1
|
Asmawi AA, Adam F, Mohd Azman NA, Abdul Rahman MB. Advancements in the nanodelivery of azole-based fungicides to control oil palm pathogenic fungi. Heliyon 2024; 10:e37132. [PMID: 39309766 PMCID: PMC11416272 DOI: 10.1016/j.heliyon.2024.e37132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The cultivation of oil palms is of great importance in the global agricultural industry due to its role as a primary source of vegetable oil with a wide range of applications. However, the sustainability of this industry is threatened by the presence of pathogenic fungi, particularly Ganoderma spp., which cause detrimental oil palm disease known as basal stem rot (BSR). This unfavorable condition eventually leads to significant productivity losses in the harvest, with reported yield reductions of 50-80 % in severely affected plantations. Azole-based fungicides offer potential solutions to control BSR, but their efficacy is hampered by limited solubility, penetration, distribution, and bioavailability. Recent advances in nanotechnology have paved the way for the development of nanosized delivery systems. These systems enable effective fungicide delivery to target pathogens and enhance the bioavailability of azole fungicides while minimising environmental and human health risks. In field trials, the application of azole-based nanofungicides resulted in up to 75 % reduction in disease incidence compared to conventional fungicide treatments. These innovations offer opportunities for the development of sustainable agricultural practices. This review highlights the importance of oil palm cultivation concerning the ongoing challenges posed by pathogenic fungi and examines the potential of azole-based fungicides for disease control. It also reviews recent advances in nanotechnology for fungicide delivery, explores the mechanisms behind these nanodelivery systems, and emphasises the opportunities and challenges associated with azole-based nanofungicides. Hence, this review provides valuable insights for future nanofungicide development in effective oil palm disease control.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Bandar Saujana Putra, Jenjarom, 42610, Selangor, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Nurul Aini Mohd Azman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Sisson HM, Fagerlund RD, Jackson SA, Briers Y, Warring SL, Fineran PC. Antibacterial synergy between a phage endolysin and citric acid against the Gram-negative kiwifruit pathogen Pseudomonas syringae pv. actinidiae. Appl Environ Microbiol 2024; 90:e0184623. [PMID: 38319087 PMCID: PMC10952447 DOI: 10.1128/aem.01846-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Horticultural diseases caused by bacterial pathogens provide an obstacle to crop production globally. Management of the infection of kiwifruit by the Gram-negative phytopathogen Pseudomonas syringae pv. actinidiae (Psa) currently includes copper and antibiotics. However, the emergence of bacterial resistance and a changing regulatory landscape are providing the impetus to develop environmentally sustainable antimicrobials. One potential strategy is the use of bacteriophage endolysins, which degrade peptidoglycan during normal phage replication, causing cell lysis and the release of new viral progeny. Exogenous use of endolysins as antimicrobials is impaired by the outer membrane of Gram-negative bacteria that provides an impermeable barrier and prevents endolysins from accessing their target peptidoglycan. Here, we describe the synergy between citric acid and a phage endolysin, which results in a reduction of viable Psa below detection. We show that citric acid drives the destabilization of the outer membrane via acidification and sequestration of divalent cations from the lipopolysaccharide, which is followed by the degradation of the peptidoglycan by the endolysin. Scanning electron microscopy revealed clear morphological differences, indicating cell lysis following the endolysin-citric acid treatment. These results show the potential for citric acid-endolysin combinations as a possible antimicrobial approach in agricultural applications. IMPORTANCE The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) causes major impacts to kiwifruit horticulture, and the current control strategies are heavily reliant on copper and antibiotics. The environmental impact and increasing resistance to these agrichemicals are driving interest in alternative antimicrobials including bacteriophage-derived therapies. In this study, we characterize the endolysin from the Otagovirus Psa374 which infects Psa. When combined with citric acid, this endolysin displays an impressive antibacterial synergy to reduce viable Psa below the limit of detection. The use of citric acid as a synergistic agent with endolysins has not been extensively studied and has never been evaluated against a plant pathogen. We determined that the synergy involved a combination of the chelation activity of citric acid, acidic pH, and the specific activity of the ΦPsa374 endolysin. Our study highlights an exciting opportunity for alternative antimicrobials in agriculture.
Collapse
Affiliation(s)
- Hazel M. Sisson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Robert D. Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Simon A. Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Suzanne L. Warring
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Berlivet J, Payrastre L, Rebouillat P, Fougerat A, Touvier M, Hercberg S, Lairon D, Pointereau P, Guillou H, Vidal R, Baudry J, Kesse-Guyot E. Association between dietary pesticide exposure profiles and body weight change in French adults: Results from the NutriNet-Santé cohort. ENVIRONMENT INTERNATIONAL 2024; 184:108485. [PMID: 38350259 DOI: 10.1016/j.envint.2024.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (β(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (β(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.
Collapse
Affiliation(s)
- Justine Berlivet
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pauline Rebouillat
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Serge Hercberg
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.
| | - Denis Lairon
- Aix Marseille Université, Inserm, INRAE, C2VN, 13005, Marseille, France.
| | | | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 149 rue de Bercy 75595, Paris, France.
| | - Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| |
Collapse
|
4
|
Deweer C, Sahmer K, Muchembled J. Anti-oomycete activities from essential oils and their major compounds on Phytophthora infestans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110240-110250. [PMID: 37779122 PMCID: PMC10625517 DOI: 10.1007/s11356-023-29270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023]
Abstract
Botanicals are various plant-based products like plant extracts or essential oils. Anti-fungal activities of selected essential oils were tested on the pathogen causing potato and tomato late blight (Phytophthora infestans). Tests to evaluate anti-oomycete activities of commercial essential oils and their major compounds were carried out in vitro in microplate in liquid media. Anti-oomycete activities on Phytophthora infestans strain were obtained from essential oils/major compounds: Eucalyptus citriodora/citronellal; Syzygium aromaticum (clove)/eugenol; Mentha spicata/D-Carvone, L-Carvone; Origanum compactum/carvacrol; Satureja montana (savory)/carvacrol; Melaleuca alternifolia (tea tree)/terpinen-4-ol, and Thymus vulgaris/thymol. As an active substance of mineral origin, copper sulfate was chosen as a control. All selected essential oils showed an anti-oomycete activity calculated with IC50 indicator. The essential oils of clove, savory, and thyme showed the best anti-oomycete activities similar to copper sulfate, while oregano, eucalyptus, mint, and tea tree essential oils exhibited significantly weaker activities than copper sulfate. Clove essential oil showed the best activity (IC50 = 28 mg/L), while tea tree essential oil showed the worst activity (IC50 = 476 mg/L). For major compounds, three results were obtained: they were statistically more active than their essential oils (carvacrol for oregano, D- and L-Carvone for mint) or as active as their essential oils sources (thymol for thyme, carvacrol for savory, terpinen-4-ol for tea tree) or less active than their original essential oils (eugenol for clove, citronellal for eucalyptus). Microscopical observations carried out with the seven essential oils showed that they were all responsible for a modification of the morphology of the mycelium. The results demonstrated that various essential oils show different anti-oomycete activities, sometimes related to a major compound and sometimes unrelated, indicating that other compounds must play a role in total anti-oomycete activity.
Collapse
Affiliation(s)
- Caroline Deweer
- Joint Research Unit 1158 BioEcoAgro, INRAE, JUNIA, University of Lille, University of Liège, UPJV, University of Artois, ULCO, F-59000, Lille, France
| | - Karin Sahmer
- Univ. Lille, IMT Lille Douai, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Jérôme Muchembled
- Joint Research Unit 1158 BioEcoAgro, INRAE, JUNIA, University of Lille, University of Liège, UPJV, University of Artois, ULCO, F-59000, Lille, France.
| |
Collapse
|
5
|
Brulle F, Amossé J, Bart S, Conrad A, Mazerolles V, Nélieu S, Lamy I, Péry A, Pelosi C. Toward a harmonized methodology to analyze field side effects of two pesticide products on earthworms at the EU level. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:254-271. [PMID: 35703133 PMCID: PMC10084329 DOI: 10.1002/ieam.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Before plant protection product (PPP) marketing authorization, a risk assessment for nontarget soil organisms (e.g., earthworms) is required as part of Regulation (EC) No. 1107/2009. Following a stepwise approach, higher tier earthworm field studies are needed if they cannot demonstrate low long-term risk based on laboratory studies. The European guidance for terrestrial ecotoxicology refers to ISO guideline 11268-3 as a standard to conduct earthworm field studies. Assessment of such studies may be challenging, as no European harmonized guidance is available to properly analyze the accuracy, representativeness, and appropriateness of experimental designs, as well as the statistical analysis robustness of results and their scientific reliability. Following the ISO guideline 11268-3, a field study was performed in 2016-2017 (Versailles, France). An assessment of the first year of this field study was performed in agreement with the quality criteria provided in 2006 in the guidance document published by de Jong and collaborators and recommendations by Kula and collaborators that allows describing the protocol and results of earthworm field studies. Not only did we underline the importance of a detailed analysis of raw data on the effects of pesticides on earthworms in field situations, but we also provided recommendations to harmonize protocols for assessing higher tier field studies devoted to earthworms to advance a better assessment of PPP fate and ecotoxicity. In particular, we provided practical field observations related to the study design, pesticide applications, and earthworm sampling. Concurrently, in addition to the conventional earthworm community study, we propose carrying out an assessment of soil function (i.e., organic matter decomposition, soil structuration, etc.) and calculating diversity indices to obtain information about earthworm community dynamics after the application of PPPs. Finally, through field observations, any relevant observation of external and/or internal recovery should be reported. Integr Environ Assess Manag 2023;19:254-271. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Franck Brulle
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Joël Amossé
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Sylvain Bart
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
- MOECO (modeling and data analyses for ecology and ecotoxicology)ParisFrance
| | - Arnaud Conrad
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Vanessa Mazerolles
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Sylvie Nélieu
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Isabelle Lamy
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Alexandre Péry
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Céline Pelosi
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
- INRAE, Avignon Université, UMR EMMAHAvignonFrance
| |
Collapse
|
6
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter JR, Schrenk D, Turck D, Younes M, Boon P, Ferns GAA, Lindtner O, Smolders E, Wilks M, Bastaki M, de Sesmaisons‐Lecarré A, Ferreira L, Greco L, Kass GEN, Riolo F, Leblanc J. Re-evaluation of the existing health-based guidance values for copper and exposure assessment from all sources. EFSA J 2023; 21:e07728. [PMID: 36694841 PMCID: PMC9843535 DOI: 10.2903/j.efsa.2023.7728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential micronutrient and also a regulated product used in organic and in conventional farming pest management. Both deficiency and excessive exposure to copper can have adverse health effects. In this Scientific Opinion, the EFSA 2021 harmonised approach for establishing health-based guidance values (HBGVs) for substances that are regulated products and also nutrients was used to resolve the divergent existing HBGVs for copper. The tightly regulated homeostasis prevents toxicity manifestation in the short term, but the development of chronic copper toxicity is dependent on copper homeostasis and its tissue retention. Evidence from Wilson disease suggests that hepatic retention is indicative of potential future and possibly sudden onset of copper toxicity under conditions of continuous intake. Hence, emphasis was placed on copper retention as an early marker of potential adverse effects. The relationships between (a) chronic copper exposure and its retention in the body, particularly the liver, and (b) hepatic copper concentrations and evidence of toxicity were examined. The Scientific Committee (SC) concludes that no retention of copper is expected to occur with intake of 5 mg/day and established an Acceptable Daily Intake (ADI) of 0.07 mg/kg bw. A refined dietary exposure assessment was performed, assessing contribution from dietary and non-dietary sources. Background copper levels are a significant source of copper. The contribution of copper from its use as plant protection product (PPP), food and feed additives or fertilisers is negligible. The use of copper in fertilisers or PPPs contributes to copper accumulation in soil. Infant formula and follow-on formula are important contributors to dietary exposure of copper in infants and toddlers. Contribution from non-oral sources is negligible. Dietary exposure to total copper does not exceed the HBGV in adolescents, adults, elderly and the very elderly. Neither hepatic copper retention nor adverse effects are expected to occur from the estimated copper exposure in children due to higher nutrient requirements related to growth.
Collapse
|
7
|
Burtscher-Schaden H, Durstberger T, Zaller JG. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. TOXICS 2022; 10:toxics10120753. [PMID: 36548586 PMCID: PMC9783316 DOI: 10.3390/toxics10120753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 05/06/2023]
Abstract
There is much debate about whether the (mostly synthetic) pesticide active substances (AS) in conventional agriculture have different non-target effects than the natural AS in organic agriculture. We evaluated the official EU pesticide database to compare 256 AS that may only be used on conventional farmland with 134 AS that are permitted on organic farmland. As a benchmark, we used (i) the hazard classifications of the Globally Harmonized System (GHS), and (ii) the dietary and occupational health-based guidance values, which were established in the authorization procedure. Our comparison showed that 55% of the AS used only in conventional agriculture contained health or environmental hazard statements, but only 3% did of the AS authorized for organic agriculture. Warnings about possible harm to the unborn child, suspected carcinogenicity, or acute lethal effects were found in 16% of the AS used in conventional agriculture, but none were found in organic agriculture. Furthermore, the establishment of health-based guidance values for dietary and non-dietary exposures were relevant by the European authorities for 93% of conventional AS, but only for 7% of organic AS. We, therefore, encourage policies and strategies to reduce the use and risk of pesticides, and to strengthen organic farming in order to protect biodiversity and maintain food security.
Collapse
Affiliation(s)
- Helmut Burtscher-Schaden
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070 Vienna, Austria
- Correspondence:
| | - Thomas Durstberger
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070 Vienna, Austria
| | - Johann G. Zaller
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, 1180 Vienna, Austria
| |
Collapse
|
8
|
Assessment of Lipopeptide Mixtures Produced by Bacillus subtilis as Biocontrol Products against Apple Scab ( Venturia inaequalis). Microorganisms 2022; 10:microorganisms10091810. [PMID: 36144412 PMCID: PMC9501572 DOI: 10.3390/microorganisms10091810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023] Open
Abstract
Apple scab is an important disease conventionally controlled by chemical fungicides, which should be replaced by more environmentally friendly alternatives. One of these alternatives could be the use of lipopeptides produced by Bacillus subtilis. The objective of this work is to study the action of the three families of lipopeptides and different mixtures of them in vitro and in vivo against Venturia inaequalis. Firstly, the antifungal activity of mycosubtilin/surfactin and fengycin/surfactin mixtures was determined in vitro by measuring the median inhibitory concentration. Then, the best lipopeptide mixture ratio was produced using Design of Experiment (DoE) to optimize the composition of the culture medium. Finally, the lipopeptides mixtures efficiency against V. inaequalis was assessed in orchards as well as the evaluation of the persistence of lipopeptides on apple. In vitro tests show that the use of fengycin or mycosubtilin alone is as effective as a mixture, with the 50–50% fengycin/surfactin mixture being the most effective. Optimization of culture medium for the production of fengycin/surfactin mixture shows that the best composition is glycerol coupled with glutamic acid. Finally, lipopeptides showed in vivo antifungal efficiency against V. inaequalis regardless of the mixture used with a 70% reduction in the incidence of scab for both mixtures (fengycin/surfactin or mycosubtilin/surfactin). The reproducibility of the results over the two trial campaigns was significantly better with the mycosubtilin/surfactin mixture. The use of B. subtilis lipopeptides to control this disease is very promising.
Collapse
|
9
|
Bellisai G, Bernasconi G, Brancato A, Cabrera LC, Castellan I, Ferreira L, Giner G, Greco L, Jarrah S, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Robinson T, Ruocco S, Santos M, Scarlato AP, Theobald A, Verani A. Modification of the existing maximum residue levels for copper compounds in other small fruits and berries. EFSA J 2022; 20:e07528. [PMID: 35991961 PMCID: PMC9379771 DOI: 10.2903/j.efsa.2022.7528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Spiess-Urania Chemicals GmbH submitted a request to the competent national authority in Austria to modify the existing maximum residue levels (MRLs) for the active substance copper compounds in the whole group of other small fruits and berries. The data submitted in support of the request were found to be sufficient to derive MRL proposals for the whole subgroup of other small fruits and berries. Adequate analytical methods for enforcement of mineral copper independently from its chemical form are available for matrices under consideration at the validated limit of quantification (LOQ) of 5 mg/kg. Based on indicative risk assessment results, EFSA concluded that the long-term intake of copper residues resulting from the intended and existing uses, natural background levels and monitoring levels might present a risk to consumer health. Although residues in other small fruits and berries are minor contributors to the overall consumer exposure, a risk management decision has to be taken on whether it is appropriate to increase the existing MRLs for these crops, given that a potential consumer intake concern could not be excluded.
Collapse
|
10
|
Antibacterial Activity of Copper Nanoparticles against Xanthomonas campestris pv. vesicatoria in Tomato Plants. Int J Mol Sci 2022; 23:ijms23084080. [PMID: 35456899 PMCID: PMC9032352 DOI: 10.3390/ijms23084080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Copper-based bactericides have appeared as a new tool in crop protection and offer an effective solution to combat bacterial resistance. In this work, two copper nanoparticle products that were previously synthesized and evaluated against major bacterial and fungal pathogens were tested on their ability to control the bacterial spot disease of tomato. Growth of Xanthomonas campestris pv. vesicatoria, the causal agent of the disease, was significantly suppressed by both nanoparticles, which had superior function compared to conventional commercial formulations of copper. X-ray fluorescence spectrometry measurements in tomato leaves revealed that bioavailability of copper is superior in the case of nanoparticles compared to conventional formulations and is dependent on synthesis rather than size. This is the first report correlating bioavailability of copper to nanoparticle efficacy.
Collapse
|
11
|
Ouédraogo F, Cornu JY, Janot N, Nguyen C, Sourzac M, Parlanti E, Denaix L. Do DOM optical parameters improve the prediction of copper availability in vineyard soils? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29268-29284. [PMID: 34508312 DOI: 10.1007/s11356-021-16361-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Accumulation of copper (Cu) in soils due to the application of fungicides may be toxic for organisms and hence affect winegrowing sustainability. Soil parameters such as pH and dissolved organic matter (DOM) are known to affect the availability of Cu. In this study, we investigated the contribution of chromophoric and fluorescent DOM properties to the prediction of Cu availability in 18 organic vineyard soils in the Bordeaux winegrowing area (France). The DOM parameters, assessed through absorbance and fluorescence analyses, and proxies for Cu availability (total soluble Cu and free ionic Cu2+) were measured in 0.01 M KCl extracts. Total soluble Cu (CuKCl) varied 23-fold while free ionic Cu2+ varied by a factor of 4600 among the soils. DOC concentrations were similar among the soils, but the samples differed in the quality of DOM as assessed by optical spectroscopy. Multilinear regression models with and without DOM quality parameters were investigated to predict Cu availability. The best model for CuKCl successfully explained 83% of variance and included pH, CuT, and two DOM fluorescence quality indices, the FI fluorescence index, which distinguishes between microbial and higher plant origins, and the HIX humification index. For the prediction of Cu2+, pH alone explained 88% of variance and adding DOM parameters did not improve modelling. The two Cu availability proxies were related to pH. This study confirms the prominent role of pH in Cu availability and underlines the importance of DOM quality to better predict Cu solubility.
Collapse
Affiliation(s)
- Frédéric Ouédraogo
- ISPA, INRAE, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France.
- University of Bordeaux, UMR CNRS 5805, EPOC, 33400, Talence, France.
| | - Jean-Yves Cornu
- ISPA, INRAE, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France
| | - Noémie Janot
- ISPA, INRAE, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France
| | - Christophe Nguyen
- ISPA, INRAE, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France
| | - Mahaut Sourzac
- University of Bordeaux, UMR CNRS 5805, EPOC, 33400, Talence, France
| | - Edith Parlanti
- University of Bordeaux, UMR CNRS 5805, EPOC, 33400, Talence, France
| | - Laurence Denaix
- ISPA, INRAE, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France
| |
Collapse
|
12
|
Dimopoulou A, Theologidis I, Varympopi A, Papafotis D, Mermigka G, Tzima A, Panopoulos NJ, Skandalis N. Shifting Perspectives of Translational Research in Bio-Bactericides: Reviewing the Bacillus amyloliquefaciens Paradigm. BIOLOGY 2021; 10:biology10111202. [PMID: 34827195 PMCID: PMC8614995 DOI: 10.3390/biology10111202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The continuous reduction of approved conventional microbicides, due to health concerns and the development of plant-pathogen resistance, has been urged for the use of safe alternatives in crop protection. Several beneficial bacterial species, termed biological control agents, are currently used in lieu of chemical pesticides. The approach to select such bacterial species and manufacture commercial products has been based on their biocontrol effect under optimal growth conditions, which is far from the real nutrient-limited field conditions of plant niches. It’s important to determine the complex interactions that occur among BCAs, plant host and niche microbiome to fully understand and exploit the potential of biological control agents. Furthermore, it’s crucial to acknowledge the environmental impact of their long-term use. Abstract Bacterial biological control agents (BCAs) have been increasingly used against plant diseases. The traditional approach to manufacturing such commercial products was based on the selection of bacterial species able to produce secondary metabolites that inhibit mainly fungal growth in optimal media. Such species are required to be massively produced and sustain long-term self-storage. The endpoint of this pipeline is large-scale field tests in which BCAs are handled as any other pesticide. Despite recent knowledge of the importance of BCA-host-microbiome interactions to trigger plant defenses and allow colonization, holistic approaches to maximize their potential are still in their infancy. There is a gap in scientific knowledge between experiments in controlled conditions for optimal BCA and pathogen growth and the nutrient-limited field conditions in which they face niche microbiota competition. Moreover, BCAs are considered to be safe by competent authorities and the public, with no side effects to the environment; the OneHealth impact of their application is understudied. This review summarizes the state of the art in BCA research and how current knowledge and new biotechnological tools have impacted BCA development and application. Future challenges, such as their combinational use and ability to ameliorate plant stress are also discussed. Addressing such challenges would establish their long-term use as centerfold agricultural pesticides and plant growth promoters.
Collapse
Affiliation(s)
- Anastasia Dimopoulou
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Heraklion, Greece; (A.D.); (G.M.)
| | - Ioannis Theologidis
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, 14561 Athens, Greece;
| | - Adamantia Varympopi
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.V.); (D.P.)
| | - Dimitris Papafotis
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.V.); (D.P.)
| | - Glykeria Mermigka
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Heraklion, Greece; (A.D.); (G.M.)
| | - Aliki Tzima
- Laboratory of Plant Pathology, Department of Crop Production, School of Agricultural Production Infrastructure and Environment, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Nick J. Panopoulos
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA;
| | - Nicholas Skandalis
- Health Sciences Campus, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
13
|
Ritika A, Ritika G, Nikita J, Bableen K, Arunima M, Minakshi B, Anu S, Nitin A, Dinesh K. In silico prediction, characterization and molecular docking studies on Glutathione-S-transferase as a molecular sieve for toxic agrochemicals explored in survey of North Indian farmers. Heliyon 2021; 7:e07875. [PMID: 34504970 PMCID: PMC8417331 DOI: 10.1016/j.heliyon.2021.e07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/15/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
All across the globe, India is considered as an agricultural nation because its agro products drive the economy. An increase in population growth and a hike in food demands lead to the use of hazardous chemicals in farm fields. An in-depth field survey in Northern India was conducted to understand the types of agrochemicals that were used, farmers' knowledge about their safe handling, and their practices on its usage. Ninety-two responders (primarily farmers) from 37 districts of 12 states were interviewed to collect the information. The library containing 58 compounds as toxic spray constituents were developed and further screened in-silico for ADMET, drug-likeness, toxicity prediction, and molecular docking against their target actions in the human system. Glutathione S-transferases (GSTs) was selected as target protein showing the best-docked score with Bordeaux, Indoxacarb, Cyphenothrin, Deltamethrin, and Beta-cyfluthrin. The study revealed various adverse effects on human health and advocated provisions of alternative solutions such as using GST as a binding agents to hold the toxic chemicals out of living system and eventually saves valuable lives of the farmers.
Collapse
Affiliation(s)
- Aggarwal Ritika
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Gera Ritika
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali Ambala, Kurukshetra University, Kurukshetra, Haryana, 133101, India
| | - Jain Nikita
- Department of Chemistry, JAV College, CCS University, Meerut, Uttar Pradesh, 250611, India
| | - Kaur Bableen
- Department of Biotechnology, Jamia Millia Islamia University, Okhla, Delhi, 110025, India
| | - Murali Arunima
- Department of Biotechnology, St. Thomas College, Ruabandha Bhilai, Hemachand Yadav University, Chattisgarh, 490009, India
| | - Baruah Minakshi
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781030, India
| | - Supriya Anu
- Department of Chemistry, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, 123031, India
| | - Atre Nitin
- Bioinformatics and Data Management, ICMR - National Institute of Virology, Pune, India
| | - Khedkar Dinesh
- Dept of Botany, Shri Shivaji Science College, Amravati, Sant Gadgebaba Amravati University, Amravati, India
| |
Collapse
|
14
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hougaard Bennekou S, Koutsoumanis K, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano V, Turck D, Younes M, Aggett P, Castenmiller J, Giarola A, de Sesmaisons‐Lecarré A, Tarazona J, Verhagen H, Hernández‐Jerez A. Statement on the derivation of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. EFSA J 2021; 19:e06479. [PMID: 33747231 PMCID: PMC7970819 DOI: 10.2903/j.efsa.2021.6479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This Statement presents a proposal for harmonising the establishment of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. This is a recurrent issue for food additives and pesticides, and may occasionally occur for other regulated products. The Statement describes the specific considerations that should be followed for establishing the HBGVs during the assessment of a regulated product that is also a nutrient. It also addresses the elements to be considered in the intake assessment; and proposes a decision tree for ensuring a harmonised process for the risk characterisation of regulated products that are also nutrients. The Scientific Committee recommends the involvement of the relevant EFSA Panels and units, in order to ensure an integrated and harmonised approach for the hazard and risk characterisation of regulated products that are also nutrients, considering the intake from all relevant sources.
Collapse
|
15
|
Hernandez‐Jerez A, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marina M, Millet M, Pelkonen O, Tiktak A, Topping C, Widenfalk A, Wilks M, Wolterink G, Conrad A, Pieper S. Statement of the PPR Panel on a framework for conducting the environmental exposure and risk assessment for transition metals when used as active substances in plant protection products (PPP). EFSA J 2021; 19:e06498. [PMID: 33815619 PMCID: PMC8006092 DOI: 10.2903/j.efsa.2021.6498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Commission asked the European Food Safety Authority (EFSA) to prepare a statement on a framework for the environmental risk assessment (ERA) of transition metals (e.g. iron and copper) used as active substances in plant protection products (PPPs). Non-degradability, essentiality and specific conditions affecting fate and behaviour as well as their toxicity are distinctive characteristics possibly not covered in current guidance for PPPs. The proposed risk assessment framework starts with a preliminary phase, in which monitoring data on transition metals in relevant environmental compartments are provided. They deliver the metal natural background and anthropogenic residue levels to be considered in the exposure calculations. A first assessment step is then performed assuming fully bioavailable residues. Should the first step fail, refined ERA can, in principle, consider bioavailability issues; however, non-equilibrium conditions need to be taken into account. Simple models that are fit for purpose should be employed in order to avoid unnecessary complexity. Exposure models and scenarios would need to be adapted to address environmental processes and parameters relevant to the fate and behaviour of transition metals in water, sediment and soils (e.g. speciation). All developments should follow current EFSA guidance documents. If refined approaches have been used in the risk assessment of PPPs containing metals, post-registration monitoring and controlled long-term studies should be conducted and assessed. Utilisation of the same transition metal in other PPPs or for other uses will lead to accumulation in environmental compartments acting as sinks. In general, it has to be considered that the prospective risk assessment of metal-containing PPPs can only cover a defined period as there are limitations in the long-term hazard assessment due to issues of non-degradability. It is therefore recommended to consider these aspects in any risk management decisions and to align the ERA with the goals of other overarching legislative frameworks.
Collapse
|
16
|
Perestrelo AP, Miranda G, Gonçalves MI, Belino C, Ballesteros R. Chronic Copper Sulfate Poisoning. Eur J Case Rep Intern Med 2021; 8:002309. [PMID: 33768078 DOI: 10.12890/2021_002309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 11/05/2022] Open
Abstract
Copper, as a salt, is toxic and has the potential to harm multiple organs. Copper intoxication causes intravascular haemolysis followed by liver and kidney failure that can be fatal. We present a case of chronic copper sulfate poisoning in a 66-year-old man with dysphagia to solids and liquids, anaemia, acute kidney injury, liver cytolysis and hypocalcaemia. The patient improved with supportive care, but chronic kidney disease was established. Anamnesis was crucial for the diagnosis, given the non-specific signs and symptoms. The history of chronic exposure to pest treatment with a blue dust cloud made us suspect copper sulfate poisoning. LEARNING POINTS Copper sulfate poisoning is a relatively uncommon illness nowadays but can still be seen in clinical practice and should be kept in mind.It has non-specific signs and symptoms such as dysgeusia, abdominal pain, vomiting, muscle cramps or spasms, diarrhoea, ink-like urine, jaundice, anaemia and seizures.The diagnosis is based on clinical presentation and laboratory examinations upon a history of exposure to copper sulfate-containing products.
Collapse
Affiliation(s)
- Ana Paula Perestrelo
- Centro Hospitalar Universitário Cova da Beira, Alameda Pêro da Covilhã, Covilhã, Portugal
| | - Gonçalo Miranda
- Centro Hospitalar Universitário Cova da Beira, Alameda Pêro da Covilhã, Covilhã, Portugal
| | - Maria Inês Gonçalves
- Centro Hospitalar Universitário Cova da Beira, Alameda Pêro da Covilhã, Covilhã, Portugal
| | - Carolina Belino
- Centro Hospitalar Universitário Cova da Beira, Alameda Pêro da Covilhã, Covilhã, Portugal
| | - Rosa Ballesteros
- Centro Hospitalar Universitário Cova da Beira, Alameda Pêro da Covilhã, Covilhã, Portugal
| |
Collapse
|
17
|
Rebouillat P, Vidal R, Cravedi JP, Taupier-Letage B, Debrauwer L, Gamet-Payrastre L, Touvier M, Hercberg S, Lairon D, Baudry J, Kesse-Guyot E. Estimated dietary pesticide exposure from plant-based foods using NMF-derived profiles in a large sample of French adults. Eur J Nutr 2020; 60:1475-1488. [PMID: 32734347 DOI: 10.1007/s00394-020-02344-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE This study, conducted in participants of the NutriNet-Santé cohort, aims to identify dietary pesticide exposure profiles (derived from Non-negative Matrix Factorization) from conventional and organic foods among a large sample of general population French adults. METHODS Organic and conventional dietary intakes were assessed using a self-administered semi-quantitative food frequency questionnaire. Exposure to 25 commonly used pesticides was evaluated using food contamination data from Chemisches und Veterinäruntersuchungsamt Stuttgart accounting for farming system (organic or conventional). Dietary pesticide exposure profiles were identified using Non-Negative Matrix factorization (NMF), especially adapted for non-negative data with excess zeros. The NMF scores were introduced in a hierarchical clustering process. RESULTS Overall, the identified clusters (N = 34,193) seemed to be exposed to the same compounds with gradual intensity. Cluster 1 displayed the lowest energy intake and estimated dietary pesticide exposure, high organic food (OF) consumption (23.3%) and a higher proportion of male participants than other groups. Clusters 2 and 5 presented intermediate energy intake, lower OF consumption and intermediate estimated pesticide exposure. Cluster 3 showed high conventional fruits and vegetable (FV) intake, high estimated pesticide exposure, and fewer smokers. Cluster 4 estimated pesticide exposure varied more across compounds than for other clusters, with highest estimated exposures for acetamiprid, azadirachtin, cypermethrin, pyrethrins, spinosad. OF proportion in the diet was the highest (31.5%). CONCLUSION Estimated dietary pesticide exposures appeared to vary across the clusters and to be related to OF proportion in the diet. TRIAL REGISTRATION Clinical Trial Registry: NCT03335644.
Collapse
Affiliation(s)
- Pauline Rebouillat
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, INSERM, INRAE, CNAM, University of Paris (CRESS), 93017, Bobigny, France.
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 75595, Paris, France
| | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Bruno Taupier-Letage
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 75595, Paris, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, INSERM, INRAE, CNAM, University of Paris (CRESS), 93017, Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, INSERM, INRAE, CNAM, University of Paris (CRESS), 93017, Bobigny, France.,Département de Santé Publique, Hôpital Avicenne, 93017, Bobigny, France
| | - Denis Lairon
- Aix Marseille Université, INSERM, INRAE, C2VN, 13005, Marseille, France
| | - Julia Baudry
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, INSERM, INRAE, CNAM, University of Paris (CRESS), 93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Sorbonne Paris Nord University, INSERM, INRAE, CNAM, University of Paris (CRESS), 93017, Bobigny, France
| |
Collapse
|
18
|
Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B, Verani A. Modification of the existing maximum residue levels for copper compounds in fresh herbs and edible flowers. EFSA J 2020; 18:e06180. [PMID: 32670428 PMCID: PMC7345630 DOI: 10.2903/j.efsa.2020.6180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant LLG Sachsen-Anhalt, Dez. Pflanzenschutz submitted a request to the competent national authority in Germany to modify the existing maximum residue levels (MRLs) for copper compounds in herbs and edible flowers. The data submitted in support of the request were found sufficient to derive an MRL proposal of 150 mg/kg, confirming the MRL proposal of the MRL review, for copper compounds in herbs and edible flowers in support of the intended indoor use. Based on the risk assessment results, EFSA concluded that the long-term intake of copper residues resulting from the intended and existing uses, natural background levels and monitoring levels might present a risk to consumer health. Although residues in herbs and edible flowers are minor contributors to the overall consumer exposure, a risk management decision has to be taken whether it is appropriate to increase the existing MRLs for these crops, given that a potential consumer intake concern could not be excluded.
Collapse
|
19
|
Coelho FC, Squitti R, Ventriglia M, Cerchiaro G, Daher JP, Rocha JG, Rongioletti MCA, Moonen AC. Agricultural Use of Copper and Its Link to Alzheimer's Disease. Biomolecules 2020; 10:E897. [PMID: 32545484 PMCID: PMC7356523 DOI: 10.3390/biom10060897] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Copper is an essential nutrient for plants, animals, and humans because it is an indispensable component of several essential proteins and either lack or excess are harmful to human health. Recent studies revealed that the breakdown of the regulation of copper homeostasis could be associated with Alzheimer's disease (AD), the most common form of dementia. Copper accumulation occurs in human aging and is thought to increase the risk of AD for individuals with a susceptibility to copper exposure. This review reports that one of the leading causes of copper accumulation in the environment and the human food chain is its use in agriculture as a plant protection product against numerous diseases, especially in organic production. In the past two decades, some countries and the EU have invested in research to reduce the reliance on copper. However, no single alternative able to replace copper has been identified. We suggest that agroecological approaches are urgently needed to design crop protection strategies based on the complementary actions of the wide variety of crop protection tools for disease control.
Collapse
Affiliation(s)
- Fábio C. Coelho
- Phytotechnics Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF; Campos dos Goytacazes, RJ 28013-602, Brazil;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefrate lli, 25125 Brescia, Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, 00186 Rome, Italy;
| | - Giselle Cerchiaro
- Center for Natural Science and Humanities, Federal University of ABC—UFABC, Santo André, SP 09210-580, Brazil;
| | - João P. Daher
- Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ 24210-350, Brazil;
| | - Jaídson G. Rocha
- Phytotechnics Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF; Campos dos Goytacazes, RJ 28013-602, Brazil;
| | - Mauro C. A. Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Anna-Camilla Moonen
- Land Lab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| |
Collapse
|
20
|
|