1
|
Zahir A, Ge Z, Khan IA. Public health risks associated with food process contaminants - a review. J Food Prot 2024:100426. [PMID: 39643160 DOI: 10.1016/j.jfp.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The increasing complexity of food production and processing has raised concerns regarding food process contaminants, which pose significant public health risks. Food process contaminants can be introduced during diverse phases of food processing such as drying, heating, grilling, and fermentation, resulting in the synthesis of harmful chemicals including acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan and its naturally occurring derivatives, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), 2-chloropropane-1,2-diol esters (2-MCPDE), and 3-chloropropane-1,2-diol esters (3-MCPDE), ethyl carbamate (EC), glycidyl esters (GE), and 4-methylimidazole (4-MEI), all of these are harmful to human health. Although these compounds can be somewhat prevented during processing, eliminating them can often be challenging due to their unknown formation mechanism. Moreover, prolonged exposure to these dangerous compounds might harm human health. There is limited understanding of the sources, formation processes, and hazards of food processing contaminants, and a lack of knowledge of the mechanisms involved in how to control their generation. In this review, we provide a comprehensive overview of the harmful effects associated with food process contaminants generated during thermal processing and fermentation, alongside elemental process contaminants and their potential threats to human health. Furthermore, this study identifies existing knowledge gaps proposes avenues for future inquiry, and emphasizes the necessity of employing a multi-disciplinary approach to alleviate the public health risks posed by food process contaminants, advocating for cooperative initiatives among food scientists, public health officials, and regulatory entities to enhance food safety and protect consumer health.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar 3801, Afghanistan.
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Jadon N, Cetinkaya A, Ozcelikay-Akyildiz G, Kaya SI, Atici EB, Uzun L, Ozkan SA. Development of a green-synthesized molecularly imprinted polymer-based electrochemical nanosensor for the determination of N-nitrosodimethylamine (NDMA) in serum and tap water. Mikrochim Acta 2024; 191:769. [PMID: 39609307 DOI: 10.1007/s00604-024-06850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
N-nitrosodimethylamine (NDMA) was determined using a molecularly imprinted polymer (MIP)-based electrochemical sensor. Green-synthesized silver nanoparticles were functionalized with cysteamine to enhance their integration into the electrode surface, which was used to modify a glassy carbon electrode (GCE). Furthermore, a MIP-based electrochemical sensor was constructed via electropolymerization of 3-aminophenyl boronic acid (3-APBA) as a conjugated functional monomer in the presence of lithium perchlorate (LiClO4) solution as a dopant, chitosan as a carrier natural polymer, and NDMA as a template/target molecule. The polymer film was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The analytical performance of the silver nanomaterial-based MIP-based electrochemical (AgNPs@Chitosan/3-APBA@MIP-GCE) sensor was evaluated under optimized conditions. The linear range of NDMA was 1.0 × 10-13-1.0 × 10-12 M (0.1-1.0 pM), with a limit of detection (LOD) of 3.63 × 10-15 M (3.63 fM) using differential pulse voltammetry (DPV). Method validation figured out that the developed MIP-based electrochemical nanosensor exhibited excellent selectivity, accuracy, and precision, which was shown by the analysis of synthetic serum samples and tap water. The LOD and LOQ in serum samples were 17.8 fM and 59.5 fM, respectively, which were in agreement with the developed method. Good recovery results confirm the successful application of the method in serum and tap water samples. The selectivity of the developed AgNPs@Chitosan/3-APBA@MIP-GCE sensor for NDMA was demonstrated in the presence of NDEA, sartans (valsartan, losartan, irbesartan, candesartan, telmisartan), and potential interferents that are possibly present in biological fluids (dopamine, ascorbic acid, uric acid) besides ionic species (sodium, chloride, potassium, nitrate, magnesium, sulfate) and common analgesic paracetamol.
Collapse
Affiliation(s)
- Nimisha Jadon
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., India.
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - S Irem Kaya
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Esen Bellur Atici
- DEVA Holding A.S. R&D Center, Tekirdag, Turkey
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Lokman Uzun
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
3
|
Zhong L, Bondonno NP, Siervo M, Bondonno CP. Editorial: Dietary nitrate: friend or foe. Front Nutr 2024; 11:1516811. [PMID: 39659909 PMCID: PMC11629538 DOI: 10.3389/fnut.2024.1516811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Affiliation(s)
- Liezhou Zhong
- School of Medical and Health Sciences, Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
- Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Nicola P. Bondonno
- School of Medical and Health Sciences, Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
- Danish Cancer Institute, Copenhagen, Denmark
| | - Mario Siervo
- School of Population Health, Dementia Centre of Excellence, enAble Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Catherine P. Bondonno
- School of Medical and Health Sciences, Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
- Royal Perth Hospital Unit, Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Lee HS. Dietary exposure assessment for volatile N-nitrosamines from food and beverages for the U.S. population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1394-1405. [PMID: 39226451 DOI: 10.1080/19440049.2024.2398704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Detailed analysis of dietary nitrosamine exposure for the U.S. population has been limited, yet it is critical for evaluating the amount of nitrosamines in the American diet. The dietary exposures to N-nitrosamines from consumption of food and beverages were estimated for the U.S. population aged 2 years and older and children aged 2 to 5 years using 2-day food consumption data from the publicly available, combined 2015-2018 National Health and Nutrition Examination Survey (NHANES) and data on residual volatile N-nitrosamine levels in food available from our recent comprehensive literature review. The estimated eaters-only mean dietary exposure to N-nitrosamines ranged from 0.1 µg/person/day for U.S. children aged 2-5 years to 0.2 µg/person/day for the U.S. population aged 2 years and older. For the U.S. population aged 2 years and older, over 40% of the daily dietary exposure to N-nitrosamines resulted from the consumption of processed cured meats.
Collapse
Affiliation(s)
- Hyoung S Lee
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
5
|
Luan NM, Khuyen VTK, Tuan ND. High-Performance Liquid Chromatography-Tandem Mass Spectrometry Method Development and Validation for Simultaneous Determination of Seven Nitrosamine and Azidomethyl-Biphenyl-Tetrazole Impurities in Losartan. J Sep Sci 2024; 47:e202400277. [PMID: 39385440 DOI: 10.1002/jssc.202400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024]
Abstract
Nitrosamine-related impurities (N-nitrosomethylamino butyric acid [NMBA], N-nitrosodiethylamine [NDEA], N-nitrosodiisopropylamine [NDIPA], N-nitrosomethylphenylamine [NMPA], N-nitrosodibutylamine [NDBA], N-nitrosodimethylamine [NDMA], and N-nitrosoethylisopropylamine [NEIPA]) and 5-[4'-(azidomethyl)-[1,1'-biphenyl]-2-yl]-2H-tetrazole (AZBT) formed during the manufacture of sartan medicines have been classified into human mutagens and carcinogens after long-term treatment. The study developed a simple, economical but highly sensitive procedure for the simultaneous quantification of seven nitrosamines and AZBT impurities in sartan pharmaceuticals. After extraction with methanol (MeOH) 50%, the compounds were analyzed with a reversed-phase liquid chromatography-tandem mass spectroscopy with atmospheric-pressure chemical ionization (APCI) mode (APCI[+] for nitrosamines and APCI[-] for AZBT), selected reaction monitoring, C18 column, gradient elution with 0.1% formic acid in water and in MeOH, respectively. The validated procedure obtained high extraction efficiency (>90%), wide linear range (0.2-50.0 ng/mL NMBA, NDEA, NDIPA, NMPA, and NDBA; 0.5-50.0 ng/mL NDMA and NEIPA; 2.0-100 ng/mL AZBT), limit of quantification < 10% of the acceptance level, recovery range of 85%-115% with relative standard deviation < 15% and minimum matrix effects for all impurities. The procedure was applied to test 16 commercial losartan samples. As a result, eight samples contained AZBT within the current regulatory limits, but no nitrosamine impurities were detected in all samples.
Collapse
Affiliation(s)
- Nguyen Minh Luan
- Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Vo Thi Kim Khuyen
- Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Nguyen Duc Tuan
- Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
7
|
Manchuri KM, Shaik MA, Gopireddy VSR, Naziya Sultana, Gogineni S. Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol 2024; 37:1456-1483. [PMID: 39158368 DOI: 10.1021/acs.chemrestox.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer's and Parkinson's diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
Collapse
Affiliation(s)
- Krishna Moorthy Manchuri
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Mahammad Ali Shaik
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Venkata Subba Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Naziya Sultana
- Analytical Research and Development, IPDO, Dr. Reddy's Laboratories Limited, Hyderabad 500090, India
| | - Sreenivasarao Gogineni
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| |
Collapse
|
8
|
Yaakub H, Howell A, Margison GP, Povey AC. Development and Application of a Slot-Blot Assay Using the Damage Sensing Protein Atl1 to Detect and Quantify O6-Alkylated Guanine Bases in DNA. TOXICS 2024; 12:649. [PMID: 39330577 PMCID: PMC11435591 DOI: 10.3390/toxics12090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Humans are unavoidably exposed to numerous different mutagenic DNA alkylating agents (AAs), but their role in the initiation of cancers is uncertain, in part due to difficulties in assessing human exposure. To address this, we have developed a screening method that measures promutagenic O6-alkylguanines (O6-AlkGs) in DNA and applied it to human DNA samples. The method exploits the ability of the Schizosaccharomyces pombe alkyltransferase-like protein (Atl1) to recognise and bind to a wide range of O6-AlkGs in DNA. We established an Atl1-based slot-blot (ASB) assay and validated it using calf thymus DNA alkylated in vitro with a range of alkylating agents and both calf thymus and human placental DNA methylated in vitro with temozolomide (TMZ). ASB signals were directly proportional to the levels of O6-meG in these controls. Pre-treatment of DNA with the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) reduced binding of Atl1, confirming its specificity. In addition, MCF 10A cells were treated with 500 μM TMZ and the extracted DNA, analysed using the ASB, was found to contain 1.34 fmoles O6 -meG/μg DNA. Of six human breast tumour DNA samples assessed, five had detectable O6-AlkG levels (mean ± SD 1.24 ± 0.25 O6-meG equivalents/μg DNA. This study shows the potential usefulness of the ASB assay to detect and quantify total O6-AlkGs in human DNA samples.
Collapse
Affiliation(s)
- Hanum Yaakub
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| | - Anthony Howell
- Prevent Breast Cancer Centre, Wythenshawe Hospital Manchester Universities Foundation Trust, Wythenshawe, Manchester M23 9LT, UK;
- Manchester Breast Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4GJ, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Geoffrey P. Margison
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| | - Andrew C. Povey
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| |
Collapse
|
9
|
Ruiz-Saavedra S, Pietilä TK, Zapico A, de los Reyes-Gavilán CG, Pajari AM, González S. Dietary Nitrosamines from Processed Meat Intake as Drivers of the Fecal Excretion of Nitrosocompounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17588-17598. [PMID: 39072357 PMCID: PMC11311235 DOI: 10.1021/acs.jafc.4c05751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Diet is one of the main exogenous sources of potentially carcinogenic nitrosamines (NAs) along with tobacco and cosmetics. Several factors can affect endogenous N-nitroso compounds (NOCs) formation and therefore the potential damage of the intestinal mucosa at initial colorectal cancer stages. To address this issue, 49 volunteers were recruited and classified according to histopathological analyses. Lifestyle and dietary information were registered after colonoscopy. The mutagenicity of fecal supernatants was assayed by a modified Ames test. Fecal heme-derived NOCs and total NOC concentrations were determined by selective denitrosation and chemiluminescence-based detection. Results revealed processed meats as the main source of dietary nitrites and NAs, identifying some of them as predictors of the fecal concentration of heme-derived and total NOCs. Furthermore, increased fecal NOC concentrations were found as the severity of colonic mucosal damage increased from the control to the adenocarcinoma group, these concentrations being strongly correlated with the intake of the NAs N-nitrosodimethylamine, N-nitrosopiperidine, and N-nitrosopyrrolidine. Higher fecal NOC concentrations were also noted in higher fecal mutagenicity samples. These results could contribute to a better understanding of the importance of modulating dietary derived xenobiotics as related with their impact on the intestinal environment and colonic mucosa damage.
Collapse
Affiliation(s)
- Sergio Ruiz-Saavedra
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Aida Zapico
- Department
of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Clara G. de los Reyes-Gavilán
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Anne-Maria Pajari
- Department
of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Sonia González
- Department
of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
10
|
Khezri S, Azizian S, Salimi A. Pre-mating exposure with hesperidin protects N-ethyl-N-nitrosourea-induced neurotoxicity and congenital abnormalities in next generation of mice as a model of glioma. J Mol Histol 2024; 55:627-636. [PMID: 38916842 DOI: 10.1007/s10735-024-10218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Chemical carcinogen-induced oxidative stress has a key role in cell signaling linked to the development of cancer. Oxidative stress leads to oxidative damage to cellular membranes, proteins, chromosomes and genetic material. It is thought that compounds like hesperidin with high antioxidant and anticancer potential can reduce development of cancer induced by chemical carcinogens via neutralizing their oxidative damages. We investigated protective effect of hesperidin against N-Ethyl-N-Nitrosourea (ENU)-induced neurotoxicity, congenital abnormalities and possible brain cancer after exposure of mice during pregnancy as model of glioma. The mice were divided to four groups; control (normal saline), ENU (40 mg/kg daily for three consecutive days from the 17th to the 19th of pregnancy), hesperidin (pretreated with 25 mg/kg for 30 consecutive days, before mating) + ENU and hesperidin alone. Developmental toxicity parameters (the number of pregnant mice, stillbirths, abortion, live and dead offspring), behavioral tests (novel object recognition, open field and elevated plus maze) were performed. Moreover, the activity of butrylcholinesterase and acetylcholinesterase enzymes, oxidative markers and histopathological abnormalities were detected in brain tissue. Our data showed that conversely, the pretreatment of hesperidin reduces various degrees of developmental toxicity, neurobehavioral dysfunction, neurotoxicity, oxidative stress and histopathological abnormalities induced by ENU as a neurotoxic and carcinogenic agent in the next generation. In conclusion, pre-mating exposure with hesperidin may open new avenues for prevention of primary brain cancer in next generation and could be valuable for enhancing the antioxidant defense and minimizing the developmental and neurotoxicity of DNA alkylating agents.
Collapse
Affiliation(s)
- Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Azizian
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Arthropod-Borne Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
11
|
Moriwaki N, Arimoto-Kobayashi S. Photomutagenicity of N-nitrosoproline dissolved in non-aqueous solvent, oleic acid. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503794. [PMID: 39147448 DOI: 10.1016/j.mrgentox.2024.503794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
In the present study, we investigated the genotoxicity of the active products formed from N-nitrosoproline (NPRO) dissolved in oleic acid following ultraviolet A (UVA) irradiation, bypassing the need for metabolic activation. We previously demonstrated the photomutagenicity of NPRO dissolved in a phosphate-buffered solution. It has been suggested that the association of the nitrosamine group with acid ions facilitates rapid photodissociation and photoactivation. We hypothesized that NPRO's inherent carboxyl group may mimic an acid, inducing photodissociation and photomutagenicity, even in a non-aqueous solvent lacking acidic ions. Following UVA irradiation, NPRO dissolved in oleic acid exhibited a dose-dependent mutagenic activity. Similar results were obtained when NPRO was dissolved in linoleic acid and triolein. Nitric oxide formation, which is dependent on NPRO concentration, is accompanied by mutagenic activity. The mutagenicity spectrum obtained in response to NPRO irradiation followed the absorption curve of NPRO dissolved in oleic acid. Irradiated NPRO in oleic acid displayed relative stability, retaining approximately 18, 36, and 63 % of initial mutagenicity after 10 days of storage at 25, 4, and -20 °C, respectively. Thus NPRO stored in a fatty environment undergoes photoactivation upon irradiation, leading to genotoxicity.
Collapse
Affiliation(s)
- Naofumi Moriwaki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Sakae Arimoto-Kobayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
12
|
Nabizadeh S, Barzegar F, Arabameri M, Babaei M, Mohammadi A. Chronic daily intake, probabilistic carcinogenic risk assessment and multivariate analysis of volatile N-nitrosamines in chicken sausages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-10. [PMID: 39086174 DOI: 10.1080/09603123.2024.2383399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Volatile N-nitrosamines (VNAs) are probably and possibly carcinogenic compounds to humans and widely found in processed meat products. In this study, the dietary exposure distribution and probabilistic cancer risk for main VNAs (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomethylethylamine, N-nitrosopiperidine, N-nitrosodibutylamine, and N-nitrosodi-n-propylamine) were calculated by Monte Carlo simulation (MCS). The lowest and highest mean concentrations of these six NAs were related to NDBA and NDEA as 0.350 and 2.655 μg/kg, respectively. In the 95th percentile, chronic daily intake of total VNAs for children (3-14 years) and adults (15-70 years) were calculated to be 2.83 × 10-4 and 5.90 × 10-5 mg/kg bw/day, respectively. The cancer risk caused by the consumption of chicken sausages was less than 10-4, indicating low concern for the Iranian population. According to principal component analysis and heat map results, NDEA, NPIP and frying showed a positive correlation, highlighting that the variables follow a similar trend.
Collapse
Affiliation(s)
- Samaneh Nabizadeh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Arabameri
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohsen Babaei
- Department of Identity Recognition and Medical Sciences, Faculty of Intelligence and Criminal Investigation Science and Technology, Amin Police University, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Taya S, Punvittayagul C, Meepowpan P, Wongpoomchai R. Cancer Chemopreventive Effect of 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone on Diethylnitrosamine-Induced Early Stages of Hepatocarcinogenesis in Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:1975. [PMID: 39065504 PMCID: PMC11280862 DOI: 10.3390/plants13141975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) is a major compound in Cleistocalyx nervosum seed extract (CSE), which has been reported to have various biological activities, including anti-cancer activity. Therefore, this study attempted to evaluate whether DMC is a chemopreventive compound in CSE. Moreover, the preventive mechanisms of CSE and DMC in the DEN-induced early stages of hepatocarcinogenesis in rats were investigated. Male Wistar rats were intraperitoneally injected with DEN 50 mg/kg bw once a week for 8 weeks. Rats received CSE and DMC orally throughout the experiment. The number of glutathione S-transferase placental form (GST-P)-positive foci in the liver was measured. Furthermore, the preventive mechanisms of CSE and DMC on DEN-induced HCC, including cell proliferation and apoptosis, were investigated. Administering CSE at a dosage of 400 mg/kg bw and DMC at a dosage of 10 mg/kg bw significantly decreased the number and size of GST-P-positive foci and GST-P expression. In addition, DMC inhibited the development of preneoplastic lesions by decreasing cell proliferation and causing cell apoptosis; however, CSE inhibited the development of preneoplastic lesions by inducing cell apoptosis. In conclusion, DMC exhibited a cancer chemopreventive effect on the early stages of hepatocarcinogenesis by increasing cell apoptosis and reducing cell proliferation.
Collapse
Affiliation(s)
- Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Charatda Punvittayagul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rawiwan Wongpoomchai
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Göller AH, Johanssen S, Zalewski A, Ziegler V. Quantum chemical calculations of nitrosamine activation and deactivation pathways for carcinogenicity risk assessment. Front Pharmacol 2024; 15:1415266. [PMID: 39086387 PMCID: PMC11288830 DOI: 10.3389/fphar.2024.1415266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
N-nitrosamines and nitrosamine drug substance related impurities (NDSRIs) became a critical topic for the development and safety of small molecule medicines following the withdrawal of various pharmaceutical products from the market. To assess the mutagenic and carcinogenic potential of different N-nitrosamines lacking robust carcinogenicity data, several approaches are in use including the published carcinogenic potency categorization approach (CPCA), the Enhanced Ames Test (EAT), in vivo mutagenicity studies as well as read-across to analogue molecules with robust carcinogenicity data. We employ quantum chemical calculations as a pivotal tool providing insights into the likelihood of reactive ion formation and subsequent DNA alkylation for a selection of molecules including e.g., carcinogenic N-nitrosopiperazine (NPZ), N-nitrosopiperidine (NPIP), together with N-nitrosodimethylamine (NDMA) as well as non-carcinogenic N-nitrosomethyl-tert-butylamine (NTBA) and bis (butan-2-yl) (nitros)amine (BBNA). In addition, a series of nitroso-methylaminopyridines is compared side-by-side. We draw comparisons between calculated reaction profiles for structures representing motifs common to NDSRIs and those of confirmed carcinogenic and non-carcinogenic molecules with in vivo data from cancer bioassays. Furthermore, our approach enables insights into reactivity and relative stability of intermediate species that can be formed upon activation of several nitrosamines. Most notably, we reveal consistent differences between the free energy profiles of carcinogenic and non-carcinogenic molecules. For the former, the intermediate diazonium ions mostly react, kinetically controlled, to the more stable DNA adducts and less to the water adducts via transition-states of similar heights. Non-carcinogenic molecules yield stable carbocations as intermediates that, thermodynamically controlled, more likely form the statistically preferred water adducts. In conclusion, our data confirm that quantum chemical calculations can contribute to a weight of evidence approach for the risk assessment of nitrosamines.
Collapse
Affiliation(s)
- Andreas H. Göller
- Computational Molecular Design, Bayer AG, Pharmaceuticals, Wuppertal, Germany
| | - Sandra Johanssen
- Industrial Chemicals and Marketed Products, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - Adam Zalewski
- Genetic and Computational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - Verena Ziegler
- Genetic and Computational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
15
|
Lee IK, Park NY, Park SY, Jeong J, Lee J, Moon B, Kim YS, Kim J, Kho Y. Assessment of nitrosamine exposure in Korean foods: analysis, risk evaluation, and implications. Food Sci Biotechnol 2024; 33:2417-2426. [PMID: 39145132 PMCID: PMC11319691 DOI: 10.1007/s10068-024-01651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
This study investigated the presence of nitrosamines, known carcinogens, in 1320 food samples from South Korea using LC-APCI-MS/MS analysis. Results showed nitrosamines were detected in 72% of samples, with processed foods exhibiting higher levels. Sesame oil, snow white rice cake, fried chicken wings, and fried squid were identified as having the highest nitrosamine content. Daily intake estimates revealed nitrosodiethylamine (NDEA), nitrosodibutylamine (NDBA), and nitrosopyrrolidine (NPYR) as major contributors to exposure. Risk assessment, based on BMDL10 values and MOE calculations, indicated low health risks overall, but certain food groups at the 95th percentile showed MOEs below the safety threshold, warranting attention. This underscores the need for ongoing monitoring and regulation of nitrosamine levels in food products to protect public health, particularly in regions with high consumption of processed foods like South Korea. Further research and regulatory measures are crucial to minimize nitrosamine exposure and mitigate associated health risks. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01651-8.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Food Technology & Service, Eulji University, Seongnam-si, Gyeonggi-do 13135 Korea
| | - Na-youn Park
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do 13135 Korea
| | - So Young Park
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do 13135 Korea
| | - JunHyeok Jeong
- Department of Food Technology & Service, Eulji University, Seongnam-si, Gyeonggi-do 13135 Korea
| | - Jisu Lee
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do 13135 Korea
| | - Bokyung Moon
- Department of Food & Nutrition, Chung-Ang University, Anseong, 17546 Korea
| | - Young-Suk Kim
- Department of Food Science & Biotechnology, Ewha Women’s University, Seoul, 03760 Korea
| | - Junghoan Kim
- Department of Food Technology & Service, Eulji University, Seongnam-si, Gyeonggi-do 13135 Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do 13135 Korea
| |
Collapse
|
16
|
Li H, Li Q, Wang Q, Chen J, Xia W, Liao E. Effects of Inoculating Autochthonous Starter Cultures on Changes of N-Nitrosamines and Their Precursors in Chinese Traditional Fermented Fish during In Vitro Human Digestion. Foods 2024; 13:2021. [PMID: 38998527 PMCID: PMC11241300 DOI: 10.3390/foods13132021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The objective of this research was to investigate the impact of inoculating autochthonous starter cultures on the alterations in microorganisms, biogenic amines, nitrite, and N-nitrosamines in Chinese traditional fermented fish products (CTFPs) during in vitro human digestion. The results revealed that gastric digestion significantly (p < 0.05) inhibited the proliferation of lactic acid bacteria, yeast, Staphylococcus, and Enterobacteriaceae, whereas various microorganisms proliferated extensively during small intestine digestion. Meanwhile, small intestine digestion could significantly increase (p < 0.05) levels of putrescine, cadaverine, and tyramine. The reduced content observed in inoculated fermentation groups suggests that starter cultures may have the ability to deplete biogenic amines in this digestion stage. Gastric digestion significantly (p < 0.05) inhibited nitrite accumulation in all CTFPs samples. Conversely, the nitrite content increased significantly (p < 0.05) in all groups during subsequent small intestine digestion. However, the rise in the inoculated fermentation groups was smaller than that observed in the spontaneous fermentation group, indicating a potentially positive role of inoculated fermentation in inhibiting nitrite accumulation during this phase. Additionally, gastric digestion significantly (p < 0.05) elevated the levels of N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine in CTFPs. Inoculation with L. plantarum 120, S. cerevisiae 2018, and mixed starter cultures (L. plantarum 120, S. cerevisiae 2018, and S. xylosus 135 [1:1:1]) effectively increased the degree of depletion of NDMA during this digestion process.
Collapse
Affiliation(s)
- Han Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan 430023, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan 430023, China
| | - Wenshui Xia
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan 430023, China
| |
Collapse
|
17
|
Eisenbrand G, Buettner A, Diel P, Epe B, Först P, Grune T, Haller D, Heinz V, Hellwig M, Humpf HU, Jäger H, Kulling S, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Spranger J, Steinberg P, Vieths S, Wätjen W, Hengstler JG. Commentary of the SKLM to the EFSA opinion on risk assessment of N-nitrosamines in food. Arch Toxicol 2024; 98:1573-1580. [PMID: 38573336 PMCID: PMC11106120 DOI: 10.1007/s00204-024-03726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.
Collapse
Affiliation(s)
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg, 55128, Mainz, Germany
| | - Petra Först
- Food Process Engineering, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany
| | - Tillman Grune
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354, Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354, Freising, Germany
| | - Volker Heinz
- DIL German Institute of Food Technology, Professor-von-Klitzing-Strasse 7, 49610, Quakenbrück, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technical University Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Henry Jäger
- University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 33, 1180, Vienna, Austria
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Marcel Leist
- Division for In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78464, Constance, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Strasse 38-40, 1090, Vienna, Austria
| | - Ute Nöthlings
- Institute for Nutrition Research and Food Science, Rheinische Friedrich-Wilhelms-University Bonn, Fiedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-Und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
18
|
Elshaer SE, Hamad GM, Sobhy SE, Darwish AMG, Baghdadi HH, H Abo Nahas H, El-Demerdash FM, Kabeil SSA, Altamimi AS, Al-Olayan E, Alsunbul M, Docmac OK, Jaremko M, Hafez EE, Saied EM. Supplementation of Saussurea costus root alleviates sodium nitrite-induced hepatorenal toxicity by modulating metabolic profile, inflammation, and apoptosis. Front Pharmacol 2024; 15:1378249. [PMID: 38881874 PMCID: PMC11177093 DOI: 10.3389/fphar.2024.1378249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Sodium nitrite (NaNO2) is a widely used food ingredient, although excessive concentrations can pose potential health risks. In the present study, we evaluated the deterioration effects of NaNO2 additives on hematology, metabolic profile, liver function, and kidney function of male Wistar rats. We further explored the therapeutic potential of supplementation with S. costus root ethanolic extract (SCREE) to improve NaNO2-induced hepatorenal toxicity. In this regard, 65 adult male rats were divided into eight groups; Group 1: control, Groups 2, 3, and 4 received SCREE in 200, 400, and 600 mg/kg body weight, respectively, Group 5: NaNO2 (6.5 mg/kg body weight), Groups 6, 7 and 8 received NaNO2 (6.5 mg/kg body weight) in combination with SCREE (200, 400, and 600 mg/kg body weight), respectively. Our results revealed that the NaNO2-treated group shows a significant change in deterioration in body and organ weights, hematological parameters, lipid profile, and hepatorenal dysfunction, as well as immunohistochemical and histopathological alterations. Furthermore, the NaNO2-treated group demonstrated a considerable increase in the expression of TNF-α cytokine and tumor suppressor gene P53 in the kidney and liver, while a significant reduction was detected in the anti-inflammatory cytokine IL-4 and the apoptosis suppressor gene BCL-2, compared to the control group. Interestingly, SCREE administration demonstrated the ability to significantly alleviate the toxic effects of NaNO2 and improve liver function in a dose-dependent manner, including hematological parameters, lipid profile, and modulation of histopathological architecture. Additionally, SCREE exhibited the ability to modulate the expression levels of inflammatory cytokines and apoptotic genes in the liver and kidney. The phytochemical analysis revealed a wide set of primary metabolites in SCREE, including phenolics, flavonoids, vitamins, alkaloids, saponins and tannins, while the untargeted UPLC/T-TOF-MS/MS analysis identified 183 metabolites in both positive and negative ionization modes. Together, our findings establish the potential of SCREE in mitigating the toxic effects of NaNO2 by modulating metabolic, inflammatory, and apoptosis. Together, this study underscores the promise of SCREE as a potential natural food detoxifying additive to counteract the harmful impacts of sodium nitrite.
Collapse
Affiliation(s)
- Samy E Elshaer
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Gamal M Hamad
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Sherien E Sobhy
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira M Galal Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sanaa S A Kabeil
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences., College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omaima Kamel Docmac
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Essa M Saied
- Chemistry Department (Biochemistry Division), Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
19
|
Rendueles E, Mauriz E, Sanz-Gómez J, González-Paramás AM, Adanero-Jorge F, García-Fernández C. Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham. Microorganisms 2024; 12:914. [PMID: 38792741 PMCID: PMC11124515 DOI: 10.3390/microorganisms12050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The search for natural food additives makes propolis an exciting alternative due to its known antimicrobial activity. This work aims to investigate propolis' behavior as a nitrite substitute ingredient in cooked ham (a ready-to-eat product) when confronted with pathogenic microorganisms of food interest. The microbial evolution of Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Clostridium sporogenes inoculated at known doses was examined in different batches of cooked ham. The design of a challenge test according to their shelf life (45 days), pH values, and water activity allowed the determination of the mesophilic aerobic flora, psychotropic, and acid lactic bacteria viability. The test was completed with an organoleptic analysis of the samples, considering possible alterations in color and texture. The cooked ham formulation containing propolis instead of nitrites limited the potential growth (δ < 0.5 log10) of all the inoculated microorganisms until day 45, except for L. monocytogenes, which in turn exhibited a bacteriostatic effect between day 7 and 30 of the storage time. The sensory analysis revealed the consumer's acceptance of cooked ham batches including propolis as a natural additive. These findings suggest the functionality of propolis as a promising alternative to artificial preservatives for ensuring food safety and reducing the proliferation risk of foodborne pathogens in ready-to-eat products.
Collapse
Affiliation(s)
- Eugenia Rendueles
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Elba Mauriz
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | | | - Félix Adanero-Jorge
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
| | - Camino García-Fernández
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain; (J.S.-G.); (F.A.-J.); (C.G.-F.)
- ALINS—Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| |
Collapse
|
20
|
Aligholizadeh D, Johnson M, Hondrogiannis E, Devadas MS. Detection with NO Modification: (N═O)-Au Interactions for Instantaneous Label-Free Detection of N-Nitrosodiphenylamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7405-7411. [PMID: 38551809 DOI: 10.1021/acs.langmuir.3c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Increasing concerns have been raised about dangerous, yet nearly undetectable levels of nitrosamines in foods, medications, and drinking water. Their ubiquitous presence and carcinogenicity necessitates a method of sensitive and selective detection of these potent toxins. While the detection of two major nitrosamines─N-nitrosodimethylamine and N-nitrosodiethylamine─has seen success, low detection limits are scarcer for the other members of this class. One member, N-nitrosodiphenylamine (NDPhA), has had little progress not only in its detection in low quantities but also in its detection at all. NDPhA has unique difficulty in its identification due to its aromaticity, making it far more problematic to distinguish in the common GC-MS or LC-MS/MS methods used for nitrosamine sensing. Despite this detection barrier, it has been listed among the top 6 carcinogenic nitrosamines by the Food and Drug Administration as of 2023. Due to its evasive nature, a unique methodology must be applied to facilitate its sensitive identification. Herein, we describe the use of surface-enhanced Raman spectroscopy for the first account of liquid-phase detection of NDPhA using cysteamine-functionalized gold nanostars and a portable Raman spectrometer. Our methodology requires no chemical modification to the nitrosated structure as well as the usage of two well-understood biocompatible materials: cysteamine and gold nanoparticles.
Collapse
Affiliation(s)
| | - Mansoor Johnson
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Ellen Hondrogiannis
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Mary Sajini Devadas
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
21
|
Sirvins C, Goupy P, Promeyrat A, Dufour C. C-Nitrosation, C-Nitration, and Coupling of Flavonoids with N-Acetyltryptophan Limit This Amine N-Nitrosation in a Simulated Cured and Cooked Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4777-4787. [PMID: 38377948 DOI: 10.1021/acs.jafc.3c08445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nitrite is a common additive in cured meat formulation that provides microbiological safety, lipid oxidation management, and typical organoleptic properties. However, it is associated with the formation of carcinogenic N-nitrosamines. In this context, the antinitrosating capacity of selected flavonoids and ascorbate was evaluated in a simulated cooked and cured meat under formulation and digestion conditions. N-Acetyltryptophan was used as a secondary amine target. (-)-Epicatechin, rutin, and quercetin were all able to limit the formation of N-acetyl-N-nitrosotryptophan (NO-AcTrp) at pH 2.5 and pH 5 although (-)-epicatechin was 2 to 3-fold more efficient. Kinetics for the newly identified compounds allowed us to unravel common mechanistic pathways, which are flavonoid oxidation by nitrite followed by C-nitration and an original covalent coupling between NO-AcTrp and flavonoids or their nitro and nitroso counterparts. C-nitrosation of the A-ring was evidenced only for (-)-epicatechin. These major findings suggest that flavonoids could help to manage N-nitrosamine formation during cured meat processing, storage, and digestion.
Collapse
Affiliation(s)
- Charlène Sirvins
- INRAE, Avignon University, UMR408 SQPOV, F-84000 Avignon, France
- IFIP, French Pork and Pig Institute, F-35650 Le Rheu, France
| | - Pascale Goupy
- INRAE, Avignon University, UMR408 SQPOV, F-84000 Avignon, France
| | | | - Claire Dufour
- INRAE, Avignon University, UMR408 SQPOV, F-84000 Avignon, France
| |
Collapse
|
22
|
Erichsen DW, Pokharel P, Kyrø C, Schullehner J, Zhong L, Bondonno CP, Dalgaard F, Fjeldstad Hendriksen P, Sigsgaard T, Hodgson JM, Olsen A, Tjønneland A, Bondonno NP. Source-specific nitrate and nitrite intakes and associations with sociodemographic factors in the Danish Diet Cancer and Health cohort. Front Nutr 2024; 11:1326991. [PMID: 38476601 PMCID: PMC10927827 DOI: 10.3389/fnut.2024.1326991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Background The dietary source and intake levels of nitrate and nitrite may govern its deleterious versus beneficial effects on human health. Existing evidence on detailed source-specific intake is limited. The objectives of this study were to assess nitrate and nitrite intakes from different dietary sources (plant-based foods, animal-based foods, and water), characterize the background diets of participants with low and high intakes, and investigate how sociodemographic and lifestyle factors associate with intake levels. Methods In the Danish Diet, Cancer and Health Cohort, sociodemographic and lifestyle information was obtained from participants at enrolment (1993-1997). Source-dependent nitrate and nitrite intakes were calculated using comprehensive food composition databases, with tap water nitrate intakes estimated via the national drinking water quality monitoring database linked with participants' residential addresses from 1978 to 2016. Underlying dietary patterns were examined using radar plots comparing high to low consumers while sociodemographic predictors of source-dependent nitrate intakes were investigated using linear regression models. Results In a Danish cohort of 55,754 participants aged 50-65 at enrolment, the median [IQR] intakes of dietary nitrate and nitrite were 58.13 [44.27-74.90] mg/d and 1.79 [1.43-2.21] mg/d, respectively. Plant-based foods accounted for ~76% of nitrate intake, animal-based foods ~10%, and water ~5%. Nitrite intake was sourced roughly equally from plants and animals. Higher plant-sourced nitrate intake was associated with healthier lifestyles, better dietary patterns, more physical activity, higher education, lower age and lower BMI. Females and participants who had never smoked also had significantly higher plant-sourced nitrate intakes. Higher water-sourced nitrate intake was linked to sociodemographic risk factors (smoking, obesity, lower education). Patterns for animal-sourced nitrate were less clear. Conclusion Participants with higher plant-sourced nitrate intakes tend to be healthier while participants with higher water-sourced nitrate intakes tended to be unhealthier than their low consuming counterparts. Future research in this cohort should account for the sociodemographic and dietary predictors of source-specific nitrate intake we have identified.
Collapse
Affiliation(s)
| | - Pratik Pokharel
- Danish Cancer Institute, Copenhagen, Denmark
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | | | - Jörg Schullehner
- Department of Groundwater and Quaternary Geology Mapping, Geological Survey of Denmark and Greenland, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Catherine P. Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev and Gentofte University Hospital, Copenhagen, Denmark
| | | | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | - Jonathan M. Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, The University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - Anja Olsen
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anne Tjønneland
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicola P. Bondonno
- Danish Cancer Institute, Copenhagen, Denmark
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
23
|
Iammarino M, Marino R, Nardelli V, Ingegno M, Albenzio M. Red Meat Heating Processes, Toxic Compounds Production and Nutritional Parameters Changes: What about Risk-Benefit? Foods 2024; 13:445. [PMID: 38338580 PMCID: PMC10855356 DOI: 10.3390/foods13030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The heating process is a crucial step that can lead to the formation of several harmful chemical compounds in red meat such as heterocyclic aromatic amines, N-Nitrosamines, polycyclic aromatic hydrocarbons and acrylamide. Meat has high nutritional value, providing essential amino acids, bioactive compounds and several important micronutrients which can also be affected by heating processes. This review aims to provide an updated overview of the effects of different heating processes on both the safety and nutritional parameters of cooked red meat. The most-used heating processes practices were taken into consideration in order to develop a risk-benefit scenario for each type of heating process and red meat.
Collapse
Affiliation(s)
- Marco Iammarino
- Department of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (V.N.); (M.I.)
| | - Rosaria Marino
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy;
| | - Valeria Nardelli
- Department of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (V.N.); (M.I.)
| | - Mariateresa Ingegno
- Department of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (V.N.); (M.I.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy;
| |
Collapse
|
24
|
Mochizuki H, Nagazawa Y, Arimoto-Kobayashi S. Genotoxicity and the stability of N-nitrosomorpholine activity following UVA irradiation. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503721. [PMID: 38272633 DOI: 10.1016/j.mrgentox.2023.503721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
This study investigated N-nitrosomorpholine (NMOR) genotoxicity following UVA irradiation without metabolic activation. Following UVA irradiation, the photo treated NMOR (irradiated NMOR) was directly mutagenic, without UVA or metabolic activation, in the Ames test. The activity was relatively stable, and approximately 79% of the activity remained after 10 days of storage at 37 °C, 4 °C, or -20 °C. Micronuclei (MN) formation was observed in HaCaT cells after treatment with irradiated NMOR without metabolic activation. The action spectrum of MN formation in response to NMOR irradiation followed the NMOR absorption curve. In vivo, MN formation was observed in the peripheral blood reticulocytes of mice injected with irradiated NMOR under the inhibition of cytochrome P450-mediated metabolism of NMOR. Volatile NMOR may attach to environmental materials and be irradiated with environmental UVA light. Photoactivated NMOR-attached air pollutants could float in the air and fall onto the human body, leading to genotoxicity induced by the irradiated NMOR.
Collapse
Affiliation(s)
| | - Yukari Nagazawa
- School of Pharmaceutical Sciences, Okayama University, Japan
| | - Sakae Arimoto-Kobayashi
- School of Pharmaceutical Sciences, Okayama University, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
25
|
Abdelhady R, Senthong P, Eyers CE, Reamtong O, Cowley E, Cannizzaro L, Stimpson J, Cain K, Wilkinson OJ, Williams NH, Barran PE, Margison GP, Williams DM, Povey AC. Mass Spectrometric Analysis of the Active Site Tryptic Peptide of Recombinant O6-Methylguanine-DNA Methyltransferase Following Incubation with Human Colorectal DNA Reveals the Presence of an O6-Alkylguanine Adductome. Chem Res Toxicol 2023; 36:1921-1929. [PMID: 37983188 PMCID: PMC10731659 DOI: 10.1021/acs.chemrestox.3c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Pattama Senthong
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Claire E. Eyers
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Onrapak Reamtong
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Elizabeth Cowley
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Luca Cannizzaro
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Joanna Stimpson
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Kathleen Cain
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Oliver J. Wilkinson
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Nicholas H. Williams
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Perdita E. Barran
- Department
of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, U.K.
| | - Geoffrey P. Margison
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - David M. Williams
- Centre
for Chemical Biology, Department of Chemistry, Sheffield Institute
for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Andrew C. Povey
- Epidemiology
and Public Health Group, Division of Population Health, Health Services
Research and Primary Care, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
26
|
Regulska K, Kolenda T, Michalak M, Stanisz B. Impact of ramipril nitroso-metabolites on cancer incidence - in silico and in vitro safety evaluation. Rep Pract Oncol Radiother 2023; 28:612-622. [PMID: 38179284 PMCID: PMC10764049 DOI: 10.5603/rpor.97433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background Angiotensin-converting enzyme inhibitors (ACE-I) and their pharmacologically related sartans have been associated with an increased cancer incidence in several clinical observations. In 2018, sartans were revealed as being significantly contaminated with nitrosamines. Nitrosamines are potent human mutagens that can be formed ex vivo and, more concerningly, also in vivo from nitrosatable drug precursors. Their formation in sartans may justify the reported cancer risk and, by analogy, this may also apply to ACE-Is. Materials and methods We investigated a commonly used ACE-I, ramipril (RAM). We checked its susceptibility to in vivo interaction with nitrite, potentially resulting in the generation of mutagenic N-nitrosamines. To that end, in silico simulation of mutagenicity of RAM nitroso-derivatives was performed using VEGA-GUI software. Then, the Nitrosation Assay Procedure was conducted which served as a model of endogenous reaction. The resulting post-nitrosation mixtures were subjected to a bacterial reverse mutation test employing Salmonella typhimurium strains TA98 and TA100 with and without metabolic activation. Results Our results showed that studied samples did not induce point mutations in the test bacteria, regardless of the catalytic cytochrome activity. Conclusion We concluded that RAM endogenous nitrosation is not the reason for increased cancer incidence. However, other ACE-Is must be verified in a similar manner.
Collapse
Affiliation(s)
- Katarzyna Regulska
- Pharmacy, Greater Poland Cancer Centre, Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland, Collegium Pharmaceuticum, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Tomasz Kolenda
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Marcin Michalak
- Surgical, Oncological and Endoscopic Gynaecology Department, Greater Poland Cancer Center, Poznan, Poland
| | - Beata Stanisz
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
27
|
Seo JE, Yu JZ, Xu H, Li X, Atrakchi AH, McGovern TJ, Bruno KLD, Mei N, Heflich RH, Guo X. Genotoxicity assessment of eight nitrosamines using 2D and 3D HepaRG cell models. Arch Toxicol 2023; 97:2785-2798. [PMID: 37486449 DOI: 10.1007/s00204-023-03560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
N-nitrosamine impurities have been increasingly detected in human drugs. This is a safety concern as many nitrosamines are mutagenic in bacteria and carcinogenic in rodent models. Typically, the mutagenic and carcinogenic activity of nitrosamines requires metabolic activation by cytochromes P450 enzymes (CYPs), which in many in vitro models are supplied exogenously using rodent liver homogenates. There are only limited data on the genotoxicity of nitrosamines in human cell systems. In this study, we used metabolically competent human HepaRG cells, whose metabolic capability is comparable to that of primary human hepatocytes, to evaluate the genotoxicity of eight nitrosamines [N-cyclopentyl-4-nitrosopiperazine (CPNP), N-nitrosodibutylamine (NDBA), N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisopropylamine (NEIPA), N-nitroso-N-methyl-4-aminobutyric acid (NMBA), and N-nitrosomethylphenylamine (NMPA)]. Under the conditions we used to culture HepaRG cells, three-dimensional (3D) spheroids possessed higher levels of CYP activity compared to 2D monolayer cells; thus the genotoxicity of the eight nitrosamines was investigated using 3D HepaRG spheroids in addition to more conventional 2D cultures. Genotoxicity was assessed as DNA damage using the high-throughput CometChip assay and as aneugenicity/clastogenicity in the flow-cytometry-based micronucleus (MN) assay. Following a 24-h treatment, all the nitrosamines induced DNA damage in 3D spheroids, while only three nitrosamines, NDBA, NDEA, and NDMA, produced positive responses in 2D HepaRG cells. In addition, these three nitrosamines also caused significant increases in MN frequency in both 2D and 3D HepaRG models, while NMBA and NMPA were positive only in the 3D HepaRG MN assay. Overall, our results indicate that HepaRG spheroids may provide a sensitive, human-based cell system for evaluating the genotoxicity of nitrosamines.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Joshua Z Yu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
- Wiess School of Natural Sciences, Rice University, Houston, TX, 77005, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Aisar H Atrakchi
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Timothy J McGovern
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Karen L Davis Bruno
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
28
|
Vranić D, Milešević J, Trbović D, Gurinović M, Korićanac V, Zeković M, Petrović Z, Ranković S, Milićević D. Exposure to Phosphates and Nitrites through Meat Products: Estimation of the Potential Risk to Pregnant Women. Nutrients 2023; 15:2777. [PMID: 37375681 DOI: 10.3390/nu15122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Diet during pregnancy is one of the most important nutritional challenges associated with some risks for the mother and the fetus. For the first time, the study aims to estimate long-term (2018-2022) exposure to nitrate and phosphates in Serbian pregnant women, based on individual consumption data and accurate values measured in frequently consumed meat products. For this purpose, seven types of meat products, consisting of 3047 and 1943 samples, were collected from retail markets across Serbia, to analyze nitrites and phosphorus content, respectively. These data were combined with meat product consumption data from the Serbian National Food Consumption Survey to assess dietary intake of nitrites and phosphate. The results were compared with the acceptable daily intake (ADI) proposed by the European Food Safety Authority. The average dietary exposure (EDI) to phosphorus ranged from 0.733 mg/kg bw/day (liver sausage and pate) to 2.441 mg/kg bw/day (finely minced cooked sausages). Considering nitrite intake, the major sources were bacon (0.030 mg/kg bw/day) and coarsely minced cooked sausages (0.0189 mg/kg bw/day). In our study, average nitrite and phosphorus exposure in the Serbian pregnant women population are far below the EFSA recommendations (ADI 0.07 mg/kg bw/day and 40 mg/kg bw/day, respectively).
Collapse
Affiliation(s)
- Danijela Vranić
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia
| | - Jelena Milešević
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Dejana Trbović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia
| | - Mirjana Gurinović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Vladimir Korićanac
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Zoran Petrović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia
| | - Slavica Ranković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Dragan Milićević
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia
| |
Collapse
|