46071, Spain
| | - Verity Horigan
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | | | - Brenda Rajanayagam
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Aidan Dryden
- APHA, Worcester CSC, County Hall, Spetchley Road, Worcester, WR5 2NP, UK
| | - Hugh Simmons
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Timm Konold
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Carmen Marco
- APHA Advice Services, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Judith Charnley
- APHA Foundry House, Carleton Rd, Skipton North Yorks, BD23 2BE, UK
| | - John Spiropoulos
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Claire Cassar
- Laboratory Services, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Amie Adkin
- Food Standards Agency, Clive House, 70 Petty France, London, SW1H 9EX, UK
| |
Collapse
|
10
|
Neuropathology of Animal Prion Diseases. Biomolecules 2021; 11:biom11030466. [PMID: 33801117 PMCID: PMC8004141 DOI: 10.3390/biom11030466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are a fatal group of infectious, inherited and spontaneous neurodegenerative diseases affecting human and animals. They are caused by the conversion of cellular prion protein (PrPC) into a misfolded pathological isoform (PrPSc or prion- proteinaceous infectious particle) that self-propagates by conformational conversion of PrPC. Yet by an unknown mechanism, PrPC can fold into different PrPSc conformers that may result in different prion strains that display specific disease phenotype (incubation time, clinical signs and lesion profile). Although the pathways for neurodegeneration as well as the involvement of brain inflammation in these diseases are not well understood, the spongiform changes, neuronal loss, gliosis and accumulation of PrPSc are the characteristic neuropathological lesions. Scrapie affecting small ruminants was the first identified TSE and has been considered the archetype of prion diseases, though atypical and new animal prion diseases continue to emerge highlighting the importance to investigate the lesion profile in naturally affected animals. In this report, we review the neuropathology and the neuroinflammation of animal prion diseases in natural hosts from scrapie, going through the zoonotic bovine spongiform encephalopathy (BSE), the chronic wasting disease (CWD) to the newly identified camel prion disease (CPD).
Collapse
|
11
|
Torricelli M, Sebastiani C, Ciullo M, Ceccobelli S, Chiappini B, Vaccari G, Capocefalo A, Conte M, Giovannini S, Lasagna E, Sarti FM, Biagetti M. PRNP Polymorphisms in Eight Local Goat Populations/Breeds from Central and Southern Italy. Animals (Basel) 2021; 11:ani11020333. [PMID: 33525718 PMCID: PMC7911694 DOI: 10.3390/ani11020333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
In goats, as in sheep, genotypes of the prion protein gene (PRNP) can influence animals' susceptibility to scrapie. Since the polymorphic codons in sheep are well known, a genetic selection plan has been implemented in Europe, in order to reduce the prevalence of susceptible genotypes to scrapie. In Italy, no breeding plan for scrapie resistance in goats has been adopted, yet. Likewise, according to the most recent modification of Regulation EU 999/2001 (Regulation EU 772/2020) of the European Commission (EU), based on all the available experimental and in field data, K222, D146 and S146 polymorphisms could be used as scrapie resistance alleles in genetic management both in scrapie outbreaks and in disease prevention. In order to collect data on the variability of PRNP, the present study aimed to analyze the sequence of the PRNP gene in eight Italian local goat populations/breeds reared in central and southern Italy (Bianca Monticellana, Capestrina, Facciuta della Valnerina, Fulva del Lazio, Garganica, Grigia Ciociara, Grigia Molisana, and Teramana), some of which were investigated for the first time; moreover, two cosmopolitan breeds (Alpine and Saanen) were included. Blood samples were collected from 219 goats. Genomic DNA was extracted from whole blood. DNA was used as template in PCR amplification of the entire PRNP open reading frame (ORF). Purified amplicons have been sequenced and aligned to Capra hircus PRNP. Particularly, the alleles carrying the resistance-related 222 K polymorphism occurred in all populations with a frequency between 2.5% and 12.5%. An additional resistance allele carrying the S146 variant was observed with a frequency of 3.7% only in the Alpine breed. For three of the estimated alleles, we could not establish if the found double polymorphisms in heterozygosis were in phase, due to technical limitations. In this context, in addition to selective culling in scrapie outbreaks according to the European regulation in force, in the future, selection plans could be adopted to deal with scrapie and to control its diffusion, meanwhile paying attention to preserve a high variability of PRNP.
Collapse
Affiliation(s)
- Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Barbara Chiappini
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Gabriele Vaccari
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Antonio Capocefalo
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Michela Conte
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Samira Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
- Correspondence:
| |
Collapse
|
12
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Sánchez JÁ, Blagojevic B, Fürst P, Garin‐Bastuji B, Jensen HE, Paulsen P, Baert K, Barrucci F, Broglia A, Georgiadis M, Hempen M, Hilbert F. Evaluation of public and animal health risks in case of a delayed post-mortem inspection in ungulates. EFSA J 2020; 18:e06307. [PMID: 33304413 PMCID: PMC7716243 DOI: 10.2903/j.efsa.2020.6307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The potential effects of a 24 or 72-h delay in post-mortem inspection (PMI) of ungulates on public health and monitoring of animal health and welfare was evaluated. The assessment used a survey of meat inspectors, expert opinion, literature search and a stochastic model for Salmonella detection sensitivity. Disease detection sensitivity at a delayed PMI is expected to reduce detection sensitivity to a variable extent, depending on the hazard and on the signs/lesions and organs involved. No reduction is expected for Trichinella detection in meat from susceptible animal species and any decrease in detection of transmissible spongiform encephalopathies (TSEs) will not exceed the current tolerance for fallen stock. A 24-h delay in PMI could result in a small reduction in sensitivity of detection for tuberculosis, echinococcosis and cysticercosis. A greater reduction is expected for the detection of pyaemia and Rift valley fever. For the detection of Salmonella, the median model estimates are a reduction of sensitivity of 66.5% (90% probability interval (PI) 0.08-99.75%) after 24-h delay and 94% (90% PI 0.83-100%) after 72-h delay of PMI. Laboratory testing for tuberculosis following a sampling delay of 24-72 h could result in no, or a moderate, decrease in detection depending on the method of confirmation used (PCR, culture, histopathology). For chemical contaminants, a delay in meat inspection of 24 or 72 h is expected to have no impact on the effectiveness of detection of persistent organic pollutants and metals. However, for certain pharmacologically active substances, there will be a reduced effectiveness to detect some of these substances due to potential degradation in the available matrices (tissues and organs) and the non-availability of specific preferred matrices of choice.
Collapse
|
13
|
Mysterud A, Benestad SL, Rolandsen CM, Våge J. Policy implications of an expanded chronic wasting disease universe. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences University of Oslo Oslo Norway
| | - Sylvie L. Benestad
- OIE Reference Laboratory for CWD Norwegian Veterinary Institute Oslo Norway
| | | | - Jørn Våge
- OIE Reference Laboratory for CWD Norwegian Veterinary Institute Oslo Norway
| |
Collapse
|
14
|
Migliore S, Puleio R, Loria GR. Scrapie Control in EU Goat Population: Has the Last Gap Been Overcome? Front Vet Sci 2020; 7:581969. [PMID: 33134362 PMCID: PMC7550459 DOI: 10.3389/fvets.2020.581969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sergio Migliore
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
15
|
Konold T, Libbey S, Rajanayagam B, Fothergill L, Spiropoulos J, Vidaña B, Alarcon P. Classical Scrapie Did Not Re-occur in Goats After Cleaning and Disinfection of the Farm Premises. Front Vet Sci 2020; 7:585. [PMID: 32984416 PMCID: PMC7492743 DOI: 10.3389/fvets.2020.00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
After an outbreak of classical scrapie in a dairy goat herd with over 1,800 goats, all goats in the herd were culled in 2008, cleaning and disinfection of the premises was implemented, and restocking with goats took place ~4 months after depopulation. Ten years later the new herd population is over 3,000 goats. This study was carried out to determine whether the measures were effective to prevent re-occurrence of scrapie to the 1% prevalence level seen when scrapie was first detected on this farm. A total of 280 goats with a minimum age of 18 months, which were predominantly at the end of their productive life, were euthanized, and brain and retropharyngeal lymph node examined by immunohistochemistry for disease-associated prion protein. Genotyping was done in all euthanized goats and live male goats used or intended for breeding to determine prion protein gene polymorphisms associated with resistance to classical scrapie. None of the goats presented with disease-associated prion protein in the examined tissues, and 34 (12.2%) carried the K222 allele associated with resistance. This allele was also found in four breeding male goats. The study results suggested that classical scrapie was not re-introduced on this goat farm through mass restocking or inadequate cleaning and disinfection procedures. Further scrapie surveillance of goats on this farm is desirable to confirm absence of disease. Breeding with male goats carrying the K222 allele should be encouraged to increase the scrapie-resistant population.
Collapse
Affiliation(s)
- Timm Konold
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Sonja Libbey
- Animal and Plant Health England Field Delivery, Dorchester, United Kingdom
| | - Brenda Rajanayagam
- Department of Epidemiological Sciences, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Louise Fothergill
- Genotyping Unit, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Beatriz Vidaña
- Faculty of Health Sciences, Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Pablo Alarcon
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| |
Collapse
|
16
|
Konold T, Spiropoulos J, Thorne J, Phelan L, Fothergill L, Rajanayagam B, Floyd T, Vidana B, Charnley J, Coates N, Simmons M. The Scrapie Prevalence in a Goat Herd Is Underestimated by Using a Rapid Diagnostic Test. Front Bioeng Biotechnol 2020; 8:164. [PMID: 32226784 PMCID: PMC7081731 DOI: 10.3389/fbioe.2020.00164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/18/2020] [Indexed: 11/30/2022] Open
Abstract
Current European surveillance regulations for scrapie, a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease in sheep and goats, require testing of fallen stock or healthy slaughter animals, and outline measures in the case of confirmation of disease. An outbreak of classical scrapie in a herd with 2500 goats led to the culling of the whole herd, providing the opportunity to examine a subset of goats, take samples, and examine them for the presence of disease-associated prion protein (PrPSc) to provide further information on scrapie test sensitivity, pathology, and association with prion protein genotype. Goats were examined clinically prior to cull, and the brains examined post mortem by Bio-Rad ELISA, a rapid screening test used for active surveillance in sheep and goats, and two confirmatory tests, Western blot and immunohistochemistry. Furthermore, up to 10 lymphoid tissues were examined by immunohistochemistry. Of 151 goats examined, three (2.0%) tested positive for scrapie by ELISA on brain, confirmed by confirmatory tests, and a further five (3.3%) were negative by ELISA but positive by at least one of the confirmatory tests. Only two of these, both positive by ELISA, displayed evident signs of scrapie. In addition, 10 (6.6%) goats, which also included two clinical suspects, were negative on brain examination but had detectable PrPSc in lymphoid tissue. PrPSc was detected most frequently in the medial retropharyngeal lymph node (LN; 94.4% of all 18 cases) and palatine tonsil (88.9%). Abnormal behavior and circling or loss of balance when blindfolded were the best clinical discriminators for scrapie status. None of the goats that carried a single allele in the prion protein gene associated with increased resistance to scrapie (Q211, K222, S146) were scrapie-positive, and the percentage of goats with these alleles was greater than expected from previous surveys. Significantly more goats that were scrapie-positive were isoleucine homozygous at codon 142 (II142). The results indicate that the sensitivity of the applied screening test is poor in goats compared to the confirmatory tests as gold standard, particularly for asymptomatic animals. Sensitivity of surveillance could be improved by testing retropharyngeal LN or palatine tonsil in addition to brain.
Collapse
Affiliation(s)
- Timm Konold
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Jemma Thorne
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Laura Phelan
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Louise Fothergill
- Central Sequencing Unit, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Brenda Rajanayagam
- Department of Epidemiological Sciences, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Tobias Floyd
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Beatriz Vidana
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Judith Charnley
- Animal and Plant Health England Field Delivery, Skipton, United Kingdom
| | - Nadya Coates
- TSE/BVDV Testing Laboratory, Eurofins Forensic Services, Risley, United Kingdom
| | - Marion Simmons
- Pathology Department, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| |
Collapse
|
17
|
Simmons MM, Thorne L, Ortiz-Pelaez A, Spiropoulos J, Georgiadou S, Papasavva-Stylianou P, Andreoletti O, Hawkins SA, Meloni D, Cassar C. Transmissible spongiform encephalopathy in goats: is PrP rapid test sensitivity affected by genotype? J Vet Diagn Invest 2020; 32:87-93. [PMID: 31894737 PMCID: PMC7003235 DOI: 10.1177/1040638719896327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathy (TSE) surveillance in goats relies on tests initially approved for cattle, subsequently assessed for sheep, and approval extrapolated for use in "small ruminants." The current EU-approved immunodetection tests employ antibodies against various epitopes of the prion protein PrPSc, which is encoded by the host PRNP gene. The caprine PRNP gene is polymorphic, mostly at codons different from the ovine PRNP. The EU goat population is much more heterogeneous than the sheep population, with more PRNP-related polymorphisms, and with marked breed-related differences. The ability of the current tests to detect disease-specific PrPSc generated against these different genetic backgrounds is currently assumed, rather than proven. We examined whether common polymorphisms within the goat PRNP gene might have any adverse effect on the relative performance of EU-approved rapid tests. The sample panel comprised goats from the UK, Cyprus, France, and Italy, with either experimental or naturally acquired scrapie at both the preclinical and/or unknown and clinical stages of disease. Test sensitivity was significantly lower and more variable when compared using samples from animals that were preclinical or of unknown status. However, all of the rapid tests included in our study were able to correctly identify all samples from animals in the clinical stages of disease, apart from samples from animals polymorphic for serine or aspartic acid at codon 146, in which the performance of the Bio-Rad tests was profoundly affected. Our data show that some polymorphisms may adversely affect one test and not another, as well as underline the dangers of extrapolating from other species.
Collapse
Affiliation(s)
- Marion M. Simmons
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Leigh Thorne
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Angel Ortiz-Pelaez
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - John Spiropoulos
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Soteria Georgiadou
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Penelope Papasavva-Stylianou
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Olivier Andreoletti
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Stephen A.C. Hawkins
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Daniela Meloni
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Claire Cassar
- Claire Cassar, Department of Pathology, APHA-Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| |
Collapse
|
18
|
Abstract
Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.
Collapse
|
19
|
Koutsoumanis K, Allende A, Alvarez-Ordoňez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Andreoletti O, Benestad SL, Comoy E, Nonno R, da Silva Felicio T, Ortiz-Pelaez A, Simmons MM. Update on chronic wasting disease (CWD) III. EFSA J 2019; 17:e05863. [PMID: 32626163 PMCID: PMC7008890 DOI: 10.2903/j.efsa.2019.5863] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Commission asked EFSA for a Scientific Opinion: to revise the state of knowledge about the differences between the chronic wasting disease (CWD) strains found in North America (NA) and Europe and within Europe; to review new scientific evidence on the zoonotic potential of CWD and to provide recommendations to address the potential risks and to identify risk factors for the spread of CWD in the European Union. Full characterisation of European isolates is being pursued, whereas most NA CWD isolates have not been characterised in this way. The differing surveillance programmes in these continents result in biases in the types of cases that can be detected. Preliminary data support the contention that the CWD strains identified in Europe and NA are different and suggest the presence of strain diversity in European cervids. Current data do not allow any conclusion on the implications of strain diversity on transmissibility, pathogenesis or prevalence. Available data do not allow any conclusion on the zoonotic potential of NA or European CWD isolates. The risk of CWD to humans through consumption of meat cannot be directly assessed. At individual level, consumers of meat, meat products and offal derived from CWD-infected cervids will be exposed to the CWD agent(s). Measures to reduce human dietary exposure could be applied, but exclusion from the food chain of whole carcasses of infected animals would be required to eliminate exposure. Based on NA experiences, all the risk factors identified for the spread of CWD may be associated with animals accumulating infectivity in both the peripheral tissues and the central nervous system. A subset of risk factors is relevant for infected animals without involvement of peripheral tissues. All the risk factors should be taken into account due to the potential co-localisation of animals presenting with different disease phenotypes.
Collapse
|
20
|
Houston F, Andréoletti O. Animal prion diseases: the risks to human health. Brain Pathol 2019; 29:248-262. [PMID: 30588682 DOI: 10.1111/bpa.12696] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably include scrapie in small ruminants, chronic wasting disease (CWD) in cervids and classical bovine spongiform encephalopathy (C-BSE). As the transmission barrier phenomenon naturally limits the propagation of prions from one species to another, and the lack of epidemiological evidence for an association with human prion diseases, the zoonotic potential of these diseases was for a long time considered negligible. However, in 1996, C-BSE was recognized as the cause of a new human prion disease, variant Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in Europe. Large-scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the ruminant population had previously been underestimated. They also led to the recognition of new forms of TSEs (named atypical) in cattle and small ruminants and to the recent identification of CWD in Europe. At this stage, the characterization of the strain diversity and zoonotic abilities associated with animal prion diseases remains largely incomplete. However, transmission experiments in nonhuman primates and transgenic mice expressing human PrP clearly indicate that classical scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect humans. The remaining uncertainties about the origins and relationships between animal prion diseases emphasize the importance of the measures implemented to limit human exposure to these potentially zoonotic agents, and of continued surveillance for both animal and human prion diseases.
Collapse
Affiliation(s)
- Fiona Houston
- Infection and Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
21
|
Alarcon P, Marco-Jimenez F, Arnold M, Wolf A, Rajanayagam B, Stevens KB, Adkin A. Spatio-temporal and risk factor analysis of alleles related to Scrapie resistance in sheep in Great Britain before, during and after a national breeding program. Prev Vet Med 2018; 159:12-21. [PMID: 30314774 DOI: 10.1016/j.prevetmed.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 11/17/2022]
Abstract
Certain genotypes of sheep have been identified to increase their susceptibility (the VRQ allele) or resistance (the ARR allele) to classical scrapie. This study's aim was to assess the spatio-temporal pattern of the ARR and VRQ alleles in Great Britain (GB) and to explore the risk factors associated to their presence. Data was collected from the GB scrapie active surveillance program, the sheep and goat inventory survey (GB census survey) and the agricultural survey for the period 2002-2015. Spatio-temporal trends of genotypes were assessed through the use of choropleth maps, spatial cluster and linear regression analyses. Multivariable mixed effect logistic regression analyses were performed to investigate the association between the resistant or susceptible genotypes, and breeds, farm purpose, animal purpose, surveillance stream, country location and herd size. The results show a significant upward trend in the frequency of most resistant ARR alleles (1.15% per year, 95%CI: 0.76-1.53) and significant downward trend of most susceptible VRQ alleles (-0.40% per year; 95%CI: -0.69 to -0.10]. The trend continues after the termination of the national scrapie plan in 2009. Breeds such as Herdwick (OR = 0,26; 95%CI: 0.14-0.46), Shetland (OR = 0.22; 95%CI: 0.13-0.39), Swaledale (OR = 0.58; 95%CI: 0.47-0.73), Scottish blackface (OR = 0.54; 95%CI: 0.41-0.71) and Welsh Montain (OR: 0.59; 95%CI: 0.44-0.79) were identified with lower odds ratios of having the resistant ARR allele, while Beulah speckled face (OR = 1.58; 95%CI: 1.04-2.41), Jacob (OR = 2.91; 95%CI: 1.33-6.40), Lleyn (OR = 2.94; 95%CI: 1.28-6.74) and Suffolk (OR = 2.19; 95%CI: 1.69-2.84) had higher odds ratios of having the ARR allele. Other risk factors associated to presence of ARR allele were finishing farms (OR = 1.15; 95%CI: 1.06-1.24) and farms in Scotland (OR = 0,78; 95%CI: 0.73-0.83) and in Lowland grazing areas (OR = 1.53; 95%CI: 1.39-1.67). Factors associated with presence the VRQ genotype were farms in Scotland (OR = 0,85; 95%CI: 0.77-0.93) and breeds such as Herdwick (OR = 2.2; 95%CI: 1.08-4.97), Shetland (OR = 4.12; 95%CI: 2.20-7.73) and Sweledale (OR = 1.51; 95%CI: 1.10-2.09). For the most resistant genotype, two significant spatial clusters were identified: a high-risk cluster in the south-west of GB (RR = 1.51, p < 0.001) and a low-risk cluster in northern GB (RR = 0.65, p < 0.001). For the most susceptible genotypes, one significant high-risk cluster was identified in Wales (RR = 2.89 and p = 0.013). Surveillance for classical scrapie could be improved with a risk-based approach by focussing on those areas and farm types identified to have higher frequency of VRQ alleles and less frequency of ARR alleles. Scrapie control strategies could focus on developing breeding programs on farms with Shetland, Herdwick and Swaledale breeds.
Collapse
Affiliation(s)
- Pablo Alarcon
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Medicine, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| | - Francisco Marco-Jimenez
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Institute for Animal Science and Technology, Universitat Politècnica de València, C/Camino de vera s/n, Valencia, 46071, Spain
| | - Mark Arnold
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Alyssa Wolf
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Medicine, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Brenda Rajanayagam
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Kim B Stevens
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Medicine, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Amie Adkin
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
22
|
Adkin A, Horigan V, Rajanayagam B, Arnold M, Konold T, Spiropoulos J, Kelly L. Estimating the impact on food and edible materials of changing scrapie control measures: The scrapie control model. Prev Vet Med 2018; 158:51-64. [DOI: 10.1016/j.prevetmed.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022]
|
23
|
Djaout A, CHIAPPINI BARBARA, GAOUAR SEMIRBECHIRSUHEIL, AFRI-BOUZEBDA FARIDA, CONTE MICHELA, CHEKKAL FAKHREDDINE, EL-BOUYAHIAOUI RACHID, BOUKHARI RACHID, AGRIMI UMBERTO, VACCARI GABRIELE. Biodiversity and selection for scrapie resistance in sheep: genetic polymorphism in eight breeds of Algeria. J Genet 2018. [DOI: 10.1007/s12041-018-0932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Sacchi P, Rasero R, Ru G, Aiassa E, Colussi S, Ingravalle F, Peletto S, Perrotta MG, Sartore S, Soglia D, Acutis P. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats. Vet Res 2018; 49:26. [PMID: 29510738 PMCID: PMC5840724 DOI: 10.1186/s13567-018-0518-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/03/2018] [Indexed: 11/10/2022] Open
Abstract
The European Union has implemented breeding programmes to increase scrapie resistance in sheep. A similar approach can be applied also in goats since the K222 allele provides a level of resistance equivalent to that of ARR in sheep. The European Food Safety Authority stated that breeding for resistance could be offered as an option for Member States to control classical scrapie in goats. We assessed the impact of different breeding strategies on PRNP genotype frequencies using a mathematical model that describes in detail the evolution of K222 in two goat breeds, Chamois Coloured and Saanen. Different patterns of age structure and replacement rate were modelled as factors affecting response to selection. Breeding for scrapie resistance can be implemented in goats, even though the initial K222 frequencies in these breeds are not particularly favourable and the rate at which the resistant animals increase, both breeding and slaughtered for meat production, is slow. If the goal is not to achieve the fixation of resistance allele, it is advisable to carry out selection only until a desired frequency of K222-carriers has been attained. Nucleus selection vs. selection on the overall populations is less expensive but takes longer to reach the desired output. The programme performed on the two goat breeds serves as a model of the response the selection could have in other breeds that show different initial frequencies and population structure. In this respect, the model has a general applicability.
Collapse
Affiliation(s)
- Paola Sacchi
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Roberto Rasero
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Giuseppe Ru
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Eleonora Aiassa
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Silvia Colussi
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Francesco Ingravalle
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Simone Peletto
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Maria Gabriella Perrotta
- Direzione generale della sanità animale e dei farmaci veterinari, Ministero della Salute, Rome, Italy
| | - Stefano Sartore
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Dominga Soglia
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Pierluigi Acutis
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| |
Collapse
|
25
|
Affiliation(s)
- Giuseppe Ru
- BEAR - Biostatistica Epidemiologia e Analisi del Rischio, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 220, 10154 Torino, Italy; e-mail:
| |
Collapse
|
26
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
27
|
Abstract
Scrapie was the first prion disease to be recognised and the study of this disease in sheep and goats has provided a wealth of information not only for scrapie but also for the other prion diseases. All prion diseases are under strong genetic control of the prion gene PRNP, independent of whether they are typical or atypical scrapie and which of the different prion strains is causing infection. Decades of studies using experimental disease challenges and field surveys have established disease association models, in which species-specific amino acid variations in the prion or PrP protein, encoded by the PRNP gene, can predict disease susceptibility or resistance. PRNP genetics represents an important and successful basis for implementing scrapie eradication strategies in sheep and goats. In general terms these studies have revealed that there appear to be many more amino acid changes in PrP leading to increased resistance than to higher susceptibility. Most changes are in the globular part of PrP protein and three regions appear to have major influence. This knowledge can be transferred into prion diseases of other species to facilitate genetic control strategies. However, an obstacle remains with the lack of fully understanding the underlying molecular mechanism, impeding our ability to deal with the difference in the genetic control between typical and atypical forms of scrapie or to predict association in newly infected species. This chapter will discuss the advances in both typical and atypical scrapie from a genetic perspective.
Collapse
Affiliation(s)
- Wilfred Goldmann
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom.
| |
Collapse
|
28
|
Zabavnik J, Cotman M, Juntes P, Ambrozic I. A decade of using small-to-medium throughput allele discrimination assay to determine prion protein gene ( Prnp) genotypes in sheep in Slovenia. J Vet Diagn Invest 2018; 30:144-149. [PMID: 28906181 PMCID: PMC6504162 DOI: 10.1177/1040638717723946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sheep with valine (V) at codon 136 and glutamine (Q) at codon 171 of the prion protein gene ( Prnp) are highly susceptible to classical scrapie, whereas phenylalanine (F) at codon 141 and histidine (H) at codon 154 play a major role in the susceptibility to atypical scrapie. A TaqMan real-time PCR assay was developed to determine Prnp alleles at codons 136, 141, 154, and 171 and used in classical scrapie eradication and breeding programs adopted in Slovenia. The frequency of the most resistant genotypes ARR/ARR and ARR/ARQ increased significantly in tested animals ( n = 35,138) from 6.7 and 27.1% of the tested sheep in 2006 to 12.1 and 32.4%, respectively, in 2015. Frequencies of more susceptible genotypes ARQ/ARQ and ARQ/VRQ decreased significantly from 36.4 and 3.5% in 2006 to 31.1 and 1.8%, respectively, in 2015. The most susceptible genotype VRQ/VRQ was detected in <0.5% of tested sheep. Frequencies of alleles AFRQ and AHQ affecting the susceptibility to atypical scrapie did not change significantly. The developed assay was suitable for genotyping on a small-to-medium throughput scale and was successfully used in classical scrapie eradication, as well as for the selection of classical scrapie-resistant sheep within breeding programs in Slovenia.
Collapse
Affiliation(s)
- Jelka Zabavnik
- Jelka Zabavnik, Institute of
Preclinical Sciences/National Veterinary Institute, Veterinary Faculty,
University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
29
|
Latronico F, Correia S, Felicio TDS, Hempen M, Messens W, Ortiz-Pelaez A, Stella P, Liebana E, Hugas M. Challenges and prospects of the European Food Safety Authority biological hazards risk assessments for food safety. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2016. EFSA J 2017; 15:e05069. [PMID: 32625357 PMCID: PMC7009825 DOI: 10.2903/j.efsa.2017.5069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This report presents the results of surveillance activities on transmissible spongiform encephalopathies (TSEs) in bovine animals, sheep, goats, cervids and other species, as well as genotyping data in sheep, carried out in 2016 in the European Union according to Regulation (EC) 999/2001, and in Iceland, Norway and Switzerland. In 2016, 1,352,585 bovine animals were tested in the European Union (5% less than in 2015). For the first time, the United Kingdom did not report any case of bovine spongiform encephalopathy (BSE), whereas France reported one classical and three atypical cases (H), and Spain one atypical case (H). The classical BSE case was born after the enforcement of the total EU-wide feed ban in 2001 (BARB case). In 2016, 286,351 sheep and 110,832 goats were tested (5% and 11% less than in 2015, respectively). Sheep scrapie was reported by 20 Member States (MSs) (685 cases) and goat scrapie by 9 MSs (634 cases). A total of 25 ovine scrapie cases were reported by Iceland and Norway. At the EU level, the occurrence of scrapie in small ruminants remains stable, with classical scrapie (1,175 cases) being reported more frequently than atypical scrapie (135 cases). A total of 97.2% of the classical scrapie cases in sheep occurred in animals with genotypes belonging to the susceptible group, and a random sampling showed that 26.6% of the genotyped sheep held genotypes of the susceptible group (excluding Cyprus). In 2016, five cases of chronic wasting disease were reported in cervids by Norway: three in wild reindeer and two in moose. It was the first time that this disease is reported in Europe. A total of 2,712 cervids were tested for TSEs in seven different member states, 90% of them in Romania, with negative results. A total of 490 animals from other non-ruminant species were tested in four different member states, with negative results.
Collapse
|
31
|
Effect of Polymorphisms at Codon 146 of the Goat PRNP Gene on Susceptibility to Challenge with Classical Scrapie by Different Routes. J Virol 2017; 91:JVI.01142-17. [PMID: 28878088 DOI: 10.1128/jvi.01142-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
This report presents the results of experimental challenges of goats with scrapie by both the intracerebral (i.c.) and oral routes, exploring the effects of polymorphisms at codon 146 of the goat PRNP gene on resistance to disease. The results of these studies illustrate that while goats of all genotypes can be infected by i.c. challenge, the survival distribution of the animals homozygous for asparagine at codon 146 was significantly shorter than those of animals of all other genotypes (chi-square value, 10.8; P = 0.001). In contrast, only those animals homozygous for asparagine at codon 146 (NN animals) succumbed to oral challenge. The results also indicate that any cases of infection in non-NN animals can be detected by the current confirmatory test (immunohistochemistry), although successful detection with the rapid enzyme-linked immunosorbent assay (ELISA) was more variable and dependent on the polymorphism. Together with data from previous studies of goats exposed to infection in the field, these data support the previously reported observations that polymorphisms at this codon have a profound effect on susceptibility to disease. It is concluded that only animals homozygous for asparagine at codon 146 succumb to scrapie under natural conditions.IMPORTANCE In goats, like in sheep, there are PRNP polymorphisms that are associated with susceptibility or resistance to scrapie. However, in contrast to the polymorphisms in sheep, they are more numerous in goats and may be restricted to certain breeds or geographical regions. Therefore, eradication programs must be specifically designed depending on the identification of suitable polymorphisms. An initial analysis of surveillance data suggested that such a polymorphism in Cypriot goats may lie in codon 146. In this study, we demonstrate experimentally that NN animals are highly susceptible after i.c. inoculation. The presence of a D or S residue prolonged incubation periods significantly, and prions were detected in peripheral tissues only in NN animals. In oral challenges, prions were detected only in NN animals, and the presence of a D or S residue at this position conferred resistance to the disease. This study provides an experimental transmission model for assessing the genetic susceptibility of goats to scrapie.
Collapse
|
32
|
Fast C, Goldmann W, Berthon P, Tauscher K, Andréoletti O, Lantier I, Rossignol C, Bossers A, Jacobs JG, Hunter N, Groschup MH, Lantier F, Langeveld JPM. Protecting effect of PrP codons M142 and K222 in goats orally challenged with bovine spongiform encephalopathy prions. Vet Res 2017; 48:52. [PMID: 28927447 PMCID: PMC5606029 DOI: 10.1186/s13567-017-0455-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
Breeding towards genetic resistance to prion disease is effective in eliminating scrapie. In sheep, classical forms of scrapie have been eradicated almost completely in several countries by breeding programs using a prion protein (PrP) gene (PRNP) amino acid polymorphism. For goats, field and experimental studies have provided evidence for several amino acid polymorphisms that are associated with resistance to scrapie, but only limited data are available concerning the susceptibility of caprine PRNP genotypes to BSE. In this study, goat kids representing five PRNP genotypes based on three polymorphisms (M142, Q211 and K222 and the wild type I142, R211 and Q222) were orally challenged with bovine or goat BSE. Wild type goats were killed with clinical signs between 24-28 months post inoculation (mpi) to both challenges, and goats with genotype R/Q211 succumbed between 29-36 mpi. I/M142 goats developed clinical signs at 44-45 mpi and M/M142 goats remained healthy until euthanasia at 48 mpi. None of the Q/K222 goats showed definite clinical signs. Taken together the highest attack ratios were seen in wild type and R/Q211 goats, and the lowest in I/M142, M/M142 and Q/K222. In all genotype groups, one or more goats remained healthy within the incubation period in both challenges and without detectable PrP deposition in the tissues. Our data show that both the K222 and M142 polymorphisms lengthen the incubation period significantly compared to wild type animals, but only K222 was associated with a significant increase in resistance to BSE infection after oral exposure to both BSE sources.
Collapse
Affiliation(s)
- C. Fast
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - W. Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - P. Berthon
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380 Nouzilly, France
| | - K. Tauscher
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - O. Andréoletti
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse Cedex, France
| | - I. Lantier
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380 Nouzilly, France
| | - C. Rossignol
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380 Nouzilly, France
| | - A. Bossers
- Wageningen BioVeterinary Research, Wageningen University & Research, Houtribweg 39, 8221RA Lelystad, The Netherlands
| | - J. G. Jacobs
- Wageningen BioVeterinary Research, Wageningen University & Research, Houtribweg 39, 8221RA Lelystad, The Netherlands
| | - N. Hunter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - M. H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - F. Lantier
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380 Nouzilly, France
| | - J. P. M. Langeveld
- Wageningen BioVeterinary Research, Wageningen University & Research, Houtribweg 39, 8221RA Lelystad, The Netherlands
| |
Collapse
|
33
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Speybroeck N, Simmons M, Kuile BT, Threlfall J, Wahlström H, Acutis PL, Andreoletti O, Goldmann W, Langeveld J, Windig JJ, Ortiz Pelaez A, Snary E. Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats. EFSA J 2017; 15:e04962. [PMID: 32625625 PMCID: PMC7010077 DOI: 10.2903/j.efsa.2017.4962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Breeding programmes to promote resistance to classical scrapie, similar to those for sheep in existing transmissible spongiform encephalopathies (TSE) regulations, have not been established in goats. The European Commission requested a scientific opinion from EFSA on the current knowledge of genetic resistance to TSE in goats. An evaluation tool, which considers both the weight of evidence and strength of resistance to classical scrapie of alleles in the goat PRNP gene, was developed and applied to nine selected alleles of interest. Using the tool, the quality and certainty of the field and experimental data are considered robust enough to conclude that the K222, D146 and S146 alleles both confer genetic resistance against classical scrapie strains known to occur naturally in the EU goat population, with which they have been challenged both experimentally and under field conditions. The weight of evidence for K222 is greater than that currently available for the D146 and S146 alleles and for the ARR allele in sheep in 2001. Breeding for resistance can be an effective tool for controlling classical scrapie in goats and it could be an option available to member states, both at herd and population levels. There is insufficient evidence to assess the impact of K222, D146 and S146 alleles on susceptibility to atypical scrapie and bovine spongiform encephalopathy (BSE), or on health and production traits. These alleles are heterogeneously distributed across the EU Member States and goat breeds, but often at low frequencies (< 10%). Given these low frequencies, high selection pressure may have an adverse effect on genetic diversity so any breeding for resistance programmes should be developed at Member States, rather than EU level and their impact monitored, with particular attention to the potential for any negative impact in rare or small population breeds.
Collapse
|
34
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Adkin A, De Koeijer A, Ducrot C, Griffin J, Ortiz Pelaez A, Latronico F, Ru G. Bovine spongiform encephalopathy (BSE) cases born after the total feed ban. EFSA J 2017; 15:e04885. [PMID: 32625550 PMCID: PMC7010122 DOI: 10.2903/j.efsa.2017.4885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sixty bovine spongiform encephalopathy (BSE) cases of Classical or unknown type (BARB‐60 cases) were born after the date of entry into force of the EU total feed ban on 1 January 2001. The European Commission has requested EFSA to provide a scientific opinion on the most likely origin(s) of these BARB‐60 cases; whether feeding with material contaminated with the BSE agent can be excluded as the origin of any of these cases and, if so, whether there is enough scientific evidence to conclude that such cases had a spontaneous origin. The source of infection cannot be ascertained at the individual level for any BSE case, including these BARB‐60 cases, so uncertainty remains high about the origin of disease in each of these animals, but when compared with other biologically plausible sources of infection (maternal, environmental, genetic, iatrogenic), feed‐borne exposure is the most likely. This exposure was apparently excluded for only one of these BARB‐60 cases. However, there is considerable uncertainty associated with the data collected through the field investigation of these cases, due to a time span of several years between the potential exposure of the animal and the confirmation of disease, recall difficulty, and the general paucity of documented objective evidence available in the farms at the time of the investigation. Thus, feeding with material contaminated with the BSE agent cannot be excluded as the origin of any of the BARB‐60 cases, nor is it possible to definitively attribute feed as the cause of any of the BARB‐60 cases. A case of disease is classified as spontaneous by a process of elimination, excluding all other definable possibilities; with regard to the BARB‐60 cases, it is not possible to conclude that any of them had a spontaneous origin.
Collapse
|
35
|
Sanz Rubio D, López-Pérez Ó, de Andrés Pablo Á, Bolea R, Osta R, Badiola JJ, Zaragoza P, Martín-Burriel I, Toivonen JM. Increased circulating microRNAs miR-342-3p and miR-21-5p in natural sheep prion disease. J Gen Virol 2017; 98:305-310. [PMID: 27959774 DOI: 10.1099/jgv.0.000685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy (TSE), or prion disease, of sheep and goats. As no simple diagnostic tests are yet available to detect TSEs in vivo, easily accessible biomarkers could facilitate the eradication of scrapie agents from the food chain. To this end, we analysed by quantitative reverse transcription PCR a selected set of candidate microRNAs (miRNAs) from circulating blood plasma of naturally infected, classical scrapie sheep that demonstrated clear scrapie symptoms and pathology. Significant scrapie-associated increase was repeatedly found for miR-342-3p and miR-21-5p. This is the first demonstration, to our knowledge, of circulating miRNA alterations in any animal suffering from TSE. Genome-wide expression studies are warranted to investigate the true depth of miRNA alterations in naturally occurring TSEs, especially in presymptomatic animals, as the presented study demonstrates the potential feasibility of miRNAs as circulating TSE biomarkers.
Collapse
Affiliation(s)
- David Sanz Rubio
- LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Óscar López-Pérez
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain.,LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Álvaro de Andrés Pablo
- LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Juan J Badiola
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain.,LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| | - Janne M Toivonen
- LAGENBIO, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA and IIS Aragón, Zaragoza, Spain
| |
Collapse
|
36
|
Boelaert F, Hugas M, Ortiz Pelaez A, Rizzi V, Stella P, Van Der Stede Y. The European Union summary report on data of the surveillance of ruminants for the presence of transmissible spongiform encephalopathies (TSEs) in 2015. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Goats with aspartic acid or serine at codon 146 of the PRNP gene remain scrapie-negative after lifetime exposure in affected herds in Cyprus. Epidemiol Infect 2016; 145:326-328. [PMID: 27751198 DOI: 10.1017/s0950268816002272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The results of the study reported here are part of an ongoing integrated research programme aimed at producing additional, robust, evidence on the genetic resistance to classical scrapie in goats, with particular reference to codon 146. The study targeted animals aged ⩾6 years, which were born and raised in infected herds and were being culled for management reasons. A total of 556 animals were tested, and all positive animals (n = 117) were of the susceptible NN genotype. A total of 246 goats heterozygous or homozygous for putatively resistant alleles (S146 and D146) were screened with no positive results. The outcome of this study supports the hypothesis that the D146 and S146 alleles could be used as the basis for a nationwide strategy for breeding for resistance in the Cypriot goat population.
Collapse
|
38
|
Requena JR, Kristensson K, Korth C, Zurzolo C, Simmons M, Aguilar-Calvo P, Aguzzi A, Andreoletti O, Benestad SL, Böhm R, Brown K, Calgua B, del Río JA, Espinosa JC, Girones R, Godsave S, Hoelzle LE, Knittler MR, Kuhn F, Legname G, Laeven P, Mabbott N, Mitrova E, Müller-Schiffmann A, Nuvolone M, Peters PJ, Raeber A, Roth K, Schmitz M, Schroeder B, Sonati T, Stitz L, Taraboulos A, Torres JM, Yan ZX, Zerr I. The Priority position paper: Protecting Europe's food chain from prions. Prion 2016; 10:165-81. [PMID: 27220820 PMCID: PMC4981192 DOI: 10.1080/19336896.2016.1175801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sue Godsave
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Paul Laeven
- University of Maastricht, Maastricht, The Netherlands
| | | | - Eva Mitrova
- Medical University of Slovakia, Bratislava, Slovakia
| | | | | | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | - Lothar Stitz
- Friedrich Löffler Institut, Insel Reims, Germany
| | | | | | | | - Inga Zerr
- Universitätmedizin Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
39
|
Srithayakumar V, Mitchell GB, White BN. Identification of amino acid variation in the prion protein associated with classical scrapie in Canadian dairy goats. BMC Vet Res 2016; 12:59. [PMID: 27005313 PMCID: PMC4804529 DOI: 10.1186/s12917-016-0684-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A clear association of amino acid variation in the prion protein gene (PRNP) with susceptibility and resistance to classical scrapie exists in sheep, but not in goats. In this study we examined DNA sequence variation in the PRNP of 149 animals from two scrapie-infected herds of Saanen dairy goats, and identified 6 non-synonymous variants in the coding region. RESULTS In the larger herd, all of the 54 scrapie-affected goats tested had at least one allele with the arginine (R) codon at position 211, with 52 being homozygous for that variant. No animal homozygous for the glutamine (Q) codon at 211 were affected and only two heterozygotes (R/Q) were affected. A weak association was found at position 146 and no significant associations were found with amino acid variation at the remaining four variant positions (142, 143, 222 and 240), however, the allelic variation was low. Similar patterns were observed in the second scrapie-affected herd. CONCLUSION We also evaluated previous studies on goat herds affected with scrapie and this relationship of R susceptibility and Q resistance at 211 was present independent of the genotypes at the other positions including 222. The fact that glutamine at 211 provides a significant protective property to scrapie irrespective of the other positions could be important for breeding strategies aimed at improving herd resistance to scrapie, while maintaining important productivity traits.
Collapse
Affiliation(s)
- Vythegi Srithayakumar
- Natural Resources DNA Profiling and Forensics Centre, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, ON, Canada. .,Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada.
| | - Gordon B Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON, Canada
| | - Bradley N White
- Natural Resources DNA Profiling and Forensics Centre, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, ON, Canada
| |
Collapse
|
40
|
Goldmann W, Marier E, Stewart P, Konold T, Street S, Langeveld J, Windl O, Ortiz-Pelaez A. Prion protein genotype survey confirms low frequency of scrapie-resistant K222 allele in British goat herds. Vet Rec 2016; 178:168. [PMID: 26755614 PMCID: PMC4789823 DOI: 10.1136/vr.103521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 11/03/2022]
Abstract
Scrapie in goats is a transmissible, fatal prion disease, which is endemic in the British goat population. The recent success in defining caprine PRNP gene variants that provide resistance to experimental and natural classical scrapie has prompted the authors to conduct a survey of PRNP genotypes in 10 goat breeds and 52 herds to find goats with the resistant K222 allele. They report here the frequencies in 1236 tested animals of the resistance-associated K222 and several other alleles by breed and herd. Eight animals were found to be heterozygous QK222 goats (0.64 per cent genotype frequency, 95 per cent CI 0.28 to 1.27 per cent) but no homozygous KK222 goats were detected. The K222 allele was found in Saanen, Toggenburg and Anglo-Nubian goats. The fact that only a few goats with the K222 allele have been identified does not preclude the possibility to design and implement successful breeding programmes at national level.
Collapse
Affiliation(s)
- W Goldmann
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - E Marier
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - P Stewart
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - T Konold
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - S Street
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - J Langeveld
- Central Veterinary Institute part of Wageningen UR (CVI) Department of Infection Biology, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - O Windl
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - A Ortiz-Pelaez
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
41
|
|
42
|
Affiliation(s)
- Cristina Acín
- Animal Pathology; Universidad de Zaragoza; C/ Miguel Servet 177 Zaragoza 50013 Spain
| |
Collapse
|