1
|
Caradonna E, Nemni R, Bifone A, Gandolfo P, Costantino L, Giordano L, Mormone E, Macula A, Cuomo M, Difruscolo R, Vanoli C, Vanoli E, Ferrara F. The Brain-Gut Axis, an Important Player in Alzheimer and Parkinson Disease: A Narrative Review. J Clin Med 2024; 13:4130. [PMID: 39064171 PMCID: PMC11278248 DOI: 10.3390/jcm13144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are severe age-related disorders with complex and multifactorial causes. Recent research suggests a critical link between neurodegeneration and the gut microbiome, via the gut-brain communication pathway. This review examines the role of trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, in the development of AD and PD, and investigates its interaction with microRNAs (miRNAs) along this bidirectional pathway. TMAO, which is produced from dietary metabolites like choline and carnitine, has been linked to increased neuroinflammation, protein misfolding, and cognitive decline. In AD, elevated TMAO levels are associated with amyloid-beta and tau pathologies, blood-brain barrier disruption, and neuronal death. TMAO can cross the blood-brain barrier and promote the aggregation of amyloid and tau proteins. Similarly, TMAO affects alpha-synuclein conformation and aggregation, a hallmark of PD. TMAO also activates pro-inflammatory pathways such as NF-kB signaling, exacerbating neuroinflammation further. Moreover, TMAO modulates the expression of various miRNAs that are involved in neurodegenerative processes. Thus, the gut microbiome-miRNA-brain axis represents a newly discovered mechanistic link between gut dysbiosis and neurodegeneration. MiRNAs regulate the key pathways involved in neuroinflammation, oxidative stress, and neuronal death, contributing to disease progression. As a direct consequence, specific miRNA signatures may serve as potential biomarkers for the early detection and monitoring of AD and PD progression. This review aims to elucidate the complex interrelationships between the gut microbiota, trimethylamine-N-oxide (TMAO), microRNAs (miRNAs), and the central nervous system, and the implications of these connections in neurodegenerative diseases. In this context, an overview of the current neuroradiology techniques available for studying neuroinflammation and of the animal models used to investigate these intricate pathologies will also be provided. In summary, a bulk of evidence supports the concept that modulating the gut-brain communication pathway through dietary changes, the manipulation of the microbiome, and/or miRNA-based therapies may offer novel approaches for implementing the treatment of debilitating neurological disorders.
Collapse
Affiliation(s)
- Eugenio Caradonna
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| | - Raffaello Nemni
- Unit of Neurology, Centro Diagnostico Italiano S.p.A., Milan Fondazione Crespi Spano, 20011 Milan, Italy;
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Patrizia Gandolfo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Lucy Costantino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Luca Giordano
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Elisabetta Mormone
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Anna Macula
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Colleretto Giacosa, 10010 Turin, Italy;
- Department of Physics, University of Torino, 10124 Torino, Italy
| | - Mariarosa Cuomo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | | | - Camilla Vanoli
- Department of Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, Cardiovascular Diseases, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| |
Collapse
|
2
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2024:10.1038/s41380-024-02656-9. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
3
|
Lee N, Choi JY, Ryu YH. The development status of PET radiotracers for evaluating neuroinflammation. Nucl Med Mol Imaging 2024; 58:160-176. [PMID: 38932754 PMCID: PMC11196502 DOI: 10.1007/s13139-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 06/28/2024] Open
Abstract
Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.
Collapse
Affiliation(s)
- Namhun Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Iguchi Y, Fukabori R, Kato S, Takahashi K, Eifuku S, Maejima Y, Shimomura K, Mizuma H, Mawatari A, Doi H, Cui Y, Onoe H, Hikishima K, Osanai M, Nishijo T, Momiyama T, Benton R, Kobayashi K. Chemogenetic activation of mammalian brain neurons expressing insect Ionotropic Receptors by systemic ligand precursor administration. Commun Biol 2024; 7:547. [PMID: 38714803 PMCID: PMC11076466 DOI: 10.1038/s42003-024-06223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Chemogenetic approaches employing ligand-gated ion channels are advantageous regarding manipulation of target neuronal population functions independently of endogenous second messenger pathways. Among them, Ionotropic Receptor (IR)-mediated neuronal activation (IRNA) allows stimulation of mammalian neurons that heterologously express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the original protocol, phenylacetic acid, a ligand of the IR84a/IR8a complex, was locally injected into a brain region due to its low permeability of the blood-brain barrier. To circumvent this invasive injection, we sought to develop a strategy of peripheral administration with a precursor of phenylacetic acid, phenylacetic acid methyl ester, which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. This strategy was validated by electrophysiological, biochemical, brain-imaging, and behavioral analyses, demonstrating high utility of systemic IRNA technology in the remote activation of target neurons in the brain.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Ryoji Fukabori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazumi Takahashi
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Satoshi Eifuku
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hiroshi Mizuma
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Research, Institute for Drug Discovery Science, Collaborative Creation Research Center, Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keigo Hikishima
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, 305-8564, Japan
| | - Makoto Osanai
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, 565-0871, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Tokyo, 105-8461, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya-cho, Kasugai, 480-0392, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Tokyo, 105-8461, Japan
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|
5
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2023:1-26. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
7
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
8
|
Narożna M, Krajka-Kuźniak V, Bednarczyk-Cwynar B, Baer-Dubowska W. Unlocking the Potential: Novel NSAIDs Hybrids Unleash Chemopreventive Power toward Liver Cancer Cells through Nrf2, NF-κB, and MAPK Signaling Pathways. Molecules 2023; 28:5759. [PMID: 37570726 PMCID: PMC10420225 DOI: 10.3390/molecules28155759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
HCC is a highly aggressive malignancy with limited treatment options. In this study, novel conjugates of non-steroidal anti-inflammatory drugs (NSAIDs)-Ibuprofen and Ketoprofen-with oleanolic acid oximes derivatives (OAO) were synthesized, and their activity as modulators of signaling pathways involved in HCC pathogenesis was evaluated in normal THLE-2 liver cells, and HCC-derived HepG2 cells. The results demonstrated that conjugation with OAO derivatives reduces the cytotoxicity of parent compounds in both cell lines. In THLE-2 cells, treatment with conjugates resulted in increased activation of the Nrf2-ARE pathway. An opposite effect was observed in HepG2 cells. In the later reduction of NF-κB, it was observed along with modulation of MAPK signaling pathways (AKT, ERK, p38, p70S6K, and JNK). Moreover, STAT3, STAT5, and CREB transcription factors on protein levels were significantly reduced as a result of treatment with IBU- and KET-OAO derivatives conjugates. The most active were conjugates with OAO-morpholide. Overall, the findings of this study demonstrate that IBU-OAO and KET-OAO derivative conjugates modulate the key signaling pathways involved in hepatic cancer development. Their effect on specific signaling pathways varied depending on the structure of the conjugate. Since the conjugation of IBU and KET with OAO derivatives reduced their cytotoxicity, the conjugates may be considered good candidates for the prevention of liver cancer.
Collapse
Affiliation(s)
- Maria Narożna
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825, NE 13th Street, Oklahoma City, OK 73104, USA;
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland;
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, 6, Grunwaldzka Street, 60-780 Poznań, Poland;
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland;
| |
Collapse
|
9
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
10
|
Huang J. Novel brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Front Immunol 2022; 13:1010946. [PMID: 36211392 PMCID: PMC9537554 DOI: 10.3389/fimmu.2022.1010946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with a concealed onset and continuous deterioration. Mild cognitive impairment (MCI) is the prodromal stage of AD. Molecule-based imaging with positron emission tomography (PET) is critical in tracking pathophysiological changes among AD and MCI patients. PET with novel targets is a promising approach for diagnostic imaging, particularly in AD patients. Our present review overviews the current status and applications of in vivo molecular imaging toward neuroinflammation. Although radiotracers can remarkably diagnose AD and MCI patients, a variety of limitations prevent the recommendation of a single technique. Recent studies examining neuroinflammation PET imaging suggest an alternative approach to evaluate disease progression. This review concludes that PET imaging towards neuroinflammation is considered a promising approach to deciphering the enigma of the pathophysiological process of AD and MCI.
Collapse
|
11
|
Kaur J, Bhardwaj A, Wuest F. Fluorine-18 Labelled Radioligands for PET Imaging of Cyclooxygenase-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123722. [PMID: 35744851 PMCID: PMC9227202 DOI: 10.3390/molecules27123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Molecular imaging probes enable the early and accurate detection of disease-specific biomarkers and facilitate personalized treatment of many chronic diseases, including cancer. Among current clinically used functional imaging modalities, positron emission tomography (PET) plays a significant role in cancer detection and in monitoring the response to therapeutic interventions. Several preclinical and clinical studies have demonstrated the crucial involvement of cyclooxygenase-2 (COX-2) isozyme in cancer development and progression, making COX-2 a promising cancer biomarker. A variety of COX-2-targeting PET radioligands has been developed based on anti-inflammatory drugs and selective COX-2 inhibitors. However, many of those suffer from non-specific binding and insufficient metabolic stability. This article highlights examples of COX-2-targeting PET radioligands labelled with the short-lived positron emitter 18F, including radiosynthesis and PET imaging studies published in the last decade (2012–2021).
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Correspondence: (J.K.); (F.W.)
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Correspondence: (J.K.); (F.W.)
| |
Collapse
|
12
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
13
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
14
|
Ghazanfari N, van Waarde A, Dierckx RAJO, Doorduin J, de Vries EFJ. Is cyclooxygenase-1 involved in neuroinflammation? J Neurosci Res 2021; 99:2976-2998. [PMID: 34346520 PMCID: PMC9542093 DOI: 10.1002/jnr.24934] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Purpose: Reactive microglia are an important hallmark of neuroinflammation. Reactive microglia release various inflammatory mediators, such as cytokines, chemokines, and prostaglandins, which are produced by enzymes like cyclooxygenases (COX). The inducible COX‐2 subtype has been associated with inflammation, whereas the constitutively expressed COX‐1 subtype is generally considered as a housekeeping enzyme. However, recent evidence suggests that COX‐1 can also be upregulated and may play a prominent role in the brain during neuroinflammation. In this review, we summarize the evidence that supports this involvement of COX‐1. Methods: Five databases were used to retrieve relevant studies that addressed COX‐1 in the context of neuroinflammation. The search resulted in 32 articles, describing in vitro, in vivo, post mortem, and in vivo imaging studies that specifically investigated the COX‐1 isoform under such conditions. Results: Reviewed literature generally indicated that the overexpression of COX‐1 was induced by an inflammatory stimulus, which resulted in an increased production of prostaglandin E2. The pharmacological inhibition of COX‐1 was shown to suppress the induction of inflammatory mediators like prostaglandin E2. Positron emission tomography (PET) imaging studies in animal models confirmed the overexpression of COX‐1 during neuroinflammation. The same imaging method, however, could not detect any upregulation of COX‐1 in patients with Alzheimer's disease. Conclusion: Taken together, studies in cultured cells and living rodents suggest that COX‐1 is involved in neuroinflammation. Most postmortem studies on human brains indicate that the concentration of COX‐1‐expressing microglial cells is increased near sites of inflammation. However, evidence for the involvement of COX‐1 in neuroinflammation in the living human brain is still largely lacking.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Scott MC, Bedi SS, Olson SD, Sears CM, Cox CS. Microglia as therapeutic targets after neurological injury: strategy for cell therapy. Expert Opin Ther Targets 2021; 25:365-380. [PMID: 34029505 DOI: 10.1080/14728222.2021.1934447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Microglia is the resident tissue macrophages of the central nervous system. Prolonged microglial activation often occurs after traumatic brain injury and is associated with deteriorating neurocognitive outcomes. Resolution of microglial activation is associated with limited tissue loss and improved neurocognitive outcomes. Limiting the prolonged pro-inflammatory response and the associated secondary tissue injury provides the rationale and scientific premise for considering microglia as a therapeutic target. AREAS COVERED In this review, we discuss markers of microglial activation, such as immunophenotype and microglial response to injury, including cytokine/chemokine release, free radical formation, morphology, phagocytosis, and metabolic shifts. We compare the origin and role in neuroinflammation of microglia and monocytes/macrophages. We review potential therapeutic targets to shift microglial polarization. Finally, we review the effect of cell therapy on microglia. EXPERT OPINION Dysregulated microglial activation after neurologic injury, such as traumatic brain injury, can worsen tissue damage and functional outcomes. There are potential targets in microglia to attenuate this activation, such as proteins and molecules that regulate microglia polarization. Cellular therapeutics that limit, but do not eliminate, the inflammatory response have improved outcomes in animal models by reducing pro-inflammatory microglial activation via secondary signaling. These findings have been replicated in early phase clinical trials.
Collapse
Affiliation(s)
- M Collins Scott
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston (Uthealth), USA
| | - Supinder S Bedi
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Candice M Sears
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Hu SX, Ernst K, Benner CP, Feenstra KL. Stability of Ketoprofen Methylester in Plasma of Different Species. Curr Drug Metab 2021; 22:215-223. [PMID: 33334282 DOI: 10.2174/1389200221666201217141025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pharmacokinetic and pharmacodynamic assessment of ester-containing drugs can be impacted by hydrolysis of the drugs in plasma samples post blood collection. The impact is different in the plasma of different species. OBJECTIVE This study evaluated the stability of a prodrug, ketoprofen methylester (KME), in commercially purchased and freshly collected plasma of mouse, rat, dog, cat, pig, sheep, cattle and horse. METHODS KME hydrolysis was determined following its incubation in commercially purchased and freshly collected plasma of those species. Different esterase inhibitors were evaluated for prevention of the hydrolysis in rat, dog and pig plasma. RESULTS KME was rapidly hydrolyzed in both commercially purchased and freshly collected plasma of mouse, rat, and horse. The hydrolysis was initially quick and then limited in cat plasma. KME hydrolysis was minimum in commercially purchased plasma of dog, pig, sheep and cattle but substantial in freshly collected plasma of those species. Different esterase inhibitors showed different effects on the stability of KME in rat, dog and pig plasma. CONCLUSION These results indicate that plasma of different species has different hydrolytic activities to estercontaining drugs. The activities in commercially purchased and freshly collected plasma may be different and species-dependent. Esterase inhibitors have different effects on preventing hydrolysis of the ester-containing drugs in the plasma of different species.
Collapse
Affiliation(s)
- Steven X Hu
- Zoetis, Inc., Veterinary Medicine Research and Development, Kalamazoo, MI 49007, United States
| | - Kelsey Ernst
- Zoetis, Inc., Veterinary Medicine Research and Development, Kalamazoo, MI 49007, United States
| | - Charles P Benner
- Zoetis, Inc., Veterinary Medicine Research and Development, Kalamazoo, MI 49007, United States
| | - Kenneth L Feenstra
- Zoetis, Inc., Veterinary Medicine Research and Development, Kalamazoo, MI 49007, United States
| |
Collapse
|
17
|
Dynamics of Cyclooxygenase-1 Positive Microglia/Macrophage in the Retina of Pathological Model Mice as a Biomarker of the Retinal Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22073396. [PMID: 33806238 PMCID: PMC8036698 DOI: 10.3390/ijms22073396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
In an intraocular inflammatory state, microglia residing in the retina become active and migrate inside the retina. In this study, we investigated whether cyclooxygenase-1 (COX-1) expressed by retinal microglia/macrophage can be a biomarker for the diagnosis of retinal diseases. COX-1 was immunopositive in microglia/macrophage and neutrophils, while COX-2 was immunopositive in astrocytes and neurons in the inner layer of normal retina. The number of COX-1 positive cells per section of the retinal tissue was 14 ± 2.8 (mean ± standard deviation) in normal mice, which showed significant increase in the lipopolysaccharide (LPS)-administrated model (62 ± 5.0, p = 8.7 × 10−9). In addition to microglia, we found neutrophils that were positive for COX-1. In the early stage of inflammation in the experimental autoimmune uveoretinitis (EAU), COX-1 positive cells, infiltrating from the ciliary body into the retinal outer nuclear layer, were observed. The number of infiltrating COX-1 positive cells correlated with the severity of EAU. Taken together, the increased number of COX-1 positive microglia/macrophage with morphological changes were observed in the retinas of retinal inflammatory disease models. This suggests that COX-1 can be a marker of disease-related activities of microglia/macrophage, which should be useful for the diagnosis of retinal diseases.
Collapse
|
18
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
19
|
Solnes LB, Jacobs AH, Coughlin JM, Du Y, Goel R, Hammoud DA, Pomper MG. Central Nervous System Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
|
21
|
Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020; 7:1064-1074. [PMID: 33098761 PMCID: PMC7893630 DOI: 10.1016/s2215-0366(20)30255-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/14/2023]
Abstract
Neuroinflammation is a multifaceted physiological and pathophysiological response of the brain to injury and disease. Given imaging findings of 18 kDa translocator protein (TSPO) and the development of radioligands for other inflammatory targets, PET imaging of neuroinflammation is at a particularly promising stage. This Review critically evaluates PET imaging results of inflammation in psychiatric disorders, including major depressive disorder, schizophrenia and psychosis disorders, substance use, and obsessive-compulsive disorder. We also consider promising new targets that can be measured in the brain, such as monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, colony stimulating factor 1 receptor, and the purinergic P2X7 receptor. Thus far, the most compelling TSPO imaging results have arguably been found in major depressive disorder, for which consistent increases have been observed, and in schizophrenia and psychosis, for which patients show reduced TSPO levels. This pattern highlights the importance of validating brain biomarkers of neuroinflammation for each condition separately before moving on to patient stratification and treatment monitoring trials.
Collapse
Affiliation(s)
- Jeffrey H Meyer
- Campbell Family Mental Health Research Institute, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Cavaliere C, Tramontano L, Fiorenza D, Alfano V, Aiello M, Salvatore M. Gliosis and Neurodegenerative Diseases: The Role of PET and MR Imaging. Front Cell Neurosci 2020; 14:75. [PMID: 32327973 PMCID: PMC7161920 DOI: 10.3389/fncel.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glial activation characterizes most neurodegenerative and psychiatric diseases, often anticipating clinical manifestations and macroscopical brain alterations. Although imaging techniques have improved diagnostic accuracy in many neurological conditions, often supporting diagnosis, prognosis prediction and treatment outcome, very few molecular imaging probes, specifically focused on microglial and astrocytic activation, have been translated to a clinical setting. In this context, hybrid positron emission tomography (PET)/magnetic resonance (MR) scanners represent the most advanced tool for molecular imaging, combining the functional specificity of PET radiotracers (e.g., targeting metabolism, hypoxia, and inflammation) to both high-resolution and multiparametric information derived by MR in a single imaging acquisition session. This simultaneity of findings achievable by PET/MR, if useful for reciprocal technical adjustments regarding temporal and spatial cross-modal alignment/synchronization, opens still debated issues about its clinical value in neurological patients, possibly incompliant and highly variable from a clinical point of view. While several preclinical and clinical studies have investigated the sensitivity of PET tracers to track microglial (mainly TSPO ligands) and astrocytic (mainly MAOB ligands) activation, less studies have focused on MR specificity to this topic (e.g., through the assessment of diffusion properties and T2 relaxometry), and only few exploiting the integration of simultaneous hybrid acquisition. This review aims at summarizing and critically review the current state about PET and MR imaging for glial targets, as well as the potential added value of hybrid scanners for characterizing microglial and astrocytic activation.
Collapse
|
23
|
Kubota K, Ogawa M, Ji B, Watabe T, Zhang MR, Suzuki H, Sawada M, Nishi K, Kudo T. Basic Science of PET Imaging for Inflammatory Diseases. PET/CT FOR INFLAMMATORY DISEASES 2020. [PMCID: PMC7418531 DOI: 10.1007/978-981-15-0810-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
FDG-PET/CT has recently emerged as a useful tool for the evaluation of inflammatory diseases too, in addition to that of malignant diseases. The imaging is based on active glucose utilization by inflammatory tissue. Autoradiography studies have demonstrated high FDG uptake in macrophages, granulocytes, fibroblasts, and granulation tissue. Especially, activated macrophages are responsible for the elevated FDG uptake in some types of inflammation. According to one study, after activation by lipopolysaccharide of cultured macrophages, the [14C]2DG uptake by the cells doubled, reaching the level seen in glioblastoma cells. In activated macrophages, increase in the expression of total GLUT1 and redistributions from the intracellular compartments toward the cell surface have been reported. In one rheumatoid arthritis model, following stimulation by hypoxia or TNF-α, the highest elevation of the [3H]FDG uptake was observed in the fibroblasts, followed by that in macrophages and neutrophils. As the fundamental mechanism of elevated glucose uptake in both cancer cells and inflammatory cells, activation of glucose metabolism as an adaptive response to a hypoxic environment has been reported, with transcription factor HIF-1α playing a key role. Inflammatory cells and cancer cells seem to share the same molecular mechanism of elevated glucose metabolism, lending support to the notion of usefulness of FDGPET/CT for the evaluation of inflammatory diseases, besides cancer.
Collapse
|
24
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
25
|
Yamagishi S, Iga Y, Nakamura M, Takizawa C, Fukumoto D, Kakiuchi T, Nishiyama S, Ohba H, Tsukada H, Sato K, Ouchi Y. Upregulation of cannabinoid receptor type 2, but not TSPO, in senescence-accelerated neuroinflammation in mice: a positron emission tomography study. J Neuroinflammation 2019; 16:208. [PMID: 31707986 PMCID: PMC6842455 DOI: 10.1186/s12974-019-1604-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microglial cells are activated in response to changes in brain homeostasis during aging, dementia, and stroke. Type 2 endocannabinoid receptors (CB2) and translocator protein 18 kD (TSPO) are considered to reflect distinct aspects of microglia-related neuroinflammatory responses in the brain. CB2 activation is considered to relate to the neuroprotective responses that may occur predominantly in the early stage of brain disorders such as Alzheimer's disease, while an increase in TSPO expression tends to occur later during neuroinflammation, in a proinflammatory fashion. However, this information was deduced from studies with different animal samples under different experimental settings. In this study, we aimed to examine the early microglial status in the inflammation occurring in the brains of senescence-accelerated mouse prone 10 (SAMP10) mice, using positron emission tomography (PET) with CB2 and TSPO tracers, together with immunohistochemistry. METHODS Five- and 15-week-old SAMP10 mice that undergo neurodegeneration after 7 months of age were used. The binding levels of the TSPO tracer (R)-[11C]PK11195 and CB2 tracer [11C]NE40 were measured using PET in combination with immunohistochemistry for CB2 and TSPO. To our knowledge, this is the first study to report PET data for CB2 and TSPO at the early stage of cognitive impairment in an animal model. RESULTS The standard uptake value ratios (SUVRs) of [11C]NE40 binding were significantly higher than those of (R)-[11C]PK11195 binding in the cerebral cortical region at 15 weeks of age. At 5 weeks of age, the [11C]NE40 SUVR tended to be higher than the (R)-[11C]PK11195 SUVR. The (R)-[11C]PK11195 SUVR did not significantly differ between 5- and 15-week-old mice. Consistently, immunostaining analysis confirmed the upregulation of CB2, but not TSPO. CONCLUSIONS The use of the CB2 tracer [11C]NE40 and/or an immunohistochemical approach allows evaluation of the role of microglia in acute neuroinflammatory processes in the early stage of neurodegeneration. The present results provide in vivo evidence of different responses of two types of microglia to senescence-accelerated neuroinflammation, implying the perturbation of microglial balance by aging. Specific treatment for CB2-positive microglia might help ameliorate senescence-related neuroinflammation and the following neurodegeneration.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yurika Iga
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Masato Nakamura
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Chika Takizawa
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
26
|
Micro-PET imaging of [18F]fluoroacetate combined with [18F]FDG to differentiate chronic Mycobacterium tuberculosis infection from an acute bacterial infection in a mouse model: a preliminary study. Nucl Med Commun 2019; 40:639-644. [PMID: 30932968 DOI: 10.1097/mnm.0000000000001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (TB) infection is one of the deadliest infectious diseases worldwide and is responsible for 1.7 million deaths per year. The increase in multidrug-resistant TB poses formidable challenges to the global control of tuberculosis. TB infection could easily yield false-positive results in fluorine-18-fluorodeoxyglucose ([F]FDG) PET imaging for cancer detection because of its high [F]FDG uptake. We describe the combined [F]FDG PET with fluorine-18-fluoroacetate ([F]FAC), a promising analog of carbon-11-acetate, for targeting glycolysis and de novo lipogenesis, respectively, to determine the metabolic differences between chronic TB infection and acute infection. MATERIALS AND METHODS Six-month-old BALB/c mice were inoculated with Mycobacterium bovis to induce chronic TB infection, and Escherichia coli as well as Staphylococcus aureus to induce acute infection for an in-vivo imaging study. Eighteen days after inoculation for chronic TB infection and 5 days for acute infection, both [F]FDG and [F]FAC micro-PET were performed on the infected mice. Analysis of variance and the Tukey honest ad-hoc test were carried out to determine differences among treatment with different bacterial infections. RESULTS TB infection showed much lower [F] FAC accumulation than acute infection. However, both TB infection and acute infection exhibited high [F]FAC accumulation. CONCLUSION The marked metabolic differences in de novo lipogenesis and glycolysis in [F]FDG and [F]FAC uptakes in micro-PET imaging, respectively, help to differentiate chronic TB infection from acute infection.
Collapse
|
27
|
Bauckneht M, Capitanio S, Raffa S, Roccatagliata L, Pardini M, Lapucci C, Marini C, Sambuceti G, Inglese M, Gallo P, Cecchin D, Nobili F, Morbelli S. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers. EJNMMI Radiopharm Chem 2019; 4:6. [PMID: 31659498 PMCID: PMC6453990 DOI: 10.1186/s41181-019-0058-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Brain PET imaging with different tracers is mainly clinically used in the field of neurodegenerative diseases and brain tumors. In recent years, the potential usefulness of PET has also gained attention in the field of MS. In fact, MS is a complex disease and several processes can be selected as a target for PET imaging. The use of PET with several different tracers has been mainly evaluated in the research setting to investigate disease pathophysiology (i.e. phenotypes, monitoring of progression) or to explore its use a surrogate end-point in clinical trials. Results We have reviewed PET imaging studies in MS in humans and animal models. Tracers have been grouped according to their pathophysiological targets (ie. tracers for myelin kinetic, neuroinflammation, and neurodegeneration). The emerging clinical indication for brain PET imaging in the differential diagnosis of suspected tumefactive demyelinated plaques as well as the clinical potential provided by PET images in view of the recent introduction of PET/MR technology are also addressed. Conclusion While several preclinical and fewer clinical studies have shown results, full-scale clinical development programs are needed to translate molecular imaging technologies into a clinical reality that could ideally fit into current precision medicine perspectives.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy.,Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Caterina Lapucci
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Matilde Inglese
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region, Department of Neurosciences DNS, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
28
|
Parente A, van Waarde A, Shoji A, de Paula Faria D, Maas B, Zijlma R, Dierckx RAJO, Langendijk JA, de Vries EFJ, Doorduin J. PET Imaging with S-[ 11C]Methyl-L-Cysteine and L-[Methyl- 11C]Methionine in Rat Models of Glioma, Glioma Radiotherapy, and Neuroinflammation. Mol Imaging Biol 2019; 20:465-472. [PMID: 29086198 PMCID: PMC5938303 DOI: 10.1007/s11307-017-1137-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose S-[11C]-methyl-L-cysteine ([11C]MCYS) has been claimed to offer higher tumor selectivity than L-[methyl-11C]methionine ([11C]MET). We examined this claim in animal models. Procedures Rats with implanted untreated (n = 10) or irradiated (n = 7, 1 × 25 Gy, on day 8) orthotopic gliomas were scanned after 6, 9, and 12 days, using positron emission tomography. Rats with striatal injections of saline (n = 9) or bacterial lipopolysaccharide (n = 9) were scanned after 3 days. Results Uptake of the two tracers in untreated gliomas was similar. [11C]MCYS was not accumulated in salivary glands, nasal epithelium, and healing wounds, in contrast to [11C]MET, but showed 40 % higher accumulation in the healthy brain. Both tracers showed a reduced tumor uptake 4 days after irradiation and minor accumulation in inflamed striatum. [11C]MCYS indicated higher lesion volumes than [11C]MET (untreated tumor + 47 %; irradiated tumor up to + 500 %; LPS-inflamed striatum + 240 %). Conclusions [11C]MCYS was less accumulated in some non-tumor tissues than [11C]MET, but showed lower tumor-to-brain contrast. Electronic supplementary material The online version of this article (10.1007/s11307-017-1137-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Parente
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Aren van Waarde
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Alexandre Shoji
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Laboratory of Nuclear Medicine (LIM43), University of Sao Paulo, Faculdade de Medicina, Hospital das Clinicas, Sao Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Laboratory of Nuclear Medicine (LIM43), University of Sao Paulo, Faculdade de Medicina, Hospital das Clinicas, Sao Paulo, SP, Brazil
| | - Bram Maas
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rolf Zijlma
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Erik F J de Vries
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
29
|
Mravec B, Horvathova L, Cernackova A. Hypothalamic Inflammation at a Crossroad of Somatic Diseases. Cell Mol Neurobiol 2019; 39:11-29. [PMID: 30377908 DOI: 10.1007/s10571-018-0631-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
Various hypothalamic nuclei function as central parts of regulators that maintain homeostasis of the organism. Recently, findings have shown that inflammation in the hypothalamus may significantly affect activity of these homeostats and consequently participate in the development of various somatic diseases such as obesity, diabetes, hypertension, and cachexia. In addition, hypothalamic inflammation may also affect aging and lifespan. Identification of the causes and mechanisms involved in the development of hypothalamic inflammation creates not only a basis for better understanding of the etiopathogenesis of somatic diseases, but for the development of new therapeutic approaches for their treatment, as well.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72, Bratislava, Slovakia.
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Lubica Horvathova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Cernackova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72, Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
30
|
Singh P, Shrestha S, Cortes-Salva MY, Jenko KJ, Zoghbi SS, Morse CL, Innis RB, Pike VW. 3-Substituted 1,5-Diaryl-1 H-1,2,4-triazoles as Prospective PET Radioligands for Imaging Brain COX-1 in Monkey. Part 1: Synthesis and Pharmacology. ACS Chem Neurosci 2018; 9:2610-2619. [PMID: 29678105 DOI: 10.1021/acschemneuro.8b00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cyclooxygenase-1 (COX-1) is a key enzyme in the biosynthesis of proinflammatory thromboxanes and prostaglandins and is found in glial and neuronal cells within brain. COX-1 expression is implicated in numerous neuroinflammatory states. We aim to find a direct-acting positron emission tomography (PET) radioligand for imaging COX-1 in human brain as a potential biomarker of neuroinflammation and for serving as a tool in drug development. Seventeen 3-substituted 1,5-diaryl-1 H-1,2,4-triazoles were prepared as prospective COX-1 PET radioligands. From this set, three 1,5-(4-methoxyphenyl)-1 H-1,2,4-triazoles, carrying a 3-methoxy (5), 3-(1,1,1-trifluoroethoxy) (20), or 3-fluoromethoxy substituent (6), were selected for radioligand development, based mainly on their high affinities and selectivities for inhibiting human COX-1, absence of carboxyl group, moderate computed lipophilicities, and scope for radiolabeling with carbon-11 ( t1/2 = 20.4 min) or fluorine-18 ( t1/2 = 109.8 min). Methods were developed for producing [11C]5, [11C]20, and [ d2-18F]6 from hydroxy precursors in a form ready for intravenous injection for prospective evaluation in monkey with PET.
Collapse
Affiliation(s)
- Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Stal Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Michelle Y. Cortes-Salva
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Kimberly J. Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Cheryl L. Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
Elie J, Vercouillie J, Arlicot N, Lemaire L, Bidault R, Bodard S, Hosselet C, Deloye JB, Chalon S, Emond P, Guilloteau D, Buron F, Routier S. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [ 18F] PET tracer. J Enzyme Inhib Med Chem 2018; 34:1-7. [PMID: 30362376 PMCID: PMC6211253 DOI: 10.1080/14756366.2018.1501043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel derivatives exhibiting high affinity and selectivity towards the COX-2 enzyme in the (aza) indazole series was developed. A short synthetic route involving a bromination/arylation sequence under microwave irradiation and direct C–H activation were established in the indazole and azaindazole series respectively. In vitro assays were conducted and structural modifications were carried out on these scaffolds to furnish compound 16 which exhibited effective COX-2 inhibitory activity, with IC50 values of 0.409 µM and an excellent selectivity versus COX-1. Radiolabeling of this most potent derivative [18F]16 was achieved after boron ester release and the tracer was evaluated in vivo in a rat model of neuroinflammation. All chemistry, radiochemistry and biological experimental data are discussed.
Collapse
Affiliation(s)
- Jonathan Elie
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France.,b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Johnny Vercouillie
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,d CHRU , de Tours , Tours , France.,e INSERM CIC 1415 , University of François-Rabelais de Tours , Tours , France
| | - Nicolas Arlicot
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,d CHRU , de Tours , Tours , France.,e INSERM CIC 1415 , University of François-Rabelais de Tours , Tours , France
| | - Lucas Lemaire
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France
| | - Rudy Bidault
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Sylvie Bodard
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Christel Hosselet
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France
| | - Jean-Bernard Deloye
- c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,f Biopôle Clermont-Limagne , Laboratoires Cyclopharma , Saint-Beauzire , France
| | - Sylvie Chalon
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Patrick Emond
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Denis Guilloteau
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,d CHRU , de Tours , Tours , France.,e INSERM CIC 1415 , University of François-Rabelais de Tours , Tours , France
| | - Frédéric Buron
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France
| | - Sylvain Routier
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France
| |
Collapse
|
32
|
Kim MJ, Shrestha SS, Cortes M, Singh P, Morse C, Liow JS, Gladding RL, Brouwer C, Henry K, Gallagher E, Tye GL, Zoghbi SS, Fujita M, Pike VW, Innis RB. Evaluation of Two Potent and Selective PET Radioligands to Image COX-1 and COX-2 in Rhesus Monkeys. J Nucl Med 2018; 59:1907-1912. [PMID: 29959215 DOI: 10.2967/jnumed.118.211144] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
This study assessed whether the newly developed PET radioligands 11C-PS13 and 11C-MC1 could image constitutive levels of cyclooxygenase (COX)-1 and COX-2, respectively, in rhesus monkeys. Methods: After intravenous injection of either radioligand, 24 whole-body PET scans were performed. To measure enzyme-specific uptake, scans of the 2 radioligands were also performed after administration of a nonradioactive drug preferential for either COX-1 or COX-2. Concurrent venous samples were obtained to measure parent radioligand concentrations. SUVs were calculated from 10 to 90 min. Results: 11C-PS13 showed specific uptake in most organs, including spleen, gastrointestinal tract, kidneys, and brain, which was blocked by COX-1, but not COX-2, preferential inhibitors. Specific uptake of 11C-MC1 was not observed in any organ except the ovaries and possibly kidneys. Conclusion: The findings suggest that 11C-PS13 has adequate signal in monkeys to justify its extension to human subjects. In contrast, 11C-MC1 is unlikely to show significant signal in healthy humans, though it may be able to do so in inflammatory conditions.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Stal S Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Michelle Cortes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Cheryl Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Chad Brouwer
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Katharine Henry
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Evan Gallagher
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S, Takahashi R, Inoue H, Morita S, Yamamoto M, Okita K, Nakagawa M, Parmar M, Takahashi J. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature 2018; 548:592-596. [PMID: 28858313 DOI: 10.1038/nature23664] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/19/2017] [Indexed: 02/08/2023]
Abstract
Induced pluripotent stem cells (iPS cells) are a promising source for a cell-based therapy to treat Parkinson's disease (PD), in which midbrain dopaminergic neurons progressively degenerate. However, long-term analysis of human iPS cell-derived dopaminergic neurons in primate PD models has never been performed to our knowledge. Here we show that human iPS cell-derived dopaminergic progenitor cells survived and functioned as midbrain dopaminergic neurons in a primate model of PD (Macaca fascicularis) treated with the neurotoxin MPTP. Score-based and video-recording analyses revealed an increase in spontaneous movement of the monkeys after transplantation. Histological studies showed that the mature dopaminergic neurons extended dense neurites into the host striatum; this effect was consistent regardless of whether the cells were derived from patients with PD or from healthy individuals. Cells sorted by the floor plate marker CORIN did not form any tumours in the brains for at least two years. Finally, magnetic resonance imaging and positron emission tomography were used to monitor the survival, expansion and function of the grafted cells as well as the immune response in the host brain. Thus, this preclinical study using a primate model indicates that human iPS cell-derived dopaminergic progenitors are clinically applicable for the treatment of patients with PD.
Collapse
Affiliation(s)
- Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroaki Magotani
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Takuya Hayashi
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Hiroshi Mizuma
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Sayuki Takara
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Haruhisa Inoue
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Michio Yamamoto
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Masato Nakagawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.,Department of Neurosurgery, Clinical Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
34
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Rai-Bhogal R, Ahmad E, Li H, Crawford DA. Microarray analysis of gene expression in the cyclooxygenase knockout mice - a connection to autism spectrum disorder. Eur J Neurosci 2017; 47:750-766. [PMID: 29161772 DOI: 10.1111/ejn.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
The cellular and molecular events that take place during brain development play an important role in governing function of the mature brain. Lipid-signalling molecules such as prostaglandin E2 (PGE2 ) play an important role in healthy brain development. Abnormalities along the COX-PGE2 signalling pathway due to genetic or environmental causes have been linked to autism spectrum disorder (ASD). This study aims to evaluate the effect of altered COX-PGE2 signalling on development and function of the prenatal brain using male mice lacking cyclooxygenase-1 and cyclooxygenase-2 (COX-1-/- and COX-2-/- ) as potential model systems of ASD. Microarray analysis was used to determine global changes in gene expression during embryonic days 16 (E16) and 19 (E19). Gene Ontology: Biological Process (GO:BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were implemented to identify affected developmental genes and cellular processes. We found that in both knockouts the brain at E16 had nearly twice as many differentially expressed genes, and affected biological pathways containing various ASD-associated genes important in neuronal function. Interestingly, using GeneMANIA and Cytoscape we also show that the ASD-risk genes identified in both COX-1-/- and COX-2-/- models belong to protein-interaction networks important for brain development despite of different cellular localization of these enzymes. Lastly, we identified eight genes that belong to the Wnt signalling pathways exclusively in the COX-2-/- mice at E16. The level of PKA-phosphorylated β-catenin (S552), a major activator of the Wnt pathway, was increased in this model, suggesting crosstalk between the COX-2-PGE2 and Wnt pathways during early brain development. Overall, these results provide further molecular insight into the contribution of the COX-PGE2 pathways to ASD and demonstrate that COX-1-/- and COX-2-/- animals might be suitable new model systems for studying the disorders.
Collapse
Affiliation(s)
- Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Eizaaz Ahmad
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Hongyan Li
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Dorota A Crawford
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
36
|
MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat Commun 2017; 8:385. [PMID: 28855509 PMCID: PMC5577234 DOI: 10.1038/s41467-017-00926-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/07/2017] [Indexed: 01/02/2023] Open
Abstract
The banking of human leukocyte antigen (HLA)-homozygous-induced pluripotent stem cells (iPSCs) is considered a future clinical strategy for HLA-matched cell transplantation to reduce immunological graft rejection. Here we show the efficacy of major histocompatibility complex (MHC)-matched allogeneic neural cell grafting in the brain, which is considered a less immune-responsive tissue, using iPSCs derived from an MHC homozygous cynomolgus macaque. Positron emission tomography imaging reveals neuroinflammation associated with an immune response against MHC-mismatched grafted cells. Immunohistological analyses reveal that MHC-matching reduces the immune response by suppressing the accumulation of microglia (Iba-1+) and lymphocytes (CD45+) into the grafts. Consequently, MHC-matching increases the survival of grafted dopamine neurons (tyrosine hydroxylase: TH+). The effect of an immunosuppressant, Tacrolimus, is also confirmed in the same experimental setting. Our results demonstrate the rationale for MHC-matching in neural cell grafting to the brain and its feasibility in a clinical setting. Major histocompatibility complex (MHC) matching improves graft survival rates after organ transplantation. Here the authors show that in macaques, MHC-matched iPSC-derived neurons provide better engraftment in the brain, with a lower immune response and higher survival of the transplanted neurons.
Collapse
|
37
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|
38
|
Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int J Mol Sci 2017; 18:ijms18040785. [PMID: 28387722 PMCID: PMC5412369 DOI: 10.3390/ijms18040785] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Denis Guilloteau
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Claire Tronel
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Nicolas Arlicot
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| |
Collapse
|
39
|
Hosoya T, Fukumoto D, Kakiuchi T, Nishiyama S, Yamamoto S, Ohba H, Tsukada H, Ueki T, Sato K, Ouchi Y. In vivo TSPO and cannabinoid receptor type 2 availability early in post-stroke neuroinflammation in rats: a positron emission tomography study. J Neuroinflammation 2017; 14:69. [PMID: 28356120 PMCID: PMC5372312 DOI: 10.1186/s12974-017-0851-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Background Upregulated levels of 18-kDa translocator proteins (TSPO) and type 2 endocannabinoid receptors (CB2) are considered to reflect different aspects of microglia-related neuroinflammatory responses in the brain. Relative to the increase in the TSPO expression that occurs slightly later during neuroinflammation in a proinflammatory fashion, CB2 activation is considered to relate to the neuroprotective responses that occurs predominantly at an early stage of brain disorders. These findings, however, were deduced from studies with different animal samples under different experimental settings. Here, we aimed to examined the differences in TSPO binding and CB2 availability at an early stage of stroke in the same animal using positron emission tomography (PET). Methods We used a total of eight Sprague-Dawley rats that underwent photothrombotic stroke surgery. The binding levels of a TSPO tracer [11C](R)PK11195 and a CB2 tracer [11C]NE40 were measured at 24 h after the surgery in the same animal using PET in combination with immunohistochemistry for CB2 and several other markers. A morphological inspection was also performed with X-ray computed tomography for small animals. Results The levels of [11C]NE40 binding potential (BPND) were significantly higher in the cerebral cortical region on the lesion side than those on the non-lesion side, whereas no difference was found in the levels of [11C](R)PK11195 BPND between hemispheres. The tracer influx index (R1) data were all reduced on the lesion side irrespective of tracers. This increase in [11C]NE40 BPND was concomitant with an elevation in CB2 expression mainly within the microglia in the peri-infarct area, as shown by immunohistochemical examinations with Iba-1, CD11b/c+, and NG2+ staining. Conclusions The present results provide in vivo evidence of different responses of microglia occurring in the acute state of stroke. The use of the CB2 tracer [11C]NE40 allows us to evaluate the roles played by the neuroprotective aspect of microglia in acute neuroinflammatory processes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0851-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teruyo Hosoya
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Shigeyuki Yamamoto
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Japan
| | - Takatoshi Ueki
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Kohji Sato
- Department of Neuroanatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
40
|
Schain M, Kreisl WC. Neuroinflammation in Neurodegenerative Disorders—a Review. Curr Neurol Neurosci Rep 2017; 17:25. [DOI: 10.1007/s11910-017-0733-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Lee JM, Tan V, Lovejoy D, Braidy N, Rowe DB, Brew BJ, Guillemin GJ. Involvement of quinolinic acid in the neuropathogenesis of amyotrophic lateral sclerosis. Neuropharmacology 2017; 112:346-364. [DOI: 10.1016/j.neuropharm.2016.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
42
|
Gassner C, Neuber C, Laube M, Bergmann R, Kniess T, Pietzsch J. Development of a18F-labeled Diaryl-Substituted Dihydropyrrolo[3,2,1-hi]indole as Potential Probe for Functional Imaging of Cyclooxygenase-2 with PET. ChemistrySelect 2016. [DOI: 10.1002/slct.201601618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cemena Gassner
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
43
|
Exploratory human PET study of the effectiveness of 11C-ketoprofen methyl ester, a potential biomarker of neuroinflammatory processes in Alzheimer's disease. Nucl Med Biol 2016; 43:438-44. [DOI: 10.1016/j.nucmedbio.2016.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/31/2016] [Accepted: 04/24/2016] [Indexed: 01/13/2023]
|
44
|
Higuchi M, Ji B, Maeda J, Sahara N, Suhara T. In vivoimaging of neuroinflammation in Alzheimer's disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology; Chiba Japan
| | - Bin Ji
- National Institutes for Quantum and Radiological Science and Technology; Chiba Japan
| | - Jun Maeda
- National Institutes for Quantum and Radiological Science and Technology; Chiba Japan
| | - Naruhiko Sahara
- National Institutes for Quantum and Radiological Science and Technology; Chiba Japan
| | - Tetsuya Suhara
- National Institutes for Quantum and Radiological Science and Technology; Chiba Japan
| |
Collapse
|
45
|
Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci 2016; 7:470-83. [PMID: 26985861 DOI: 10.1021/acschemneuro.6b00056] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in the pathophysiology of a growing number of human disorders, including multiple sclerosis, chronic pain, traumatic brain injury, and amyotrophic lateral sclerosis. As a result, interest in the development of novel methods to investigate neuroinflammatory processes, for the purpose of diagnosis, development of new therapies, and treatment monitoring, has surged over the past 15 years. Neuroimaging offers a wide array of non- or minimally invasive techniques to characterize neuroinflammatory processes. The intent of this Review is to provide brief descriptions of currently available neuroimaging methods to image neuroinflammation in the human central nervous system (CNS) in vivo. Specifically, because of the relatively widespread accessibility of equipment for nuclear imaging (positron emission tomography [PET]; single photon emission computed tomography [SPECT]) and magnetic resonance imaging (MRI), we will focus on strategies utilizing these technologies. We first provide a working definition of "neuroinflammation" and then discuss available neuroimaging methods to study human neuroinflammatory processes. Specifically, we will focus on neuroimaging methods that target (1) the activation of CNS immunocompetent cells (e.g. imaging of glial activation with TSPO tracer [(11)C]PBR28), (2) compromised BBB (e.g. identification of MS lesions with gadolinium-enhanced MRI), (3) CNS-infiltration of circulating immune cells (e.g. tracking monocyte infiltration into brain parenchyma with iron oxide nanoparticles and MRI), and (4) pathological consequences of neuroinflammation (e.g. imaging apoptosis with [(99m)Tc]Annexin V or iron accumulation with T2* relaxometry). This Review provides an overview of state-of-the-art techniques for imaging human neuroinflammation which have potential to impact patient care in the foreseeable future.
Collapse
Affiliation(s)
| | - Cristina Granziera
- Neuro-Immunology,
Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier
Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
- LTS5, Ecole
Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
46
|
Cyclooxygenase 1 (COX1) expression in Type 2 diabetes mellitus: A preliminary study from north India. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
47
|
Shukuri M, Mawatari A, Ohno M, Suzuki M, Doi H, Watanabe Y, Onoe H. Detection of Cyclooxygenase-1 in Activated Microglia During Amyloid Plaque Progression: PET Studies in Alzheimer's Disease Model Mice. J Nucl Med 2015; 57:291-6. [PMID: 26585055 DOI: 10.2967/jnumed.115.166116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Cyclooxygenase (COX), a prostanoid-synthesizing enzyme, is considered to be involved in the neuroinflammatory process of neurodegenerative diseases. However, the role of COX in the progression of neurodegeneration is not well understood. We hypothesized that in vivo imaging of COX by PET will contribute to elucidation of the function of COX during the neurodegenerative process in Alzheimer's disease (AD). (11)C-labeled ketoprofen methyl ester (racemic (RS)-(11)C-KTP-Me) developed recently by our group is a useful PET probe for in vivo imaging of COX-1 during neuroinflammation. The (S)-enantiomer of ketoprofen is known to be pharmacologically more active than the (R)-enantiomer. We thus synthesized (11)C-labeled (S)-ketoprofen methyl ester ((S)-(11)C-KTP-Me) as an improved PET probe specific for COX-1 and applied it for investigation of the changes in COX-1 during the progression of AD in a mouse model. METHODS The specificity of (S)-(11)C-KTP-Me for COXs was examined in PET studies with rats that had intrastriatal injection of lipopolysaccharide. To determine the details of changes in COX-1 during progression of amyloid-β (Aβ) plaque formation in amyloid precursor protein transgenic (APP-Tg) mice, we performed immunohistochemical studies and ex vivo autoradiography with (S)-(11)C-KTP-Me. RESULTS PET studies using hemispheric lipopolysaccharide injection into rats revealed that the sensitivity of (S)-(11)C-KTP-Me in neuroinflammation was much higher than that of (RS)-(11)C-KTP-Me and (R)-(11)C-KTP-Me; these results closely corresponded to the inhibitory activities of each enantiomer against COX-1 estimated by an in vitro assay. In APP-Tg mice, (S)-(11)C-KTP-Me administration resulted in progressive and significant increases in accumulation of radioactivity in the brain from 16 to 24 mo old in accordance with the histopathologic appearance of abundant Aβ plaques and activated microglia, whereas few changes in radioactivity accumulation and few Aβ plaques were seen in age-matched wild-type control mice. High-radioactivity accumulation by (S)-(11)C-KTP-Me was markedly observed in the frontal cortex and hippocampus in which COX-1-expressing activated microglia tightly surrounded and enclosed large and more intensely stained Aβ plaques, indicating neuroinflammation that originated with Aβ. CONCLUSION (S)-(11)C-KTP-Me is a potent PET probe that is highly selective for COX-1. Studies using APP-Tg mice demonstrated that (S)-(11)C-KTP-Me could detect activated microglia that are associated with amyloid plaque progression, suggesting the involvement of COX-1 in the neuroinflammatory process in AD.
Collapse
Affiliation(s)
- Miho Shukuri
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan Laboratory of Physical Chemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan; and
| | - Aya Mawatari
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Masahiro Ohno
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Masaaki Suzuki
- National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hisashi Doi
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Yasuyoshi Watanabe
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging, Center for Life Science Technologies, RIKEN, Kobe, Hyogo, Japan
| |
Collapse
|
48
|
Su YY, Yang GF, Lu GM, Wu S, Zhang LJ. PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis 2015; 30:31-45. [PMID: 25514861 DOI: 10.1007/s11011-014-9633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Abstract
Neurological or psychiatric abnormalities associated with hepatic encephalopathy (HE) range from subclinical findings to coma. HE is commonly accompanied with the accumulation of toxic substances in bloodstream. The toxicity effect of hyperammonemia on astrocyte, such as the alteration in neurotransmission, oxidative stress, astrocyte swelling, is considered as an important factor in the pathogenesis of HE. Besides, neuroinflammation has captured more attention in the process of HE, but the mechanism of neuroinflammation leading to HE remains unclear. Molecular imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting activated microglia and/ or other mediators appear to be promising noninvasive approaches to assess HE. This review focuses on novel imaging and therapy strategies of neuroinflammation in HE.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nangjing, Jiangsu Province, 210002, China
| | | | | | | | | |
Collapse
|
49
|
Imaging neuroinflammation in Alzheimer's disease and other dementias: Recent advances and future directions. Alzheimers Dement 2014; 11:1110-20. [DOI: 10.1016/j.jalz.2014.08.105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022]
|
50
|
Human whole-body biodistribution and dosimetry of a new PET tracer, [11C]ketoprofen methyl ester, for imagings of neuroinflammation. Nucl Med Biol 2014; 41:594-9. [DOI: 10.1016/j.nucmedbio.2014.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/17/2022]
|