1
|
Whitaker SH, Mannelli A, Kitron U, Bellini S. An analysis of the social, cultural, and ecological factors that affect the implementation of biosecurity measures on smallholder commercial swine farms in Italy in the context of an emerging African Swine Fever outbreak. Prev Vet Med 2024; 229:106238. [PMID: 38870565 DOI: 10.1016/j.prevetmed.2024.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
African Swine Fever (ASF) is a contagious viral disease that infects wild and domesticated swine. In early 2022, the virus was found in wild boar in the Apennine mountains of mainland Italy.2 Since then, it has spread from wild boar to domesticated swine. To control the spread of ASF, an effective surveillance system and the implementation of strict biosecurity measures on farms are required yet are unevenly implemented across husbandry systems. Smallholder farms in particular are known to have low levels of biosecurity. In the Apennine mountains of Italy, small commercial farms have been found to have low levels of biosecurity despite being located in areas with high densities of wild boar, and, hence, being high-risk sites for potential ASF incursion and subsequent diffusion. To address the question as to why the level of biosecurity is low, interviews and participant observation were conducted with smallholder commercial farmers. The interviews identified the social, cultural, and ecological factors that affect the implementation of biosecurity measures in small commercial swine farms in the Apennines. Farmers expressed knowledge of priority biosecurity measures and an overall willingness to follow rules and regulations; however, the application of the measures in practice was uneven across farms. Economic, political, and ecological factors as well as farmer beliefs about biosecurity emerged as important factors affecting the implementation of biosecurity measures. These include economic constraints, challenges posed by the mountain environment, a shifting regulatory environment, and ideas about animal welfare. Other important factors include cultural factors such as the use of traditional agricultural methods and norms about customer access to animals, time constraints and the perceived hassle of implementing the measures, farmer age, farmer relationships with government officials and veterinarians, and the role of pigs in reducing farm waste. The study confirmed that wild boar are present in high numbers and in close proximity to smallholder commercial farms in the Apennines.
Collapse
Affiliation(s)
- Sarah H Whitaker
- Department of Veterinary Sciences, University of Torino, Torino, Italy; Department of Environmental Sciences, Emory University, Atlanta, GA, USA; Department of Anthropology, Boise State University, Boise, ID, USA.
| | | | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Silvia Bellini
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), Brescia, Italy
| |
Collapse
|
2
|
Hiremath J, Hemadri D, Nayakvadi S, Kumar C, Gowda CSS, Sharma D, Ramamoorthy R, Mamatha SS, Patil S, Ranjini RA, Jayamohanan TV, Swapna SA, Gulati BR. Epidemiological investigation of ASF outbreaks in Kerala (India): detection, source tracing and economic implications. Vet Res Commun 2024; 48:827-837. [PMID: 37955753 DOI: 10.1007/s11259-023-10254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
This study investigates suspected African swine fever (ASF) outbreaks in two villages of Kannur district in Kerala, India, with the aim of identifying the causative agent and its genotype, the source of infection, and estimating the economic losses due to the outbreaks. Clinically, the disease was acute with high mortality, while gross pathology was characterized by widespread haemorrhages in various organs, especially the spleen, which was dark, enlarged and had friable cut surfaces with diffuse haemorrhages. Notably, histopathological examination revealed multifocal, diffuse haemorrhages in the splenic parenchyma and lymphoid depletion accompanied by lymphoid cell necrosis. The clinico-pathological observations were suggestive of ASF, which was confirmed by PCR. The source of outbreak was identified as swill and it was a likely point source infection as revealed by epidemic curve analysis. The phylogenetic analysis of p72 gene identified the ASFV in the current outbreak as genotype-II and IGR II variant consistent with ASFVs detected in India thus far. However, the sequence analysis of the Central Variable Region (CVR) of the B602L gene showed that the ASFVs circulating in Kerala (South India) formed a separate clade along with those found in Mizoram (North East India), while ASFVs circulating in Arunachal Pradesh and Assam states of India grouped in to different clade. This study represents the first investigation of ASF outbreak in South India, establishing the genetic relatedness of the ASFV circulating in this region with that in other parts of the country. The study also underscores the utility of the CVR of the B602L gene in genetically characterizing highly similar Genotype II ASFVs to understand the spread of ASF within the country.
Collapse
Affiliation(s)
- Jagadish Hiremath
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Shivasharanappa Nayakvadi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Chethan Kumar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | | | - Damini Sharma
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Rajendran Ramamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Suresh Shankanahalli Mamatha
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Sharanagouda Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | | | | | - Susan Abraham Swapna
- Department of Animal Husbandry, State Institute for Animal Diseases, Palode, Kerala, India
| | - Baldev Raj Gulati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Kruszyński M, Śróda K, Juszkiewicz M, Siuda D, Olszewska M, Woźniakowski G. Nine Years of African Swine Fever in Poland. Viruses 2023; 15:2325. [PMID: 38140566 PMCID: PMC10748056 DOI: 10.3390/v15122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: African swine fever (ASF) is a highly contagious and fatal haemorrhagic disease in domestic pigs and wild boars, causing significant economic loss to the swine industry in the European Union. The genotype II of African swine fever has spread in many European countries since the virus was detected in 2007 in Georgia. In Poland, the genotype II of the ASF virus was confirmed on 17 February 2014 in the eastern part of the country and appeared to have been transmitted to Poland from Belarus. Poland has been particularly affected by ASF epidemics in the last decade, resulting in a significant decline in the Polish pig population. Wild boars are the main reservoir of the African swine fever virus (ASFV), but human activities such as transportation and illegal animal trade are the primary reasons for the long-distance transmission of the disease. (2) Conclusions: During the nine years of ASF in Poland, multiple measures have been taken to prevent the spread of the virus among the wild boar population via the passive and active surveillance of these animals. With regard to pig farms, the only effective measure for preventing the spread of ASF is the efficient enforcement by state authorities of the biosecurity standards and the farmers' compliance with them.
Collapse
Affiliation(s)
- Mateusz Kruszyński
- County Veterinary Inspectorate, Stanisława Dubois 3, 46-100 Namyslow, Poland;
| | - Kacper Śróda
- Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland;
| | - Małgorzata Juszkiewicz
- Department of Swine Diseases, National veterinary Research Institute, Partyzanotw 57 Avenue, 24-100 Pulawy, Poland;
| | - Dominika Siuda
- Academia Copernicana Interdisciplinary Doctoral School, Bojarskiego 1, 87-100 Torun, Poland;
| | - Monika Olszewska
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland;
| | - Grzegorz Woźniakowski
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
4
|
Rogoll L, Schulz K, Conraths FJ, Sauter-Louis C. African Swine Fever in Wild Boar: German Hunters' Perception of Surveillance and Control-A Questionnaire Study. Animals (Basel) 2023; 13:2813. [PMID: 37760213 PMCID: PMC10525383 DOI: 10.3390/ani13182813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Since the first occurrence of African swine fever (ASF) in wild boar in Germany in 2020, the disease has primarily affected the wild boar population in the eastern part of the country close to the border with Poland. Local hunters play a crucial role in implementing surveillance and control. To evaluate their perceptions of existing control measures and analyze regional differences between hunters from ASF-affected and non-affected regions, a questionnaire study was conducted among the German hunting community. Hunters from non-affected areas held a more optimistic view regarding the effectiveness of control measures compared to hunters from affected areas. However, control measures that hinder hunting were generally perceived as ineffective. Measures that collided with hunters' understanding of fair hunting practices were regarded as controversial. Financial incentives and reducing bureaucracy were the most favored approaches to increase hunters' participation. Moreover, the possibility of eating or selling the meat of hunted wild boar and the provision of infrastructure for implementing ASF control were considered motivating. Thus, this study highlights the importance of compensating hunters and addressing their concerns to maintain their engagement in ASF control. To enhance compliance with controversial measures, thoughtful communication and raising awareness are essential.
Collapse
Affiliation(s)
- Lisa Rogoll
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.S.); (F.J.C.); (C.S.-L.)
| | | | | | | |
Collapse
|
5
|
Olesen AS, Stelder JJ, Tjørnehøj K, Johnston CM, Lohse L, Kjær LJ, Boklund AE, Bøtner A, Belsham GJ, Bødker R, Rasmussen TB. Detection of African Swine Fever Virus and Blood Meals of Porcine Origin in Hematophagous Insects Collected Adjacent to a High-Biosecurity Pig Farm in Lithuania; A Smoking Gun? Viruses 2023; 15:1255. [PMID: 37376554 DOI: 10.3390/v15061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
A seasonal trend of African swine fever (ASF) outbreaks in domestic pig farms has been observed in affected regions of Eastern Europe. Most outbreaks have been observed during the warmer summer months, coinciding with the seasonal activity pattern of blood-feeding insects. These insects may offer a route for introduction of the ASF virus (ASFV) into domestic pig herds. In this study, insects (hematophagous flies) collected outside the buildings of a domestic pig farm, without ASFV-infected pigs, were analyzed for the presence of the virus. Using qPCR, ASFV DNA was detected in six insect pools; in four of these pools, DNA from suid blood was also identified. This detection coincided with ASFV being reported in the wild boar population within a 10 km radius of the pig farm. These findings show that blood from ASFV-infected suids was present within hematophagous flies on the premises of a pig farm without infected animals and support the hypothesis that blood-feeding insects can potentially transport the virus from wild boars into domestic pig farms.
Collapse
Affiliation(s)
- Ann Sofie Olesen
- Section for Veterinary Virology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Jonno Jorn Stelder
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark
| | - Kirsten Tjørnehøj
- Section for Veterinary Virology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Camille Melissa Johnston
- Section for Veterinary Virology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Louise Lohse
- Section for Veterinary Virology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Lene Jung Kjær
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark
| | - Anette Ella Boklund
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Graham J Belsham
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - René Bødker
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark
| | - Thomas Bruun Rasmussen
- Section for Veterinary Virology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| |
Collapse
|
6
|
African Swine Fever Virus Load in Hematophagous Dipterans Collected in an Outbreak from Romania: Risk Factors and Implications. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/3548109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
African swine fever (ASF) is a contagious viral disease of swine that causes significant economic damage. The summer peaks and river courses have triggered the hypothesis that vectors may be involved in the transmission of the virus. In temperate climates, insect numbers increase in the late summer. Low temperatures and frosts decrease the number of active insects. Their presence is strongly associated with the nearby wetlands or swamps around the farms. The aim of our study was to evaluate the risk factors associated with the presence of ASFV DNA in hematophagous dipterans and to analyze the relevance of Ct values obtained following RT-PCR analysis of the positive samples in ASF outbreaks in Romania, as an indication for the viral load. The current study included 99 pools of stable flies (Stomoxys calcitrans) and 296 pools of biting midges (Culicoides spp.), collected in June-September 2020, from 30 outbreaks of ASF in domestic swine from backyard farms (BF), type A farms (TAF), and commercial farms (CF). All extracted DNA was tested for the presence of the ASFV genome using a real-time PCR protocol. Ct values of 39.53 and below were considered as positive (min: 18.19; median: 31.41; max: 39.53). The blood meal source was identified in the hematophagous insects by using a PCR protocol targeting the mitochondrial gene cytochrome c oxidase subunit 1. Data were analyzed using R software v. 4.0.5. In total, 3,158 insects (S. calcitrans n = 198 and Culicoides n = 2960) were collected in 23 farms of the 30 outbreak farms. Ten species of biting midges were identified. The total number of insect pools showed significant differences according to the month of sampling, with a higher number of pools collected in August and September. Overall, 137 pools out of the 395 examined were positive for the presence of ASFV DNA. There was a higher viral DNA load in farms where pigs were present at the moment of sampling compared to farms where pigs were already culled, in S. calcitrans compared to Culicoides spp. and in CF and TAF compared to BF.
Collapse
|
7
|
Gao Y, Nielsen LH, Boklund AE, de Jong MCM, Alban L. SWOT analysis of risk factors associated with introduction of African Swine Fever through vehicles returning after export of pigs. Front Vet Sci 2023; 9:1049940. [PMID: 36686159 PMCID: PMC9846816 DOI: 10.3389/fvets.2022.1049940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Denmark is a major pig exporter and applies a high level of biosecurity, with washing and disinfecting stations for returning livestock vehicles. The introduction of African Swine Fever (ASF) would have significant economic consequences related to loss of export of live pigs and products thereof. In this study, we focused on the role of empty livestock vehicles returning after exports of pigs for the introduction of ASF. Initially, the current components and measures related to export of livestock were described. Next, analyses of strengths, weaknesses, opportunities, and threats (SWOT) were conducted, covering the components and measures identified. Then, export of pigs was described either through assembly centers or directly from farms. Washing and disinfection, as required and undertaken at the designated stations, constitutes the most important among all risk-reducing measures identified. Recommendations are to: (1) ensure the quality of washing and disinfection through staff training; (2) find new, safe, and more efficient disinfectants; (3) ensure the required temperature, and therefore effect, of the disinfectant and water. It was impossible to assess, the influence of export through assembly centers compared to direct transport. However, through SWOT analyses we identified the strengths and weaknesses of the two pathways. Moreover, components/measures with risks of unknown sizes are also discussed, such as vehicles undertaking cabotage and the current vehicle quarantine periods.
Collapse
Affiliation(s)
- Yuqi Gao
- Quantitative Veterinary Epidemiology, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Yuqi Gao ✉
| | - Lisbeth Harm Nielsen
- Department for Food Safety and Veterinary Issues, Danish Agriculture and Food Council, Copenhagen, Denmark
| | - Anette Ella Boklund
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Lis Alban
- Department for Food Safety and Veterinary Issues, Danish Agriculture and Food Council, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Omelchenko H, Avramenko NO, Petrenko MO, Wojciechowski J, Pejsak Z, Woźniakowski G. Ten Years of African Swine Fever in Ukraine: An Endemic Form of the Disease in the Wild Boar Population as a Threat to Domestic Pig Production. Pathogens 2022; 11:pathogens11121459. [PMID: 36558794 PMCID: PMC9788585 DOI: 10.3390/pathogens11121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: African swine fever (ASF) has been present in Ukraine for more than ten years (2012-2022). The purpose of our study was to perform a retrospective analysis of the spread of ASF to assess the role of wild boar in the epizootic expansion in Ukraine. (2) Methods: Statistical materials were collected and the epizootic situation of ASF from 2012 to 2022 was examined. The potential sources of the African swine fever virus (ASFV) and transmission factors were analysed. The main factors exerting negative impacts on domestic pig production were also analysed. (3) Results: Consequently, from the results of the retrospective analysis of ASF outbreaks in Ukraine, the probability ratio of ASF outbreaks in the wild boar and domestic pig populations was determined. The data show a direct relationship between ASF outbreaks among wild boar and domestic pigs with the observed decay of wild boar outbreaks across the entire territory of Ukraine. At the same time, an increase in the number of wild boars has been observed in the Mykolaiv region, with a parallel spillover of outbreaks in domestic pigs. (4) Conclusions: The epidemiological situation observed for ASF in the wild boar population may suggest an endemic form of the disease. This may further complicate eradication programs and the protection of domestic pig farms from ASF outbreaks. An additional and major reason to control the ASF epizootic is the continuing military Russian offensive in Ukraine.
Collapse
Affiliation(s)
- Hanna Omelchenko
- Department of Normal and Pathological Anatomy and Physiology of Animals, Poltava State Agrarian University, 36-0036 Poltava, Ukraine
| | - Natalia O. Avramenko
- Department of Normal and Pathological Anatomy and Physiology of Animals, Poltava State Agrarian University, 36-0036 Poltava, Ukraine
| | - Maksym O. Petrenko
- Department of Normal and Pathological Anatomy and Physiology of Animals, Poltava State Agrarian University, 36-0036 Poltava, Ukraine
| | | | - Zygmunt Pejsak
- Department of Infectious and Parasitic Diseases, The University Centre of Veterinary Medicine JU-AU, 31-120 Krakow, Poland
| | - Grzegorz Woźniakowski
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
9
|
de Vos CJ, Petie R, van Klink EGM, Swanenburg M. Rapid risk assessment tool (RRAT) to prioritize emerging and re-emerging livestock diseases for risk management. Front Vet Sci 2022; 9:963758. [PMID: 36157188 PMCID: PMC9490411 DOI: 10.3389/fvets.2022.963758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing globalization and international trade contribute to rapid expansion of animal and human diseases. Hence, preparedness is warranted to prevent outbreaks of emerging and re-emerging diseases or detect outbreaks in an early stage. We developed a rapid risk assessment tool (RRAT) to inform risk managers on the incursion risk of multiple livestock diseases, about the main sources for incursion and the change of risk over time. RRAT was built as a relational database to link data on disease outbreaks worldwide, on introduction routes and on disease-specific parameters. The tool was parameterized to assess the incursion risk of 10 livestock diseases for the Netherlands by three introduction routes: legal trade in live animals, legal trade of animal products, and animal products illegally carried by air travelers. RRAT calculates a semi-quantitative risk score for the incursion risk of each disease, the results of which allow for prioritization. Results based on the years 2016-2018 indicated that the legal introduction routes had the highest incursion risk for bovine tuberculosis, whereas the illegal route posed the highest risk for classical swine fever. The overall incursion risk via the illegal route was lower than via the legal routes. The incursion risk of African swine fever increased over the period considered, whereas the risk of equine infectious anemia decreased. The variation in the incursion risk over time illustrates the need to update the risk estimates on a regular basis. RRAT has been designed such that the risk assessment can be automatically updated when new data becomes available. For diseases with high-risk scores, model results can be analyzed in more detail to see which countries and trade flows contribute most to the risk, the results of which can be used to design risk-based surveillance. RRAT thus provides a multitude of information to evaluate the incursion risk of livestock diseases at different levels of detail. To give risk managers access to all results of RRAT, an online visualization tool was built.
Collapse
|
10
|
Gervasi V, Marcon A, Guberti V. Estimating the risk of environmental contamination by forest users in African Swine Fever endemic areas. Acta Vet Scand 2022; 64:16. [PMID: 35897007 PMCID: PMC9327371 DOI: 10.1186/s13028-022-00636-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background African Swine Fever (ASF) is a highly lethal viral disease caused by the African Swine Fever Virus (ASFV), the only virus of the Asfaviridae family, which affects different species of wild and domestic suids, and for which no vaccination or effective medical treatment is currently available. The virus can survive for long periods in the environment, and humans can unintentionally act as vectors through infected fomites, a risk that is linked to the ASF introduction into pig farms. We ran a simulation study, in which we reconstructed the probability process leading to the different forms of human-mediated ASF contamination in ASF endemic areas. We compared the infection risks related to different types of human forest activities and produced estimates of the minimum expected number of human-induced contamination events occurring annually at the scale of some European countries. Results When analysed on a short temporal scale and in a relatively small spatial context, ASF environmental contamination appeared as a rather unlikely event for most of the simulated forest uses, with contamination probabilities often lower than 0.1%. When scaling up the contamination process to a whole year and to large geographic areas, though, the accumulation of the same forest activities, repeated several times per month within the same patch of forest, produced the expectation that thousands of contamination events would occur each year, with potentially relevant epidemiological consequences. Wild boar supplemental feeding and forest logging emerged as the riskiest activities in terms of contamination probabilities, but risk was highly influenced by the frequency and intensity of the different types of forest use. Conclusions The risk of human-mediated ASF environmental contamination should not be disregarded when planning management actions to reduce ASF circulation and prevent its breach into the pig farming system. Supplemental feeding should be strongly reduced or avoided in ASF affected areas. Wild boar hunting, which is often employed as an active management tool in ASF affected areas, should be seen as both a tool for controlling wild boar density and as a potential risk for further contamination. It is essential to implement and enforce strict biosecurity measures for all forest-based human activities in ASF endemic areas. Supplementary Information The online version contains supplementary material available at 10.1186/s13028-022-00636-z.
Collapse
Affiliation(s)
- Vincenzo Gervasi
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta, 9, 40064, Ozzano Emilia, BO, Italy.
| | - Andrea Marcon
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta, 9, 40064, Ozzano Emilia, BO, Italy
| | - Vittorio Guberti
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta, 9, 40064, Ozzano Emilia, BO, Italy
| |
Collapse
|
11
|
Experimental Evidence of the Long-Term Survival of Infective African Swine Fever Virus Strain Ba71V in Soil under Different Conditions. Pathogens 2022; 11:pathogens11060648. [PMID: 35745502 PMCID: PMC9228371 DOI: 10.3390/pathogens11060648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
The survival of African swine fever virus (ASFV) on different matrices and its infectivity in wild as well as domestic swine is still a matter of interest. ASFV is resistant to environmental effects; this fact is enhanced by the presence of organic material. Therefore, the aim of this work was to determine the ability of laboratory ASFV to survive in soil at different temperatures (4 and 22 °C) and with and without the presence of blood using culture procedures. The suitability of the procedure for determining the viability and titre of the ASFV field strain by the hemadsorption method was also verified, when a higher decrease in virus infectivity in the case of clay compared with peat was demonstrated. The stability of the virus was clearly temperature-dependent, the infectious virus was detected after 112 days, and the viral DNA was still detected in the matrix 210 days after inoculation in a relatively high and stable concentration (between 106 and 107 genome equivalents/mL). Based on this knowledge, soil and other environmental samples could provide rapid and reliable information on the disease outbreak and serve as indicators of the risk posed by the affected locality.
Collapse
|
12
|
Baños JV, Boklund A, Gogin A, Gortázar C, Guberti V, Helyes G, Kantere M, Korytarova D, Linden A, Masiulis M, Miteva A, Neghirla I, Oļševskis E, Ostojic S, Petr S, Staubach C, Thulke H, Viltrop A, Wozniakowski G, Broglia A, Abrahantes Cortiñas J, Dhollander S, Mur L, Papanikolaou A, Van der Stede Y, Zancanaro G, Ståhl K. Epidemiological analyses of African swine fever in the European Union: (September 2020 to August 2021). EFSA J 2022; 20:e07290. [PMID: 35515335 PMCID: PMC9066549 DOI: 10.2903/j.efsa.2022.7290] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
This report provides a descriptive analysis of the African swine fever (ASF) Genotype II epidemic in the affected Member States in the EU and two neighbouring countries for the period from 1 September 2020 to 31 August 2021. ASF continued to spread in wild boar in the EU, it entered Germany in September 2020, while Belgium became free from ASF in October 2020. No ASF outbreaks in domestic pigs nor cases in wild boar have been reported in Greece since February 2020. In the Baltic States, overall, there has been a declining trend in proportions of polymerase chain reaction (PCR)-positive samples from wild boar carcasses in the last few years. In the other countries, the proportions of PCR-positive wild boar carcasses remained high, indicating continuing spread of the disease. A systematic literature review revealed that the risk factors most frequently significantly associated with ASF in domestic pigs were pig density, low levels of biosecurity and socio-economic factors. For wild boar, most significant risk factors were related to habitat, socio-economic factors and wild boar management. The effectiveness of different control options in the so-named white zones, areas where wild boar densities have been drastically reduced to avoid further spread of ASF after a new introduction, was assessed with a stochastic model. Important findings were that establishing a white zone is much more challenging when the area of ASF incursion is adjacent to an area where limited control measures are in place. Very stringent wild boar population reduction measures in the white zone are key to success. The white zone needs to be far enough away from the affected core area so that the population can be reduced in time before the disease arrives and the timing of this will depend on the wild boar density and the required population reduction target in the white zone. Finally, establishing a proactive white zone along the demarcation line of an affected area requires higher culling efforts, but has a higher chance of success to stop the spread of the disease than establishing reactive white zones after the disease has already entered in the area.
Collapse
|
13
|
Sauter-Louis C, Conraths FJ, Probst C, Blohm U, Schulz K, Sehl J, Fischer M, Forth JH, Zani L, Depner K, Mettenleiter TC, Beer M, Blome S. African Swine Fever in Wild Boar in Europe-A Review. Viruses 2021; 13:1717. [PMID: 34578300 PMCID: PMC8472013 DOI: 10.3390/v13091717] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The introduction of genotype II African swine fever (ASF) virus, presumably from Africa into Georgia in 2007, and its continuous spread through Europe and Asia as a panzootic disease of suids, continues to have a huge socio-economic impact. ASF is characterized by hemorrhagic fever leading to a high case/fatality ratio in pigs. In Europe, wild boar are especially affected. This review summarizes the currently available knowledge on ASF in wild boar in Europe. The current ASF panzootic is characterized by self-sustaining cycles of infection in the wild boar population. Spill-over and spill-back events occur from wild boar to domestic pigs and vice versa. The social structure of wild boar populations and the spatial behavior of the animals, a variety of ASF virus (ASFV) transmission mechanisms and persistence in the environment complicate the modeling of the disease. Control measures focus on the detection and removal of wild boar carcasses, in which ASFV can remain infectious for months. Further measures include the reduction in wild boar density and the limitation of wild boar movements through fences. Using these measures, the Czech Republic and Belgium succeeded in eliminating ASF in their territories, while the disease spread in others. So far, no vaccine is available to protect wild boar or domestic pigs reliably against ASF.
Collapse
Affiliation(s)
- Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Carolina Probst
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Ulrike Blohm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Julia Sehl
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Melina Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| | - Jan Hendrik Forth
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| | - Laura Zani
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of International Animal Health/One Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.Z.); (K.D.)
| | - Klaus Depner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of International Animal Health/One Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.Z.); (K.D.)
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| |
Collapse
|
14
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt C, Herskin M, Michel V, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Winckler C, Blome S, Boklund A, Bøtner A, Dhollander S, Rapagnà C, Van der Stede Y, Miranda Chueca MA. Research priorities to fill knowledge gaps in wild boar management measures that could improve the control of African swine fever in wild boar populations. EFSA J 2021; 19:e06716. [PMID: 34354769 PMCID: PMC8319816 DOI: 10.2903/j.efsa.2021.6716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Commission asked EFSA to provide study designs for the investigation of four research domains (RDs) according to major gaps in knowledge identified by EFSA in a report published in 2019: (RD 1) African swine fever (ASF) epidemiology in wild boar; (RD 2) ASF transmission by vectors; (RD 3) African swine fever virus (ASFV) survival in the environment, and (RD 4) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU. In this Scientific Opinion, the second RD on ASF epidemiology in wild boar is addressed. Twenty-nine research objectives were proposed by the working group and broader ASF expert networks and 23 of these research objectives met a prespecified inclusion criterion. Fourteen of these 23 research objectives met the predefined threshold for selection and so were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study; and (6) if it was a priority for risk managers. Finally, after further elimination of three of the proposed research objectives due to overlapping scope of studies published during the development of this opinion, 11 research priorities were elaborated into short research proposals, considering the potential impact on ASF management and the period of one year for the research activities.
Collapse
|
15
|
Schulz K, Masiulis M, Staubach C, Malakauskas A, Pridotkas G, Conraths FJ, Sauter-Louis C. African Swine Fever and Its Epidemiological Course in Lithuanian Wild Boar. Viruses 2021; 13:1276. [PMID: 34208894 PMCID: PMC8310040 DOI: 10.3390/v13071276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
African swine fever (ASF) has been present in Lithuania since 2014. It is mainly the wild boar population that is affected. Currently, little is known about the epidemiological course of ASF in Lithuania. In the present study, ASF surveillance data from 2016-2021 were analyzed. The numbers of samples taken from hunted wild boar and wild boar found dead per year and month were recorded and the prevalence was estimated for each study month and administrative unit. A Bayesian space-time model was used to calculate the temporal trend of the prevalence estimates. In addition, population data were analyzed on a yearly basis. Most samples were investigated in 2016 and 2017 and originated from hunted animals. Prevalence estimates of ASF virus-positive wild boar decreased from May 2019 onwards. Seroprevalence estimates showed a slight decrease at the same time, but they increased again at the end of the study period. A significant decrease in the population density was observed over time. The results of the study show that ASF is still present in the Lithuanian wild boar population. A joint interdisciplinary effort is needed to identify weaknesses in the control of ASF in Lithuania and to combat the disease more successfully.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.S.); (F.J.C.); (C.S.-L.)
| | - Marius Masiulis
- Emergency Response Division, State Food and Veterinary Service, Siesiku 19, LT-07170 Vilnius, Lithuania; (M.M.); (A.M.)
- Dr. L. Kriauceliunas Small Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- National Food and Veterinary Risk Assessment Institute, J. Kairiūkščio Street 10, LT-08409 Vilnius, Lithuania;
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.S.); (F.J.C.); (C.S.-L.)
| | - Alvydas Malakauskas
- Emergency Response Division, State Food and Veterinary Service, Siesiku 19, LT-07170 Vilnius, Lithuania; (M.M.); (A.M.)
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Gediminas Pridotkas
- National Food and Veterinary Risk Assessment Institute, J. Kairiūkščio Street 10, LT-08409 Vilnius, Lithuania;
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.S.); (F.J.C.); (C.S.-L.)
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.S.); (F.J.C.); (C.S.-L.)
| |
Collapse
|
16
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt C, Herskin M, Michel V, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Blome S, Boklund A, Bøtner A, Dhollander S, Rapagnà C, Van der Stede Y, Miranda Chueca MA. Research priorities to fill knowledge gaps in the control of African swine fever: possible transmission of African swine fever virus by vectors. EFSA J 2021; 19:e06676. [PMID: 34188718 PMCID: PMC8215588 DOI: 10.2903/j.efsa.2021.6676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Commission requested that EFSA provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: (i) the patterns of seasonality of African Swine Fever (ASF) in wild boar and domestic pigs in the EU; (ii) the epidemiology of ASF in wild boar; (iii) survival of ASF virus (ASFV) in the environment and (iv) transmission of ASFV by vectors. In this Scientific Opinion, the fourth research domain on ASFV transmission by vectors is addressed. Eleven research objectives were proposed by the EFSA working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the 11 research objectives, six were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study and (6) if it was a priority for risk managers. The prioritised research objectives were: (I) Studies on the potential vector fauna at the pig-wild boar interface and the feeding preference of blood-feeding potential vectors in ASF-affected areas; (II) Assessment of the efficacy of insect screens on indoor/outdoor pig holdings to prevent the entry of blood-sucking vectors (i.e. Stomoxys) in ASF endemic areas; (III) Assess the role of mechanical vectors in the virus transmission in ASF-affected areas; (IV) Distribution of the potential mechanical transmission vectors in ASF-affected areas of the EU; (V) ASFV transmission by synanthropic birds; and (VI) Assessment on the presence/absence of the soft tick Ornithodoros erraticus in ASF-affected areas in Europe. For each of the selected research objectives, a research protocol has been proposed considering the potential impact on ASF management and the period of 1 year for the research activities.
Collapse
|
17
|
Desmecht D, Gerbier G, Gortázar Schmidt C, Grigaliuniene V, Helyes G, Kantere M, Korytarova D, Linden A, Miteva A, Neghirla I, Olsevskis E, Ostojic S, Petit T, Staubach C, Thulke H, Viltrop A, Richard W, Wozniakowski G, Cortiñas JA, Broglia A, Dhollander S, Lima E, Papanikolaou A, Van der Stede Y, Ståhl K. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J 2021; 19:e06572. [PMID: 33976715 PMCID: PMC8100952 DOI: 10.2903/j.efsa.2021.6572] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An update on the African swine fever (ASF) situation in the 10 affected Member States (MS) in the EU and in two neighbouring countries from the 1 September 2019 until the 31 August 2020 is provided. The dynamics of the proportions of PCR- and ELISA-positive samples since the first ASF detection in the country were provided and seasonal patterns were investigated. The impact of the ASF epidemic on the annual numbers of hunted wild boar in each affected MS was investigated. To evaluate differences in the extent of spread of ASF in the wild boar populations, the number of notifications that could be classified as secondary cases to a single source was calculated for each affected MS and compared for the earliest and latest year of the epidemic in the country. To evaluate possible risk factors for the occurrence of ASFV in wild boar or domestic pigs, a literature review was performed. Risk factors for the occurrence of ASF in wild boar in Romanian hunting grounds in 2019 were identified with a generalised linear model. The probability to find at least one PCR-confirmed ASF case in wild boar in a hunting ground in Romania was driven by environmental factors, wild boar abundance and the density of backyard pigs in the hunting ground area, while hunting-related variables were not retained in the final model. Finally, measures implemented in white zones (ASF-free zones that are geographically adjacent to an area where ASF is present in wild boar) to prevent further spread of ASF were analysed with a spatially, explicit stochastic individual-based model. To be effective, the wild boar population in the white zone would need to be drastically reduced before ASF arrives at the zone and it must be wide enough. To achieve the necessary pre-emptive culling targets of wild boar in the white zone, at the start of the establishment, the white zone should be placed sufficiently far from the affected area, considering the speed of the natural spread of the disease. This spread is faster in denser wild boar populations. After a focal ASF introduction, the white zone is always close to the infection hence pre-emptive culling measures in the white zone must be completed in short term, i.e. in a few months.
Collapse
|
18
|
Urner N, Sauter-Louis C, Staubach C, Conraths FJ, Schulz K. A Comparison of Perceptions of Estonian and Latvian Hunters With Regard to the Control of African Swine Fever. Front Vet Sci 2021; 8:642126. [PMID: 33937371 PMCID: PMC8079805 DOI: 10.3389/fvets.2021.642126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Since the first detected African swine fever (ASF) cases in Lithuanian wild boar in 2014, the virus has occurred in many other member states of the European Union (EU), most recently in Belgium in 2018 and in Germany in 2020. Passive surveillance and various control measures are implemented as part of the strategy to stop disease spread in the wild boar population. Within this framework, hunters perform important activities, such as the removal of carcasses, fencing or hunting. Therefore, the successful implementation of these measures largely depends on their acceptability by hunters. Methods of participatory epidemiology can be used to determine the acceptance of control measures. The use of participatory methods allows the involvement of key stakeholders in the design, the implementation and the analysis of control and surveillance activities. In the present study, two studies that had been conducted using participatory epidemiology with hunters in Estonia and Latvia were compared on the topics recruitment, participants, facilitators, focus group discussion (FGDs) and their contents. The aim was to evaluate similarities and differences in the two studies and to identify a broader spectrum of possibilities to increase the willingness of hunters supporting the fight against ASF. Evaluating all conducted FGDs in both countries showed primarily similarities in the perceptions and opinions of the hunters in Estonia and Latvia. One notable difference was that passive surveillance in Latvia was perceived mostly as topic of duty and ethics rather than an issue driven by incentives. Participatory methods have proven to be an effective tool in the evaluation of the acceptance of established ASF control systems. The results of this study point out further chances for improving the cooperation with hunters in the future. Nevertheless, the importance of gathering and analyzing the opinions of hunters in all ASF affected countries individually is highlighted.
Collapse
Affiliation(s)
- Nico Urner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald, Germany
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald, Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald, Germany
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald, Germany
| | - Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald, Germany
| |
Collapse
|
19
|
Mazloum A, Zhukov IU, Aronova EB, Igolkin AS, Vlasova NN. [ASF virus replication features in the presence of recombinant proteins CD2v, pX69R and pE248R.]. Vopr Virusol 2021; 64:193-200. [PMID: 32163686 DOI: 10.36233/0507-4088-2019-64-4-193-200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/10/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION African swine fever (ASF), sever hemorrhagic disease of swine caused by a large DNA virus of the Asfaviridae family. Since there are no effective and safe vaccines against ASF yet, it is urgent to study the functions of its proteins, which is applicable by analyzing the features of ASF virus replication in the presence of recombinant proteins in vitro. PURPOSE To study the effect of ASFV recombinant proteins CD2v, pE248R and pX69R on the speed and level of reproduction of ASF virus in vitro. Thus, obtain the necessary knowledge to develop approaches for creating a vaccine against ASF. MATERIALS AND METHODS ASFV isolate Krasnodar 07/17 and strain ASF/ARRIAH/CV-1 were used. Cloning of X69R, EP402R, and E248R genes was performed in the pJET1.2 / blunt vector and pCI-neo in E. coli JM-109 cells, according to the manufacturer's manual. Localization of recombinant proteins in CV-1 cell line carried out by direct immunofluorescence reaction (DIF) using polyclonal antibodies conjugated to FITC. The ASF virus reproduction level was assessed by hemadsorption reaction and qPCR kit (Central Research Institute of Epidemiology). RESULTS Recombinant plasmids pCI-neo / E248R, pCI-neo / EP402R and pCI-neo / X69R were constructed. The localization and the specificity of the obtained recombinant proteins CD2v, pE248R and pX69R was confirmed. It was established that these recombinant proteins induce the level of ASF virus reproduction on days 3-5 of the experiment by ~ 1.2-1.5 lgHADU50/cm3 in comparison with the negative control. DISCUSSION The data obtained demonstrate the important role of CD2v, pX69R and pE248R proteins in the reproduction of the virus, since they significantly affect its level. The exact function of pX69R protein was not determined, however, in the experiments its positive effect on ASF virus reproduction was established, manifested in an increase in its reproduction level. CONCLUSION This methodology allows us to study the nature of the effect of proteins with unknown function on ASF virus replication.
Collapse
Affiliation(s)
- A Mazloum
- FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health» Vladimir region, Vladimir city, Yuryevets microdistrict, 600901, Russian Federation
| | - I U Zhukov
- FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health» Vladimir region, Vladimir city, Yuryevets microdistrict, 600901, Russian Federation
| | - E B Aronova
- FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health» Vladimir region, Vladimir city, Yuryevets microdistrict, 600901, Russian Federation
| | - A S Igolkin
- FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health» Vladimir region, Vladimir city, Yuryevets microdistrict, 600901, Russian Federation
| | - N N Vlasova
- FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health» Vladimir region, Vladimir city, Yuryevets microdistrict, 600901, Russian Federation
| |
Collapse
|
20
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Abrahantes JC, Dhollander S, Ivanciu C, Papanikolaou A, Van der Stede Y, Blome S, Guberti V, Loi F, More S, Olsevskis E, Thulke HH, Viltrop A. ASF Exit Strategy: Providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J 2021; 19:e06419. [PMID: 33717352 PMCID: PMC7926520 DOI: 10.2903/j.efsa.2021.6419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA assessed the role of seropositive wild boar in African swine fever (ASF) persistence. Surveillance data from Estonia and Latvia investigated with a generalised equation method demonstrated a significantly slower decline in seroprevalence in adult animals compared with subadults. The seroprevalence in adults, taking more than 24 months to approach zero after the last detection of ASFV circulation, would be a poor indicator to demonstrate the absence of virus circulation. A narrative literature review updated the knowledge on the mortality rate, the duration of protective immunity and maternal antibodies and transmission parameters. In addition, parameters potentially leading to prolonged virus circulation (persistence) in wild boar populations were reviewed. A stochastic explicit model was used to evaluate the dynamics of virus prevalence, seroprevalence and the number of carcasses attributed to ASF. Secondly, the impact of four scenarios on the duration of ASF virus (ASFV) persistence was evaluated with the model, namely a: (1) prolonged, lifelong infectious period, (2) reduction in the case-fatality rate and prolonged transient infectiousness; (3) change in duration of protective immunity and (4) change in the duration of protection from maternal antibodies. Only the lifelong infectious period scenario had an important prolonging effect on the persistence of ASF. Finally, the model tested the performance of different proposed surveillance strategies to provide evidence of the absence of virus circulation (Exit Strategy). A two-phase approach (Screening Phase, Confirmation Phase) was suggested for the Exit Strategy. The accuracy of the Exit Strategy increases with increasing numbers of carcasses collected and tested. The inclusion of active surveillance based on hunting has limited impact on the performance of the Exit Strategy compared with lengthening of the monitoring period. This performance improvement should be reasonably balanced against an unnecessary prolonged 'time free' with only a marginal gain in performance. Recommendations are provided for minimum monitoring periods leading to minimal failure rates of the Exit Strategy. The proposed Exit Strategy would fail with the presence of lifelong infectious wild boar. That said, it should be emphasised that the existence of such animals is speculative, based on current knowledge.
Collapse
|
21
|
A Review of Risk Factors of African Swine Fever Incursion in Pig Farming within the European Union Scenario. Pathogens 2021; 10:pathogens10010084. [PMID: 33478169 PMCID: PMC7835761 DOI: 10.3390/pathogens10010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
African swine fever (ASF) is a notifiable viral disease of pigs and wild boars that could lead to serious economic losses for the entire European pork industry. As no effective treatment or vaccination is available, disease prevention and control rely on strictly enforced biosecurity measures tailored to the specific risk factors of ASF introduction within domestic pig populations. Here, we present a review addressing the risk factors associated with different European pig farming systems in the context of the actual epidemiological scenario. A list of keywords was combined into a Boolean query, “African swine fever” AND (“Risk factors” OR “Transmission” OR “Spread” OR “Pig farming” OR “Pigs” OR “Wild boars”); was run on 4 databases; and resulted in 52 documents of interest being reviewed. Based on our review, each farming system has its own peculiar risk factors: commercial farms, where best practices are already in place, may suffer from unintentional breaches in biosecurity, while backyard and outdoor farms may suffer from poor ASF awareness, sociocultural factors, and contact with wild boars. In the literature selected for our review, human-related activities and behaviours are presented as the main risks, but we also stress the need to implement biosecurity measures also tailored to risks factors that are specific for the different pig farming practices in the European Union (EU).
Collapse
|
22
|
Fischer M, Hühr J, Blome S, Conraths FJ, Probst C. Stability of African Swine Fever Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV "Estonia 2014" Isolate. Viruses 2020; 12:E1118. [PMID: 33019736 PMCID: PMC7600355 DOI: 10.3390/v12101118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
Europe is currently experiencing a long-lasting African swine fever (ASF) epidemic, both in domestic pigs and wild boar. There is great concern that carcasses of infected wild boar may act as long-term virus reservoirs in the environment. We evaluated the tenacity of ASF virus (ASFV) in tissues and body fluids from experimentally infected domestic pigs and wild boar, which were stored on different matrices and at different temperatures. Samples were analysed at regular intervals for viral genome and infectious virus. ASFV was most stable in spleen or muscles stored at -20 °C and in blood stored at 4 °C. In bones stored at -20 °C, infectious virus was detected for up to three months, and at 4 °C for up to one month, while at room temperature (RT), no infectious virus could be recovered after one week. Skin stored at -20 °C, 4 °C and RT remained infectious for up to three, six and three months, respectively. In urine and faeces, no infectious virus was recovered after one week, irrespective of the matrix. In conclusion, tissues and organs from decomposing carcasses that persist in the environment for a long time can be a source of infection for several months, especially at low temperatures.
Collapse
Affiliation(s)
- Melina Fischer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.H.); (S.B.); (F.J.C.); (C.P.)
| | | | | | | | | |
Collapse
|
23
|
The African Swine Fever Virus (ASFV) Topoisomerase II as a Target for Viral Prevention and Control. Vaccines (Basel) 2020; 8:vaccines8020312. [PMID: 32560397 PMCID: PMC7350233 DOI: 10.3390/vaccines8020312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever (ASF) is, once more, spreading throughout the world. After its recent reintroduction in Georgia, it quickly reached many neighboring countries in Eastern Europe. It was also detected in Asia, infecting China, the world's biggest pig producer, and spreading to many of the surrounding countries. Without any vaccine or effective treatment currently available, new strategies for the control of the disease are mandatory. Its etiological agent, the African swine fever virus (ASFV), has been shown to code for a type II DNA topoisomerase. These are enzymes capable of modulating the topology of DNA molecules, known to be essential in unicellular and multicellular organisms, and constitute targets in antibacterial and anti-cancer treatments. In this review, we summarize most of what is known about this viral enzyme, pP1192R, and discuss about its possible role(s) during infection. Given the essential role of type II topoisomerases in cells, the data so far suggest that pP1192R is likely to be equally essential for the virus and thus a promising target for the elaboration of a replication-defective virus, which could provide the basis for an effective vaccine. Furthermore, the use of inhibitors could be considered to control the spread of the infection during outbreaks and therefore limit the spreading of the disease.
Collapse
|
24
|
Danzetta ML, Marenzoni ML, Iannetti S, Tizzani P, Calistri P, Feliziani F. African Swine Fever: Lessons to Learn From Past Eradication Experiences. A Systematic Review. Front Vet Sci 2020; 7:296. [PMID: 32582778 PMCID: PMC7296109 DOI: 10.3389/fvets.2020.00296] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
Prevention, early detection, prompt reaction, and communication play a crucial role in African swine fever (ASF) control. Appropriate surveillance capable of early detection of the disease in both domestic and wild animals, and the implementation of consolidated contingency plans, are currently considered the best means of controlling this disease. The purpose of this study was to understand the lessons to be learned through the global disease eradication history. To establish which strategies were successful for prevention, control, and eradication of ASF, and which errors should not be repeated, we conducted a systematic review. A query was defined to search for surveillance and control strategies applied by countries worldwide for ASF eradication in the past. Inclusion and exclusion criteria were defined. Decisions on study eligibility and data extraction were performed by two independent reviewers and the differences were resolved by consensus or by a third reviewer. From 1,980 papers, 23 were selected and included in the qualitative analysis. Reports from Belgium, Brazil, Cuba, the Dominican Republic and Haiti, France, mainland Italy, Malta, Portugal, and Spain were included. Despite the economic resources allocated and the efforts made, eradication was possible in only eight countries, between the 50s and 90s in the twentieth century, in different epidemiological and cultural contexts, in some instances within <1 year, and in others in about 40 years. Classical surveillance strategies, such as active and passive surveillance, both at farm and slaughterhouse levels, targeted surveillance, together with conventional biosafety and sanitary measures, led to eradication even in countries in which the tick's epidemiological role was demonstrated. Historical surveillance data analysis indicated that eradication was possible even when technological tools either were not available or were used less than they are currently. This emphasizes that data on surveillance and on animal population are crucial for planning effective surveillance, and targeting proper control and intervention strategies. This paper demonstrates that some strategies applied in the past were effective; these could be implemented and improved to confront the current epidemiological wave. This offers encouragement for the efforts made particularly in Europe during the recent epidemics.
Collapse
Affiliation(s)
- Maria Luisa Danzetta
- National Reference Centre for Veterinary Epidemiology and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, G. Caporale, Teramo, Italy
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Simona Iannetti
- National Reference Centre for Veterinary Epidemiology and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, G. Caporale, Teramo, Italy
| | - Paolo Tizzani
- World Animal Health Information and Analysis Department (WAHIAD), World Organisation for Animal Health, OIE, Paris, France
| | - Paolo Calistri
- National Reference Centre for Veterinary Epidemiology and Risk Analysis (COVEPI), Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, G. Caporale, Teramo, Italy
| | - Francesco Feliziani
- National Reference Laboratory for Swine Fevers, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| |
Collapse
|
25
|
Woźniakowski G, Mazur-Panasiuk N, Walczak M, Juszkiewicz M, Frant M, Niemczuk K. Attempts at the Development of a Recombinant African Swine Fever Virus Strain with Abrogated EP402R, 9GL, and A238L Gene Structure using the CRISPR/Cas9 System. J Vet Res 2020; 64:197-205. [PMID: 32587905 PMCID: PMC7305649 DOI: 10.2478/jvetres-2020-0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION African swine fever (ASF) is a pressing economic problem in a number of Eastern European countries. It has also depleted the Chinese sow population by 50%. Managing the disease relies on culling infected pigs or hunting wild boars as sanitary zone creation. The constraints on the development of an efficient vaccine are mainly the virus' mechanisms of host immune response evasion. The study aimed to adapt a field ASFV strain to established cell lines and to construct recombinant African swine fever virus (ASFV) strain. MATERIAL AND METHODS The host immune response modulation genes A238L, EP402R, and 9GL were deleted using the clustered regularly interspaced short palindromic repeats/caspase 9 (CRISPR/Cas9) mutagenesis system. A representative virus isolate (Pol18/28298/Out111) from Poland was isolated in porcine primary pulmonary alveolar macrophage (PPAM) cells. Adaptation of the virus to a few established cell lines was attempted. The plasmids encoding CRISPR/Cas9 genes along with gRNA complementary to the target sequences were designed, synthesised, and transfected into ASFV-infected PPAM cells. RESULTS The reconstituted virus showed similar kinetics of replication in comparison to the parent virus isolate. CONCLUSION Taking into account the usefulness of the developed CRISPR/Cas9 system it has been shown that modification of the A238L, EP402R, and 9GL genes might occur with low frequency, resulting in difficulties in separation of various virus populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Krzysztof Niemczuk
- Director General National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
26
|
de Vos CJ, Taylor RA, Simons RRL, Roberts H, Hultén C, de Koeijer AA, Lyytikäinen T, Napp S, Boklund A, Petie R, Sörén K, Swanenburg M, Comin A, Seppä-Lassila L, Cabral M, Snary EL. Cross-Validation of Generic Risk Assessment Tools for Animal Disease Incursion Based on a Case Study for African Swine Fever. Front Vet Sci 2020; 7:56. [PMID: 32133376 PMCID: PMC7039936 DOI: 10.3389/fvets.2020.00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, several generic risk assessment (RA) tools have been developed that can be applied to assess the incursion risk of multiple infectious animal diseases allowing for a rapid response to a variety of newly emerging or re-emerging diseases. Although these tools were originally developed for different purposes, they can be used to answer similar or even identical risk questions. To explore the opportunities for cross-validation, seven generic RA tools were used to assess the incursion risk of African swine fever (ASF) to the Netherlands and Finland for the 2017 situation and for two hypothetical scenarios in which ASF cases were reported in wild boar and/or domestic pigs in Germany. The generic tools ranged from qualitative risk assessment tools to stochastic spatial risk models but were all parameterized using the same global databases for disease occurrence and trade in live animals and animal products. A comparison of absolute results was not possible, because output parameters represented different endpoints, varied from qualitative probability levels to quantitative numbers, and were expressed in different units. Therefore, relative risks across countries and scenarios were calculated for each tool, for the three pathways most in common (trade in live animals, trade in animal products, and wild boar movements) and compared. For the 2017 situation, all tools evaluated the risk to the Netherlands to be higher than Finland for the live animal trade pathway, the risk to Finland the same or higher as the Netherlands for the wild boar pathway, while the tools were inconclusive on the animal products pathway. All tools agreed that the hypothetical presence of ASF in Germany increased the risk to the Netherlands, but not to Finland. The ultimate aim of generic RA tools is to provide risk-based evidence to support risk managers in making informed decisions to mitigate the incursion risk of infectious animal diseases. The case study illustrated that conclusions on the ASF risk were similar across the generic RA tools, despite differences observed in calculated risks. Hence, it was concluded that the cross-validation contributed to the credibility of their results.
Collapse
Affiliation(s)
- Clazien J. de Vos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Robin R. L. Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Helen Roberts
- Department for Environment, Food & Rural Affairs (Defra), London, United Kingdom
| | | | - Aline A. de Koeijer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | | | - Sebastian Napp
- Centre de Recerca en Sanitat Animal (CReSA IRTA-UAB), Bellaterra, Spain
| | - Anette Boklund
- Department of Veterinary and Animal Sciences, Section for Animal Welfare and Disease Control, University of Copenhagen, Frederiksberg, Denmark
| | - Ronald Petie
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Kaisa Sörén
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Manon Swanenburg
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Arianna Comin
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Maria Cabral
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Emma L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| |
Collapse
|
27
|
Johann F, Handschuh M, Linderoth P, Dormann CF, Arnold J. Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol 2020; 20:4. [PMID: 31918698 PMCID: PMC6953143 DOI: 10.1186/s12898-019-0271-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/18/2019] [Indexed: 12/02/2022] Open
Abstract
Background Wild boars (Sus scrofa L.) are globally widely distributed, and their populations have increased in Europe during recent decades. Encounters between humans and wild boars are rare because of the predominantly nocturnal lifestyle of the latter, and wild boar management by hunting is a challenging task. Animal activity patterns are important for understanding the behaviour of a species. However, knowledge of detailed temporal patterns and an understanding of the drivers of wild boar activity at a fine temporal scale are lacking. Of special relevance for human–wild boar interactions (e.g., encounters, conflicts, and management) is the question of whether nocturnal activity depends on anthropogenic factors and, particularly, how local hunting regimes may affect activity patterns. We used GPS telemetry and acceleration measurements to shed light on this part of wild boar behaviour, observing 34 animals in Central Europe. Animals were tracked along a gradient of hunting pressure from hunting-free areas to areas with low or high hunting pressure. Fitted generalised additive models allowed predicting the probability of active behaviour under differing disturbance regimes precisely to day of year and time of day. Results The wild boars were predominantly nocturnal, with peak activity at approximately midnight. However, the data showed increased activity during daylight for wild boars that used no-hunting zones or reduced-hunting zones. Large areas with low disturbance levels promoted activity during daylight more than smaller areas with an intermediate disturbance regime. High air temperatures and locations within forests reduced the probability of active behaviour, whereas proximity to tracks used for forestry or agriculture was accompanied by a higher probability of activity. Conclusions We conclude that wild boars flexibly adjust their activity to their local environmental conditions, considering disturbances at the scale of long-term home ranges as well as actual small-scale landscape quality. Entire wild boar home ranges should be covered in the delineation of reserves intending to stimulate activity during daylight.
Collapse
Affiliation(s)
- Franz Johann
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University, Freiburg i. Br., Germany. .,Wildlife Research Unit, Agricultural Centre Baden-Württemberg, Aulendorf, Germany.
| | - Markus Handschuh
- Wildlife Research Unit, Agricultural Centre Baden-Württemberg, Aulendorf, Germany.,Chair of Wildlife Ecology and Management, Albert-Ludwigs-University, Freiburg i. Br., Germany
| | - Peter Linderoth
- Wildlife Research Unit, Agricultural Centre Baden-Württemberg, Aulendorf, Germany
| | - Carsten F Dormann
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University, Freiburg i. Br., Germany
| | - Janosch Arnold
- Wildlife Research Unit, Agricultural Centre Baden-Württemberg, Aulendorf, Germany
| |
Collapse
|
28
|
Schulz K, Conraths FJ, Blome S, Staubach C, Sauter-Louis C. African Swine Fever: Fast and Furious or Slow and Steady? Viruses 2019; 11:E866. [PMID: 31533266 PMCID: PMC6783890 DOI: 10.3390/v11090866] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/16/2022] Open
Abstract
Since the introduction of African swine fever (ASF) into Georgia in 2007, the disease has been spreading in an unprecedented way. Many countries that are still free from the disease fear the emergence of ASF in their territory either in domestic pigs or in wild boar. In the past, ASF was often described as being a highly contagious disease with mortality often up to 100%. However, the belief that the disease might enter a naïve population and rapidly affect the entire susceptible population needs to be critically reviewed. The current ASF epidemic in wild boar, but also the course of ASF within outbreaks in domestic pig holdings, suggest a constant, but relatively slow spread. Moreover, the results of several experimental and field studies support the impression that the spread of ASF is not always fast. ASF spread and its speed depend on various factors concerning the host, the virus, and also the environment. Many of these factors and their effects are not fully understood. For this review, we collated published information regarding the spreading speed of ASF and the factors that are deemed to influence the speed of ASF spread and tried to clarify some issues and open questions in this respect.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
29
|
Mazur-Panasiuk N, Żmudzki J, Woźniakowski G. African Swine Fever Virus - Persistence in Different Environmental Conditions and the Possibility of its Indirect Transmission. J Vet Res 2019; 63:303-310. [PMID: 31572808 PMCID: PMC6749736 DOI: 10.2478/jvetres-2019-0058] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 11/25/2022] Open
Abstract
Since 2007, African swine fever (ASF) has posed a serious threat to the European swine industry. In Poland, the numbers of reported outbreaks in pigs and affected areas grow every year. In 2018, the disease was noted in Western Europe, in Belgium specifically, where several hundred infected wild boars have been detected so far. In 2018, the virus unexpectedly emerged in pig holdings in eastern China, northern Mongolia, Vietnam, and Cambodia, causing worldwide concern about its further spread. Since there is still no vaccine available, the only approach to control the disease is biosecurity. Identification of potential sources of the virus is extremely important in light of its phenomenal survivability. The review summarises the current knowledge about ASFV survivability and resistance to environmental conditions, and discusses the role of indirect contact in spreading the disease.
Collapse
Affiliation(s)
- Natalia Mazur-Panasiuk
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Jacek Żmudzki
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Grzegorz Woźniakowski
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
30
|
Schulz K, Staubach C, Blome S, Viltrop A, Nurmoja I, Conraths FJ, Sauter-Louis C. Analysis of Estonian surveillance in wild boar suggests a decline in the incidence of African swine fever. Sci Rep 2019; 9:8490. [PMID: 31186505 PMCID: PMC6560063 DOI: 10.1038/s41598-019-44890-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/21/2019] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) in wild boar populations is difficult to control. In affected areas, samples from all wild boar shot and found dead are investigated. The use of laboratory tests allows estimating the duration of the infection in affected animals. The study aimed to test the hypothesis that the stage of the epidemic in different areas of Estonia can be assessed on the basis of prevalence estimates. ASF surveillance data of Estonian wild boar were used to estimate prevalences and compare them between the East and West of Estonia. The temporal trend of the estimated prevalence of ASF virus positive animals and of the estimated seroprevalence of wild boar showing antibodies against ASFV was analyzed. Due to the potential influence of population density on the course of ASF in wild boar, also population density data (number of wild boar/km2) were used to investigate the relationship with laboratory test results. In areas, where the epidemic had already lasted for a long time, a small number of new cases emerged recently. The prevalence of samples that were only seropositive was significantly higher in these regions as compared to areas, where the epidemic is in full progress. The observed course of the disease could be the beginning of an ASF endemicity in this region. However, the results may also indicate that ASF has started to subside in the areas that were first affected in Estonia.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Arvo Viltrop
- Estonian University of Life Science, Institute of Veterinary Medicine and Animal Sciences, Kreutzwaldi 62, 51014, Tartu, Estonia
| | - Imbi Nurmoja
- Estonian University of Life Science, Institute of Veterinary Medicine and Animal Sciences, Kreutzwaldi 62, 51014, Tartu, Estonia
- Estonian Veterinary and Food Laboratory (VFL), Kreutzwaldi 30, 51006, Tartu, Estonia
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| |
Collapse
|
31
|
Mazur-Panasiuk N, Woźniakowski G, Niemczuk K. The first complete genomic sequences of African swine fever virus isolated in Poland. Sci Rep 2019; 9:4556. [PMID: 30872594 PMCID: PMC6418159 DOI: 10.1038/s41598-018-36823-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
African swine fever (ASF) is a contagious, notifiable viral disease, which is considered a significant threat not only for European, but also for worldwide pork production, since recently the virus emerged within numerous Chinese pig herds. The disease was introduced in Poland in 2014 and up to the end of 2018, 213 outbreaks in pigs and 3347 cases in wild boars have been reported. The presented study describes the whole genome sequencing of seven Polish isolates, collected between 2016 and 2017, using next generation sequencing (NGS) technology. The complete, genomic sequences of these isolates were compared against five other closely related ASFV genomes, annotated in the NCBI database. The obtained sequences were from 189.393 to 189.405 bp long and encoded 187-190 open reading frames (ORFs). The isolates were grouped within genotype II and showed 99.941 to 99.956% nucleotide identity to the Georgia 2007/1 reference strain.
Collapse
Affiliation(s)
- Natalia Mazur-Panasiuk
- National Veterinary Research Institute (NVRI), Department of Swine Diseases, Partyzantów 57 Avenue, 24-100, Puławy, Poland.
| | - Grzegorz Woźniakowski
- National Veterinary Research Institute (NVRI), Department of Swine Diseases, Partyzantów 57 Avenue, 24-100, Puławy, Poland
| | - Krzysztof Niemczuk
- National Veterinary Research Institute (NVRI), Director General, Partyzantów 57 Avenue, 24-100, Puławy, Poland
| |
Collapse
|
32
|
Schulz K, Oļševskis E, Staubach C, Lamberga K, Seržants M, Cvetkova S, Conraths FJ, Sauter-Louis C. Epidemiological evaluation of Latvian control measures for African swine fever in wild boar on the basis of surveillance data. Sci Rep 2019; 9:4189. [PMID: 30862947 PMCID: PMC6414528 DOI: 10.1038/s41598-019-40962-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/25/2019] [Indexed: 11/08/2022] Open
Abstract
A wild boar population infected with African Swine Fever (ASF) constitutes a constant threat to commercial pig farms and therefore to the economy of the affected country. Currently, ASF is still spreading in several countries and the implementation of intensive measures such as reducing wild boar population densities seems not to be able to stop the further spread of the disease. In addition, there are still substantial knowledge gaps regarding the epidemiology of the disease. To identify risk factors for a higher probability of a wild boar sample being virological or serological positive, comprehensive statistical analyses were performed based on Latvian surveillance data. Using a multivariable Bayesian regression model, the effects of implemented control measures on the proportion of hunted or found dead wild boar or on the estimated virus prevalence were evaluated. None of the control measures applied in Latvia showed a significant effect on the relevant target figure. Also, the estimated periodic prevalence of wild boar that had tested ASF positive by PCR appeared to remain unaffected over time. Therefore, there is an urgent need to reconsider the implemented control measures. The results of this study and the course of ASF in other affected countries, raise the question, whether an endemic situation of ASF in wild boar is reversible.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Edvīns Oļševskis
- Food and Veterinary Service, Riga, Peldu 30, LV-1050, Latvia
- Institute of Food Safety, Animal Health and Environment - "BIOR", Riga, Lejupes 3, LV-1076, Latvia
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | | | - Svetlana Cvetkova
- Institute of Food Safety, Animal Health and Environment - "BIOR", Riga, Lejupes 3, LV-1076, Latvia
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
33
|
Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Ståhl K. Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Manag 2019; 5:6. [PMID: 30637117 PMCID: PMC6325717 DOI: 10.1186/s40813-018-0109-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
In 2007 African swine fever (ASF) arrived at a Black Sea harbour in Georgia and in 2014 the infection reached the European Union (EU), where it still expands its territory. ASF is a fatal viral disease affecting domestic pigs and wild boar of all ages with clinical presentations ranging from per-acute to chronic disease, including apparently asymptomatic courses. Until the detection of the first case inside the EU, infections in the current epidemic were mainly seen among pig farms with generally low biosecurity, and with incidental spill over to the wild boar population. In the EU, however, the infection survived locally in the wild boar population independently from outbreaks in domestic pigs, with a steady and low prevalence. Apart from the wild boar population and the habitat, the current epidemic recognizes humans as the main responsible for both long distance transmission and virus introduction in the domestic pig farms. This underlines the importance to include social science when planning ASF-prevention, -control, or -eradication measures. Based on experiences, knowledge and data gained from the current epidemic this review highlights some recent developments in the epidemiological understanding of ASF, especially concerning the role of wild boar and their habitats in ASF epidemiology. In this regard, the qualities of three epidemiological traits: contagiousity, tenacity, and case fatality rate, and their impact on ASF persistence and transmission are especially discussed.
Collapse
Affiliation(s)
| | - Klaus Depner
- Friedrich Loeffler Institute, Friedrich, Germany
| | - Vittorio Guberti
- National Institute for Environmental Protection and Research, Rome, Italy
| | - Klaas Dietze
- Friedrich Loeffler Institute, Friedrich, Germany
| | - Arvo Viltrop
- Estonian University of Life Sciences, Tartu, Estonia
| | - Karl Ståhl
- National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
34
|
Pautienius A, Grigas J, Pileviciene S, Zagrabskaite R, Buitkuviene J, Pridotkas G, Stankevicius R, Streimikyte Z, Salomskas A, Zienius D, Stankevicius A. Prevalence and spatiotemporal distribution of African swine fever in Lithuania, 2014-2017. Virol J 2018; 15:177. [PMID: 30454055 PMCID: PMC6245807 DOI: 10.1186/s12985-018-1090-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence in 2014 and persistence of African Swine Fever (ASF) in Lithuania has been linked to infected wild boar movement and close contact with the carcasses of other infected wild boars. Over time the number of reported cases of ASF in wild boars gradually increased, but no detailed epidemiological data has been available. Therefore, the objective of the present study was to determine ASF virus prevalence in wild boars and domestic pigs during the 2014-2017 period and further explore the current geographical distribution of the virus. RESULTS Our study results show that ASF virus prevalence in hunted wild boars using PCR analysis increased from 0.83% (95% CI 0.69-0.98) to 2.27% (95% CI 2.05-2.48) from 2014 to 2016 respectively. However, there was a dramatic jump in the number of ASF positive wild boars cases in 2017 resulting in prevalence of 12.39% (95% CI 11.91-12.86) (p < 0.05). The average prevalence of ASF-specific antibodies in wild boar population during years 2014-2017 was 0.45% (95% CI 0.39-0.51) based on ELISA test results. Prevalence of ASF virus in domestic pigs ranged from 0.24% (95% CI 0.17% - 0.32) in 2015 to 2.74% (95% CI 2.33% - 3.15) in 2017. The average seasonal prevalence of ASF virus in pigs was statistically significant (p < 0.05) and ranged from 0% in spring to 3.68% (95% CI 3.32-4.05) in summer. Correlation between the pig density and number of recorded pig ASF cases in affected regions was only found in 2017 (R = 0.78, p < 0.05). No correlation was detected between the wild boar density and number of recorded pig or wild boar ASF - positive cases. CONCLUSIONS This study provides the first results of ASF virus prevalence changes in Lithuania during the 2014-2017. The overall results confirm the relatively high prevalence of ASF virus in wild boar that was gradually increasing from 2014 to 2017. In the last year of study, the number of ASF positive cases in both domestic pigs and wild boars had unexpectedly increased several times. A better understanding of current status of the disease will enable better control and prevent further spread of ASF virus in Western Europe.
Collapse
Affiliation(s)
- Arnoldas Pautienius
- Faculty of Veterinary Medicine, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania.
| | - Juozas Grigas
- Faculty of Veterinary Medicine, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania.,Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania
| | - Simona Pileviciene
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, Vilnius, Lithuania
| | - Ruta Zagrabskaite
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, Vilnius, Lithuania
| | - Jurate Buitkuviene
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, Vilnius, Lithuania
| | - Gediminas Pridotkas
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio str. 10, Vilnius, Lithuania
| | - Rolandas Stankevicius
- Faculty of Animal Husbandry Technology, Department of Animal Breeding and Nutrition, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania
| | - Zaneta Streimikyte
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania
| | - Algirdas Salomskas
- Faculty of Veterinary Medicine, Department of Pathobiology, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania
| | - Dainius Zienius
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania
| | - Arunas Stankevicius
- Faculty of Veterinary Medicine, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes str. 18, Kaunas, Lithuania
| |
Collapse
|
35
|
Lange M, Guberti V, Thulke H. Understanding ASF spread and emergency control concepts in wild boar populations using individual‐based modelling and spatio‐temporal surveillance data. ACTA ACUST UNITED AC 2018. [DOI: 10.2903/sp.efsa.2018.en-1521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Jurado C, Martínez-Avilés M, De La Torre A, Štukelj M, de Carvalho Ferreira HC, Cerioli M, Sánchez-Vizcaíno JM, Bellini S. Relevant Measures to Prevent the Spread of African Swine Fever in the European Union Domestic Pig Sector. Front Vet Sci 2018; 5:77. [PMID: 29713637 PMCID: PMC5912175 DOI: 10.3389/fvets.2018.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
During the past decade, African swine fever (ASF) has spread from the Caucasus region to eastern European Union countries affecting domestic pig and wild boar populations. In order to avert ASF spread, mitigation measures targeting both populations have been established. However, despite these efforts, ASF has been reported in thirteen different countries (Georgia, Azerbaijan, Armenia, the Russian Federation, Ukraine, Belarus, Estonia, Latvia, Lithuania, Poland, Moldova, Czech Republic, and Romania). In the absence of an effective vaccine or treatment to ASF, introduction and spread of ASF onto domestic pig farms can only be prevented by strict compliance to control measures. This study systematically reviewed available measures to prevent the spread of ASF in the EU domestic pig sector distinguishing between commercial, non-commercial, and outdoor farms. The search was performed in PubMed and using a common browser. A total of 52 documents were selected for the final review process, which included scientific articles, reports, EU documents and official recommendations, among others. From this literature review, 37 measures were identified as preventive measures for the introduction and spread of ASF. Subsequently, these measures were assessed by ASF experts for their relevance in the mitigation of ASF spread on the three mentioned types of farms. All experts agreed that some of the important preventive measures for all three types of farms were: the identification of animals and farm records; strict enforcement of the ban on swill feeding; and containment of pigs, so as to not allow direct or indirect pig–pig and/or pig–wild boar contacts. Other important preventive measures for all farms were education of farmers, workers, and operators; no contact between farmers and farm staff and external pigs; appropriate removal of carcasses, slaughter residues, and food waste; proper disposal of manure and dead animals, and abstaining from hunting activities during the previous 48 h (allowing a 48 h interval between hunting and being in contact with domestic pigs). Finally, all experts identified that the important preventive measures for non-commercial and outdoor farms is to improve access of those farms to veterinarians and health services.
Collapse
Affiliation(s)
- Cristina Jurado
- VISAVET Health Surveillance Centre, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Marta Martínez-Avilés
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Madrid, Spain
| | - Ana De La Torre
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Madrid, Spain
| | - Marina Štukelj
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Monica Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna (IZSLER), Brescia, Italy
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Silvia Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna (IZSLER), Brescia, Italy
| |
Collapse
|
37
|
The Epidemiology of African Swine Fever in "Nonendemic" Regions of Zambia (1989-2015): Implications for Disease Prevention and Control. Viruses 2017; 9:v9090236. [PMID: 28832525 PMCID: PMC5618003 DOI: 10.3390/v9090236] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and deadly viral hemorrhagic disease of swine. In Zambia, ASF was first reported in 1912 in Eastern Province and is currently believed to be endemic in that province only. Strict quarantine measures implemented at the Luangwa River Bridge, the only surface outlet from Eastern Province, appeared to be successful in restricting the disease. However, in 1989, an outbreak occurred for the first time outside the endemic province. Sporadic outbreaks have since occurred almost throughout the country. These events have brought into acute focus our limited understanding of the epidemiology of ASF in Zambia. Here, we review the epidemiology of the disease in areas considered nonendemic from 1989 to 2015. Comprehensive sequence analysis conducted on genetic data of ASF viruses (ASFVs) detected in domestic pigs revealed that p72 genotypes I, II, VIII and XIV have been involved in causing ASF outbreaks in swine during the study period. With the exception of the 1989 outbreak, we found no concrete evidence of dissemination of ASFVs from Eastern Province to other parts of the country. Our analyses revealed a complex epidemiology of the disease with a possibility of sylvatic cycle involvement. Trade and/or movement of pigs and their products, both within and across international borders, appear to have been the major factor in ASFV dissemination. Since ASFVs with the potential to cause countrywide and possibly regional outbreaks, could emerge from “nonendemic regions”, the current ASF control policy in Zambia requires a dramatic shift to ensure a more sustainable pig industry.
Collapse
|
38
|
Probst C, Globig A, Knoll B, Conraths FJ, Depner K. Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170054. [PMID: 28573011 PMCID: PMC5451812 DOI: 10.1098/rsos.170054] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/27/2017] [Indexed: 05/16/2023]
Abstract
The behaviour of free ranging wild boar (Sus scrofa) towards carcasses of their conspecifics potentially infected with African swine fever (ASF) may significantly influence the course of an ASF epidemic. This study aims to better understand the behaviour of wild boar towards their dead fellows. Thirty-two wild boar carcasses on nine study sites in northeast Germany were monitored under field conditions by photo-trapping from October 2015 until October 2016. During this period, a total of 122 160 pictures were taken, thereof 16 111 pictures of wild boar. In both winter and summer, wild boar seemed to be particularly interested in the soil next to and underneath the carcasses. About one third of the visits of wild boar led to direct contact with dead conspecifics. The contacts consisted mostly in sniffing and poking on the carcass. Under the given ecological and climatic conditions, there was no evidence for intra-species scavenging. However, piglets were observed several times chewing bare bones once skeletonization of the carcasses was complete. It must be assumed that all these types of contact may represent a risk of transmission. Both the high tenacity of ASF virus and the long time wild boar carcasses can remain in the environment, allow the persistence of the virus for several months or even years. We therefore consider the rapid detection and removal (or destruction on the spot) of contaminated carcasses as an important control measure against ASF in wild boar.
Collapse
Affiliation(s)
- Carolina Probst
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Author for correspondence: Carolina Probst e-mail:
| | - Anja Globig
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Bent Knoll
- Universitäts- und Hansestadt Greifswald, Markt 15, 17489 Greifswald, Germany
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Klaus Depner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
39
|
Cortiñas Abrahantes J, Gogin A, Richardson J, Gervelmeyer A. Epidemiological analyses on African swine fever in the Baltic countries and Poland. EFSA J 2017; 15:e04732. [PMID: 32625438 PMCID: PMC7010137 DOI: 10.2903/j.efsa.2017.4732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
African swine fever virus (ASFV) has been notified in the Baltic countries and the eastern part of Poland from the beginning of 2014 up to now. In collaboration with the ASF‐affected Member States (MS), EFSA is updating the epidemiological analysis of ASF in the European Union which was carried out in 2015. For this purpose, the latest epidemiological and laboratory data were analysed in order to identify the spatial–temporal pattern of the epidemic and a risk factors facilitating its spread. Currently, the ASF outbreaks in wild boar in the Baltic countries and Poland can be defined as a small‐scale epidemic with a slow average spatial spread in wild boar subpopulations (approximately from 1 in Lithuania and Poland to 2 km/month in Estonia and Latvia). The number of positive samples in hunted wild boar peaks in winter which can be explained by human activity patterns (significant hunting activity over winter). The number of positive samples in wild boar found dead peaks in summer. This could be related to the epidemiology of the disease and/or the biology of wild boar; however, this needs further investigation. Virus prevalence in hunted wild boar is very low (0.04–3%), without any apparent trend over time. Apparent virus prevalence at country level in wild boar found dead in affected countries ranges from 60% to 86%, with the exception of Poland, where values between 0.5% and 1.42%, were observed. Since the beginning of the epidemic, the apparent antibody prevalence in hunted wild boar has always been lower than the apparent virus prevalence, indicating an unchanged epidemiological/immunological situation. The risk factor analysis shows an association between the number of settlements, human and domestic pigs population size or wild boar population density and the presence of ASF in wild boar for Estonia, Latvia and Lithuania.
Collapse
|
40
|
Control of African swine fever epidemics in industrialized swine populations. Vet Microbiol 2016; 197:142-150. [PMID: 27938676 DOI: 10.1016/j.vetmic.2016.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
African swine fever (ASF) is a notifiable infectious disease with a high impact on swine health. The disease is endemic in certain regions in the Baltic countries and has spread to Poland constituting a risk of ASF spread toward Western Europe. Therefore, as part of contingency planning, it is important to explore strategies that can effectively control an epidemic of ASF. In this study, the epidemiological and economic effects of strategies to control the spread of ASF between domestic swine herds were examined using a published model (DTU-DADS-ASF). The control strategies were the basic EU and national strategy (Basic), the basic strategy plus pre-emptive depopulation of neighboring swine herds, and intensive surveillance of herds in the control zones, including testing live or dead animals. Virus spread via wild boar was not modelled. Under the basic control strategy, the median epidemic duration was predicted to be 21days (5th and 95th percentiles; 1-55days), the median number of infected herds was predicted to be 3 herds (1-8), and the total costs were predicted to be €326 million (€256-€442 million). Adding pre-emptive depopulation or intensive surveillance by testing live animals resulted in marginal improvements to the control of the epidemics. However, adding testing of dead animals in the protection and surveillance zones was predicted to be the optimal control scenario for an ASF epidemic in industrialized swine populations without contact to wild boar. This optimal scenario reduced the epidemic duration to 9days (1-38) and the total costs to €294 million (€257-€392 million). Export losses were the driving force of the total costs of the epidemics.
Collapse
|
41
|
Sastre P, Gallardo C, Monedero A, Ruiz T, Arias M, Sanz A, Rueda P. Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet Res 2016; 12:206. [PMID: 27633968 PMCID: PMC5025629 DOI: 10.1186/s12917-016-0831-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022] Open
Abstract
Background African swine fever (ASF) is a viral infectious disease of domestic and wild suids of all breeds and ages, causing a wide range of hemorrhagic syndromes and frequently characterized by high mortality. The disease is endemic in Sub-Saharan Africa and Sardinia. Since 2007, it has also been present in different countries of Eastern Europe, where control measures have not been effective so far. The continued spread poses a serious threat to the swine industry worldwide. In the absence of vaccine, early detection of infected animals is of paramount importance for control of the outbreak, to prevent the transmission of the virus to healthy animals and subsequent spreading of the disease. Current laboratory diagnosis is mainly based on virological methods (antigen and genome detection) and serodiagnosis. Results In the present work, a Lateral Flow Assay (LFA) for antigen detection has been developed and evaluated. The test is based on the use of a MAb against VP72 protein of ASFV, the major viral capsid protein and highly immunogenic. First experiments using VP72 viral and recombinant protein or inactivated culture virus showed promising results with a sensitivity similar to that of a commercially available Antigen-ELISA. Moreover, these strips were tested with blood from experimentally infected pigs and field animals and the results compared with those of PCR and Antigen-ELISA. For the experimentally infected samples, there was an excellent correlation between the LFA and the ELISA, while the PCR always showed to be more sensitive (38 % positive samples by PCR versus 27 % by LFA). The LFA was demonstrated to be positive for animals with circulating virus levels exceeding 104 HAU. With the field samples, once again, the PCR detected more positives than either the Antigen-ELISA or LFA, although here the number of positive samples scored by the LFA exceeded the values obtained with the Antigen-ELISA, showing 60 % positivity vs 48 % for the ELISA. For the two groups of sera, the specificity was close to 100 % indicating that hardly any false positive samples were found. Conclusions The newly developed LFA allows rapid and reliable detection of ASFV, at field and laboratory level, providing a new useful tool for control programs and in situations where laboratory support and skilled personnel are limited.
Collapse
Affiliation(s)
- P Sastre
- Inmunología y Genética Aplicada S. A. (INGENASA), Madrid, Spain.
| | - C Gallardo
- European Union Reference Laboratory for ASF (EURL), Centro de Investigación en Sanidad Animal, INIA, Madrid, Spain
| | - A Monedero
- Inmunología y Genética Aplicada S. A. (INGENASA), Madrid, Spain
| | - T Ruiz
- Inmunología y Genética Aplicada S. A. (INGENASA), Madrid, Spain
| | - M Arias
- European Union Reference Laboratory for ASF (EURL), Centro de Investigación en Sanidad Animal, INIA, Madrid, Spain
| | - A Sanz
- Inmunología y Genética Aplicada S. A. (INGENASA), Madrid, Spain
| | - P Rueda
- Inmunología y Genética Aplicada S. A. (INGENASA), Madrid, Spain
| |
Collapse
|
42
|
Bosch J, Rodríguez A, Iglesias I, Muñoz MJ, Jurado C, Sánchez-Vizcaíno JM, de la Torre A. Update on the Risk of Introduction of African Swine Fever by Wild Boar into Disease-Free European Union Countries. Transbound Emerg Dis 2016; 64:1424-1432. [PMID: 27354186 DOI: 10.1111/tbed.12527] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/26/2022]
Abstract
Despite efforts to prevent the appearance and spread of African swine fever (ASF) in the European Union, several Member States are now affected (Lithuania, Poland, Latvia and Estonia). Disease appearance in 2014 was associated with multiple entrances linked to wild boar movement from endemic areas (EFSA Journal, 8, 2015, 1556), but the risk of new introductions remains high (Gallardo et al., Porcine Health Management, 1, and 21) as ASF continues to be active in endemic countries (Russian Federation, Belarus and Ukraine). Since 2014, the number of ASF notifications has increased substantially, particularly in wild boar (WB), in parallel with slow but constant geographical advance of the disease. This situation suggests a real risk of further disease spread into other Member States, posing a great threat to pig production in the EU. Following the principles of the risk-based veterinary surveillance, this article applies a methodology developed by De la Torre et al. (Transboundary and Emerging Diseases, 62, and 272) to assess the relative risk of new introductions of ASF by natural movements of WB according to the current epidemiological situation. This update incorporates the most recent available data and an improved version of the most important risk estimator: an optimized cartographic tool of WB distribution to analyse wild boar suitable habitat. The highest relative risk values were estimated for Slovakia (5) and Romania (5), followed by Finland (4), Czech Republic (3) and Germany (3). Relative risk for Romania and Finland is associated mainly with disease entrance from endemic areas such as the Russian Federation and Ukraine, where the disease is currently spreading; relative risk for Germany and Czech Republic is associated mainly with the potential progress of the disease through the EU, and relative risk for Slovakia is associated with both pathways. WB habitat is the most important risk estimator, whereas WB density is the least significant, suggesting that WB presence is more relevant than density. These results can provide actionable advice for dealing with risk. They can be directly used to inform risk-based national strategies and identify countries that may need to pay greater attention to surveillance or conduct additional evaluations at the subnational level.
Collapse
Affiliation(s)
- J Bosch
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Madrid, Spain
| | - A Rodríguez
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Madrid, Spain
| | - I Iglesias
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Madrid, Spain
| | - M J Muñoz
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Madrid, Spain
| | - C Jurado
- Center VISAVET and Animal Health Department, Universidad Complutense de Madrid, Madrid, Spain
| | - J M Sánchez-Vizcaíno
- Center VISAVET and Animal Health Department, Universidad Complutense de Madrid, Madrid, Spain
| | - A de la Torre
- Animal Health Research Center, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Madrid, Spain
| |
Collapse
|
43
|
Halasa T, Boklund A, Bøtner A, Toft N, Thulke HH. Simulation of Spread of African Swine Fever, Including the Effects of Residues from Dead Animals. Front Vet Sci 2016; 3:6. [PMID: 26870740 PMCID: PMC4735426 DOI: 10.3389/fvets.2016.00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
To study the spread of African swine fever (ASF) within a pig unit and the impact of unit size on ASF spread, a simulation model was created. In the model, an animal can be in one of the following stages: susceptible, latent, subclinical, clinical, or recovered. Animals can be infectious during the subclinical stage and are fully infectious during the clinical stage. ASF virus (ASFV) infection through residues of dead animals in the slurries was also modeled in an exponentially fading-out pattern. Low and high transmission rates for ASFV were tested in the model. Robustness analysis was carried out in order to study the impact of uncertain parameters on model predictions. The results showed that the disease may fade out within the pig unit without a major outbreak. Furthermore, they showed that spread of ASFV is dependent on the infectiousness of subclinical animals and the residues of dead animals, the transmission rate of the virus, and importantly the unit size. Moreover, increasing the duration of the latent or the subclinical stages resulted in longer time to disease fade out. The proposed model is a simple and robust tool simulating the spread of ASFV within a pig house taking into account dynamics of ASFV spread and the unit size. The tool can be implemented in simulation models of ASFV spread between herds.
Collapse
Affiliation(s)
- Tariq Halasa
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Anette Boklund
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Anette Bøtner
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Nils Toft
- National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Hans-Hermann Thulke
- Department of Ecological Modeling, Helmholtz Center for Environmental Research (UFZ) , Leipzig , Germany
| |
Collapse
|
44
|
Gallardo MC, Reoyo ADLT, Fernández-Pinero J, Iglesias I, Muñoz MJ, Arias ML. African swine fever: a global view of the current challenge. Porcine Health Manag 2015; 1:21. [PMID: 28405426 PMCID: PMC5382474 DOI: 10.1186/s40813-015-0013-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022] Open
Abstract
African Swine Fever (ASF) is an important contagious haemorrhagic viral disease affecting swine whose notification is mandatory due to its high mortality rates and the great sanitary and socioeconomic impact it has on international trade in animal and swine products. This disease only affects porcine species, both wild and domestic, and produces a variety of clinical signs such as fever and functional disorders of the digestive and respiratory systems. Lesions are mainly characterized by congestive-haemorrhagic alterations. ASF epidemiology varies significantly between countries, regions and continents, since it depends on the characteristics of the virus in circulation, the presence of wild hosts and reservoirs, environmental conditions and human social behaviour. Furthermore, a specific host will not necessarily always play the same active role in the spread and maintenance of ASF in a particular area. Currently, ASF is endemic in most sub-Saharan African countries where wild hosts and tick vectors (Ornithodoros) play an important role acting as biological reservoirs for the virus. In Europe, the disease has been endemic since 1978 on the island of Sardinia (Italy) and since 2007, when it was first reported in Georgia, in a number of Eastern European countries. It is also endemic in certain regions of the Russia Federation, where domestic pig and wild boar populations are widely affected. By contrast, in the affected eastern European Union (EU) countries where ASF is currently as epidemic, the on-going spread of the disease affects mainly wild boar populations located in restricted areas and, to a much less extent, domestic pigs. Unlike most livestock diseases, no vaccine or specific treatment is currently available for ASF. Therefore, disease control is mainly based on early detection and the application of strict sanitary and biosecurity measures. Epidemiology of ASF is very complex by the existence of different virus circulating, reservoirs and a number of scenarios, and the on-going spread of the disease through Africa and Europe. Survivor pigs can remain persistently infected for months which may contribute to virus transmission and thus the spread and maintenance of the disease, thereby complicating attempts to control it.
Collapse
Affiliation(s)
- Ma Carmen Gallardo
- European Union Reference Laboratory (EURL) for African swine fever, INIA-CISA, 28130 Valdeolmos, Madrid Spain.,FAO Reference Centre for African swine fever, INIA-CISA, Valdeolmos, 28130 Madrid Spain
| | - Ana de la Torre Reoyo
- FAO Reference Centre for African swine fever, INIA-CISA, Valdeolmos, 28130 Madrid Spain.,Epidemiology Department, National Institute for Agricultural and Food Research and Technology, Animal Health Research Centre, INIA-CISA, 28130 Valdeolmos, Madrid Spain
| | - Jovita Fernández-Pinero
- European Union Reference Laboratory (EURL) for African swine fever, INIA-CISA, 28130 Valdeolmos, Madrid Spain.,FAO Reference Centre for African swine fever, INIA-CISA, Valdeolmos, 28130 Madrid Spain
| | - Irene Iglesias
- Epidemiology Department, National Institute for Agricultural and Food Research and Technology, Animal Health Research Centre, INIA-CISA, 28130 Valdeolmos, Madrid Spain
| | - Ma Jesús Muñoz
- FAO Reference Centre for African swine fever, INIA-CISA, Valdeolmos, 28130 Madrid Spain.,Epidemiology Department, National Institute for Agricultural and Food Research and Technology, Animal Health Research Centre, INIA-CISA, 28130 Valdeolmos, Madrid Spain
| | - Ma Luisa Arias
- European Union Reference Laboratory (EURL) for African swine fever, INIA-CISA, 28130 Valdeolmos, Madrid Spain.,FAO Reference Centre for African swine fever, INIA-CISA, Valdeolmos, 28130 Madrid Spain
| |
Collapse
|
45
|
Simões M, Rino J, Pinheiro I, Martins C, Ferreira F. Alterations of Nuclear Architecture and Epigenetic Signatures during African Swine Fever Virus Infection. Viruses 2015; 7:4978-96. [PMID: 26389938 PMCID: PMC4584302 DOI: 10.3390/v7092858] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
Viral interactions with host nucleus have been thoroughly studied, clarifying molecular mechanisms and providing new antiviral targets. Considering that African swine fever virus (ASFV) intranuclear phase of infection is poorly understood, viral interplay with subnuclear domains and chromatin architecture were addressed. Nuclear speckles, Cajal bodies, and promyelocytic leukaemia nuclear bodies (PML-NBs) were evaluated by immunofluorescence microscopy and Western blot. Further, efficient PML protein knockdown by shRNA lentiviral transduction was used to determine PML-NBs relevance during infection. Nuclear distribution of different histone H3 methylation marks at lysine’s 9, 27 and 36, heterochromatin protein 1 isoforms (HP1α, HPβ and HPγ) and several histone deacetylases (HDACs) were also evaluated to assess chromatin status of the host. Our results reveal morphological disruption of all studied subnuclear domains and severe reduction of viral progeny in PML-knockdown cells. ASFV promotes H3K9me3 and HP1β foci formation from early infection, followed by HP1α and HDAC2 nuclear enrichment, suggesting heterochromatinization of host genome. Finally, closeness between DNA damage response factors, disrupted PML-NBs, and virus-induced heterochromatic regions were identified. In sum, our results demonstrate that ASFV orchestrates spatio-temporal nuclear rearrangements, changing subnuclear domains, relocating Ataxia Telangiectasia Mutated Rad-3 related (ATR)-related factors and promoting heterochromatinization, probably controlling transcription, repressing host gene expression, and favouring viral replication.
Collapse
Affiliation(s)
- Margarida Simões
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Inês Pinheiro
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| | - Carlos Martins
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Fernando Ferreira
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|