1
|
Silva-Rodríguez J, Labrador-Espinosa MÁ, Castro-Labrador S, Muñoz-Delgado L, Franco-Rosado P, Castellano-Guerrero AM, Macías-García D, Jesús S, Adarmes-Gómez AD, Carrillo F, Martín-Rodríguez JF, García-Solís D, Roldán-Lora F, Mir P, Grothe MJ. Imaging biomarkers of cortical neurodegeneration underlying cognitive impairment in Parkinson's disease. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07070-z. [PMID: 39888421 DOI: 10.1007/s00259-025-07070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE Imaging biomarkers bear great promise for improving the diagnosis and prognosis of cognitive impairment in Parkinson's disease (PD). We compared the ability of three commonly used neuroimaging modalities to detect cortical changes in PD patients with mild cognitive impairment (PD-MCI) and dementia (PDD). METHODS 53 cognitively normal PD patients (PD-CN), 32 PD-MCI, and 35 PDD underwent concurrent structural MRI (sMRI), diffusion-weighted MRI (dMRI), and [18F]FDG PET. We extracted grey matter volumes (sMRI), mean diffusivity (MD, dMRI), and standardized uptake value ratios ([18F]FDG PET) for 52 cortical regions included in a neuroanatomical atlas. We assessed group differences using ANCOVA models and further applied a cross-validated machine learning approach to identify the modality-specific brain regions that are most indicative of dementia status and assessed their diagnostic accuracy for group separation using receiver operating characteristic analyses. RESULTS In sMRI, atrophy of temporal and posterior-parietal areas allowed separating PDD from PD-CN (AUC = 0.77 ± 0.07), but diagnostic accuracy was poor for separating PD-MCI from PD-CN (0.57 ± 0.10). dMRI showed most pronounced diffusivity changes in the medial temporal lobe, which provided excellent diagnostic performance for PDD (AUC = 0.87 ± 0.06), and a more modest but still significant performance for PD-MCI (AUC = 0.71 ± 0.09). Finally, [18F]FDG PET revealed pronounced hypometabolism in posterior-occipital regions, which provided the highest diagnostic accuracies for both PDD (AUC = 0.89 ± 0.05) and PD-MCI (AUC = 0.78 ± 0.05). In statistical comparisons, both [18F]FDG PET (p < 0.001) and dMRI (p < 0.031) outperformed sMRI for detecting PDD and PD-MCI. CONCLUSION Among the tested modalities, [18F]FDG PET was most accurate for detecting cortical changes associated with cognitive impairment in PD, especially at early stages. Diffusion measurements may represent a promising MRI-based alternative.
Collapse
Affiliation(s)
- Jesús Silva-Rodríguez
- Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Miguel Ángel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Castro-Labrador
- Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ana María Castellano-Guerrero
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Astrid D Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| | - David García-Solís
- Servicio de Medicina Nuclear, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Florinda Roldán-Lora
- Unidad de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
- Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, Seville, 41013, Spain.
| | - Michel J Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain.
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
- Fundación CIEN, Centro Alzheimer Reina Sofía, C. de Valderrebollo, 5, Vallecas, Madrid, 28031, Spain.
| |
Collapse
|
2
|
Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Velioglu HA, Lam S, Yang H, Coskun E, Idil E, Bayraktaroglu Z, Nogaylar R, Ozsimsek A, Yildirim S, Bolat I, Kiliclioglu M, Bayram C, Yuksel N, Tozlu OO, Arif M, Shoaie S, Hacimuftuoglu A, Zhang C, Nielsen J, Turkez H, Borén J, Uhlén M, Mardinoglu A. Multi-omics characterization of improved cognitive functions in Parkinson's disease patients after the combined metabolic activator treatment: a randomized, double-blinded, placebo-controlled phase II trial. Brain Commun 2025; 7:fcae478. [PMID: 39816194 PMCID: PMC11733689 DOI: 10.1093/braincomms/fcae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/07/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Parkinson's disease is primarily marked by mitochondrial dysfunction and metabolic abnormalities. We recently reported that the combined metabolic activators improved the immunohistochemical parameters and behavioural functions in Parkinson's disease and Alzheimer's disease animal models and the cognitive functions in Alzheimer's disease patients. These metabolic activators serve as the precursors of nicotinamide adenine dinucleotide and glutathione, and they can be used to activate mitochondrial metabolism and eventually treat mitochondrial dysfunction. Here, we designed a randomized, double-blinded, placebo-controlled phase II study in Parkinson's disease patients with 84 days combined metabolic activator administration. A single dose of combined metabolic activator contains L-serine (12.35 g), N-acetyl-L-cysteine (2.55 g), nicotinamide riboside (1 g) and L-carnitine tartrate (3.73 g). Patients were administered either one dose of combined metabolic activator or a placebo daily for the initial 28 days, followed by twice-daily dosing for the next 56 days. The main goal of the study was to evaluate the clinical impact on motor functions using the Unified Parkinson's Disease Rating Scale and to determine the safety and tolerability of combined metabolic activator. A secondary objective was to assess cognitive functions utilizing the Montreal Cognitive Assessment and to analyse brain activity through functional MRI. We also performed comprehensive plasma metabolomics and proteomics analysis for detailed characterization of Parkinson's disease patients who participated in the study. Although no improvement in motor functions was observed, cognitive function was shown to be significantly improved (P < 0.0000) in Parkinson's disease patients treated with the combined metabolic activator group over 84 days, whereas no such improvement was noted in the placebo group (P > 0.05). Moreover, a significant reduction (P = 0.001) in Montreal Cognitive Assessment scores was observed in the combined metabolic activator group, with no decline (P > 0.05) in the placebo group among severe Parkinson's disease patients with lower baseline Montreal Cognitive Assessment scores. We showed that improvement in cognition was associated with critical brain network alterations based on functional MRI analysis, especially relevant to areas with cognitive functions in the brain. Finally, through a comprehensive multi-omics analysis, we elucidated the molecular mechanisms underlying cognitive improvements observed in Parkinson's disease patients. Our results show that combined metabolic activator administration leads to enhanced cognitive function and improved metabolic health in Parkinson's disease patients as recently shown in Alzheimer's disease patients. The trial was registered in ClinicalTrials.gov NCT04044131 (17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131).
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Halil A Velioglu
- Department of Women’s and Children’s Health, Karolinska Institute, Neuroimaging Lab, Stockholm 17177, Sweden
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Hong Yang
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Metin Kiliclioglu
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Nursena Yuksel
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Ozlem O Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Muhammad Arif
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Ahmet Hacimuftuoglu
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Cheng Zhang
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Jens Nielsen
- BioInnovation Institute, Copenhagen DK-2200, Denmark
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg 41345, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Labrador-Espinosa MA, Silva-Rodriguez J, Okkels N, Muñoz-Delgado L, Horsager J, Castro-Labrador S, Franco-Rosado P, Castellano-Guerrero AM, Iglesias-Camacho E, San-Eufrasio M, Macías-García D, Jesús S, Adarmes-Gómez A, Ojeda-Lepe E, Carrillo F, Martín-Rodríguez JF, Roldan Lora F, García-Solís D, Borghammer P, Mir P, Grothe MJ. Cortical hypometabolism in Parkinson's disease is linked to cholinergic basal forebrain atrophy. Mol Psychiatry 2024:10.1038/s41380-024-02842-9. [PMID: 39639173 DOI: 10.1038/s41380-024-02842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Cortical hypometabolism on FDG-PET is a well-established neuroimaging biomarker of cognitive impairment in Parkinson's disease (PD), but its pathophysiologic origins are incompletely understood. Cholinergic basal forebrain (cBF) degeneration is a prominent pathological feature of PD-related cognitive impairment and may contribute to cortical hypometabolism through cholinergic denervation of cortical projection areas. Here, we investigated in-vivo associations between subregional cBF volumes on 3T-MRI, cortical hypometabolism on [18F]FDG-PET, and cognitive deficits in a cohort of 95 PD participants with varying degrees of cognitive impairment. We further assessed the spatial correspondence of the cortical pattern of cBF-associated hypometabolism with the pattern of cholinergic denervation in PD as assessed by [18F]FEOBV-PET imaging of presynaptic cholinergic terminal density in a second cohort. Lower volume of the cortically-projecting posterior cBF, but not of the anterior cBF, was significantly associated with extensive neocortical hypometabolism [p(FDR) < 0.05], which mediated the association between cBF atrophy and cognitive impairment (mediated proportion: 43%, p < 0.001). In combined models, posterior cBF atrophy explained more variance in cortical hypometabolism (R2 = 0.26, p < 0.001) than local atrophy in the cortical areas themselves (R2 = 0.16, p = 0.01). Topographic correspondence analysis with the [18F]FEOBV-PET pattern revealed that cortical areas showing most pronounced cBF-associated hypometabolism correspond to those showing most severe cholinergic denervation in PD (Spearman's ρ = 0.57, p < 0.001). In conclusion, posterior cBF atrophy in PD is selectively associated with hypometabolism in denervated cortical target areas, which mediates the effect of cBF atrophy on cognitive impairment. These data provide first-time in-vivo evidence that cholinergic degeneration represents a principle pathological correlate of cortical hypometabolism underlying cognitive impairment in PD.
Collapse
Grants
- USE-19094-G Universidad de Sevilla (University of Seville)
- CD21/00067 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CM21/00051 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI20/00613 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CP19/00031 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CVI-02526 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0210-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PI-0459-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0186-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- CTS-7685 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Niels Okkels
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Regional Hospital Viborg, Viborg, Denmark
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Sandra Castro-Labrador
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana María Castellano-Guerrero
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Iglesias-Camacho
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Manuela San-Eufrasio
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Ojeda-Lepe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Florinda Roldan Lora
- Unidad de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - David García-Solís
- Unidad de Medicina Nuclear, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
4
|
Yoon YJ, Kim SH, Jeong SH, Park CW, Lee HS, Lee PH, Kim YJ, Sohn YH, Jeong Y, Chung SJ. Occipital hypoperfusion and motor reserve in Parkinson's disease: an early-phase 18F-FP-CIT PET study. NPJ Parkinsons Dis 2024; 10:221. [PMID: 39551772 PMCID: PMC11570606 DOI: 10.1038/s41531-024-00834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Individual variability exists in parkinsonian motor symptoms despite a similar degree of nigrostriatal dopamine depletion in Parkinson's disease (PD), called motor reserve. We enrolled 397 patients newly diagnosed with PD who underwent dual-phase 18F-FP-CIT PET upon initial assessment. Individual motor reserve was estimated based on initial parkinsonian motor symptoms and striatal dopamine transporter availability using a residual model. Patients with low motor reserve (the lowest quartile group, n = 100) exhibited decreased uptake in the occipital region compared to those with high motor reserve (the highest quartile group, n = 100) on early-phase 18F-FP-CIT PET images. Patients with high motor reserve had a lower risk of conversion to dementia than the those with low motor reserve, whereas the effect of PD groups on the risk of dementia conversion was not mediated by occipital hypoperfusion. These findings suggest that cerebral hypoperfusion in the occipital region is associated with low motor reserve in patients with PD.
Collapse
Affiliation(s)
- Yeo Jun Yoon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Hong Kim
- Department of Radiology, Yeungnam University College of Medicine, Daegu, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- YONSEI BEYOND LAB, Yongin, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea.
- YONSEI BEYOND LAB, Yongin, South Korea.
| |
Collapse
|
5
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
6
|
Brumberg J, Blazhenets G, Bühler S, Fostitsch J, Rijntjes M, Ma Y, Eidelberg D, Weiller C, Jost WH, Frings L, Schröter N, Meyer PT. Cerebral Glucose Metabolism Is a Valuable Predictor of Survival in Patients with Lewy Body Diseases. Ann Neurol 2024; 96:539-550. [PMID: 38888141 DOI: 10.1002/ana.27005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Patients with Lewy body diseases have an increased risk of dementia, which is a significant predictor for survival. Posterior cortical hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (PET) precedes the development of dementia by years. We therefore examined the prognostic value of cerebral glucose metabolism for survival. METHODS We enrolled patients diagnosed with Parkinson's disease (PD), Parkinson's disease with dementia, or dementia with Lewy bodies who underwent [18F]fluorodeoxyglucose PET. Regional cerebral metabolism of each patient was analyzed by determining the expression of the PD-related cognitive pattern (Z-score) and by visual PET rating. We analyzed the predictive value of PET for overall survival using Cox regression analyses (age- and sex-corrected) and calculated prognostic indices for the best model. RESULTS Glucose metabolism was a significant predictor of survival in 259 included patients (n = 118 events; hazard ratio: 1.4 [1.2-1.6] per Z-score; hazard ratio: 1.8 [1.5-2.2] per visual PET rating score; both p < 0.0001). Risk stratification with visual PET rating scores yielded a median survival of 4.8, 6.8, and 12.9 years for patients with severe, moderate, and mild posterior cortical hypometabolism (median survival not reached for normal cortical metabolism). Stratification into 5 groups based on the prognostic index revealed 10-year survival rates of 94.1%, 78.3%, 34.7%, 0.0%, and 0.0%. INTERPRETATION Regional cerebral glucose metabolism is a significant predictor of survival in Lewy body diseases and may allow an earlier survival prediction than the clinical milestone "dementia." Thus, [18F]fluorodeoxyglucose PET may improve the basis for therapy decisions, especially for invasive therapeutic procedures like deep brain stimulation in Parkinson's disease. ANN NEUROL 2024;96:539-550.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Bühler
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Fostitsch
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - David Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Cornelius Weiller
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Lars Frings
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schröter
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Booth S, Ko JH. Radionuclide Imaging of the Neuroanatomical and Neurochemical Substrate of Cognitive Decline in Parkinson's Disease. Nucl Med Mol Imaging 2024; 58:213-226. [PMID: 38932760 PMCID: PMC11196570 DOI: 10.1007/s13139-024-00842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cognitive impairment is a frequent manifestation of Parkinson's disease (PD), resulting in decrease in patients' quality of life and increased societal and economic burden. However, cognitive decline in PD is highly heterogenous and the mechanisms are poorly understood. Radionuclide imaging techniques like positron emission tomography (PET) and single photon emission computed tomography (SPECT) have been used to investigate the neurochemical and neuroanatomical substrate of cognitive decline in PD. These techniques allow the assessment of different neurotransmitter systems, changes in brain glucose metabolism, proteinopathy, and neuroinflammation in vivo in PD patients. Here, we review current radionuclide imaging research on cognitive deficit in PD with a focus on predicting accelerating cognitive decline. This research could assist in the development of prognostic biomarkers for patient stratification and have utility in the development of ameliorative or disease-modifying therapies targeting cognitive deficit in PD.
Collapse
Affiliation(s)
- Samuel Booth
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, 130-745 Bannatyne Ave, Winnipeg, MB R3E 0J9 Canada
- PrairieNeuro Research Centre, Kleysen Institute of Advanced Medicine, Health Science Centre, Winnipeg, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, 130-745 Bannatyne Ave, Winnipeg, MB R3E 0J9 Canada
- PrairieNeuro Research Centre, Kleysen Institute of Advanced Medicine, Health Science Centre, Winnipeg, Canada
| |
Collapse
|
8
|
Chung SJ, Kim SH, Park CW, Lee HS, Yun M, Kim YJ, Sohn YH, Jeong Y, Lee PH. Patterns of regional cerebral hypoperfusion in early Parkinson's disease: Clinical implications. Parkinsonism Relat Disord 2024; 121:106024. [PMID: 38377658 DOI: 10.1016/j.parkreldis.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION This study aimed to investigate whether regional cerebral perfusion patterns on early-phase 18F-FP-CIT PET scans, which is typically coupled to cerebral metabolism, predict the long-term prognosis of Parkinson's disease (PD). METHODS We enrolled 397 drug-naïve patients with early-stage PD who underwent dual-phase 18F-FP-CIT PET scans. After quantifying the early-phase 18F-FP-CIT PET images, cluster analysis was performed to delineate the PD subtypes according to the patterns of regional cerebral perfusion. We compared the risk of developing levodopa-induced dyskinesia (LID), wearing-off, freezing of gait (FOG), and dementia between the PD subtypes. RESULTS Cluster analysis classified patients into three subtypes: cluster 1 (relatively preserved cortical uptake; n = 175), cluster 2 (decreased uptake in the frontal, parietal, and temporal regions; n = 151), and cluster 3 (decreased uptake in more extensive regions, additionally involving the lateral occipital regions; n = 71). Cluster 1 was characterized by a younger age-of-onset, less severe motor deficits, less severely decreased 18F-FP-CIT binding in the caudate, and better cognitive performance. Cluster 3 was characterized by an older age-of-onset, more severe motor deficits, and poorer cognitive performance. Cluster 2 was intermediate between clusters 1 and 3. Cox regression analyses demonstrated that clusters 2 and 3 had a higher risk for dementia conversion than cluster 1, whereas the risk for developing LID, wearing-off, and FOG did not differ among the clusters. CONCLUSION The patterns of regional cerebral perfusion can provide information on long-term prognosis with regards to cognitive, but not motor aspects of patients with early-stage PD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea
| | - Su Hong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Radiology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Radiology, Yeungnam University College of Medicine, Daegu, South Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Aye WWT, Stark MR, Horne K, Livingston L, Grenfell S, Myall DJ, Pitcher TL, Almuqbel MM, Keenan RJ, Meissner WG, Dalrymple‐Alford JC, Anderson TJ, Heron CL, Melzer TR. Early-phase amyloid PET reproduces metabolic signatures of cognitive decline in Parkinson's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12601. [PMID: 38912306 PMCID: PMC11193095 DOI: 10.1002/dad2.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Recent work suggests that amyloid beta (Aβ) positron emission tomography (PET) tracer uptake shortly after injection ("early phase") reflects brain metabolism and perfusion. We assessed this modality in a predominantly amyloid-negative neurodegenerative condition, Parkinson's disease (PD), and hypothesized that early-phase 18F-florbetaben (eFBB) uptake would reproduce characteristic hypometabolism and hypoperfusion patterns associated with cognitive decline in PD. METHODS One hundred fifteen PD patients across the spectrum of cognitive impairment underwent dual-phase Aβ PET, structural and arterial spin labeling (ASL) magnetic resonance imaging (MRI), and neuropsychological assessments. Multiple linear regression models compared eFBB uptake to cognitive performance and ASL MRI perfusion. RESULTS Reduced eFBB uptake was associated with cognitive performance in brain regions previously linked to hypometabolism-associated cognitive decline in PD, independent of amyloid status. Furthermore, eFBB uptake correlated with cerebral perfusion across widespread regions. DISCUSSION EFBB uptake is a potential surrogate measure for cerebral perfusion/metabolism. A dual-phase PET imaging approach may serve as a clinical tool for assessing cognitive impairment. Highlights Images taken at amyloid beta (Aβ) positron emission tomography tracer injection may reflect brain perfusion and metabolism.Parkinson's disease (PD) is a predominantly amyloid-negative condition.Early-phase florbetaben (eFBB) in PD was associated with cognitive performance.eFBB uptake reflects hypometabolism-related cognitive decline in PD.eFBB correlated with arterial spin labeling magnetic resonance imaging measured cerebral perfusion.eFBB distinguished dementia from normal cognition and mild cognitive impairment.Findings were independent of late-phase Aβ burden.Thus, eFBB may serve as a surrogate measure for brain metabolism/perfusion.
Collapse
Affiliation(s)
- William W. T. Aye
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Megan R. Stark
- New Zealand Brain Research InstituteChristchurchNew Zealand
| | - Kyla‐Louise Horne
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | | | | | | | - Toni L. Pitcher
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Mustafa M. Almuqbel
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Radiology Holding Company New ZealandChristchurchNew Zealand
| | - Ross J. Keenan
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Radiology Holding Company New ZealandChristchurchNew Zealand
| | - Wassilios G. Meissner
- New Zealand Brain Research InstituteChristchurchNew Zealand
- CHU Bordeaux, Service de Neurologie des Maladies NeurodégénérativesIMNc, NS‐Park/FCRIN NetworkBordeauxFrance
- Univ. Bordeaux, CNRS, IMNBordeauxFrance
| | - John C. Dalrymple‐Alford
- New Zealand Brain Research InstituteChristchurchNew Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, PsychologySpeech and Hearing Arts Road, IlamChristchurchNew Zealand
| | - Tim J. Anderson
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- Department of NeurologyCanterbury District Health BoardChristchurchNew Zealand
| | - Campbell Le Heron
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, PsychologySpeech and Hearing Arts Road, IlamChristchurchNew Zealand
- Department of NeurologyCanterbury District Health BoardChristchurchNew Zealand
| | - Tracy R. Melzer
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- Radiology Holding Company New ZealandChristchurchNew Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, PsychologySpeech and Hearing Arts Road, IlamChristchurchNew Zealand
| |
Collapse
|
10
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
11
|
Chun MY, Chung SJ, Kim SH, Park CW, Jeong SH, Lee HS, Lee PH, Sohn YH, Jeong Y, Kim YJ. Hippocampal Perfusion Affects Motor and Cognitive Functions in Parkinson Disease: An Early Phase 18 F-FP-CIT Positron Emission Tomography Study. Ann Neurol 2024; 95:388-399. [PMID: 37962393 DOI: 10.1002/ana.26827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE We investigated whether hippocampal perfusion changes are associated with cognitive decline, motor deficits, and the risk of dementia conversion in patients with Parkinson disease (PD). METHODS We recruited patients with newly diagnosed and nonmedicated PD and healthy participants who underwent dual phase 18 F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane positron emission tomography scans. Patients were classified into 3 groups according to hippocampal perfusion measured by standard uptake value ratios (SUVRs): (1) PD hippocampal hypoperfusion group (1 standard deviation [SD] below the mean hippocampal SUVR of healthy controls; PD-hippo-hypo), (2) PD hippocampal hyperperfusion group (1 SD above the mean; PD-hippo-hyper), and (3) the remaining patients (PD-hippo-normal). We compared the baseline cognitive performance, severity of motor deficits, hippocampal volume, striatal dopamine transporter (DAT) availability, and risk of dementia conversion among the groups. RESULTS We included 235 patients (PD-hippo-hypo, n = 21; PD-hippo-normal, n = 157; PD-hippo-hyper, n = 57) and 48 healthy participants. Patients in the PD-hippo-hypo group were older and had smaller hippocampal volumes than those in the other PD groups. The PD-hippo-hypo group showed less severely decreased DAT availability in the putamen than the other groups despite similar severities of motor deficit. The PD-hippo-hypo group had a higher risk of dementia conversion compared to the PD-hippo-normal (hazard ratio = 2.59, p = 0.013) and PD-hippo-hyper (hazard ratio = 3.73, p = 0.006) groups, despite similar cognitive performance at initial assessment between groups. INTERPRETATION Hippocampal hypoperfusion may indicate a reduced capacity to cope with neurodegenerative processes in terms of the development of motor deficits and cognitive decline in patients with PD. ANN NEUROL 2024;95:388-399.
Collapse
Affiliation(s)
- Min Young Chun
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| | - Su Hong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Radiology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| |
Collapse
|
12
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
13
|
Zang Z, Zhang X, Song T, Li J, Nie B, Mei S, Hu Z, Zhang Y, Lu J. Association between gene expression and functional-metabolic architecture in Parkinson's disease. Hum Brain Mapp 2023; 44:5387-5401. [PMID: 37605831 PMCID: PMC10543112 DOI: 10.1002/hbm.26443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Gene expression plays a critical role in the pathogenesis of Parkinson's disease (PD). How gene expression profiles are correlated with functional-metabolic architecture remains obscure. We enrolled 34 PD patients and 25 age-and-sex-matched healthy controls for simultaneous 18 F-FDG-PET/functional MRI scanning during resting state. We investigated the functional gradients and the ratio of standard uptake value. Principal component analysis was used to further combine the functional gradients and glucose metabolism into functional-metabolic architecture. Using partial least squares (PLS) regression, we introduced the transcriptomic data from the Allen Institute of Brain Sciences to identify gene expression patterns underlying the affected functional-metabolic architecture in PD. Between-group comparisons revealed significantly higher gradient variation in the visual, somatomotor, dorsal attention, frontoparietal, default mode, and subcortical network (pFDR < .048) in PD. Increased FDG-uptake was found in the somatomotor and ventral attention network while decreased FDG-uptake was found in the visual network (pFDR < .008). Spatial correlation analysis showed consistently affected patterns of functional gradients and metabolism (p = 2.47 × 10-8 ). PLS analysis and gene ontological analyses further revealed that genes were mainly enriched for metabolic, catabolic, cellular response to ions, and regulation of DNA transcription and RNA biosynthesis. In conclusion, our study provided genetic pathological mechanism to explain imaging-defined brain functional-metabolic architecture of PD.
Collapse
Affiliation(s)
- Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Xiaolong Zhang
- Department of Physiology, College of Basic Medical SciencesArmy Medical UniversityChongqingChina
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jiping Li
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Shanshan Mei
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Zhi'an Hu
- Department of Physiology, College of Basic Medical SciencesArmy Medical UniversityChongqingChina
| | - Yuqing Zhang
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
14
|
Imarisio A, Pilotto A, Premi E, Caminiti SP, Presotto L, Sala A, Zatti C, Lupini A, Turrone R, Paghera B, Borroni B, Perani D, Padovani A. Atypical brain FDG-PET patterns increase the risk of long-term cognitive and motor progression in Parkinson's disease. Parkinsonism Relat Disord 2023; 115:105848. [PMID: 37716228 DOI: 10.1016/j.parkreldis.2023.105848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
INTRODUCTION Brain hypometabolism patterns have been previously associated with cognitive decline in Parkinson's disease (PD). Our aim is to evaluate the impact of single-subject fluorodeoxyglucose (FDG)-PET brain hypometabolism on long-term cognitive and motor outcomes in PD. METHODS Forty-nine non-demented PD patients with baseline brain FDG-PET data underwent an extensive clinical follow-up for 8 years. The ability of FDG-PET to predict long-term cognitive and motor progression was evaluated using Cox regression and mixed ANCOVA models. RESULTS Participants were classified according to FDG-PET pattern in PD with typical (n = 26) and atypical cortical metabolism (n = 23). Patients with atypical brain hypometabolic patterns showed higher incidence of dementia (60% vs 3%; HR = 18.3), hallucinations (56% vs 7%, HR = 7.3) and faster motor decline compared to typical pattern group. CONCLUSION This study argues for specific patterns of FDG-PET cortical hypometabolism in PD as a prognostic marker for long term cognitive and motor outcomes at single-subject level.
Collapse
Affiliation(s)
- Alberto Imarisio
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia University Hospital, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Italy.
| | - Enrico Premi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Stroke Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Silvia Paola Caminiti
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- Department of Physics "G. Occhialini", University of Milano - Bicocca, Milan, Italy; Milan Centre for Neuroscience, University of Milano - Bicocca, Milan, Italy
| | - Arianna Sala
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Zatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia University Hospital, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Italy
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia University Hospital, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Italy
| | - Rosanna Turrone
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia University Hospital, Italy
| | - Barbara Paghera
- Nuclear Medicine Unit, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Perani
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia University Hospital, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Italy
| |
Collapse
|
15
|
Hannaway N, Zarkali A, Leyland LA, Bremner F, Nicholas JM, Wagner SK, Roig M, Keane PA, Toosy A, Chataway J, Weil RS. Visual dysfunction is a better predictor than retinal thickness for dementia in Parkinson's disease. J Neurol Neurosurg Psychiatry 2023; 94:742-750. [PMID: 37080759 PMCID: PMC10447370 DOI: 10.1136/jnnp-2023-331083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Dementia is a common and devastating symptom of Parkinson's disease (PD). Visual function and retinal structure are both emerging as potentially predictive for dementia in Parkinson's but lack longitudinal evidence. METHODS We prospectively examined higher order vision (skew tolerance and biological motion) and retinal thickness (spectral domain optical coherence tomography) in 100 people with PD and 29 controls, with longitudinal cognitive assessments at baseline, 18 months and 36 months. We examined whether visual and retinal baseline measures predicted longitudinal cognitive scores using linear mixed effects models and whether they predicted onset of dementia, death and frailty using time-to-outcome methods. RESULTS Patients with PD with poorer baseline visual performance scored lower on a composite cognitive score (β=0.178, SE=0.05, p=0.0005) and showed greater decreases in cognition over time (β=0.024, SE=0.001, p=0.013). Poorer visual performance also predicted greater probability of dementia (χ² (1)=5.2, p=0.022) and poor outcomes (χ² (1) =10.0, p=0.002). Baseline retinal thickness of the ganglion cell-inner plexiform layer did not predict cognitive scores or change in cognition with time in PD (β=-0.013, SE=0.080, p=0.87; β=0.024, SE=0.001, p=0.12). CONCLUSIONS In our deeply phenotyped longitudinal cohort, visual dysfunction predicted dementia and poor outcomes in PD. Conversely, retinal thickness had less power to predict dementia. This supports mechanistic models for Parkinson's dementia progression with onset in cortical structures and shows potential for visual tests to enable stratification for clinical trials.
Collapse
Affiliation(s)
- Naomi Hannaway
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Fion Bremner
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Matthew Roig
- UCL Queen Square Institute of Neurology, London, UK
| | - Pearse A Keane
- UCL Queen Square Institute of Neurology, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Ahmed Toosy
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
- Movement Disorders Centre, University College London, London, UK
| | - Rimona Sharon Weil
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
- Movement Disorders Centre, University College London, London, UK
- The Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| |
Collapse
|
16
|
Nieto-Escamez F, Obrero-Gaitán E, Cortés-Pérez I. Visual Dysfunction in Parkinson's Disease. Brain Sci 2023; 13:1173. [PMID: 37626529 PMCID: PMC10452537 DOI: 10.3390/brainsci13081173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Non-motor symptoms in Parkinson's disease (PD) include ocular, visuoperceptive, and visuospatial impairments, which can occur as a result of the underlying neurodegenerative process. Ocular impairments can affect various aspects of vision and eye movement. Thus, patients can show dry eyes, blepharospasm, reduced blink rate, saccadic eye movement abnormalities, smooth pursuit deficits, and impaired voluntary and reflexive eye movements. Furthermore, visuoperceptive impairments affect the ability to perceive and recognize visual stimuli accurately, including impaired contrast sensitivity and reduced visual acuity, color discrimination, and object recognition. Visuospatial impairments are also remarkable, including difficulties perceiving and interpreting spatial relationships between objects and difficulties judging distances or navigating through the environment. Moreover, PD patients can present visuospatial attention problems, with difficulties attending to visual stimuli in a spatially organized manner. Moreover, PD patients also show perceptual disturbances affecting their ability to interpret and determine meaning from visual stimuli. And, for instance, visual hallucinations are common in PD patients. Nevertheless, the neurobiological bases of visual-related disorders in PD are complex and not fully understood. This review intends to provide a comprehensive description of visual disturbances in PD, from sensory to perceptual alterations, addressing their neuroanatomical, functional, and neurochemical correlates. Structural changes, particularly in posterior cortical regions, are described, as well as functional alterations, both in cortical and subcortical regions, which are shown in relation to specific neuropsychological results. Similarly, although the involvement of different neurotransmitter systems is controversial, data about neurochemical alterations related to visual impairments are presented, especially dopaminergic, cholinergic, and serotoninergic systems.
Collapse
Affiliation(s)
- Francisco Nieto-Escamez
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Center for Neuropsychological Assessment and Rehabilitation (CERNEP), 04120 Almeria, Spain
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| |
Collapse
|
17
|
Ray NJ, Kanel P, Bohnen NI. Atrophy of the Cholinergic Basal Forebrain can Detect Presynaptic Cholinergic Loss in Parkinson's Disease. Ann Neurol 2023; 93:991-998. [PMID: 36597786 PMCID: PMC10192078 DOI: 10.1002/ana.26596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Structural imaging of the cholinergic basal forebrain may provide a biomarker for cholinergic system integrity that can be used in motor and non-motor outcome studies in Parkinson's disease. However, no prior studies have validated these structural metrics with cholinergic nerve terminal in vivo imaging in Parkinson's disease. Here, we correlate cholinergic basal forebrain morphometry with the topography of vesicular acetylcholine transporter in a large Parkinson's sample. METHODS [18 F]-Fluoroethoxybenzovesamicol vesicular acetylcholine transporter positron emission tomography was carried out in 101 non-demented people with Parkinson's (76.24% male, mean age 67.6 ± 7.72 years, disease duration 5.7 ± 4.4 years). Subregional cholinergic basal forebrain volumes were measured using magnetic resonance imaging morphometry. Relationships were assessed via volume-of-interest based correlation analysis. RESULTS Subregional volumes of the cholinergic basal forebrain predicted cholinergic nerve terminal loss, with most robust correlations occurring between the posterior cholinergic basal forebrain and temporofrontal, insula, cingulum, and hippocampal regions, and with modest correlations in parieto-occipital regions. Hippocampal correlations were not limited to the cholinergic basal forebrain subregion Ch1-2. Correlations were also observed in the striatum, thalamus, and brainstem. INTERPRETATION Cholinergic basal forebrain morphometry is a robust predictor of regional cerebral vesicular acetylcholine transporter bindings, especially in the anterior brain. The relative lack of correlation between parieto-occipital binding and basal forebrain volumes may reflect the presence of more diffuse synaptopathy in the posterior cortex due to etiologies that extend well beyond the cholinergic system. ANN NEUROL 2023;93:991-998.
Collapse
Affiliation(s)
- Nicola J Ray
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Prabesh Kanel
- Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
- Parkinson's Foundation Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolaas I Bohnen
- Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
- Parkinson's Foundation Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
- Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Scholefield M, Church SJ, Taylor G, Knight D, Unwin RD, Cooper GJS. Multi-regional alterations in glucose and purine metabolic pathways in the Parkinson's disease dementia brain. NPJ Parkinsons Dis 2023; 9:66. [PMID: 37081022 PMCID: PMC10119289 DOI: 10.1038/s41531-023-00488-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/10/2023] [Indexed: 04/22/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, most commonly characterised by motor dysfunction, but also with a high prevalence of cognitive decline in the decades following diagnosis-a condition known as Parkinson's disease dementia (PDD). Although several metabolic disruptions have been identified in PD, there has yet to be a multi-regional analysis of multiple metabolites conducted in PDD brains. This discovery study attempts to address this gap in knowledge. A semi-targeted liquid chromatography-mass spectrometry analysis of nine neuropathologically-confirmed PDD cases vs nine controls was performed, looking at nine different brain regions, including the cingulate gyrus, cerebellum, hippocampus, motor cortex, medulla, middle temporal gyrus, pons, substantia nigra and primary visual cortex. Case-control differences were determined by multiple t-tests followed by 10% FDR correction. Of 64 identified analytes, 49 were found to be altered in at least one region of the PDD brain. These included metabolites from several pathways, including glucose and purine metabolism and the TCA cycle, with widespread increases in fructose, inosine and ribose-5-phosphate, as well as decreases in proline, serine and deoxyguanosine. Higher numbers of alterations were observed in PDD brain regions that are affected during earlier α-synuclein Braak stages-with the exception of the cerebellum, which showed an unexpectedly high number of metabolic changes. PDD brains show multi-regional alterations in glucose and purine metabolic pathways that reflect the progression of α-synuclein Braak staging. Unexpectedly, the cerebellum also shows a high number of metabolic changes.
Collapse
Affiliation(s)
- Melissa Scholefield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK.
| | - Stephanie J Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK
| | - George Taylor
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Richard D Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK
- Stoller Biomarker Discovery Centre & Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Citylabs 1.0 (Third Floor), Nelson Street, Manchester, M13 9NQ, UK
| | - Garth J S Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand
| |
Collapse
|
19
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
20
|
Bohnen JLB, Albin RL, Bohnen NI. Ketogenic interventions in mild cognitive impairment, Alzheimer's disease, and Parkinson's disease: A systematic review and critical appraisal. Front Neurol 2023; 14:1123290. [PMID: 36846143 PMCID: PMC9947355 DOI: 10.3389/fneur.2023.1123290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Background There is increasing interest in therapeutic ketosis as a potential therapy for neurodegenerative disorders-in particular, mild cognitive impairment (MCI), Alzheimer's disease (AD), and Parkinson's disease (PD)-following a proof-of-concept study in Parkinson's disease published in 2005. Methods To provide an objective assessment of emerging clinical evidence and targeted recommendations for future research, we reviewed clinical trials involving ketogenic interventions in mild cognitive impairment, Alzheimer's disease, and Parkinson's disease reported since 2005. Levels of clinical evidence were systematically reviewed using the American Academy of Neurology criteria for rating therapeutic trials. Results 10 AD, 3 MCI, and 5 PD therapeutic ketogenic trials were identified. Respective grades of clinical evidence were objectively assessed using the American Academy of Neurology criteria for rating therapeutic trials. We found class "B" evidence (probably effective) for cognitive improvement in subjects with mild cognitive impairment and subjects with mild-to-moderate Alzheimer's disease negative for the apolipoprotein ε4 allele (APOε4-). We found class "U" evidence (unproven) for cognitive stabilization in individuals with mild-to-moderate Alzheimer's disease positive for the apolipoprotein ε4 allele (APOε4+). We found class "C" evidence (possibly effective) for improvement of non-motor features and class "U" evidence (unproven) for motor features in individuals with Parkinson's disease. The number of trials in Parkinson's disease is very small with best evidence that acute supplementation holds promise for improving exercise endurance. Conclusions Limitations of the literature to date include the range of ketogenic interventions currently assessed in the literature (i.e., primarily diet or medium-chain triglyceride interventions), with fewer studies using more potent formulations (e.g., exogenous ketone esters). Collectively, the strongest evidence to date exists for cognitive improvement in individuals with mild cognitive impairment and in individuals with mild-to-moderate Alzheimer's disease negative for the apolipoprotein ε4 allele. Larger-scale, pivotal trials are justified in these populations. Further research is required to optimize the utilization of ketogenic interventions in differing clinical contexts and to better characterize the response to therapeutic ketosis in patients who are positive for the apolipoprotein ε4 allele, as modified interventions may be necessary.
Collapse
Affiliation(s)
| | - Roger L. Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States
| | - Nicolaas I. Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Martin WRW, Younce JR, Campbell MC, Racette BA, Norris SA, Ushe M, Criswell S, Davis AA, Alfradique-Dunham I, Maiti B, Cairns NJ, Perrin RJ, Kotzbauer PT, Perlmutter JS. Neocortical Lewy Body Pathology Parallels Parkinson's Dementia, but Not Always. Ann Neurol 2023; 93:184-195. [PMID: 36331161 PMCID: PMC10321306 DOI: 10.1002/ana.26542] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.
Collapse
Affiliation(s)
- W R Wayne Martin
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
| | - John R Younce
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Meghan C Campbell
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Brad A Racette
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott A Norris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Mwiza Ushe
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Susan Criswell
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | | | - Baijayanta Maiti
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Paul T Kotzbauer
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
- Departments of Neuroscience, Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
22
|
Cheong Y, Nishitani S, Yu J, Habata K, Kamiya T, Shiotsu D, Omori IM, Okazawa H, Tomoda A, Kosaka H, Jung M. The effects of epigenetic age and its acceleration on surface area, cortical thickness, and volume in young adults. Cereb Cortex 2022; 32:5654-5663. [PMID: 35196707 DOI: 10.1093/cercor/bhac043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
DNA methylation age has been used in recent studies as an epigenetic marker of accelerated cellular aging, whose contribution to the brain structural changes was lately acknowledged. We aimed to characterize the association of epigenetic age (i.e. estimated DNA methylation age) and its acceleration with surface area, cortical thickness, and volume in healthy young adults. Using the multi-tissue method (Horvath S. DNA methylation age of human tissues and cell types. 2013. Genome Biol 14), epigenetic age was computed with saliva sample. Epigenetic age acceleration was derived from residuals after adjusting epigenetic age for chronological age. Multiple regression models were computed for 148 brain regions for surface area, cortical thickness, and volume using epigenetic age or accelerated epigenetic age as a predictor and controlling for sex. Epigenetic age was associated with surface area reduction of the left insula. It was also associated with cortical thinning and volume reduction in multiple regions, with prominent changes of cortical thickness in the left temporal regions and of volume in the bilateral orbital gyri. Finally, accelerated epigenetic age was negatively associated with right cuneus gyrus volume. Our findings suggest that understanding the mechanisms of epigenetic age acceleration in young individuals may yield valuable insights into the relationship between epigenetic aging and the cortical change and on the early development of neurocognitive pathology among young adults.
Collapse
Affiliation(s)
- Yongjeon Cheong
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Jinyoung Yu
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Kaie Habata
- Department of Neuropsychiatry, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Taku Kamiya
- Department of Neuropsychiatry, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Daichi Shiotsu
- Department of Neuropsychiatry, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Ichiro M Omori
- Department of Neuropsychiatry, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Department of Neuropsychiatry, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan.,Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan.,Department of Neuropsychiatry, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| |
Collapse
|
23
|
van der Zee S, Kanel P, Müller MLTM, van Laar T, Bohnen NI. Identification of cholinergic centro-cingulate topography as main contributor to cognitive functioning in Parkinson’s disease: Results from a data-driven approach. Front Aging Neurosci 2022; 14:1006567. [PMID: 36337707 PMCID: PMC9631831 DOI: 10.3389/fnagi.2022.1006567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDegeneration of the cholinergic system plays an important role in cognitive impairment in Parkinson’s disease (PD). Positron emission tomography (PET) imaging using the presynaptic vesicular acetylcholine transporter (VAChT) tracer [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV) allows for regional assessment of cholinergic innervation. The purpose of this study was to perform a data-driven analysis to identify co-varying cholinergic regions and to evaluate the relationship of these with cognitive functioning in PD.Materials and methodsA total of 87 non-demented PD patients (77% male, mean age 67.9 ± 7.6 years, disease duration 5.8 ± 4.6 years) and 27 healthy control (HC) subjects underwent [18F]FEOBV brain PET imaging and neuropsychological assessment. A volume-of-interest based factor analysis was performed for both groups to identify cholinergic principal components (PCs).ResultsSeven main PCs were identified for the PD group: (1) bilateral posterior cortex, (2) bilateral subcortical, (3) bilateral centro-cingulate, (4) bilateral frontal, (5) right-sided fronto-temporal, (6) cerebellum, and (7) predominantly left sided temporal regions. A complementary principal component analysis (PCA) analysis in the control group showed substantially different cholinergic covarying patterns. A multivariate linear regression analyses demonstrated PC3, PC5, and PC7, together with motor impairment score, as significant predictors for cognitive functioning in PD. PC3 showed most robust correlations with cognitive functioning (p < 0.001).ConclusionA data-driven approach identified covarying regions in the bilateral peri-central and cingulum cortex as a key determinant of cognitive impairment in PD. Cholinergic vulnerability of the centro-cingulate network appears to be disease-specific for PD rather than being age-related. The cholinergic system may be an important contributor to regional and large scale neural networks involved in cognitive functioning.
Collapse
Affiliation(s)
- Sygrid van der Zee
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
| | - Martijn L. T. M. Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
- University of Michigan Parkinson’s Foundation Center of Excellence, Ann Arbor, MI, United States
- *Correspondence: Nicolaas I. Bohnen,
| |
Collapse
|
24
|
Sawamura M, Onoe H, Tsukada H, Isa K, Yamakado H, Okuda S, Ikuno M, Hatanaka Y, Murayama S, Uemura N, Isa T, Takahashi R. Lewy Body Disease Primate Model with α-Synuclein Propagation from the Olfactory Bulb. Mov Disord 2022; 37:2033-2044. [PMID: 35989519 DOI: 10.1002/mds.29161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Lewy body diseases (LBDs), which are pathologically defined as the presence of intraneuronal α-synuclein (α-Syn) inclusions called Lewy bodies, encompass Parkinson's disease, Parkinson's disease with dementia, and dementia with Lewy bodies. Autopsy studies have shown that the olfactory bulb (OB) is one of the regions where Lewy pathology develops and initiates its spread in the brain. OBJECTIVE This study aims to clarify how Lewy pathology spreads from the OB and affects brain functions using nonhuman primates. METHODS We inoculated α-Syn preformed fibrils into the unilateral OBs of common marmosets (Callithrix jacchus) and performed pathological analyses, manganese-enhanced magnetic resonance imaging, and 18 F-fluoro-2-deoxy-d-glucose positron emission tomography up to 6 months postinoculation. RESULTS Severe α-Syn pathology was observed within the olfactory pathway and limbic system, while mild α-Syn pathology was seen in a wide range of brain regions, including the substantia nigra pars compacta, locus coeruleus, and even dorsal motor nucleus of the vagus nerve. The brain imaging analyses showed reduction in volume of the OB and progressive glucose hypometabolism in widespread brain regions, including the occipital lobe, and extended beyond the pathologically affected regions. CONCLUSIONS We generated a novel nonhuman primate LBD model with α-Syn propagation from the OB. This model suggests that α-Syn propagation from the OB is related to OB atrophy and cerebral glucose hypometabolism in LBDs. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Masanori Sawamura
- Department of Neurology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | - Kaoru Isa
- Department of Physiology and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Okuda
- Department of Neurology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Ikuno
- Department of Neurology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Hatanaka
- Department of Neurology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Murayama
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Norihito Uemura
- Department of Neurology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Physiology and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Lu J, Ge J, Chen K, Sun Y, Liu F, Yu H, Xu Q, Li L, Ju Z, Lin H, Guan Y, Guo Q, Wang J, Zuo C, Wu P. Consistent Abnormalities in Metabolic Patterns of Lewy Body Dementias. Mov Disord 2022; 37:1861-1871. [PMID: 35857319 DOI: 10.1002/mds.29138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Whether dementia with Lewy bodies (DLB) and Parkinson's disease (PD) dementia (PDD) represent the same disease, distinct entities, or conditions within the same spectrum remains controversial. OBJECTIVE The objective of this study was to provide new insight into this debate by separately identifying disease-specific metabolic patterns and comparing them with each other and with previously established PD-related pattern (PDRP). METHODS Patients with DLB (n = 67), patients with PDD (n = 50), and healthy control subjects (HCs; n = 15) with brain 18 F-fluorodeoxyglucose positron emission tomography were enrolled as cohorts A and B for pattern identification and validation, respectively. Patients with PD (n = 30) were included for discrimination. Twenty-one participants had two scans. The principal component analysis was applied for pattern identification (DLB-related pattern [DLBRP], PDD-related pattern [PDDRP]). Similarities and differences among three patterns were assessed by pattern topography, pattern expression, clinical correlations cross-sectionally, and pattern expression changes longitudinally. RESULTS DLBRP and PDDRP shared highly similar topographies, with relative hypometabolism mainly in the middle temporal gyrus, middle occipital gyrus, lingual gyrus, precuneus, cuneus, angular gyrus, superior and inferior parietal gyrus, middle and inferior frontal gyrus, cingulate, and caudate, and relative hypermetabolism in the cerebellum, putamen, thalamus, precentral/postcentral gyrus, and paracentral lobule, which were more extensive than the PDRP. Patients with DLB and PDD could not be distinguished successfully by any pattern, but patients with PD were easily recognized, especially by DLBRP and PDDRP. The pattern expression of DLBRP and PDDRP showed similar efficacy in cross-sectional disease severity assessment and longitudinal progression monitoring. CONCLUSIONS The consistent abnormalities in metabolic patterns of DLB and PDD might underline the potential continuum across the clinical spectrum from PD to DLB. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Keliang Chen
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimin Sun
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Yu
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Xu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zizhao Ju
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huamei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Wang
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
27
|
Capturing Subjective Mild Cognitive Decline in Parkinson’s Disease. Brain Sci 2022; 12:brainsci12060741. [PMID: 35741626 PMCID: PMC9221413 DOI: 10.3390/brainsci12060741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
This study aimed to capture subjective daily functional cognitive decline among patients with Parkinson’s disease. Participants (40–79 y; 78 with Parkinson’s disease and 41 healthy matched controls) completed the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), Parkinson’s Disease Cognitive Functional Rating Scale (CFRS), Daily Living Questionnaire (DLQ), and Time Organisation and Participation Scale (TOPS) questionnaires. Patients with Parkinson’s disease were divided into groups with or without suspected mild cognitive decline according to their scores on the Cognitive Functional (CF) feature, which is based on certain items of the MDS-UPDRS. Significant between-group differences were found in the DLQ and TOPS scores. Significant correlations were found among the questionnaire results, with specific DLQ and TOPS items accounting for 35% of the variance in the CF feature, which correlated with daily cognitive functional states. This study’s results are relevant for detecting subtle deficits in Parkinson’s disease patients suspected of mild cognitive decline, which can affect health and quality of life and relates to risk for later dementia.
Collapse
|
28
|
Ophey A, Krohm F, Kalbe E, Greuel A, Drzezga A, Tittgemeyer M, Timmermann L, Jessen F, Eggers C, Maier F. Neural correlates and predictors of subjective cognitive decline in patients with Parkinson's disease. Neurol Sci 2022; 43:3153-3163. [PMID: 34820745 PMCID: PMC9018636 DOI: 10.1007/s10072-021-05734-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/04/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Subjective cognitive decline (SCD) may occur very early in the course of Parkinson's disease (PD) before the onset of objective cognitive decline. Data on neural correlates and determinants of SCD in PD are rare. OBJECTIVE The aim of the present study was to identify neural correlates as well as sociodemographic, clinical, and neuropsychological predictors of SCD in patients with PD. METHODS We retrospectively analyzed 30 patients with PD without cognitive impairment (23% female, 66.90 ± 7.20 years, UPDRS-III: 19.83 ± 9.29), of which n = 12 patients were classified as having no SCD (control group, PD-CG) and n = 18 as having SCD (PD-SCD). Neuropsychological testing and 18-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) were conducted. SCD was assessed using a questionnaire covering multiple cognitive domains. RESULTS SCD subscores differed significantly between PD-CG and PD-SCD and correlated significantly with other scales measuring related concepts. FDG-PET whole-brain voxel-wise regression analysis revealed hypometabolism in middle frontal, middle temporal, and occipital areas, and the angular gyrus as neural correlates of SCD in PD. Next to this hypometabolism, depressive symptoms were an independent significant determinant of SCD in a stepwise regression analysis (adjusted R2 = 50.3%). CONCLUSION This study strengthens the hypothesis of SCD being an early manifestation of future cognitive decline in PD and, more generally, early pathological changes in PD. The early identification of the vulnerability for future cognitive decline constitutes the basis for successful prevention and delay of this non-motor symptom.
Collapse
Affiliation(s)
- Anja Ophey
- Department of Medical Psychology | Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 68, 50937, Cologne, Germany.
| | - Fabian Krohm
- Department of Medical Psychology | Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 68, 50937, Cologne, Germany
| | - Elke Kalbe
- Department of Medical Psychology | Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 68, 50937, Cologne, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities of Marburg and Gießen, Marburg, Germany
| | - Franziska Maier
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Rao IY, Hanson LR, Johnson JC, Rosenbloom MH, Frey WH. Brain Glucose Hypometabolism and Iron Accumulation in Different Brain Regions in Alzheimer's and Parkinson's Diseases. Pharmaceuticals (Basel) 2022; 15:551. [PMID: 35631378 PMCID: PMC9143620 DOI: 10.3390/ph15050551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine the relationship between the presence of glucose hypometabolism (GHM) and brain iron accumulation (BIA), two potential pathological mechanisms in neurodegenerative disease, in different regions of the brain in people with late-onset Alzheimer's disease (AD) or Parkinson's disease (PD). Studies that conducted fluorodeoxyglucose positron emission tomography (FDG-PET) to map GHM or quantitative susceptibility mapping-magnetic resonance imaging (QSM-MRI) to map BIA in the brains of patients with AD or PD were reviewed. Regions of the brain where GHM or BIA were reported in each disease were compared. In AD, both GHM and BIA were reported in the hippocampus, temporal, and parietal lobes. GHM alone was reported in the cingulate gyrus, precuneus and occipital lobe. BIA alone was reported in the caudate nucleus, putamen and globus pallidus. In PD, both GHM and BIA were reported in thalamus, globus pallidus, putamen, hippocampus, and temporal and frontal lobes. GHM alone was reported in cingulate gyrus, caudate nucleus, cerebellum, and parietal and occipital lobes. BIA alone was reported in the substantia nigra and red nucleus. GHM and BIA are observed independent of one another in various brain regions in both AD and PD. This suggests that GHM is not always necessary or sufficient to cause BIA and vice versa. Hypothesis-driven FDG-PET and QSM-MRI imaging studies, where both are conducted on individuals with AD or PD, are needed to confirm or disprove the observations presented here about the potential relationship or lack thereof between GHM and BIA in AD and PD.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - Julia C. Johnson
- HealthPartners Struthers Parkinson’s Center, Minneapolis, MN 55427, USA;
| | - Michael H. Rosenbloom
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - William H. Frey
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
30
|
Yoon EJ, Lee JY, Kim H, Yoo D, Shin JH, Nam H, Jeon B, Kim YK. Brain Metabolism Related to Mild Cognitive Impairment and Phenoconversion in Patients With Isolated REM Sleep Behavior Disorder. Neurology 2022; 98:e2413-e2424. [PMID: 35437260 PMCID: PMC9231839 DOI: 10.1212/wnl.0000000000200326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Mild cognitive impairment (MCI) in isolated REM sleep behavior disorder (iRBD) is a risk factor for subsequent neurodegeneration. We aimed to identify brain metabolism and functional connectivity changes related to MCI in patients with iRBD and the neuroimaging markers' predictive value for phenoconversion. Methods This is a prospective cohort study of patients with iRBD with a mean follow-up of 4.2 ± 2.6 years. At baseline, patients with iRBD and age- and sex-matched healthy controls (HCs) underwent 18F-fluorodeoxyglucose (FDG)–PET and resting-state fMRI scans and a comprehensive neuropsychological test battery. Voxel-wise group comparisons for FDG-PET data were performed using a general linear model. Seed-based connectivity maps were computed using brain regions showing significant hypometabolism associated with MCI in patients with iRBD and compared between groups. A Cox regression analysis was applied to investigate the association between brain metabolism and risk of phenoconversion. Results Forty patients with iRBD, including 21 with MCI (iRBD-MCI) and 19 with normal cognition (iRBD-NC), and 24 HCs were included in the study. The iRBD-MCI group revealed relative hypometabolism in the inferior parietal lobule, lateral and medial occipital, and middle and inferior temporal cortex bilaterally compared with HC and the iRBD-NC group. In seed-based connectivity analyses, the iRBD-MCI group exhibited decreased functional connectivity of the left angular gyrus with the occipital cortex. Of 40 patients with iRBD, 12 patients converted to Parkinson disease (PD) or dementia with Lewy bodies (DLB). Hypometabolism of the occipital pole (hazard ratio [95% CI] 6.652 [1.387–31.987]), medial occipital (4.450 [1.143–17.327]), and precuneus (3.635 [1.009–13.093]) was associated with higher phenoconversion rate to PD/DLB. Discussion MCI in iRBD is related to functional and metabolic changes in broad brain areas, particularly the occipital and parietal areas. Moreover, hypometabolism in these brain regions was a predictor of phenoconversion to PD or DLB. Evaluation of cognitive function and neuroimaging characteristics could be useful for risk stratification in patients with iRBD.
Collapse
Affiliation(s)
- Eun Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Korea, Republic of.,Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea, Republic of
| | - Dallah Yoo
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Department of Neurology, Kyung Hee University Hospital, Seoul, Korea, Republic of
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
31
|
Bock MA, Tanner CM. The epidemiology of cognitive function in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:3-37. [PMID: 35248199 DOI: 10.1016/bs.pbr.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epidemiology is the study of the distribution of disease in human populations, which is important in evaluating burden of illness, identifying modifiable risk factors, and planning for current and projected needs of the health care system. Parkinson's disease (PD) is the second most common serious neurodegenerative illness and is expected to further increase in prevalence. Cognitive changes are increasingly viewed as an integral non-motor feature in PD, emerging even in the prodromal phase of the disease. The prevalence of PD-MCI ranges from 20% to 40% depending on the population studied. The incidence of PD-dementia increases with duration of disease, with estimates growing from 3% to 30% of individuals followed for 5 years or less to over 80% after 20 years. There are several challenges in estimating the frequency of cognitive change, including only recently standardized diagnostic criteria, variation depending on exact neuropsychological evaluations performed, and differences in population sampling. Clinical features associated with cognitive decline include older age, increased disease duration and severity, early gait dysfunction, dysautonomia, hallucinations and other neuropsychiatric features, the presence of REM behavior disorder, and posterior predominant dysfunction on neuropsychological testing. There is increasing evidence that genetic risk factors, in particular GBA and MAPT mutations, contribute to cognitive change. Possible protective factors include higher cognitive reserve and regular exercise. Important sequelae of cognitive decline in PD include higher caregiver burden, decreased functional status, and increased risk of institutionalization and mortality. Many remaining uncertainties regarding the epidemiology of cognitive change in PD require future research, with improved biomarkers and more sensitive and convenient outcome measures.
Collapse
Affiliation(s)
- Meredith A Bock
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, United States; Mental Illness Research, Education, and Clinical Center, San Francisco Veteran's Affairs Health Care System, San Francisco, CA, United States; Parkinson's Disease Research Education and Clinical Center, San Francisco Veteran's Affairs Health Care System, San Francisco, CA, United States
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, United States; Parkinson's Disease Research Education and Clinical Center, San Francisco Veteran's Affairs Health Care System, San Francisco, CA, United States.
| |
Collapse
|
32
|
Wagatsuma K, Miwa K, Kamitaka Y, Koike E, Yamao T, Yoshii T, Kobayashi R, Nezu S, Sugamata Y, Miyaji N, Imabayashi E, Ishibashi K, Toyohara J, Ishii K. Determination of optimal regularization factor in Bayesian penalized likelihood reconstruction of brain PET images using [ 18 F]FDG and [ 11 C]PiB. Med Phys 2022; 49:2995-3005. [PMID: 35246870 DOI: 10.1002/mp.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The Bayesian penalized likelihood (BPL) reconstruction algorithm, Q.Clear, can achieve a higher signal-to-noise ratio on images and more accurate quantitation than ordered subset-expectation maximization (OSEM). The reconstruction parameter (β) in BPL requires optimization according to the radiopharmaceutical tracer. The present study aimed to define the optimal β value in BPL required to diagnose Alzheimer disease from brain PET images acquired using 18 F-fluoro-2-deoxy-D-glucose ([18 F]FDG) and 11 C-labeled Pittsburg compound B ([11 C]PiB). METHODS Images generated from Hoffman 3D brain and cylindrical phantoms were acquired using a Discovery PET/CT 710 and reconstructed using OSEM + time-of-flight (TOF) under clinical conditions and BPL + TOF (β = 20-1,000). Contrast was calculated from images generated by the Hoffman 3D brain phantom, and noise and uniformity were calculated from those generated by the cylindrical phantom. Five cognitively healthy controls and five patients with Alzheimer disease were assessed using [18 F]FDG and [11 C]PiB PET to validate the findings from the phantom study. The β values were restricted by the findings of the phantom study, then one certified nuclear medicine physician and two certified nuclear medicine technologists visually determined optimal β values by scoring the quality parameters of image contrast, image noise, cerebellar stability, and overall image quality of PET images from 1 (poor) to 5 (excellent). RESULTS The contrast in BPL satisfied the Japanese Society of Nuclear Medicine (JSNM) criterion of ≥ 55% and exceeded that of OSEM at ranges of β = 20-450 and 20-600 for [18 F]FDG and [11 C]PiB, respectively. The image noise in BPL satisfied the JSNM criterion of ≤ 15% and was below that in OSEM when β = 150-1000 and 400-1,000 for [18 F]FDG and [11 C]PiB, respectively. The phantom study restricted the ranges of β values to 100-300 and 300-500 for [18 F]FDG and [11 C]PiB, respectively. The BPL scores for grey-white matter contrast and image noise, exceeded those of OSEM in [18 F]FDG and [11 C]PiB images regardless of β values. Visual evaluation confirmed that the optimal β values were 200 and 450 for [18 F]FDG and [11 C]PiB, respectively. CONCLUSIONS The BPL achieved better image contrast and less image noise than OSEM, while maintaining quantitative SUVR due to full convergence, more rigorous noise control and edge preservation. The optimal β values for [18 F]FDG and [11 C]PiB brain PET were apparently 200 and 450, respectively. The present study provides useful information about how to determine optimal β values in BPL for brain PET imaging. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Emiya Koike
- Department of Radiology, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Tokiya Yoshii
- Department of Radiology, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - Rinya Kobayashi
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Shogo Nezu
- School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, 324-8501, Japan
| | - Yuta Sugamata
- School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, 324-8501, Japan
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Etsuko Imabayashi
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
33
|
Abstract
Positron emission tomography greatly advanced our understanding on the underlying neural mechanisms of movement disorders. PET with flurodeoxyglucose (FDG) is especially useful as it depicts regional metabolic activity level that can predict patients' symptoms. Multivariate pattern analysis has been used to determine and quantify the co-varying brain networks associated with specific clinical traits of neurodegenerative disease. The result is a biomarker, useful for diagnosis, treatments, and follow up studies. Parkinsonian traits and parkinsonisms are associated with specific spatial pattern of metabolic abnormality useful for differential diagnosis. This approach has also been used for monitoring disease progression and novel treatment responses mostly in Parkinson's disease. In this book chapter, we, illustrate and discuss the significance of the brain networks associated with disease and their modification with neuroplastic changes.
Collapse
|
34
|
Nikitina A, Melnikova N, Moshetova L, Levin O. Visual disturbances in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:5-11. [DOI: 10.17116/jnevro20221221125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Martín-Bastida A, Delgado-Alvarado M, Navalpotro-Gómez I, Rodríguez-Oroz MC. Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease. Front Neurol 2021; 12:733570. [PMID: 34803882 PMCID: PMC8602579 DOI: 10.3389/fneur.2021.733570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.
Collapse
Affiliation(s)
- Antonio Martín-Bastida
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Impairment and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain.,Clinical and Biological Research in Neurodegenerative Diseases, Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
36
|
Scholefield M, Church SJ, Xu J, Patassini S, Hooper NM, Unwin RD, Cooper GJS. Substantively Lowered Levels of Pantothenic Acid (Vitamin B5) in Several Regions of the Human Brain in Parkinson's Disease Dementia. Metabolites 2021; 11:569. [PMID: 34564384 PMCID: PMC8468190 DOI: 10.3390/metabo11090569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Pantothenic acid (vitamin B5) is an essential trace nutrient required for the synthesis of coenzyme A (CoA). It has previously been shown that pantothenic acid is significantly decreased in multiple brain regions in both Alzheimer's disease (ADD) and Huntington's disease (HD). The current investigation aimed to determine whether similar changes are also present in cases of Parkinson's disease dementia (PDD), another age-related neurodegenerative condition, and whether such perturbations might occur in similar regions in these apparently different diseases. Brain tissue was obtained from nine confirmed cases of PDD and nine controls with a post-mortem delay of 26 h or less. Tissues were acquired from nine regions that show high, moderate, or low levels of neurodegeneration in PDD: the cerebellum, motor cortex, primary visual cortex, hippocampus, substantia nigra, middle temporal gyrus, medulla oblongata, cingulate gyrus, and pons. A targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach was used to quantify pantothenic acid in these tissues. Pantothenic acid was significantly decreased in the cerebellum (p = 0.008), substantia nigra (p = 0.02), and medulla (p = 0.008) of PDD cases. These findings mirror the significant decreases in the cerebellum of both ADD and HD cases, as well as the substantia nigra, putamen, middle frontal gyrus, and entorhinal cortex of HD cases, and motor cortex, primary visual cortex, hippocampus, middle temporal gyrus, cingulate gyrus, and entorhinal cortex of ADD cases. Taken together, these observations indicate a common but regionally selective disruption of pantothenic acid levels across PDD, ADD, and HD.
Collapse
Affiliation(s)
- Melissa Scholefield
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
| | - Stephanie J. Church
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
| | - Jingshu Xu
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland 1142, New Zealand;
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland 1142, New Zealand;
| | - Nigel M. Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK;
| | - Richard D. Unwin
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
- Stoller Biomarker Discovery Centre & Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Citylabs 1.0 (Third Floor), Nelson Street, Manchester M13 9NQ, UK
| | - Garth J. S. Cooper
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK; (S.J.C.); (J.X.); (R.D.U.)
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland 1142, New Zealand;
| |
Collapse
|
37
|
Bertagnoni G, Lupi A, Fedeli M, Sensi G, Nogara M. 18F-fluorodeoxyglucose positron-emitted tomography for predicting neurological outcome in hypoxic-ischemic encephalopathy. Brain Inj 2021; 35:1292-1300. [PMID: 34499582 DOI: 10.1080/02699052.2021.1972154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: 18F-fluorodeoxyglucose positron-emitted tomography (FDG-PET) is a promising yet unexplored functional neuroimaging tool in the study and prognosis of hypoxic-ischemic encephalopathy (HIE) after cardiac arrest or respiratory failure. The present study aimed to correlate clinical data and FDG-PET scans for both analysis and prognostic use. Methods: 24 patients from an intensive rehabilitation ward were retrospectively evaluated. Data collected included age, gender, cause of anoxic event, length of stay in acute and rehabilitation units, discharge destination, and evaluation at admission and discharge using three clinical scales to assess cognitive function, independence and disability. Subjects were identified as good and bad performers on the basis of quantitative analysis of FDG-PET scans with the Cortex ID software. The relation between glucose uptake reduction and neurological outcome was evaluated. Results: good and bad performers presented no statistically significant difference regarding demographical data and in-hospital length of stay. The two categories significantly differed for impairment and disability levels both at admission and at discharge from the inpatient rehabilitation unit. Conclusions: FDG-PET considerably facilitates the early identification of patients with HIE who will have poor neurological outcome and could inform planning for their rehabilitation and care.
Collapse
Affiliation(s)
| | - Andrea Lupi
- Division of Nuclear Medicine, Ospedale S. Bortolo, Vicenza, Italy
| | - Marta Fedeli
- Department of Physical Medicine and Rehabilitation, Ospedale S. Bortolo, Vicenza, Italy
| | - Giovanni Sensi
- Department of Physical Medicine and Rehabilitation, Ospedale S. Bortolo, Vicenza, Italy
| | - Matteo Nogara
- School of Physical Medicine and Rehabilitation, University of Padua, Padua Italy
| |
Collapse
|
38
|
Shin NY, Bang M, Yoo SW, Kim JS, Yun E, Yoon U, Han K, Ahn KJ, Lee SK. Cortical Thickness from MRI to Predict Conversion from Mild Cognitive Impairment to Dementia in Parkinson Disease: A Machine Learning-based Model. Radiology 2021; 300:390-399. [PMID: 34032515 DOI: 10.1148/radiol.2021203383] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Group comparison results associating cortical thinning and Parkinson disease (PD) dementia (PDD) are limited in their application to clinical settings. Purpose To investigate whether cortical thickness from MRI can help predict conversion from mild cognitive impairment (MCI) to dementia in PD at an individual level using a machine learning-based model. Materials and Methods In this retrospective study, patients with PD and MCI who underwent MRI from September 2008 to November 2016 were included. Features were selected from clinical and cortical thickness variables in 10 000 randomly generated training sets. Features selected 5000 times or more were used to train random forest and support vector machine models. Each model was trained and tested in 10 000 randomly resampled data sets, and a median of 10 000 areas under the receiver operating characteristic curve (AUCs) was calculated for each. Model performances were validated in an external test set. Results Forty-two patients progressed to PDD (converters) (mean age, 71 years ± 6 [standard deviation]; 22 women), and 75 patients did not progress to PDD (nonconverters) (mean age, 68 years ± 6; 40 women). Four PDD converters (mean age, 74 years ± 10; four men) and 20 nonconverters (mean age, 67 years ± 7; 11 women) were included in the external test set. Models trained with cortical thickness variables (AUC range, 0.75-0.83) showed fair to good performances similar to those trained with clinical variables (AUC range, 0.70-0.81). Model performances improved when models were trained with both variables (AUC range, 0.80-0.88). In pair-wise comparisons, models trained with both variables more frequently showed better performance than others in all model types. The models trained with both variables were successfully validated in the external test set (AUC range, 0.69-0.84). Conclusion Cortical thickness from MRI helped predict conversion from mild cognitive impairment to dementia in Parkinson disease at an individual level, with improved performance when integrated with clinical variables. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Port in this issue.
Collapse
Affiliation(s)
- Na-Young Shin
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Mirim Bang
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Sang-Won Yoo
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Joong-Seok Kim
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Eunkyeong Yun
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Uicheul Yoon
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Kyunghwa Han
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Kook Jin Ahn
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| | - Seung-Koo Lee
- From the Departments of Radiology (N.Y.S., M.B., K.J.A.) and Neurology (S.W.Y., J.S.K.), College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (N.Y.S., K.H., S.K.L.); and Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Korea (E.Y., U.Y.)
| |
Collapse
|
39
|
Orso B, Arnaldi D, Girtler N, Brugnolo A, Doglione E, Mattioli P, Biassoni E, Fancellu R, Massa F, Bauckneht M, Chiola S, Morbelli S, Nobili F, Pardini M. Dopaminergic and Serotonergic Degeneration and Cortical [ 18 F]Fluorodeoxyglucose Positron Emission Tomography in De Novo Parkinson's Disease. Mov Disord 2021; 36:2293-2302. [PMID: 34021923 DOI: 10.1002/mds.28654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Degeneration of the nigrostriatal dopaminergic (DA) and the raphe-thalamic serotonergic (SE) systems is among the earliest changes observed in Parkinson's disease (PD). The consequences of those changes on brain metabolism, especially regarding their impact on the cortex, are poorly understood. OBJECTIVES Using multi-tracer molecular imaging, we assessed in a cohort of drug-naive PD patients the association between cortical metabolism and DA and SE system deafferentation of either striatum or thalamus, and we explored whether this association was mediated by either striatum or thalamus metabolism. METHODS We recruited 96 drug-naive PD patients (aged 71.9 ± 7.5 years) who underwent [123 I]ioflupane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) and brain [18 F]fluorodeoxyglucose positron emission tomography ([18 F]FDG-PET). We used a voxel-wise analysis of [18 F]FDG-PET images to correlate regional metabolism with striatal DA and thalamic SE innervation as assessed using [123 I]FP-CIT-SPECT. RESULTS We found that [123 I]FP-CIT specific to nondisplaceable binding ratio (SBR) and glucose metabolism positively correlated with one another in the deep gray matter (thalamus: P = 0.001, r = 0.541; caudate P = 0.001, r = 0.331; putamen P = 0.001, r = 0.423). We then observed a direct correlation between temporoparietal metabolism and caudate DA innervation, as well as a direct correlation between prefrontal metabolism and thalamus SE innervation. The effect of caudate [123 I]FP-CIT SBR values on temporoparietal metabolism was mediated by caudate metabolic values (percentage mediated: 89%, P-value = 0.008), and the effect of thalamus [123 I]FP-CIT SBR values on prefrontal metabolism was fully mediated by thalamus metabolic values (P < 0.001). CONCLUSIONS These data suggest that the impact of deep gray matter monoaminergic deafferentation on cortical function is mediated by striatal and thalamic metabolism in drug-naive PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Erica Biassoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Chiola
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
40
|
Brooks DJ. Imaging Familial and Sporadic Neurodegenerative Disorders Associated with Parkinsonism. Neurotherapeutics 2021; 18:753-771. [PMID: 33432494 PMCID: PMC8423977 DOI: 10.1007/s13311-020-00994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
In this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson's disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson's disease dementia, and Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- David J Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus N, 8200, Denmark.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
41
|
Rong S, Li Y, Li B, Nie K, Zhang P, Cai T, Mei M, Wang L, Zhang Y. Meynert nucleus-related cortical thinning in Parkinson's disease with mild cognitive impairment. Quant Imaging Med Surg 2021; 11:1554-1566. [PMID: 33816191 DOI: 10.21037/qims-20-444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Cognitive impairment in Parkinson's disease (PD) involves the cholinergic system and cholinergic neurons, especially the nucleus basalis of Meynert (NBM/Ch4) located in the basal forebrain (BF). We analyzed associations between NBM/Ch4 volume and cortical thickness to determine whether the NBM/Ch4-innervated neocortex shows parallel atrophy with the NBM/Ch4 as disease progresses in PD patients with cognitive impairment (PD-MCI). Methods We enrolled 35 PD-MCI patients, 48 PD patients with normal cognition (PD-NC), and 33 age- and education-matched healthy controls (HCs), with all participants undergoing neuropsychological assessment and structural magnetic resonance imaging (MRI). Correlation analyses between NBM/Ch4 volume and cortical thickness and correlation coefficient comparisons were conducted within and across groups. Results In the PD-MCI group, NBM/Ch4 volume was positively correlated with cortical thickness in the bilateral posterior cingulate, parietal, and frontal and left insular regions. Based on correlation coefficient comparisons, the atrophy of NBM/Ch4 was more correlated with the cortical thickness of right posterior cingulate and precuneus, anterior cingulate and medial orbitofrontal lobe in PD-MCI versus HC, and the right medial orbitofrontal lobe and anterior cingulate in PD-NC versus HC. Further partial correlations between cortical thickness and NBM/Ch4 volume were significant in the right medial orbitofrontal (PD-NC: r=0.3, P=0.045; PD-MCI: r=0.51, P=0.003) and anterior cingulate (PD-NC: r=0.41, P=0.006; PD-MCI: r=0.43, P=0.013) in the PD groups and in the right precuneus (r=0.37, P=0.04) and posterior cingulate (r=0.46, P=0.008) in the PD-MCI group. Conclusions The stronger correlation between NBM/Ch4 and cortical thinning in PD-MCI patients suggests that NBM/Ch4 volume loss may play an important role in PD cognitive impairment.
Collapse
Affiliation(s)
- Siming Rong
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bing Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tongtong Cai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingjin Mei
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
42
|
Zhu XH, Lee BY, Tuite P, Coles L, Sathe AG, Chen C, Cloyd J, Low WC, Steer CJ, Chen W. Quantitative Assessment of Occipital Metabolic and Energetic Changes in Parkinson's Patients, Using In Vivo 31P MRS-Based Metabolic Imaging at 7T. Metabolites 2021; 11:metabo11030145. [PMID: 33804401 PMCID: PMC8000945 DOI: 10.3390/metabo11030145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormal energy metabolism associated with mitochondrial dysfunction is thought to be a major contributor to the progression of neurodegenerative diseases such as Parkinson's disease (PD). Recent advancements in the field of magnetic resonance (MR) based metabolic imaging provide state-of-the-art technologies for non-invasively probing cerebral energy metabolism under various brain conditions. In this proof-of-principle clinical study, we employed quantitative 31P MR spectroscopy (MRS) imaging techniques to determine a constellation of metabolic and bioenergetic parameters, including cerebral adenosine triphosphate (ATP) and other phosphorous metabolite concentrations, intracellular pH and nicotinamide adenine dinucleotide (NAD) redox ratio, and ATP production rates in the occipital lobe of cognitive-normal PD patients, and then we compared them with age-sex matched healthy controls. Small but statistically significant differences in intracellular pH, NAD and ATP contents and ATPase enzyme activity between the two groups were detected, suggesting that subtle defects in energy metabolism and mitochondrial function are quantifiable before regional neurological deficits or pathogenesis begin to occur in these patients. Pilot data aiming to evaluate the bioenergetic effect of mitochondrial-protective bile acid, ursodeoxycholic acid (UDCA) were also obtained. These results collectively demonstrated that in vivo 31P MRS-based neuroimaging can non-invasively and quantitatively assess key metabolic-energetic metrics in the human brain. This provides an exciting opportunity to better understand neurodegenerative diseases, their progression and response to treatment.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (X.-H.Z.); (W.C.); Tel.: +1-(612) 626-2001 (X.-H.Z.); Fax: +1-(612) 626-2004 (X.-H.Z.)
| | - Byeong-Yeul Lee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Paul Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Lisa Coles
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Abhishek G. Sathe
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jim Cloyd
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Clifford J. Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (X.-H.Z.); (W.C.); Tel.: +1-(612) 626-2001 (X.-H.Z.); Fax: +1-(612) 626-2004 (X.-H.Z.)
| |
Collapse
|
43
|
Minoshima S, Mosci K, Cross D, Thientunyakit T. Brain [F-18]FDG PET for Clinical Dementia Workup: Differential Diagnosis of Alzheimer's Disease and Other Types of Dementing Disorders. Semin Nucl Med 2021; 51:230-240. [PMID: 33546814 DOI: 10.1053/j.semnuclmed.2021.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PET imaging with [F-18]FDG has been used extensively for research and clinical applications in dementia. In the brain, [F-18]FDG accumulates around synapses and represents local neuronal activity. Patterns of altered [F-18]FDG uptake reflecting local neuronal dysfunction provide differential diagnostic clues for various dementing disorders. Image interpretation can be accomplished by employing statistical brain mapping techniques. Various guidelines have been published to support the appropriate use of [F-18]FDG PET for clinical dementia workup. PET images with [F-18]FDG demonstrate distinct patterns of decreased uptake for Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) as well as its multiple subtypes such as behavioral variant FTD, primary progressive aphasia (PPA), progressive supranuclear palsy, and corticobasal degeneration to aid in the differential diagnoses. Mixed dementia, not only AD + Vascular Dementia, but also AD + other neurodegenerative disorders, should also be considered when interpreting [F-18]FDG PET images. Brain PET imaging with [F-18]FDG remains a valuable component of dementia workup owing to its relatively low cost, differential diagnostic performance, widespread availability, and physicians' experience over more than 40 years since the initial development.
Collapse
Affiliation(s)
- Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT.
| | - Karina Mosci
- Hospital das Forças Armadas (HFA) and Hospital Santa Lucia, Brasilia, Brazil
| | - Donna Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand
| |
Collapse
|
44
|
Zarkali A, McColgan P, Leyland LA, Lees AJ, Rees G, Weil RS. Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson's disease. Commun Biol 2021; 4:86. [PMID: 33469150 PMCID: PMC7815846 DOI: 10.1038/s42003-020-01622-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
Parkinson's dementia is characterised by changes in perception and thought, and preceded by visual dysfunction, making this a useful surrogate for dementia risk. Structural and functional connectivity changes are seen in humans with Parkinson's disease, but the organisational principles are not known. We used resting-state fMRI and diffusion-weighted imaging to examine changes in structural-functional connectivity coupling in patients with Parkinson's disease, and those at risk of dementia. We identified two organisational gradients to structural-functional connectivity decoupling: anterior-to-posterior and unimodal-to-transmodal, with stronger structural-functional connectivity coupling in anterior, unimodal areas and weakened towards posterior, transmodal regions. Next, we related spatial patterns of decoupling to expression of neurotransmitter receptors. We found that dopaminergic and serotonergic transmission relates to decoupling in Parkinson's overall, but instead, serotonergic, cholinergic and noradrenergic transmission relates to decoupling in patients with visual dysfunction. Our findings provide a framework to explain the specific disorders of consciousness in Parkinson's dementia, and the neurotransmitter systems that underlie these.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Peter McColgan
- Huntington's Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London, WC1N 3BG, UK
| |
Collapse
|
45
|
Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy. NPJ PARKINSONS DISEASE 2020; 6:39. [PMID: 33311476 PMCID: PMC7733458 DOI: 10.1038/s41531-020-00141-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
[18F]fluorodeoxyglucose (FDG) PET and [123I]metaiodobenzylguanidine (MIBG) scintigraphy may contribute to the differential diagnosis of neurodegenerative parkinsonism. To identify the superior method, we retrospectively evaluated 54 patients with suspected neurodegenerative parkinsonism, who were referred for FDG PET and MIBG scintigraphy. Two investigators visually assessed FDG PET scans using an ordinal 6-step score for disease-specific patterns of Lewy body diseases (LBD) or atypical parkinsonism (APS) and assigned the latter to the subgroups multiple system atrophy (MSA), progressive supranuclear palsy (PSP), or corticobasal syndrome. Regions-of-interest analysis on anterior planar MIBG images served to calculate the heart-to-mediastinum ratio. Movement disorder specialists blinded to imaging results established clinical follow-up diagnosis by means of guideline-derived case vignettes. Clinical follow-up (1.7 ± 2.3 years) revealed the following diagnoses: n = 19 LBD (n = 17 Parkinson’s disease [PD], n = 1 PD dementia, and n = 1 dementia with Lewy bodies), n = 31 APS (n = 28 MSA, n = 3 PSP), n = 3 non-neurodegenerative parkinsonism; n = 1 patient could not be diagnosed and was excluded. Receiver operating characteristic analyses for discriminating LBD vs. non-LBD revealed a larger area under the curve for FDG PET than for MIBG scintigraphy at statistical trend level for consensus rating (0.82 vs. 0.69, p = 0.06; significant for investigator #1: 0.83 vs. 0.69, p = 0.04). The analysis of PD vs. MSA showed a similar difference (0.82 vs. 0.69, p = 0.11; rater #1: 0.83 vs. 0.69, p = 0.07). Albeit the notable differences in diagnostic performance did not attain statistical significance, the authors consider this finding clinically relevant and suggest that FDG PET, which also allows for subgrouping of APS, should be preferred.
Collapse
|
46
|
Cao F, Guan X, Ma Y, Shao Y, Zhong J. Altered Functional Network Associated With Cognitive Performance in Early Parkinson Disease Measured by Eigenvector Centrality Mapping. Front Aging Neurosci 2020; 12:554660. [PMID: 33178007 PMCID: PMC7596167 DOI: 10.3389/fnagi.2020.554660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/11/2020] [Indexed: 02/01/2023] Open
Abstract
Objective: To investigate relationships between whole-brain functional changes and the performance of multiple cognitive functions in early Parkinson’s disease (PD). Methods: In the current study, we evaluated resting-state functional MRI (rsfMRI) data and neuropsychological assessments for various cognitive functions in a cohort with 84 early PD patients from the Parkinson’s Progression Markers Initiative (PPMI). Eigenvector centrality (EC) mapping based on rsfMRI was used to identify the functional connectivity of brain areas correlated with different neuropsychological scores at a whole-brain level. Results: Our study demonstrated that in the early PD patients, scores of Letter Number Sequencing (LNS) were positively correlated with EC in the left inferior occipital gyrus (IOG) and lingual gyrus. The immediate recall scores of Hopkins Verbal Learning Test-Revised (HVLT-R) were positively correlated with EC in the left superior frontal gyrus. No correlation was found between the EC and other cognitive performance scores. Conclusions: Functional alternations in the left occipital lobe (inferior occipital and lingual gyrus) and left superior frontal gyrus may account for the performance of working memory and immediate recall memory, respectively in early PD. These results may broaden the understanding of the potential mechanism of cognitive impairments in early PD.
Collapse
Affiliation(s)
- Fang Cao
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanqing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan Shao
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianguo Zhong
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
47
|
Scholefield M, Unwin RD, Cooper GJ. Shared perturbations in the metallome and metabolome of Alzheimer's, Parkinson's, Huntington's, and dementia with Lewy bodies: A systematic review. Ageing Res Rev 2020; 63:101152. [PMID: 32846222 DOI: 10.1016/j.arr.2020.101152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Despite differences in presentation, age-related dementing diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), and dementia with Lewy bodies (DLB) may share pathogenic processes. This review aims to systematically assemble and compare findings in various biochemical pathways across these four dementias. PubMed and Google Scholar were screened for articles reporting on brain and biofluid measurements of metals and/or metabolites in AD, PD, HD, or DLB. Articles were assessed using specific a priori-defined inclusion and exclusion criteria. Of 284 papers identified, 198 met criteria for inclusion. Although varying coverage levels of metals and metabolites across diseases and tissues made comparison of many analytes impossible, several common findings were identified: elevated glucose in both brain tissue and biofluids of AD, PD, and HD cases; increased iron and decreased copper in AD, PD and HD brain tissue; and decreased uric acid in biofluids of AD and PD cases. Other analytes were found to differ between diseases or were otherwise not covered across all conditions. These findings indicate that disturbances in glucose and purine pathways may be common to AD, PD, and HD. However, standardisation of methodologies and better coverage in some areas - notably of DLB - are necessary to validate and extend these findings.
Collapse
|
48
|
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by gradual progressive neuronal loss in the central nervous system. Unfortunately, the pathogenesis of many of these diseases remains unknown. Synucleins are a family of small, highly charged proteins expressed predominantly in neurons. Following their discovery, much has been learned about their structure, function, interaction with other proteins and role in neurodegenerative disease over the last two decades. One of these proteins, α-Synuclein (α-Syn), appears to be involved in many neurodegenerative disorders. These include Parkinson's disease (PD), dementia with Lewy bodies (DLB), Rapid Eye Movement Sleep Behavior Disorder (RBD) and Pure Autonomic Failure (PAF), i.e., collectively termed α-synucleinopathies. This review focuses on α-Syn dysfunction in neurodegeneration and assesses its role in synucleinopathies from a biochemical, genetic and neuroimaging perspective.
Collapse
Affiliation(s)
- Anastasia Bougea
- Neurochemistry Laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Neuroscience Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
49
|
Lee EJ, Oh JS, Moon H, Kim MJ, Kim MS, Chung SJ, Kim JS, Jeon SR. Parkinson Disease-Related Pattern of Glucose Metabolism Associated With the Potential for Motor Improvement After Deep Brain Stimulation. Neurosurgery 2020; 86:492-499. [PMID: 31215629 DOI: 10.1093/neuros/nyz206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Motor dysfunctions in Parkinson disease (PD) patients are not completely normalized by deep brain stimulation (DBS), and there is an obvious difference in the degree of symptom improvement after DBS for each patient. OBJECTIVE To test our hypothesis that each patient has their own restoration capacity for motor improvement after DBS, and to investigate whether regional cerebral glucose metabolism in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans is associated with the capacity for off-medication motor improvement (MIoff) after DBS. METHODS The MIoff (%) was calculated using the Unified Parkinson's Disease Rating Scale part III in 27 PD patients undergoing DBS in the globus pallidus interna. The standardized uptake value ratios (SUVRs) on FDG-PET were quantitatively measured, and the areas where the SUVR correlated with the MIoff (%) were identified. Also, the areas where the SUVR was significantly different between the 2 MIoff groups (≥60% vs <60%) were determined. RESULTS Ten patients achieved MIoff > 60% at 12 mo after DBS. In general, the MIoff (%) was positively correlated with preoperative SUVR in the temporo-parieto-occipital lobes, while it was inversely correlated with the metabolism in the primary motor cortex. The patients in the MIoff < 60% group showed a significant decrease in SUVR in the parieto-occipital lobes, while parieto-occipital metabolism in those with MIoff ≥ 60% was relatively preserved (Mann-Whitney U test, P = .03). CONCLUSION Our findings suggest that the parieto-occipital lobes may be implicated more generally in the prognosis of motor improvement after DBS in advanced PD than other regions.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojeong Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,System Medical Device Team, Advanced Technology Department, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Min-Ju Kim
- Department of Clinical Epidemiology and Biostatics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Sun Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Zhang S, Wang S, Shi X, Feng X. Polydatin alleviates parkinsonism in MPTP-model mice by enhancing glycolysis in dopaminergic neurons. Neurochem Int 2020; 139:104815. [PMID: 32758587 DOI: 10.1016/j.neuint.2020.104815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. Damage to energy metabolism and reduced adenosine triphosphate (ATP) levels in dopaminergic neurons are common features of PD. Previous studies suggested that the occurrence of PD often affects glucose metabolism and ATP production in the brain, and increased glycolysis or ATP production protects dopaminergic neuronal degeneration in the brain of PD patients. These systems may provide new potential therapeutic targets for the prevention of PD. The present study investigated the inhibitory action of polydatin (PLD) on early dopaminergic neuronal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that PLD protected against MPTP-induced early dopaminergic neuronal degeneration. PLD reduced the MPTP-induced loss of dopaminergic neurons in substantia nigra and striatum, inhibited the occurrence of neural apoptosis, and restored motor function in mice. PLD also increased the continuous activity duration and rhythm amplitude in mice during the circadian activity test. PLD improved glucose metabolism in the brain and restored ATP production levels. These observations suggest that PLD attenuates MPTP-induced early PD-like symptoms, and its mechanism of action may be associated with the promotion of glucose metabolism in neurons.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Sijie Wang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xingzhu Shi
- College of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|