1
|
Le VTT, Huynh TH, Chen LY, Praristiya MRS, Lin HY, Lai KH, Lee YL, Chen LG, Wang CC. Safety evaluation of Plukenetia volubilis seeds: a metabolomic profiling and network toxicology approach. RSC Adv 2024; 14:29319-29329. [PMID: 39285883 PMCID: PMC11403395 DOI: 10.1039/d4ra03767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis) seeds and oil have been integrated into daily diets. However, scientific reports have raised concerns regarding potential health risks associated with saponins and alkaloids in this seeds. This study employed a combination analysis using proton-NMR, GC-MS, LC-QTOF, and GNPS molecular networking to evaluate the chemical composition of these seeds. In silico toxicology analysis and in vitro cytotoxicity assays were conducted to investigate the potential toxicity effects of Sacha Inchi seeds and their contained metabolites. The results revealed that major components of these seeds are oils (linoleic, linolenic, and oleic acids) and sugars, with minor amounts of phytosterols and trigonelline, a pyridine alkaloid. GNPS analysis suggested the absence of saponins, instead, it identified trigonelline and a few other nitrogen-containing metabolites (amino acids and oligopeptides). In silico toxicology analysis indicated that this sample did not exhibit toxicity. Furthermore, in vitro cytotoxicity screening demonstrated no cytotoxic effects against NIH-3T3 cells, even at 400 μg mL-1. In general, these findings collectively indicated the absence of saponins, the presence of phytosterols and trigonellin (a pyridine alkaloid), and a low safety risk related to saponin and alkaloid content in the Sacha Inchi seeds.
Collapse
Affiliation(s)
- Vinh-Tuyen T Le
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
- Department of Pharmacognosy - Traditional Pharmacy - Pharmaceutical Botany, College of Pharmacy, Can Tho University of Medicine and Pharmacy Can Tho 941 Vietnam
| | - Thanh Hao Huynh
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
| | - Lo-Yun Chen
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
| | - Muhammad Riki Shindi Praristiya
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
- Pharmacy Program - College of Health Sciences Darul Azhar Batulicin Tanah Bumbu South Borneo 722 Indonesia
| | - Hung-Yu Lin
- Department of Applied Chemistry, Chaoyang University of Technology Taichung 413 Taiwan
- Department of Food Science, Tunghai University Taichung 407 Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei 110 Taiwan
| | - Ya-Lin Lee
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute Taichung 413 Taiwan
| | - Lih-Geeng Chen
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei 110 Taiwan
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University Chiayi 600 Taiwan
| | - Ching-Chiung Wang
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University Taipei 110 Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei 110 Taiwan
| |
Collapse
|
2
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
3
|
Peloso M, Minkoumba Sonfack G, Prizio I, Baraldini Molgora E, Pedretti G, Fedrizzi G, Caprai E. Climate Effects on Ergot and Ergot Alkaloids Occurrence in Italian Wheat. Foods 2024; 13:1907. [PMID: 38928849 PMCID: PMC11202928 DOI: 10.3390/foods13121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, there has been an intensification of weather variability worldwide as a result of climate change. Some regions have been affected by drought, while others have experienced more intense rainfall. The incidence and severity of moldy grain and mycotoxin contamination during the growing and harvesting seasons have increased as a result of these weather conditions. Additionally, torrential rains and wet conditions may cause delays in grain drying, leading to mold growth in the field. In July 2023, a wheat field in Lecco (Lombardy, Italy) was affected by torrential rains that led to the development of the Claviceps fungi. In the field, dark sclerotia were identified on some ears. Wheat ears, kernels, and sclerotia were collected and analyzed by LC-MS/MS at IZSLER, Food Chemical Department, in Bologna. The wheat ears, kernels, and sclerotia were analyzed for 12 ergot alkaloids (EAs) according to (EU) Regulation 2023/915 (ergocornine/ergocorninine; ergocristine/ergocristinine; ergocryptine/ergocryptinine; ergometrine/ergometrinine; ergosine/ergosinine; ergotamine/ergotaminine), after QuEChERS (Z-Sep/C18) purification. The analyzed sclerotia showed significant differences in total alkaloid content that vary between 0.01 and 0.5% (w/w), according to the results of the 2017 EFSA scientific report. EAs detected in sclerotia were up to 4951 mg/kg, in wheat ears up to 33 mg/kg, and in kernels were 1 mg/kg. Additional mycotoxins, including ochratoxin A, deoxynivalenol, zearalenone, fumonisins, T2-HT2 toxins, and aflatoxins, were investigated in wheat kernels after purification with immunoaffinity columns (IAC). The analysis revealed the presence of deoxynivalenol in wheat kernels at a concentration of 2251 µg/kg. It is expected that climate change will increase the frequency of extreme weather events. In order to mitigate the potential risks associated with mycotoxin-producing fungi and to ensure the protection of human health, it is suggested that official controls be implemented in the field.
Collapse
Affiliation(s)
- Mariantonietta Peloso
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Gaetan Minkoumba Sonfack
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Ilaria Prizio
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Eleonora Baraldini Molgora
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | | | - Giorgio Fedrizzi
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Elisabetta Caprai
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| |
Collapse
|
4
|
Berzina Z, Pavlenko R, Bartkiene E, Bartkevics V. Mycotoxins and pyrrolizidine alkaloids in herbal dietary supplements. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:180-192. [PMID: 38629617 DOI: 10.1080/19393210.2024.2332516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
The market demand for herbal dietary supplements is rapidly growing and such products are becoming more common and accessible to consumers. However, the knowledge about their safety remains incomplete. Herbal dietary supplements are one of the food groups that can contribute significantly to human health concerns arising from chronic exposure to pyrrolizidine alkaloids and mycotoxins. This study aimed to simultaneously determine 79 natural contaminants, including mycotoxins, as well as pyrrolizidine and tropane alkaloids in herbal dietary supplements in one analytical run. Exposure assessment and human health risks were assessed for all compounds included in this study. The total concentration of naturally occurring contaminants in herbal dietary supplements reached 5.3 mg kg-1 and the most frequently detected mycotoxins were tentoxin and alternariol monomethyl ether. The latter was detected with the highest frequency, reaching concentrations up to 2.5 mg kg-1. The obtained results indicate a potential risk to public health related to herbal dietary supplement consumption.
Collapse
Affiliation(s)
- Zane Berzina
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
5
|
Cvetanoska M, Pocrnić M, Stefova M, Galić N, Petreska Stanoeva J. UHPLC-Q-TOF analysis of pyrrolizidine alkaloids in North-Macedonian honey. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:5-15. [PMID: 37881029 DOI: 10.1080/19393210.2023.2266701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Honey contaminated with pyrrolizidine alkaloids (PAs) could pose a risk for human consumption, being a widely consumed food product. A fast and simple LC/MS method for the analysis of pyrrolizidine alkaloids in honey was optimised to collect occurrence data. The extraction efficiency was evaluated by a systematic study of multiple solvent mixtures and clean-up procedures. The best results for PA extraction were obtained using a formic acid/methanol mixture with subsequent clean-up by the QuEChERS method, resulting in a mean recovery range of 91.8-102%. The method validation showed satisfactory intra-day (RSD < 5.1%) and inter-day precision (RSD < 9.1%). The proposed method was applied to 14 samples. A total of six PAs and two N-oxides were detected, with levels between 89 and 8188 µg/kg. This assessment highlights the potential risk of intoxication and the need for further investigations regarding an effective quality system for manufacturers to control PAs in honey.
Collapse
Affiliation(s)
- Marinela Cvetanoska
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Marijana Pocrnić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marina Stefova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| |
Collapse
|
6
|
Alhejji Y, Widjaja F, Tian S, Hoekstra T, Wesseling S, Rietjens IM. In vitro-in silico study on the influence of dose, fraction bioactivated and endpoint used on the relative potency value of pyrrolizidine alkaloid N-oxides compared to parent pyrrolizidine alkaloids. Curr Res Toxicol 2024; 6:100160. [PMID: 38469320 PMCID: PMC10926302 DOI: 10.1016/j.crtox.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxides (PA-N-oxides) are phytotoxins found in food, feed and the environment. Yet, limited data exist from which the relative potency of a PA-N-oxide relative to its corresponding PA (REPPANO to PA) can be defined. This study aims to investigate the influence of dose, fraction bioactivated and endpoint on the REPPANO to PA of a series of pyrrolizidine N-oxides using in vitro-in silico data and physiologically based kinetic (PBK) modeling. The first endpoint used to calculate the REPPANO to PA was the ratio of the area under the concentration-time curve of PA resulting from an oral dose of PA-N-oxide divided by that from an equimolar dose of PA (Method 1). The second endpoint was the ratio of the amount of pyrrole-protein adducts formed under these conditions (Method 2). REPPANO to PA values appeared to decrease with increasing dose, with the decrease for Method 2 already starting at lower dose level than for Method 1. At dose levels as low as estimated daily human intakes, REPPANO to PA values amounted to 0.92, 0.81, 0.78, and 0.68 for retrorsine N-oxide, seneciphylline N-oxide, riddelliine N-oxide and senecivernine N-oxide, respectively, and became independent of the dose or fraction bioactivated, because no GSH depletion, saturation of PA clearance or PA-N-oxide reduction occurs. Overall, the results demonstrate the strength of using PBK modeling in defining REPPANO to PA values, thereby substantiating the use of the same approach for other PA-N-oxides for which in vivo data are lacking.
Collapse
Affiliation(s)
- Yasser Alhejji
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Frances Widjaja
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| | - Shenghan Tian
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| | - Thomas Hoekstra
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| | - Ivonne M.C.M. Rietjens
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| |
Collapse
|
7
|
Lim GS, Er JC, Bhaskaran K, Sin P, Shen P, Lee KM, Teo GS, Chua JMC, Chew PCF, Ang WM, Lee J, Wee S, Wu Y, Li A, Chan JSH, Aung KT. Singapore's Total Diet Study (2021-2023): Study Design, Methodology, and Relevance to Ensuring Food Safety. Foods 2024; 13:511. [PMID: 38397488 PMCID: PMC10887509 DOI: 10.3390/foods13040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
A total diet study is often used to evaluate a population's baseline dietary exposure to chemical hazards from across the diet. In 2021-2023, Singapore carried out a TDS, and this article presents an overview of the study design and methodological selections in Singapore's TDS, as well as its relevance to ensuring food safety. A food consumption survey was conducted on Singapore citizens and permanent residents, where food consumption patterns of the Singapore population were identified. The selection of chemical hazards and foods for inclusion in Singapore's TDS, as well as principal considerations on sampling, food preparation, and analytical testing are discussed. Commonly consumed foods by the Singapore population in food categories such as grain and grain-based products, meat and meat products, fish and seafood, vegetables, fruits, milk and dairy products were included in this study, and mean concentrations of chemicals tested in each food category were reported, with food categories possessing higher levels identified. Future work will include dietary exposure assessments for the population and analysis of the contributions by food and cooking method.
Collapse
Affiliation(s)
- Geraldine Songlen Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kalpana Bhaskaran
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Paul Sin
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Ping Shen
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kah Meng Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Guat Shing Teo
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joachim Mun Choy Chua
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Peggy Chui Fong Chew
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Wei Min Ang
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanna Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Sheena Wee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| |
Collapse
|
8
|
Letsyo E, Madilo FK, Effah-Manu L. Pyrrolizidine alkaloid contamination of food in Africa: A review of current trends and implications. Heliyon 2024; 10:e24055. [PMID: 38230234 PMCID: PMC10789634 DOI: 10.1016/j.heliyon.2024.e24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) contamination of foodstuffs has become a topical issue in recent years on account of its potential hepatotoxicity to consumers. This review therefore highlights human exposure to PAs across Africa, focusing on their occurrence, current trends of food contamination, and their associated health implications. A comprehensive search of peer-scientific literature and relevant databases, PubMed, Google Scholar, Science Direct, Web of Science and Scopus, was conducted from 2001 to 2023 focusing mainly on foodstuffs, including grains, herbs, teas, honey, and livestock products. The findings revealed that PA contamination is a prevalent issue in several African countries, with the primary sources of contamination attributed to the consumption of honey and the use of PA plants as herbs in food preparations. Additionally, poor farming practices have been found to influence the presence and levels of PAs in foodstuffs. To mitigate PA contamination in food and safeguarding public health across the continent, several strategies are proposed, including the implementation of stringent regulatory and quality control measures, adoption of Good Agricultural Practices, and public awareness campaigns to educate producers, consumers and beekeepers about the risks associated with PA-contaminated food products.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Felix Kwashie Madilo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Liticia Effah-Manu
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| |
Collapse
|
9
|
Hungerford NL, Zawawi N, Zhu T(E, Carter SJ, Melksham KJ, Fletcher MT. Analysis of Pyrrolizidine Alkaloids in Stingless Bee Honey and Identification of a Botanical Source as Ageratum conyzoides. Toxins (Basel) 2024; 16:40. [PMID: 38251258 PMCID: PMC10819179 DOI: 10.3390/toxins16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Stingless bee honeys (SBHs) from Australian and Malaysian species were analysed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the presence of pyrrolizidine alkaloids (PAs) and the corresponding N-oxides (PANOs) due to the potential for such hepatotoxic alkaloids to contaminate honey as a result of bees foraging on plants containing these alkaloids. Low levels of alkaloids were found in these SBHs when assessed against certified PA standards in targeted analysis. However, certain isomers were identified using untargeted analysis in a subset of honeys of Heterotrigona itama which resulted in the identification of a PA weed species (Ageratum conyzoides) near the hives. The evaluation of this weed provided a PA profile matching that of the SBH of H. itama produced nearby, and included supinine, supinine N-oxide (or isomers) and acetylated derivatives. These PAs lacking a hydroxyl group at C7 are thought to be less hepatoxic. However, high levels were also observed in SBH (and in A. conyzoides) of a potentially more toxic diester PA corresponding to an echimidine isomer. Intermedine, the C7 hydroxy equivalent of supinine, was also observed. Species differences in nectar collection were evident as the same alkaloids were not identified in SBH of G. thoracica from the same location. This study highlights that not all PAs and PANOs are identified using available standards in targeted analyses and confirms the need for producers of all types of honey to be aware of nearby potential PA sources, particularly weeds.
Collapse
Affiliation(s)
- Natasha L. Hungerford
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Norhasnida Zawawi
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Tianqi (Evonne) Zhu
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Steve J. Carter
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Kevin J. Melksham
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Mary T. Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| |
Collapse
|
10
|
Casado N, Morante-Zarcero S, Sierra I. Miniaturized Analytical Strategy Based on μ-SPEed for Monitoring the Occurrence of Pyrrolizidine and Tropane Alkaloids in Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:819-832. [PMID: 38109357 PMCID: PMC10786043 DOI: 10.1021/acs.jafc.3c04805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
Currently, the analysis of trace-level contaminants in food must be addressed following green analytical chemistry principles and with a commitment to the sustainable development goals. Accordingly, a sustainable and ecofriendly microextraction procedure based on μ-SPEed followed by ultrahigh liquid chromatography coupled to ion-trap tandem mass spectrometry analysis was developed to determine the occurrence of pyrrolizidine and tropane alkaloids in honey samples. The μ-SPEed procedure took approximately 3 min per sample, using only 100 μL of organic solvent and 300 μL of diluted sample. The method was properly validated (overall recoveries 72-100% and precision RSD values ≤15%), and its greenness was scored at 0.61 out of 1. The method was applied to different honey samples, showing overall contamination levels from 32 to 177 μg/kg of these alkaloids. Atropine was found in all the samples, whereas retrorsine N-oxide, lasiocarpine, echimidine, and echimidine N-oxide were the main pyrrolizidine alkaloids in the samples analyzed.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento
de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Sonia Morante-Zarcero
- Departamento
de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Isabel Sierra
- Departamento
de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
- Instituto
de Tecnologías para la Sostenibilidad, Universidad Rey Juan
Carlos, C/Tulipán
s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
11
|
Abdalfattah S, Knorz C, Ayoobi A, Omer EA, Rosellini M, Riedl M, Meesters C, Efferth T. Identification of Antagonistic Action of Pyrrolizidine Alkaloids in Muscarinic Acetylcholine Receptor M1 by Computational Target Prediction Analysis. Pharmaceuticals (Basel) 2024; 17:80. [PMID: 38256913 PMCID: PMC10818892 DOI: 10.3390/ph17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are one of the largest distributed classes of toxins in nature. They have a wide range of toxicity, such as hepatotoxicity, pulmonary toxicity, neuronal toxicity, and carcinogenesis. Yet, biological targets responsible for these effects are not well addressed. Using methods of computational biology for target identification, we tested more than 200 PAs. We used a machine-learning approach that applies structural similarity for target identification, ChemMapper, and SwissTargetPrediction. The predicted target with high probability was muscarinic acetylcholine receptor M1. The predicted interactions between this target and PAs were further studied by molecular docking-based binding energies using AutoDock and VinaLC, which revealed good binding affinities. The PAs are bound to the same binding pocket as pirenzepine, a known M1 antagonist. These results were confirmed by in vitro assays showing that PAs increased the levels of intracellular calcium. We conclude that PAs are potential acetylcholine receptor M1 antagonists. This elucidates for the first time the serious neuro-oncological toxicities exerted by PA consumption.
Collapse
Affiliation(s)
- Sara Abdalfattah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Caroline Knorz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Akhtar Ayoobi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran 19938 93973, Iran
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Max Riedl
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Christian Meesters
- High Performance Computing Group, University of Mainz, 55131 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| |
Collapse
|
12
|
Jayawickreme K, Świstak D, Ozimek E, Reszczyńska E, Rysiak A, Makuch-Kocka A, Hanaka A. Pyrrolizidine Alkaloids-Pros and Cons for Pharmaceutical and Medical Applications. Int J Mol Sci 2023; 24:16972. [PMID: 38069294 PMCID: PMC10706944 DOI: 10.3390/ijms242316972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heterocyclic organic compounds named pyrrolizidine alkaloids (PAs) belong to a group of alkaloids and are synthesized by either plants or microorganisms. Therefore, they are naturally occurring secondary metabolites. They are found in species applied in the pharmaceutical and food industries, thus a thorough knowledge of their pharmacological properties and toxicology to humans is of great importance for their further safe employment. This review is original because it synthesizes knowledge of plant and microbial PAs, which is unusual in the scientific literature. We have focused on the Boraginaceae family, which is unique due to the exceptional richness and diversity of its PAs in plant species. We have also presented the microbial sources of PAs, both from fungi and bacteria. The structure and metabolism of PAs have been discussed. Our main aim was to summarize the effects of PAs on humans, including both negative, toxic ones, mainly concerning hepatotoxicity and carcinogenicity, as well as potentially positive ones for pharmacological and medical applications. We have collected the results of studies on the anticancer activity of PAs from plant and microbial sources (mainly Streptomyces strains) and on the antimicrobial activity of PAs on different strains of microorganisms (bacteria and fungi). Finally, we have suggested potential applications and future perspectives.
Collapse
Affiliation(s)
- Kavindi Jayawickreme
- Student Scientific Club of Phytochemists, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Dawid Świstak
- Student Scientific Club of Phytochemists, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Emilia Reszczyńska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080 Lublin, Poland
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| |
Collapse
|
13
|
Rollo E, Catellani D, Dall'Asta C, Suman M. QuEChERS method combined to liquid chromatography high-resolution mass spectrometry for the accurate and sensitive simultaneous determination of pyrrolizidine and tropane alkaloids in cereals and spices. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4969. [PMID: 37604670 DOI: 10.1002/jms.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023]
Abstract
Within the last decades, in the EU, there has been an increasing interest in toxic plant alkaloids as food contaminants, especially after the continuous and growing consumption of plant-based foods compared with food of animal origin. In this regard, the once neglected presence of these tropane alkaloids (TAs) and pyrrolizidine alkaloids (PAs) has recently been reconsidered by the European Food Safety Authority, highlighting the lack of data and the need to develop risk assessment strategies. For this reason, the emphasis has been placed on detecting their occurrence in food through the development of accurate and sensitive analytical methods to achieve the determination of these compounds. The present study aims to elaborate and validate an analytical method based on QuEChERS sample preparation approach, exploiting the UHPLC coupled to the HRMS to simultaneously identify and quantify 21 PAs and two TAs in cereals and spices. For TAs, the obtained limit of detection (LOD) is 0.1 μg·kg-1 and the limit of quantification (LOQ) is 0.4 μg·kg-1 , while for PAs, the LODs values ranging between 0.2 to 0.3 μg·kg-1 and the LOQ, between 0.4 and 0.8 μg·kg-1 , ensuring compliance with the recently established European Regulations. Several commercial samples were analysed to further verify the applicability of this comprehensive analytical approach.
Collapse
Affiliation(s)
- Eleonora Rollo
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dante Catellani
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
| | | | - Michele Suman
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department for Sustainable Food Process, Catholic University Sacred Heart, Piacenza, Italy
| |
Collapse
|
14
|
Gumus ZP. Assessment of Toxic Pyrrolizidine and Tropane Alkaloids in Herbal Teas and Culinary Herbs Using LC-Q-ToF/MS. Foods 2023; 12:3572. [PMID: 37835225 PMCID: PMC10572649 DOI: 10.3390/foods12193572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pyrrolizidine alkaloids are secondary metabolites produced by plants as a defense against insects. These can cause acute or chronic toxicity in humans. Therefore, avoiding potential poisoning from the consumption of tea and culinary plants contaminated with pyrrolizidine alkaloids (PAs), pyrrolizidine alkaloids N-oxides (PANOs), and tropane alkaloids (TAs) is important for human health and food safety. Therefore, it is important to determine the levels of these substances with reliable and highly accurate methods. In this study, the PAs, PANOs, and TAs in herbal teas and culinary herbs sold in Turkish markets were identified and their levels were determined. Thus, the general profiles of herbal teas and culinary herbs in Turkey were revealed, and the compliance of the total amounts of PA and TA with the regulations was examined. The identification and quantification of 25 PAs and N-oxides and 2 TAs (atropine and scopolamine) in the samples was performed with a liquid chromatography-quadrupole time-of-flight tandem mass spectrometer (LC-Q-ToF/MS). At least a few of these substances were detected in all of the tested herbal teas and culinary herbs. The total contents of the black tea, green tea, mixed tea, flavored tea, chamomile tea, sage tea, linden tea, fennel tea, rosehip tea, peppermint, and thyme samples ranged from 4.6 ng g-1 to 1054.5 ng g-1. The results obtained shed light on the importance of analyzing the total dehydro PA, PANO, and TA amounts in plant-based products consumed in diets with sensitive and accurate methods, and they highlight the necessity of performing these analyses routinely in terms of food safety.
Collapse
Affiliation(s)
- Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey
| |
Collapse
|
15
|
Akuamoa F, Mulder PPJ, Bovee TFH, Rietjens IMCM, Hoogenboom RLAP. Occurrence and associated health risks of pyrrolizidine alkaloids in supplements marketed in Ghana for improved sexual performance. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:301-309. [PMID: 37448098 DOI: 10.1080/19393210.2023.2227961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are noted for their hepatotoxic, genotoxic, and carcinogenic effects in animals and humans following metabolic activation in the liver. In this study, herbal supplements sold in Ghana for sexual improvement were analysed for the presence of 64 PAs using LC-MS/MS analysis. Up to 17 different PAs were identified in 19 out of the 37 samples analysed. The sum of PAs in samples ranged from 5 to 3204 μg kg-1. Since the PA content in the herbal medicinal preparations was generally lower than in honey samples, their presence was mainly attributed to cross-contamination. The observed levels would result in estimated daily intakes from 0.01 to 12 μg per day or 0.0002 to 0.2 μg kg-1 bw day-1 for a person weighing 70 kg. The margins of exposure ranged from 1200 to 1,400,000 with eight samples showing values below 10,000, thus indicating a health concern.
Collapse
Affiliation(s)
- Felicia Akuamoa
- Wageningen Food Safety Research, Wageningen, The Netherlands
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
- Applied Radiation Biology Centre, Ghana Atomic Energy Commission, Accra, Ghana
| | | | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
16
|
Peloso M, Minkoumba Sonfack G, Paduano S, De Martino M, De Santis B, Caprai E. Pyrrolizidine Alkaloids in Food on the Italian Market. Molecules 2023; 28:5346. [PMID: 37513219 PMCID: PMC10385305 DOI: 10.3390/molecules28145346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Pyrrolizidine alkaloids (PAs) are secondary metabolites produced by over 6000 plant species worldwide. PAs enter the food chain through accidental co-harvesting of PA-containing weeds and through soil transfer from the living plant to surrounding acceptor plants. In animal studies, 1,2-unsaturated PAs have proven to be genotoxic carcinogens. According to the scientific opinion expressed by the 2017 EFSA, the foods with the highest levels of PA contamination were honey, tea, herbal infusions, and food supplements. Following the EFSA's recommendations, data on the presence of PAs in relevant food were monitored and collected. On 1 July 2022, the Commission Regulation (EU) 2020/2040 came into force, repealed by Commission Regulation (EU) 2023/915, setting maximum levels for the sum of pyrrolizidine alkaloids in certain food. A total of 602 food samples were collected from the Italian market between 2019 and 2022 and were classified as honey, pollen, dried tea, dried herbal infusions, dried herbs, and fresh borage leaves. The food samples were analyzed for their PA content via an in-house LC-MS/MS method that can detect PAs according to Regulation 2023/915. Overall, 42% of the analyzed samples were PA-contaminated, 14% exceeded the EU limits, and the items most frequently contaminated included dried herbs and tea. In conclusion, the number of food items containing considerable amounts of PAs may cause concern because they may contribute to human exposure, especially considering vulnerable populations-most importantly, children and pregnant women.
Collapse
Affiliation(s)
- Mariantonietta Peloso
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Fiorini 5, 40127 Bologna, Italy
| | - Gaetan Minkoumba Sonfack
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Fiorini 5, 40127 Bologna, Italy
| | - Sandra Paduano
- Ministry of Health, General Directorate for Hygiene and Food Safety and Nutrition, Via G. Ribotta, 5, 00144 Rome, Italy
| | - Michele De Martino
- Ministry of Health, General Directorate for Hygiene and Food Safety and Nutrition, Via G. Ribotta, 5, 00144 Rome, Italy
| | - Barbara De Santis
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Elisabetta Caprai
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Fiorini 5, 40127 Bologna, Italy
| |
Collapse
|
17
|
Sousa AC, Ribeiro C, Gonçalves VMF, Pádua I, Leal S. Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview. Crit Rev Anal Chem 2023:1-25. [PMID: 37300809 DOI: 10.1080/10408347.2023.2218476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Cláudia Ribeiro
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Inês Pádua
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Epidemiology Unit - Institute of Public Health of University of Porto (ISPUP), Porto, Portugal
| | - Sandra Leal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CINTESIS-RISE, MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Lehmann A, Geburek I, These A, Hessel-Pras S, Hengstler JG, Albrecht W, Mielke H, Müller-Graf C, Yang X, Kloft C, Hethey C. PBTK modeling of the pyrrolizidine alkaloid retrorsine to predict liver toxicity in mouse and rat. Arch Toxicol 2023; 97:1319-1333. [PMID: 36906727 PMCID: PMC10110657 DOI: 10.1007/s00204-023-03453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Retrorsine is a hepatotoxic pyrrolizidine alkaloid (PA) found in herbal supplements and medicines, food and livestock feed. Dose-response studies enabling the derivation of a point of departure including a benchmark dose for risk assessment of retrorsine in humans and animals are not available. Addressing this need, a physiologically based toxicokinetic (PBTK) model of retrorsine was developed for mouse and rat. Comprehensive characterization of retrorsine toxicokinetics revealed: both the fraction absorbed from the intestine (78%) and the fraction unbound in plasma (60%) are high, hepatic membrane permeation is dominated by active uptake and not by passive diffusion, liver metabolic clearance is 4-fold higher in rat compared to mouse and renal excretion contributes to 20% of the total clearance. The PBTK model was calibrated with kinetic data from available mouse and rat studies using maximum likelihood estimation. PBTK model evaluation showed convincing goodness-of-fit for hepatic retrorsine and retrorsine-derived DNA adducts. Furthermore, the developed model allowed to translate in vitro liver toxicity data of retrorsine to in vivo dose-response data. Resulting benchmark dose confidence intervals (mg/kg bodyweight) are 24.1-88.5 in mice and 79.9-104 in rats for acute liver toxicity after oral retrorsine intake. As the PBTK model was built to enable extrapolation to different species and other PA congeners, this integrative framework constitutes a flexible tool to address gaps in the risk assessment of PA.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anja These
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
19
|
Roncada P, Isani G, Peloso M, Dalmonte T, Bonan S, Caprai E. Pyrrolizidine Alkaloids from Monofloral and Multifloral Italian Honey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5410. [PMID: 37048023 PMCID: PMC10094242 DOI: 10.3390/ijerph20075410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary metabolites produced by plants as a self-defense against insects. After bioactivation in the liver, some PAs can cause acute or chronic toxicity in humans. The aim of this study was to determine the presence of PAs in 121 samples of monofloral and multifloral honey from three different Italian regions (Friuli-Venezia Giulia, Marche and Calabria) to meet the European Food Safety Authority (EFSA) suggestion. An in-house liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was validated according to European Union Reference Laboratory (EURL) performance criteria. This method allowed the detection and quantification of 35 PAs. Of the 121 honey samples, 38 (31%), mostly from Calabria, contained PAs. The total content of the PAs ranged from 0.9 µg/kg to 33.1 µg/kg. In particular, echimidine was the most prevalent PA. A rapid human exposure assessment to PAs in honey and a risk characterization was performed using the EFSA RACE tool. The assessment highlighted a potential health concern only for toddlers who frequently consume elevated quantities of honey. This study showed a low presence of PAs in Italian honey; however, the importance of continuously monitoring these compounds is stressed, along with the suggestion that the relevant authorities establish maximum limits to guarantee support for producers and consumer safety.
Collapse
Affiliation(s)
- Paola Roncada
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, 40064 Ozzano dell’Emilia, Italy
| | - Gloria Isani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, 40064 Ozzano dell’Emilia, Italy
| | - Mariantonietta Peloso
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, IZSLER, Via Fiorini, 5, 40127 Bologna, Italy
| | - Thomas Dalmonte
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, 40064 Ozzano dell’Emilia, Italy
| | - Stefania Bonan
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, IZSLER, Via Fiorini, 5, 40127 Bologna, Italy
| | - Elisabetta Caprai
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, IZSLER, Via Fiorini, 5, 40127 Bologna, Italy
| |
Collapse
|
20
|
Lin F, Zhao L, Wang Y, Ye Y, Liu J. Comparative Pharmacokinetic Study of Two Pyrrolizidine Alkaloids Lasiocarpine and Heliotrine in Rats. PLANTA MEDICA 2023; 89:571-579. [PMID: 36170857 DOI: 10.1055/a-1915-5456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lasiocarpine (LAS) and heliotrine (HEL) are two different ester types of toxic pyrrolizidine alkaloids (PAs): open-chain diester and monoester. However, the pharmacokinetics of these two types of PAs in rats have not been reported. In the present study, two LC-MS/MS methods for determining LAS and HEL were established and validated. The methods exhibited good linearity, accuracy, and precision and were then applied to a comparative pharmacokinetic study. After intravenous administration to male rats at 1 mg/kg, the AUC0-t values of LAS and HEL were 336 ± 26 ng/mL × h and 170 ± 5 ng/mL × h. After oral administration at 10 mg/kg, the AUC0-t of LAS was much lower than that of HEL (18.2 ± 3.8 ng/mL × h vs. 396 ± 18 ng/mL × h), while the Cmax of LAS was lower than that of HEL (51.7 ± 22.5 ng/mL × h vs. 320 ± 26 ng/mL × h). The absolute oral bioavailability of LAS was 0.5%, which was significantly lower than that of HEL (23.3%). The results revealed that the pharmacokinetic behaviors of LAS differed from that of HEL.
Collapse
Affiliation(s)
- Feifei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Jiao W, Wang L, Zhu L, Shen T, Shi T, Zhang P, Wang C, Chen H, Wu X, Yang T, Li QX, Hua R. Pyrrolizidine-producing weeds in tea gardens as an indicator of alkaloids in tea. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:50-57. [PMID: 36396606 DOI: 10.1080/19393210.2022.2145507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pyrrolizidine alkaloids (PAs) can be transferred between plants via soil. Indicators of PAs in tea products are useful for tea garden management. In the present work a total of 37 weed species, 37 weed rhizospheric soils and 24 fresh tea leaf samples were collected from tea gardens, in which PAs were detected in 35 weeds species, 21 soil samples and 10 fresh tea leaves samples. In Shexian tea garden, 12.9 μg/kg of intermedine (Im) in one bud plus three leaves, 1.40 and 14.6 μg/kg of intermedine-N-oxide (ImNO) in one bud plus two leaves and one bud plus three leaves were detected, which were transferred from the PA-producing weeds via soil. However, no PAs were detected in fresh tea leaves collected from Langxi tea garden. The results indicated that synthesis of PAs in weeds and their transfer through the weed-soil-fresh tea leaf route varied with soil environments in different tea gardens.
Collapse
Affiliation(s)
- Weiting Jiao
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China.,State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Luyao Wang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China
| | - Lei Zhu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China.,Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, China
| | - Tingting Shen
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China
| | - Taozhong Shi
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China
| | - Ping Zhang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, China
| | - Xiangwei Wu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Rimao Hua
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei, China
| |
Collapse
|
22
|
Lo Piparo E, Christinat N, Badoud F. From Structural Alerts to Signature Fragment Alerts: A Case Study on Pyrrolizidine Alkaloids. Chem Res Toxicol 2023; 36:213-229. [PMID: 36692496 DOI: 10.1021/acs.chemrestox.2c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Even though modeling is considered a valid alternative to mutagenicity testing for substances with known structures, it can be applied for mixtures only if all of the single chemical structures are identified. Within the present work, we investigate a new avenue to exploit computational toxicology for mixtures, such as plant-based food ingredients. Indeed, considering that in the absence of toxicological information, an important early consideration is whether any substance may be genotoxic through the mutagenic mechanism of action, we tried to establish a correspondence between genotoxic structural alerts (SAs) and so-called signature fragment alerts (SFAs). Once this correspondence is established, chromatograms could be screened for chemical features associated with genotoxic alerts. Pyrrolizidine alkaloids (PAs), a large group of natural toxins (several of them known as genotoxic) were used as a case study because their early identification would bring significant benefits. The method was built using 56 PA pure standards, resulting in the characterization of signature fragment alerts. Finally, the approach was verified in real plant-based samples such as herbal tea and alfalfa, where the screening of signature fragment alerts allowed highlighting quickly the presence of genotoxic PAs in plant-based mixtures. Therefore, the SFA analysis can be used for risk prioritization of newly identified PAs and for their identification in mixtures, contributing to the unnecessary use of animal experimentation for genotoxicity testing.
Collapse
Affiliation(s)
- Elena Lo Piparo
- Food Safety Research, Nestlé Research, CH-1000 Lausanne, Switzerland
| | | | - Flavia Badoud
- Analytical Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| |
Collapse
|
23
|
Eckert E, Lepper H, Hintzsche H. Risk assessment of short-term intake of pyrrolizidine alkaloids in food: derivation of an acute reference dose. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:588-596. [PMID: 36794362 DOI: 10.1080/19440049.2023.2178828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pyrrolizidine alkaloids (PA) are phytochemicals that are known to act as human hepatotoxins and are also considered to be genotoxic carcinogens. Several plant-derived foods are frequently contaminated with PA, like teas and herbal infusions, spices and herbs or certain food supplements. With respect to the chronic toxicity of PA, the carcinogenic potential of PA is generally regarded as the critical toxicological effect. The risk assessment of the short-term toxicity of PA, however, is internationally less consistent. The characteristic pathological syndrome of acute PA toxicity is hepatic veno-occlusive disease. High PA exposure levels may lead to liver failure and even death as documented by several case reports. In the present report, we suggest a risk assessment approach for the derivation of an acute reference dose (ARfD) for PA of 1 µg/kg body weight per day based on a sub-acute animal toxicity study in rats after oral PA administration. The derived ARfD value is further supported by several case reports describing acute human poisoning following accidental PA intake. The here derived ARfD value may be used for PA risk assessment in cases where the short-term toxicity of PA is of interest in addition to the assessment of the long-term risks.
Collapse
Affiliation(s)
- Elisabeth Eckert
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany.,Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hans Lepper
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Henning Hintzsche
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany.,Department of Food Safety, Institute of Food and Nutritional Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Zan K, Wang Z, Hu XW, Li YL, Wang Y, Jin HY, Zuo TT, Ma SC. Pyrrolizidine alkaloids and health risk of three Boraginaceae used in TCM. Front Pharmacol 2023; 14:1075010. [PMID: 37033649 PMCID: PMC10076571 DOI: 10.3389/fphar.2023.1075010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Objective: The aim of this study was to systematically explore the pyrrolizidine alkaloids (PAs) type, content and risk assessment in the three Boraginaceae used in TCM, involving Arnebia euchroma (AE), A. guttata (AG), and Lithospermum erythrorhizon (LE). Method: A UHPLC-MS/MS method was established to simultaneously determine eight pyrrolizidine alkaloids (PAs), namely intermedine, lycopsamine, intermedine N-oxide, lycopsamine N-oxide, 7-acetyllycopsamine, 7-acetyllycopsamine N-oxide, echimidine N-oxide, and echimidine in the three herbs. Based on these results, the risk assessment was explored using the routine margin of exposure (MOE) combined with relative potency (REP) for oral and external usage, respectively. Results and Conclusion: Imermedine and imermedine N-oxide were common components in the eight tested PAs. 7-acetyllycopsamine and its N-oxide were not detected in AE; echimidine and its N-oxide were not detected in AG; lycopsamine and its N-oxide, 7-acetyllycopsamine and its N-oxide were not detected in LE. The total contents of 8 PAs in 11 batches of AG was341.56-519.51 μg/g; the content in 15 batches of LE was 71.16-515.73 μg/g, and the content in 11 batches of AE was 23.35-207.13 μg/g. Based on these results, the risk assessment was explored using MOE combined with REP for oral and external usage, respectively. The findings of the risk assessment method of PAs based on MOE combined with the REP factor were consistent with the clinical toxicity results. As an oral herb, AE had low risk or no risk due to its low PA contents, and individual batches of LE were medium risk, while attention should be paid to their clinical use.AG was also low risk. The external use of the three Boraginaceae used in TCM was not associated with any risk. This study systematically explored the PA type and content of the three Boraginaceae used in TCM. Additionally, the refined risk assessment of PAs based on REP provided a more scientific basis for quality evaluation and rational use of the medicinal Boraginaceae used in TCM to improve public health.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiao-Wen Hu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yao-Lei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| |
Collapse
|
25
|
Li AP, Shi YP. Effect of Adulteration on Quality and Preliminary Risk Assessment of the Decoction Pieces of Farfarae Flos Based on the Determination of Hepatotoxic Pyrrolizidine Alkaloids by UHPLC-MS/MS. J AOAC Int 2022; 106:192-204. [PMID: 35866688 DOI: 10.1093/jaoacint/qsac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Farfarae Flos (FF) is a frequently used traditional herbal medicine with outstanding antitussive actions. The adulteration of FF decoction pieces is common. OBJECTIVE This study aimed to study the effect of adulteration on the safety and quality of FF decoction pieces. METHODS The proportion of impurities was conducted by cone quartering method. A simple and accurate ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was established to simultaneous determinate three pyrrolizidine alkaloids (PAs) as endogenous toxic compounds in FF. The traditional medicinal parts (flower bud), impurities (pedicel and rhizome) and unselected samples were determined respectively. The values of estimated daily intake (EDI) and margin of exposure (MOE) were used for risk assessment. RESULTS Twenty batches of samples were collected from different habitats, and the proportion of impurities ranged from 17.51% to 41.27%. Pedicel and rhizome were the main impurities, accounting for more than 87.40% of the total impurities. The content of PAs in impurities was significantly higher. The EDI value range was 5.34 to 16.59 μg/kg bw/day, which was much higher than the standard safety value of 7.00 × 10-3 μg/kg bw/day. The MOE values ranges for life long time and shorter exposure were 14.29 to 44.37 and 371.53 to 1153.63, respectively, indicating that at least 80% of the samples had safety risks. Correlation analysis showed that the proportion of adulterated impurities had significant correlation with the values of EDI and MOE. CONCLUSIONS Adulteration of non medicinal parts may significantly increase the risk of medications of FF decoction pieces. HIGHLIGHTS This study provides an efficient methodology reference for the control of PAs and a basis for adulteration to affect the safety and quality of FF decoction pieces.
Collapse
Affiliation(s)
- An-Ping Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 18 Tianshui Middle Road, Lanzhou 730000, PR China.,Gansu Institute for Drug Control, Key Laboratory for Quality Control of Chinese Medicinal Materials and Decoction Pieces, National Medical Products Administration (NMPA), Lanzhou 730000, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 18 Tianshui Middle Road, Lanzhou 730000, PR China
| |
Collapse
|
26
|
Wu H, Fan D, Cheng J. Development and Validation of an UHPLC-MS/MS Method for the Determination of 32 Pyrrolizidine Alkaloids in Chinese Wild Honey. J AOAC Int 2022; 106:56-64. [PMID: 35924956 DOI: 10.1093/jaoacint/qsac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies on pyrrolizidine alkaloid (PA) contamination in honey produced in China are scarce. Previously reported HPLC-MS/MS methods for the determination of PAs in honey often suffer from insufficient separation and uncertainties in PA isomers. OBJECTIVE To develop and validate an Ultra-HPLC (UHPLC)-MS/MS method for baseline separation of PA isomers towards precise determination of 32 PAs in Chinese wild honey. METHODS PAs were extracted from honey samples and separated on an ACQUITY BEH C18 (2.1 mm × 100 mm, 1.7 µm) column with (A) 0.1% formic acid aqueous solution containing 5 mM ammonium acetate and (B) methanol as mobile phase. The column temperature was maintained at 30°C, and flow rate was 0.3 mL/min. Detection was performed by tandem mass spectrometry. The total run time was reduced to 18 min. RESULTS Thirty-one of 32 PAs were baseline separated efficiently within 18 min. The LOD and LOQ were 0.06-0.25 µg/kg and 0.22-0.82 µg/kg, respectively, except for that of clivorine, for which LOD and LOQ were 2.03 and 6.78 µg/kg, respectively. The average recoveries ranged between 66.3 and 95.1% and the average RSDs were 3.2 to 8%. The established method was used to analyze PAs in 22 types of Chinese wild honey, and the predominant PAs found in these honey samples were intermedine and lycopsamine. CONCLUSION A high-throughput method for the determination of isomeric PAs in honey was developed and validated. Five of the 22 types of Chinese wild honey were contaminated with PAs concentrations of 2.2-207.0 µg/kg. HIGHLIGHTS A new method capable of monitoring more PAs and providing better separation than previously reported protocols for the determination of multiclass PAs in honey is established.
Collapse
Affiliation(s)
- Haiping Wu
- GRA (Shanghai) Standard Technology Service Co., Ltd, Research and Development Department, Shanghai 201318, P.R. China
| | - Dingyan Fan
- GRA (Shanghai) Standard Technology Service Co., Ltd, Research and Development Department, Shanghai 201318, P.R. China
| | - Jiangchuang Cheng
- GRA (Shanghai) Standard Technology Service Co., Ltd, Research and Development Department, Shanghai 201318, P.R. China
| |
Collapse
|
27
|
Comment on Pyrrolizidine Alkaloids and Terpenes from Senecio (Asteraceae): Chemistry and Research Gaps in Africa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248868. [PMID: 36558004 PMCID: PMC9781224 DOI: 10.3390/molecules27248868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The genus Senecio is one of the largest in Asteraceae. There are thousands of species across the globe, either confirmed or awaiting taxonomic delimitation. While the species are best known for the toxic pyrrolizidine alkaloids that contaminate honeys (as bees select pollen from the species) and teas via lateral transfer and accumulation from adjacent roots of Senecio in the rhizosphere, they are also associated with more serious cases leading to fatality of grazing ruminants or people by contamination or accidental harvesting for medicine. Surprisingly, there are significantly more sesquiterpenoid than pyrrolizidine alkaloid-containing species. The main chemical classes, aside from alkaloids, are flavonoids, cacalols, eremophilanes, and bisabolols, often in the form of furan derivatives or free acids. The chemistry of the species across the globe generally overlaps with the 469 confirmed species of Africa. A small number of species express multiple classes of compounds, meaning the presence of sesquiterpenes does not exclude alkaloids. It is possible that there are many species that express the pyrrolizidine alkaloids, in addition to the cacalols, eremophilanes, and bisabolols. The aim of the current communication is, thus, to identify the research gaps related to the chemistry of African species of Senecio and reveal the possible chemical groups in unexplored taxa by way of example, thereby creating a summary of references that could be used to guide chemical assignment in future studies.
Collapse
|
28
|
Al-Subaie SF, Alowaifeer AM, Mohamed ME. Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates. Foods 2022; 11:foods11233873. [PMID: 36496681 PMCID: PMC9740414 DOI: 10.3390/foods11233873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids are natural secondary metabolites that are mainly produced in plants, bacteria, and fungi as a part of an organism's defense machinery. These compounds constitute the largest class of alkaloids and are produced in nearly 3% of flowering plants, most of which belong to the Asteraceae and Boraginaceae families. Chemically, pyrrolizidine alkaloids are esters of the amino alcohol necine (which consists of two fused five-membered rings including a nitrogen atom) and one or more units of necic acids. Pyrrolizidine alkaloids are toxic to humans and mammals; thus, the ability to detect these alkaloids in food and nutrients is a matter of food security. The latest advances in the extraction and analysis of this class of alkaloids are summarized in this review, with special emphasis on chromatographic-based analysis and determinations in food.
Collapse
Affiliation(s)
- Sarah F. Al-Subaie
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Abdullah M. Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-542990226
| |
Collapse
|
29
|
Lewerenz L, Abouzeid S, Yahyazadeh M, Hijazin T, Selmar D. Novel Cognitions in Allelopathy: Implications from the "Horizontal Natural Product Transfer". PLANTS (BASEL, SWITZERLAND) 2022; 11:3264. [PMID: 36501305 PMCID: PMC9741141 DOI: 10.3390/plants11233264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Whereas the translocation of allelochemicals between plants is well established, a related general transfer of genuine specialized metabolites has not been considered so far. The elucidation of the so-called "Horizontal Natural Product Transfer" revealed that alkaloids, such as nicotine and pyrrolizidine alkaloids, which are leached out from decomposing alkaloid-containing plants (donor plants), are indeed taken up by the roots of plants growing in the vicinity (acceptor plants). Further studies demonstrated that phenolic compounds, such as coumarins or stilbenes, are also taken up by acceptor plants. Contemporary analyses from co-cultivation experiments outlined that natural products are not exclusively transferred from dead and rotting donor plant materials, but also from vital plants. In analogy to xenobiotics, the imported specialized metabolites might also be modified within the acceptor plants. As known from the uptake of xenobiotics, the import of specialized metabolites is also generally due to a simple diffusion of the substances across the biomembranes and does not require a carrier. The uptake depends in stricto sensu on the physicochemical properties of the certain compound. This article presents a current overview of the phenomenon of "Horizontal Natural Product Transfer" and discusses its relevance for our understanding of allelopathic interactions. The knowledge that specialized metabolites might in general be readily translocated from one plant into others should significantly contribute to our understanding of plant-plant interactions and-in particular-to the evolution of typical allelopathic effects, such as inhibition of growth and germination of potential competitors.
Collapse
Affiliation(s)
- Laura Lewerenz
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Mendelssohnstraße 4, D-38106 Braunschweig, Germany
| | - Sara Abouzeid
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mahdi Yahyazadeh
- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran P.O. Box 13185-116, Iran
| | - Tahani Hijazin
- Biology Department, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710, Jordan
| | - Dirk Selmar
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Mendelssohnstraße 4, D-38106 Braunschweig, Germany
| |
Collapse
|
30
|
Acito M, Russo C, Fatigoni C, Mercanti F, Moretti M, Villarini M. Cytotoxicity and Genotoxicity of Senecio vulgaris L. Extracts: An In Vitro Assessment in HepG2 Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14824. [PMID: 36429544 PMCID: PMC9690910 DOI: 10.3390/ijerph192214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Senecio vulgaris L. is a herbaceous species found worldwide. The demonstrated occurrence of pyrrolizidine alkaloids in this species and its ability to invade a great variety of habitats result in a serious risk of contamination of plant material batches addressed to the herbal teas market; this presents a potential health risk for consumers. In light of the above, this work aimed to assess the cytotoxic and genotoxic activity of S. vulgaris extracts in HepG2 cells. Dried plants were ground and extracted using two different methods, namely an organic solvent-based procedure (using methanol and chloroform), and an environmentally friendly extraction procedure (i.e., aqueous extraction), which mimicked the domestic preparation of herbal teas (5, 15, and 30 min of infusion). Extracts were then tested in HepG2 cells for their cytotoxic and genotoxic potentialities. Results were almost superimposable in both extracts, showing a slight loss in cell viability at the highest concentration tested, and a marked dose-dependent genotoxicity exerted by non-cytotoxic concentrations. It was found that the genotoxic effect is even more pronounced in aqueous extracts, which induced primary DNA damage after five minutes of infusion even at the lowest concentration tested. Given the broad intake of herbal infusions worldwide, this experimental approach might be proposed as a screening tool in the analysis of plant material lots addressed to the herbal infusion market.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Federica Mercanti
- Sana Pianta Soc. Agricola S.a.s., Strada Tiberina Nord 228, 06134 Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
- Inter-University Centre for the Environment (CIPLA-Centro Interuniversitario per l’Ambiente), University of Perugia, Piazza Università 1, 06123 Perugia, Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
31
|
Chizzola R, Eller A. Seasonal Variability in Pyrrolizidine Alkaloids in Jacobaea alpina from the Trentino-Alto Adige Region (Northern Italy). Chem Biodivers 2022; 19:e202200603. [PMID: 36202629 DOI: 10.1002/cbdv.202200603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022]
Abstract
In recent years, increased attention has been given to plants containing toxic pyrrolizidine alkaloids (PAs). Jacobaea alpina (syn. Senecio cordatus) is a tall forb growing on mountain pastures and meadows containing such alkaloids and therefore, the plant is considered as a noxious weed in these environments. The repartition of toxic macrocyclic PAs in the plant and their evolution during the vegetation period has been studied in two populations. Eight PAs were found where senciphylline and senecionine accounted in most samples for more than 85 % of total alkaloids. Leaves in April and stems in May started with high PA concentrations (19-22 mg/g dry matter), then alkaloid levels declined. This decrease was more rapid in stems than in leaves. Depending on the population, fully developed inflorescences in June and July PA contents were higher or lower than in the respective leaves. Later, also in the inflorescences PA concentration decreased. Combined with growth data total alkaloid content in the whole plant as mg/plant was highest in midsummer and declined afterwards. Finally, new emerging leaves in September had high PA levels, which declined markedly towards the end of the season in November. In sum, over a large period PA concentration appeared to be high enough to present a health risk for grazing animals.
Collapse
Affiliation(s)
- Remigius Chizzola
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Andy Eller
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
32
|
Risk Assessment of (Herbal) Teas Containing Pyrrolizidine Alkaloids (PAs) Based on Margin of Exposure Approach and Relative Potency (REP) Factors. Foods 2022; 11:foods11192946. [PMID: 36230022 PMCID: PMC9564199 DOI: 10.3390/foods11192946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) present distinct toxicity potencies depending on their metabolites and in vivo toxicokinetics. To represent the potency differences of various PAs, the interim relative potency (REP) factors have been derived. However, little is known about the risk assessment for (herbal) teas when taking REP factors into account. In this study, a set of 68 individual 1,2-unsaturated PA in 21 types of (herbal) teas was analyzed using LC-MS/MS. The REP factors for these PAs were applied on the PA levels. The margin of exposure (MOE) approach was employed to assess the risks of the exposure to PAs due to consumption of (herbal) teas. The results show that the total PA levels ranged from 13.4 to 286,682.2 μg/kg d.m., which were decreased by REP correction in most of the teas. The MOE values for tephroseris, borage and lemon balm (melissa) tea based on REP-corrected PA levels were below 10,000, assuming daily consumption of one cup of tea during a lifetime, indicating that consuming these teas may raise a concern. Our study also indicates a priority for risk management for tephroseris tea, as having nephrosis tea for more than 11.2 weeks during a 75-year lifetime would result in an MOE of 10,000.
Collapse
|
33
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
34
|
Nowak N, Diouf F, Golsong N, Höpfner T, Lindtner O. KiESEL - The Children's Nutrition Survey to Record Food Consumption for the youngest in Germany. BMC Nutr 2022; 8:64. [PMID: 35836299 PMCID: PMC9284799 DOI: 10.1186/s40795-022-00527-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND With KiESEL, the Children's Nutrition Survey to Record Food Consumption, the German Federal Institute for Risk Assessment (BfR) collected representative food consumption data for children aged six months up to five years. KiESEL was one of five modules of KiGGS Wave2 (German Health Interview and Examination Survey for Children and Adolescents) conducted by the Robert Koch Institute (RKI). The objective was to update the consumption data for children in Germany and to fill a data gap for the age group of five-year-old children. The study provides an up-to-date and comprehensive database that will be used for exposure assessment, as part of risk assessment of Germany's youngest consumers. METHODS In the years 2014 to 2017, 1104 children from all over Germany participated in KiESEL. During home visits, survey staff conducted a questionnaire-based interview including a food propensity questionnaire (FPQ) on seldom eaten foods and questions concerning consumption outside home, dietary habits and diet during first year. The interviewer measured the children's height and weight. Families and childcare workers filled out a food record, covering three consecutive days and one independent day. Data are based on the FPQ and present consumption frequencies. Depending on the question, socioeconomic status (SES) and migration background were considered. RESULTS 1104 participants had an interview and filled out the questionnaire on usual food intake, seldom eaten foods and consumption away from home. They were included in sample1. 1008 of these participants additionally reported food consumption of at least three days (sample2). 91.2% of the children follow no special diet and 0.8% are vegetarians. 7% of the older children consuming soya-drink. For some foods differences in consumption across SES or migration status were noted. Children from families with higher SES consume more often soya-based substitute milk as families with lower SES (p < 0.00005). CONCLUSIONS KiESEL gathered up-to-date consumption data for more than 1000 children living in Germany, aged six month up to including five years. The data will be used for risk assessments of the BfR and provided to national and international partners.
Collapse
Affiliation(s)
- Nicole Nowak
- German Federal Institute for Risk Assessment, Berlin, Germany.
| | | | - Nadine Golsong
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tobias Höpfner
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Oliver Lindtner
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
35
|
Simultaneous Determination of Pyrrolizidine and Tropane Alkaloids in Honey by Liquid Chromatography-mass Spectrometry. J Vet Res 2022; 66:235-243. [PMID: 35892104 PMCID: PMC9281522 DOI: 10.2478/jvetres-2022-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs) are natural contaminants of honey and respectively hepatoxic and neurotoxic compounds. Because honey is a popular constituent of the human diet, it is relevant to warrant the safety of the product. For that reason, a method for simultaneous determination of PAs and TAs in honey based on liquid chromatography- mass spectrometry was developed. Material and Methods The analytical protocol used sulphuric acid extraction and solid-phase extraction purification. The developed procedure was subjected to validation in terms of linearity, selectivity, repeatability, reproducibility, limits of quantification and determination, matrix effect and uncertainty. A total of 29 honey samples were analysed for the determination of PAs and TAs. Results All the evaluated validation parameters fulfilled the requirements of European Commission Decision 2002/657/EC. At least one of the monitored alkaloids was determined in 52% of the samples. Among the most abundant alkaloids were echimidine, intermedine and lycopsamine. The total PA concentrations ranged from 2.2 to 147.0 μg kg-1. Contrastingly, none of the monitored TAs was detected in the analysed samples. An assessment of the dietary exposure to PAs from the consumption of the contaminated honeys showed that three of them would pose a risk to consumers, especially if they were children. Conclusion A sensitive method suitable for simultaneous determination of PAs and TAs in honey was developed and validated. The analysis of 29 honey samples for PAs and TAs revealed that honey destined for retail could pose a risk to consumers.
Collapse
|
36
|
Feng C, Anger EE, Zhang X, Su S, Su C, Zhao S, Yu F, Li J. Protective Effects of Mitochondrial Uncoupling Protein 2 against Aristolochic Acid I-Induced Toxicity in HK-2 Cells. Int J Mol Sci 2022; 23:ijms23073674. [PMID: 35409033 PMCID: PMC8998172 DOI: 10.3390/ijms23073674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Aristolochic acid I (AA I) is one of the most abundant and toxic aristolochic acids that is reported to cause Aristolochic acid nephropathy (AAN). This paper was designed to assess whether mitochondrial Uncoupling Protein 2 (UCP2), which plays an antioxidative and antiapoptotic role, could protect human renal proximal tubular epithelial (HK-2) cells from toxicity induced by AA I. In this study, HK-2 cells were treated with different concentrations of AA I with or without UCP2 inhibitor (genipin). To upregulate the expression of UCP2 in HK-2 cells, UCP2-DNA transfection was performed. The cell viability was evaluated by colorimetric method using MTT. A series of related biological events such as Reactive Oxygen Species (ROS), Glutathione peroxidase (GSH-Px), and Malondialdehyde (MDA) were evaluated. The results showed that the cytotoxicity of AA I with genipin group was much higher than that of AA I alone. Genipin dramatically boosted oxidative stress and exacerbated AA I-induced apoptosis. Furthermore, the increased expression of UCP2 can reduce the toxicity of AA I on HK-2 cells and upregulation of UCP2 expression can reduce AA I-induced oxidative stress and apoptosis. In conclusion, UCP2 might be a potential target for alleviating AA I-induced nephrotoxicity.
Collapse
|
37
|
Gence L, Fernezelian D, Bringart M, Veeren B, Christophe A, Brion F, Meilhac O, Bascands JL, Diotel N. Hypericum lanceolatum Lam. Medicinal Plant: Potential Toxicity and Therapeutic Effects Based on a Zebrafish Model. Front Pharmacol 2022; 13:832928. [PMID: 35359845 PMCID: PMC8963451 DOI: 10.3389/fphar.2022.832928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Hypericum lanceolatum Lam. (H. lanceolatum) is a traditional medicinal plant from Reunion Island used for its pleiotropic effects mainly related to its antioxidant activity. The present work aimed to 1) determine the potential toxicity of the plant aqueous extract in vivo and 2) investigate its putative biological properties using several zebrafish models of oxidative stress, regeneration, estrogenicity, neurogenesis and metabolic disorders. First, we characterized the polyphenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and identified chlorogenic acid isomers, quercetin and kaempferol derivatives as the major compounds. We then evaluated for the first time the toxicity of an aqueous extract of H. lanceolatum and determined a maximum non-toxic concentration (MNTC) in zebrafish eleutheroembryos from 0 to 96 hpf following OECD (Organization for Economic Cooperation and Development) guidelines. This MNTC test was also determined on hatched eleutheroembryos after 2 days of treatment (from 3 to 5 dpf). In our study, the anti-estrogenic effects of H. lanceolatum are supported by the data from the EASZY assay. In a tail amputation model, we showed that H. lanceolatum at its MNTC displays antioxidant properties, favors immune cell recruitment and tissue regeneration. Our results also highlighted its beneficial effects in metabolic disorders. Indeed, H. lanceolatum efficiently reduces lipid accumulation and body mass index in overfed larva- and adult-models, respectively. In addition, we show that H. lanceolatum did not improve fasting blood glucose levels in a hyperglycemic zebrafish model but surprisingly inhibited neurogenesis impairment observed in diabetic conditions. In conclusion, our study highlights the antioxidant, pro-regenerative, anti-lipid accumulation and pro-neurogenic effects of H. lanceolatum in vivo and supports the use of this traditional medicinal plant as a potential alternative in the prevention and/or treatment of metabolic disorders.
Collapse
Affiliation(s)
- Laura Gence
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Matthieu Bringart
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Armelle Christophe
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - François Brion
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| | - Nicolas Diotel
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| |
Collapse
|
38
|
Friedle C, Kapp T, Wallner K, Alkattea R, Vetter W. High abundance of pyrrolizidine alkaloids in bee pollen collected in July 2019 from Southern Germany. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:250. [PMID: 35249161 PMCID: PMC8898241 DOI: 10.1007/s10661-022-09907-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/25/2022] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PA) are secondary plant defense compounds and known pre-toxins when containing a 1,2-double bond. They are commonly produced by various plants and may thus be present in bee pollen which may be consumed by humans as food supplements. In this study, PA were determined in bee pollen samples from 57 locations in Southern Germany sampled by means of pollen traps in July 2019. Samples were analyzed by using palynological methodology and solid-phase extraction (SPE) followed by LC-MS/MS. In total, 52 pollen samples featured total pyrrolizidine alkaloids (ΣPA) with concentrations up to 48,000 ng/g bee pollen, while the N-oxides (NO) echinatine-NO and rinderine-NO clearly dominated. In contrast, the palynological analysis only detected 33 samples with pollen from PA-producing plants. Accordingly, the results showed that palynological analysis is not sufficient to determine PA in pollen. In addition, a risk assessment was followed to estimate the risk of the detected PA concentrations to humans.
Collapse
Affiliation(s)
- Carolin Friedle
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany.
| | - Thomas Kapp
- Chemical and Veterinary Analysis Agency (CVUA), Stuttgart, Fellbach, Germany
| | - Klaus Wallner
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Raghdan Alkattea
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170B), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
39
|
Widjaja F, Alhejji Y, Rietjens IMCM. The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides. PLANTA MEDICA 2022; 88:130-143. [PMID: 34741297 PMCID: PMC8807025 DOI: 10.1055/a-1582-9794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University and Research, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University and Research, The Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
40
|
Steinhoff B. Pyrrolizidine Alkaloid Contamination in Medicinal Plants: Regulatory Requirements and Their Impact on Production and Quality Control of Herbal Medicinal Products. PLANTA MEDICA 2022; 88:125-129. [PMID: 34041723 DOI: 10.1055/a-1494-3623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Against the background of potential contamination of medicinal plant materials with pyrrolizidine alkaloids caused by weeds, suppliers of herbal drugs and manufacturers of herbal medicinal products have taken action by establishing a Code of Practice by monitoring potential contamination and by collection of data. In August 2020, the Herbal Medicinal Products Committee, in its new draft public statement, proposed a daily intake of 1.0 µg of pyrrolizidine alkaloids per day for adults in general, also including contaminations of herbal medicinal products. Over the past years, the results of data collections showed a remarkable reduction of the pyrrolizidine alkaloid burden in herbal drugs and herbal extracts. Meanwhile, a stable situation has been achieved for herbal drugs, while further improvement can be observed for herbal extracts. The results indicate that the implemented measures have been efficient and contribute to a continuous and sustainable reduction of pyrrolizidine alkaloid contamination. A permanent limit of 1.0 µg of pyrrolizidine alkaloids per day is considered appropriate to guarantee sufficient availability of batches used for the production of herbal medicinal products. The new Ph.Eur. general chapter 2.8.26 describes, as an example, an analytical procedure suitable for the determination of target pyrrolizidine alkaloids.
Collapse
Affiliation(s)
- Barbara Steinhoff
- Bundesverband der Arzneimittel-Hersteller e. V. (BAH), Bonn, Germany
| |
Collapse
|
41
|
Kwon Y, Gu Y, Jeong Y. Evaluation of pyrrolizidine alkaloids in Korean commercial honeys and bee pollens. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yujihn Kwon
- Department of Food Science and Nutrition, College of Food Science and Technology Dankook University
| | - Yongui Gu
- Food Contaminants Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, College of Food Science and Technology Dankook University
| |
Collapse
|
42
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
43
|
Characterization and Lifetime Dietary Risk Assessment of Eighteen Pyrrolizidine Alkaloids and Pyrrolizidine Alkaloid N-Oxides in New Zealand Honey. Toxins (Basel) 2021; 13:toxins13120843. [PMID: 34941681 PMCID: PMC8704962 DOI: 10.3390/toxins13120843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of botanical toxins of concern, as they are considered genotoxic carcinogens, with long-term dietary exposure presenting an elevated risk of liver cancer. PAs can contaminate honey through honeybees visiting the flowers of PA-containing plant species. A program of monitoring New Zealand honey has been undertaken over several years to build a comprehensive dataset on the concentration, regional and seasonal distribution, and botanical origin of 18 PAs and PA N-oxides. A bespoke probabilistic exposure model has then been used to assess the averaged lifetime dietary risk to honey consumers, with exposures at each percentile of the model characterized for risk using a margin of exposure from the Joint World Health Organization and United Nations Food and Agriculture Organization Expert Committee on Food Additives (JECFA) Benchmark Dose. Survey findings identify the typical PA types for New Zealand honey as lycopsamine, echimidine, retrorsine and senecionine. Regional and seasonal variation is evident in the types and levels of total PAs, linked to the ranges and flowering times of certain plants. Over a lifetime basis, the average exposure an individual will receive through honey consumption is considered within tolerable levels, although there are uncertainties over high and brand-loyal consumers, and other dietary contributors. An average lifetime risk to the general population from PAs in honey is not expected. However, given the uncertainties in the assessment, risk management approaches to limit or reduce exposures through honey are still of value.
Collapse
|
44
|
Badalamenti N, Modica A, Ilardi V, Bruno M. Chemical Constituents and Biological Properties of Genus Doronicum (Asteraceae). Chem Biodivers 2021; 18:e2100631. [PMID: 34586715 DOI: 10.1002/cbdv.202100631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022]
Abstract
The genus Doronicum, belonging to tribe Senecioneae (Fam. Asteraceae), is found mainly in the Asia, Europe and North Africa. This genus of plant has always been used in traditional medicinal treatments due to the many biological properties shown such as killing parasitic worms and for relieving constipation, as well as to improve heart health, to alleviate pain and inflammation, to treat insect bites, etc. According to the World Flora the genus Doronicum contains 39 subordinate taxa.[1-3] The purpose of this article, which covers data published from 1970 to 2021 with more than 110 articles, aims to carry out a complete and critical review of the Doronicum genus, examining traditional uses and reporting the antioxidant, antimicrobial, anti-inflammatory and antitumor activity shown from crude extracts or essential oils, and from single isolated compounds. Furthermore, critical considerations of the published data have been highlighted by comparing them with the results obtained from species of other genus belonging to the Asteraceae family.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128, Palermo, Italy
| | - Aurora Modica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128, Palermo, Italy
| | - Vincenzo Ilardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128, Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128, Palermo, Italy.,Centro Interdipartimentale di Ricerca 'Riutilizzo bio-based degli scarti da matrici agroalimentari' (RIVIVE), Università di Palermo, Italy
| |
Collapse
|
45
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
46
|
Pyrrolizidine Alkaloids in the Food Chain: Is Horizontal Transfer of Natural Products of Relevance? Foods 2021; 10:foods10081827. [PMID: 34441604 PMCID: PMC8392022 DOI: 10.3390/foods10081827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Recent studies have raised the question whether there is a potential threat by a horizontal transfer of toxic plant constituents such as pyrrolizidine alkaloids (PAs) between donor-PA-plants and acceptor non-PA-plants. This topic raised concerns about food and feed safety in the recent years. The purpose of the study described here was to investigate and evaluate horizontal transfer of PAs between donor and acceptor-plants by conducting a series of field trials using the PA-plant Lappula squarrosa as model and realistic agricultural conditions. Additionally, the effect of PA-plant residues recycling in the form of composts or press-cakes were investigated. The PA-transfer and the PA-content of soil, plants, and plant waste products was determined in form of a single sum parameter method using high-performance liquid chromatography mass spectroscopy (HPLC-ESI-MS/MS). PA-transfer from PA-donor to acceptor-plants was frequently observed at low rates during the vegetative growing phase especially in cases of close spatial proximity. However, at the time of harvest no PAs were detected in the relevant field products (grains). For all investigated agricultural scenarios, horizontal transfer of PAs is of no concern with regard to food or feed safety.
Collapse
|
47
|
Valese AC, Daguer H, Muller CMO, Molognoni L, da Luz CFP, de Barcellos Falkenberg D, Gonzaga LV, Brugnerotto P, Gorniak SL, Barreto F, Fett R, Costa ACO. Quantification of pyrrolizidine alkaloids in Senecio brasiliensis, beehive pollen, and honey by LC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:685-694. [PMID: 34264805 DOI: 10.1080/03601234.2021.1943257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article presents the determination of eight pyrrolizidine alkaloids (PAs) by LC-MS/MS in honeys, pollen, and Senecio brasiliensis (Asteraceae) samples, all from Santa Catarina state, Brazil. In addition, the Box-Behnken design was used to perform an optimized sample preparation on pollens and S. brasiliensis parts. Senecionine and its N-oxide, besides retrorsine N-oxide, were determined in six of the seven honeys samples. Pollen from species of the Asteraceae, Fabaceae, and Boraginaceae families were found with greater predominance in three of the seven honeys samples. In these three honeys samples were also found the highest PAs levels. In beehive pollen, flower, and leaf of S. brasiliensis, the total levels of PAs and their N-oxides reached 221, 14.1 × 104, and 14.8 × 104 mg kg-1, respectively. In honeys, these compounds are chemical contaminants and therefore undesirable when the sum exceeds 71 µg kg-1, according to EFSA. On the other hand, although PAs are naturally present in plant and pollen of some species (Senecio, Crotalaria, Bacharis, Ecchium, Mimosa scabrella, Vernonia), it is important to monitor their levels in plants but also in honeys, and other beehive products since these compounds are transferred to the final product.
Collapse
Affiliation(s)
- Andressa Camargo Valese
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Heitor Daguer
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | | | - Luciano Molognoni
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Cynthia Fernandes Pinto da Luz
- Center for Research in Palynology, Department of the Environment of São Paulo, Institute of Botany, Sao Paulo, SP, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Silvana Lima Gorniak
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabiano Barreto
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
48
|
Reinhard H, Zoller O. Pyrrolizidine alkaloids in tea, herbal tea and iced tea beverages- survey and transfer rates. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1914-1933. [PMID: 34237234 DOI: 10.1080/19440049.2021.1941302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The transfer rate of 37 pyrrolizidine alkaloids (PA) found in ten naturally contaminated teas and herbal teas to their brews was studied in detail. Mixed herbal, peppermint, red bush, senna, black tea and green tea infusions were prepared according to the ISO guide and vendor's instructions, respectively, and parameters like herb-to-water ratio, steeping time and multiple extractions studied. In general, a transfer rate of 38-100% (median 95%) for brews following vendor's instructions was determined. The total concentration range of PA in these ten samples was 154-2412 ng/g (median 422 ng/g) in the herb and for single analytes 0.1-170 ng/g. Seven of the 37 PA occurred unexpectedly; these were tentatively identified and quantified by liquid chromatography-high resolution mass spectrometry (LC-HR-MS), since their contributions to total PA-content matter. Additionally, 46 iced tea beverages were analysed for their PA-load, determined to be in the range 0-631 ng/L (median 40 ng/L). The applied solid-phase extraction (SPE) clean-up turned out to be capable of separating PA in the free base pyrrolizidine alkaloids (PAFB) and their N-oxides (PANO) in a two-step elution, which was a valuable tool to support identification of unexpected PA. Further, atropine was found in 50% of the ten tea herb samples (range: 1-4 ng/g) and in 13% of the iced tea beverage samples (range: 2-65 ng/L).
Collapse
Affiliation(s)
- Hans Reinhard
- Risk Assessment Division, Swiss Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| | - Otmar Zoller
- Risk Assessment Division, Swiss Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
49
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. Determination and Occurrence of Alkenylbenzenes, Pyrrolizidine and Tropane Alkaloids in Spices, Herbs, Teas, and Other Plant-derived Food Products Using Chromatographic Methods: Review from 2010–2020. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| | - Roberto Romero-González
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| |
Collapse
|
50
|
The Food Contaminants Pyrrolizidine Alkaloids Disturb Bile Acid Homeostasis Structure-Dependently in the Human Hepatoma Cell Line HepaRG. Foods 2021; 10:foods10051114. [PMID: 34069968 PMCID: PMC8157858 DOI: 10.3390/foods10051114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a group of secondary plant metabolites being contained in various plant species. The consumption of contaminated food can lead to acute intoxications in humans and exert severe hepatotoxicity. The development of jaundice and elevated bile acid concentrations in blood have been reported in acute human PA intoxication, indicating a connection between PA exposure and the induction of cholestasis. Additionally, it is considered that differences in toxicity of individual PAs is based on their individual chemical structures. Therefore, we aimed to elucidate the structure-dependent disturbance of bile acid homeostasis by PAs in the human hepatoma cell line HepaRG. A set of 14 different PAs, including representatives of all major structural characteristics, namely, the four different necine bases retronecine, heliotridine, otonecine and platynecine and different grades of esterification, was analyzed in regard to the expression of genes involved in bile acid synthesis, metabolism and transport. Additionally, intra- and extracellular bile acid levels were analyzed after PA treatment. In summary, our data show significant structure-dependent effects of PAs on bile acid homeostasis. Especially PAs of diester type caused the strongest dysregulation of expression of genes associated with cholestasis and led to a strong decrease of intra- and extracellular bile acid concentrations.
Collapse
|