1
|
Yan K, Zhang H, Qu C, Sun Y, Sun X, Xu Z. EVL is not essential for cuticular plate and stereocilia development in mouse auditory hair cells. FEBS Lett 2024. [PMID: 39300480 DOI: 10.1002/1873-3468.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
In inner ear hair cells, the stereocilia are inserted into a dense F-actin-enriched meshwork named the cuticular plate, which provides support to the stereocilia. Enah/Vasp-like (EVL) was shown to localize at the cuticular plate, and evl knockdown leads to disrupted cuticular plate and disorganized stereocilia in Xenopus hair cells. In the present work, we show that Evl transcripts are specifically expressed in mouse hair cells, and EVL is localized to the cuticular plate. However, the cuticular plate and stereocilia are unaffected by Evl knockout, and auditory function is largely normal in Evl knockout mice. In conclusion, our present data suggest that EVL is not essential for cuticular plate and stereocilia development in mouse auditory hair cells.
Collapse
Affiliation(s)
- Keji Yan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Haoqing Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yixiao Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiaoyang Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
2
|
Ni H, Li L, Hu D, Yang M, Wang D, Ma H, Bu W, Yang J, Zhu LE, Zhai D, Song T, Yang S, Lu Q, Li D, Ran J, Liu M. Dynamic changes of endothelial and stromal cilia are required for the maintenance of corneal homeostasis. J Cell Physiol 2024; 239:e31215. [PMID: 38308657 DOI: 10.1002/jcp.31215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.
Collapse
Affiliation(s)
- Hua Ni
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Lamei Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Die Hu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mulin Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Difei Wang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Ma
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li-E Zhu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Denghui Zhai
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quanlong Lu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
3
|
Li N, Liu S, Zhao D, Du H, Xi Y, Wei X, Liu Q, Müller U, Lu Q, Xiong W, Xu Z. Disruption of Cdh23 exon 68 splicing leads to progressive hearing loss in mice by affecting tip-link stability. Proc Natl Acad Sci U S A 2024; 121:e2309656121. [PMID: 38408254 PMCID: PMC10927504 DOI: 10.1073/pnas.2309656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024] Open
Abstract
Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing102206, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
4
|
Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci 2022; 120:103706. [PMID: 35218890 PMCID: PMC9177625 DOI: 10.1016/j.mcn.2022.103706] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the inner ear, the auditory and vestibular systems detect and translate sensory information regarding sound and balance. The sensory cells that transform mechanical input into an electrical signal in these systems are called hair cells. A specialized organelle on the apical surface of hair cells called the hair bundle detects mechanical signals. Displacement of the hair bundle causes mechanotransduction channels to open. The morphology and organization of the hair bundle, as well as the properties and characteristics of the mechanotransduction process, differ between the different hair cell types in the auditory and vestibular systems. These differences likely contribute to maximizing the transduction of specific signals in each system. This review will discuss the molecules essential for mechanotransduction and the properties of the mechanotransduction process, focusing our attention on recent data and differences between the auditory and vestibular systems.
Collapse
Affiliation(s)
- Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
5
|
Gurma M, Yang YM, Wang LY. Developmental plasticity of NMDA receptors at the calyx of Held synapse. Neuropharmacology 2021; 196:108697. [PMID: 34242682 DOI: 10.1016/j.neuropharm.2021.108697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Excitatory synaptic transmission is largely mediated by glutamate receptors in central synapses, such as the calyx of Held synapse in the auditory brainstem. This synapse is best known for undergoing extensive morphological and functional changes throughout early development and thereby has served as a prominent model system to study presynaptic mechanisms of neurotransmitter release. However, the pivotal roles of N-methyl-d-aspartate receptors (NMDARs) in gating acute forms of activity-dependent, persistent plasticity in vitro and chronic developmental remodeling in vivo are hardly noted. This article will provide a retrospective review of key experimental evidence to conceptualize the impact of a transient abundance of NMDARs during the early postnatal stage on the functionality of fast-spiking central synapses while raising a series of outstanding questions that are of general significance for understanding the developing brain in health and diseases. This article is part of the special Issue on "Glutamate Receptors - NMDA receptors".
Collapse
Affiliation(s)
- Maria Gurma
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota, Duluth MN, 55812, USA
| | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
6
|
Juergens L, Bieniussa L, Voelker J, Hagen R, Rak K. Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice. Histochem Cell Biol 2020; 154:671-681. [PMID: 32712744 PMCID: PMC7723944 DOI: 10.1007/s00418-020-01905-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.
Collapse
Affiliation(s)
- Lukas Juergens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
- Department of Ophthalmology, University of Duesseldorf, Duesseldorf, Germany
| | - Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
7
|
Berekméri E, Fekete Á, Köles L, Zelles T. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters' Cells along the Tonotopic Axis of the Cochlea. Cells 2019; 8:cells8101266. [PMID: 31627326 PMCID: PMC6830339 DOI: 10.3390/cells8101266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023] Open
Abstract
Exploring the development of the hearing organ helps in the understanding of hearing and hearing impairments and it promotes the development of the regenerative approaches-based therapeutic efforts. The role of supporting cells in the development of the organ of Corti is much less elucidated than that of the cochlear sensory receptor cells. The use of our recently published method of single-cell electroporation loading of a fluorescent Ca2+ probe in the mouse hemicochlea preparation provided an appropriate means to investigate the Deiters’ cells at the subcellular level in two different cochlear turns (apical, middle). Deiters’ cell’s soma and process elongated, and the process became slimmer by maturation without tonotopic preference. The tonotopically heterogeneous spontaneous Ca2+ activity less frequently occurred by maturation and implied subcellular difference. The exogenous ATP- and UTP-evoked Ca2+ responses were maturation-dependent and showed P2Y receptor dominance in the apical turn. By monitoring the basic structural dimensions of this supporting cell type as well as its spontaneous and evoked purinergic Ca2+ signaling in the hemicochlea preparation in different stages in the critical postnatal P5-25 developmental period for the first time, we showed that the soma and the phalangeal process of the Deiters’ cells go through age- and tonotopy-dependent changes in the morphometric parameters and purinergic signaling.
Collapse
Affiliation(s)
- Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50., 1077 Budapest, Hungary.
| | - Ádám Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., 1083 Budapest, Hungary.
| |
Collapse
|
8
|
Michel V, Booth KT, Patni P, Cortese M, Azaiez H, Bahloul A, Kahrizi K, Labbé M, Emptoz A, Lelli A, Dégardin J, Dupont T, Aghaie A, Oficjalska-Pham D, Picaud S, Najmabadi H, Smith RJ, Bowl MR, Brown SD, Avan P, Petit C, El-Amraoui A. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol Med 2018; 9:1711-1731. [PMID: 29084757 PMCID: PMC5709726 DOI: 10.15252/emmm.201708087] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Defects of CIB2, calcium‐ and integrin‐binding protein 2, have been reported to cause isolated deafness, DFNB48 and Usher syndrome type‐IJ, characterized by congenital profound deafness, balance defects and blindness. We report here two new nonsense mutations (pGln12* and pTyr110*) in CIB2 patients displaying nonsyndromic profound hearing loss, with no evidence of vestibular or retinal dysfunction. Also, the generated CIB2−/− mice display an early onset profound deafness and have normal balance and retinal functions. In these mice, the mechanoelectrical transduction currents are totally abolished in the auditory hair cells, whilst they remain unchanged in the vestibular hair cells. The hair bundle morphological abnormalities of CIB2−/− mice, unlike those of mice defective for the other five known USH1 proteins, begin only after birth and lead to regression of the stereocilia and rapid hair‐cell death. This essential role of CIB2 in mechanotransduction and cell survival that, we show, is restricted to the cochlea, probably accounts for the presence in CIB2−/− mice and CIB2 patients, unlike in Usher syndrome, of isolated hearing loss without balance and vision deficits.
Collapse
Affiliation(s)
- Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa.,Department of Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pranav Patni
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Matteo Cortese
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Amel Bahloul
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ménélik Labbé
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Alice Emptoz
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Andrea Lelli
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Typhaine Dupont
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Asadollah Aghaie
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, Paris, France
| | - Danuta Oficjalska-Pham
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | | | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Biophysique Médicale, Centre Jean Perrin, Université d'Auvergne, Clermont-Ferrand, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France .,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| |
Collapse
|
9
|
Van De Water TR, Heywood P, Ruben RJ. Development of Sensory Structures in Organ Cultures of the Twelfth and Thirteenth Gestation Day Mouse Embryo Inner Ears. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/000348947308200102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Twelfth and thirteenth gestation day mouse embryo otocysts have been explanted into an organ culture system that promotes advances in morphogenesis and differentiation of sensory structures. The pattern of morphogenesis that occurs “in vitro” is not equivalent to that which occurs in the “in vivo” environment. These morphogenetic changes occur with greatest frequency in the explanted thirteenth gestation day otocyst. The development of sensory structures occurs with equal distribution in the twelfth and thirteenth gestation day explanted otocysts. The thirteenth gestation day mouse otocyst favors the development of organ of Corti type formations, and the twelfth gestation day otocyst favors the development of maculae of sensory cells of a vestibular character in the organ culture system employed. The thirteenth gestation day otocyst requires a shorter period of “in vitro” development to produce differentiation of sensory structures. The sensory structures that develop “in vitro” follow the pattern of the sensory structures that develop “in vivo.”
Collapse
|
10
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Liang Y, Meng D, Zhu B, Pan J. Mechanism of ciliary disassembly. Cell Mol Life Sci 2016; 73:1787-802. [PMID: 26869233 PMCID: PMC11108551 DOI: 10.1007/s00018-016-2148-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated.
Collapse
Affiliation(s)
- Yinwen Liang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Hu Z, Liang Y, He W, Pan J. Cilia disassembly with two distinct phases of regulation. Cell Rep 2015; 10:1803-10. [PMID: 25801021 DOI: 10.1016/j.celrep.2015.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/30/2014] [Accepted: 02/17/2015] [Indexed: 01/23/2023] Open
Abstract
Cilia and flagella are dynamic organelles that undergo assembly and disassembly during each cell cycle. They are structurally polarized, and the mechanisms by which these organelles are disassembled are incompletely understood. Here, we show that flagellar resorption occurs in two distinct phases of length-dependent regulation. A CDK-like kinase, encoded by flagellar shortening 1 (FLS1), is required for the normal rate of disassembly of only the distal part of the flagellum. Mechanistically, loss of function of FLS1 prevents the initial phosphorylation of CALK, an aurora-like kinase that regulates flagellar shortening, and induces the earlier onset of the inhibitory phosphorylation of CrKinesin13, a microtubule depolymerase, which is involved in flagellar shortening. In addition, CALK and CrKinesin13 phosphorylation can also be induced by the process of flagellar shortening itself, demonstrating an example of cilia-generated signaling not requiring the binding of a ligand or the stimulation of an ion channel.
Collapse
|
13
|
Stawicki TM, Esterberg R, Hailey DW, Raible DW, Rubel EW. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Front Cell Neurosci 2015; 9:46. [PMID: 25741241 PMCID: PMC4332341 DOI: 10.3389/fncel.2015.00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 01/01/2023] Open
Abstract
The majority of hearing loss and balance disorders are caused by the permanent loss of mechanosensory hair cells of the inner ear. Identification of genes and compounds that modulate susceptibility to hair cell death is frequently confounded by the difficulties of assaying for such complex phenomena in mammalian models. The zebrafish has emerged as a powerful animal model for genetic and chemical screening in many contexts. Several characteristics of the zebrafish, such as its small size and external location of mechanosensory hair cells within the lateral line sensory organ, uniquely position it as an ideal model organism for the study of hair cell toxicity. We have used this model to screen for genes and compounds that affect hair cell survival during ototoxin exposure and have identified agents that would not be expected to play a role in this process based on a priori knowledge of their function. The identification of such agents yields better understanding of hair cell death and holds promise to stem hearing loss and balance disorders in the human population.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - Robert Esterberg
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Otolaryngology, Head and Neck Surgery, University of Washington Seattle, WA, USA
| | - Dale W Hailey
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - David W Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Otolaryngology, Head and Neck Surgery, University of Washington Seattle, WA, USA
| |
Collapse
|
14
|
TAKAHASHI T. Strength and precision of neurotransmission at mammalian presynaptic terminals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:305-320. [PMID: 26194855 PMCID: PMC4631896 DOI: 10.2183/pjab.91.305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 05/30/2023]
Abstract
Classically, the basic concept of chemical synaptic transmission was established at the frog neuromuscular junction, and direct intracellular recordings from presynaptic terminals at the squid giant presynaptic terminal have further clarified principles of neurotransmitter release. More recently, whole-cell patch-camp recordings from the calyx of Held in rodent brainstem slices have extended the classical concept to mammalian synapses providing new insights into the mechanisms underlying strength and precision of neurotransmission and developmental changes therein. This review summarizes findings from our laboratory and others on these subjects, mainly at the calyx of Held, with a particular focus on precise, high-fidelity, fast neurotransmission. The mechanisms by which presynaptic terminals acquire strong, precise neurotransmission during postnatal development are also discussed.
Collapse
Affiliation(s)
- Tomoyuki TAKAHASHI
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
15
|
Mann ZF, Chang W, Lee KY, King KA, Kelley MW. Expression and function of scleraxis in the developing auditory system. PLoS One 2013; 8:e75521. [PMID: 24058692 PMCID: PMC3772897 DOI: 10.1371/journal.pone.0075521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023] Open
Abstract
A study of genes expressed in the developing inner ear identified the bHLH transcription factor Scleraxis (Scx) in the developing cochlea. Previous work has demonstrated an essential role for Scx in the differentiation and development of tendons, ligaments and cells of chondrogenic lineage. Expression in the cochlea has been shown previously, however the functional role for Scx in the cochlea is unknown. Using a Scx-GFP reporter mouse line we examined the spatial and temporal patterns of Scx expression in the developing cochlea between embryonic day 13.5 and postnatal day 25. Embryonically, Scx is expressed broadly throughout the cochlear duct and surrounding mesenchyme and at postnatal ages becomes restricted to the inner hair cells and the interdental cells of the spiral limbus. Deletion of Scx results in hearing impairment indicated by elevated auditory brainstem response (ABR) thresholds and diminished distortion product otoacoustic emission (DPOAE) amplitudes, across a range of frequencies. No changes in either gross cochlear morphology or expression of the Scx target genes Col2A, Bmp4 or Sox9 were observed in Scx(-/-) mutants, suggesting that the auditory defects observed in these animals may be a result of unidentified Scx-dependent processes within the cochlea.
Collapse
Affiliation(s)
- Zoe F. Mann
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | - Weise Chang
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, United States of America
| | - Kyu Yup Lee
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Rockville, Maryland, United States of America
| | - Kelly A. King
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2012; 297:68-83. [PMID: 23164734 DOI: 10.1016/j.heares.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.
Collapse
|
17
|
Bulankina AV, Moser T. Neural circuit development in the mammalian cochlea. Physiology (Bethesda) 2012; 27:100-12. [PMID: 22505666 DOI: 10.1152/physiol.00036.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The organ of Corti, the sensory epithelium of the mammalian auditory system, uses afferent and efferent synapses for encoding auditory signals and top-down modulation of cochlear function. During development, the final precisely ordered sensorineural circuit is established following excessive formation of afferent and efferent synapses and subsequent refinement. Here, we review the development of innervation of the mouse organ of Corti and its regulation.
Collapse
Affiliation(s)
- A V Bulankina
- InnerEarLab, Department of Otolaryngology, University of Goettingen School of Medicine, Goettingen, Germany
| | | |
Collapse
|
18
|
Yoshida A, Yamamoto N, Kinoshita M, Hiroi N, Hiramoto T, Kang G, Trimble WS, Tanigaki K, Nakagawa T, Ito J. Localization of septin proteins in the mouse cochlea. Hear Res 2012; 289:40-51. [PMID: 22575789 DOI: 10.1016/j.heares.2012.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022]
Abstract
Septins are a family of GTP binding proteins that are well conserved in eukaryotic species except plants. Septins contribute to the lateral compartmentalization of membranes, cortical rigidity, and the regulation of membrane trafficking by associating with membrane lipids, actin, and microtubules. The organ of Corti in the cochlea has pivotal roles in auditory perception and includes two kinds of highly polarized cells, hair and supporting cells, both of which are rich in actin and microtubules. To identify the roles of septins in the cochlea, we analyzed the localization of three septin proteins, septin 4 (SEPT4), septin 5 (SEPT5), and septin 7 (SEPT7) that are abundantly expressed in brain tissues, and also examined auditory functions of Sept4 and Sept5 null mice. SEPT4, SEPT5, and SEPT7 were expressed in inner and outer pillar cells and Deiters' cells but the distribution patterns of each protein in Deiters' cells were different. SEPT4 and SEPT7 were expressed in the phalangeal process where SEPT5 was not detected. In addition to these cells SEPT5 and SEPT7 were co-localized with presynaptic vesicles of efferent nerve terminals. Only SEPT7 was expressed in the cochlea at embryonic stages. Although expression patterns of septin proteins suggested their important roles in the function of the cochlea, both Sept4 and Sept5 null mice had similar auditory functions to their wild type littermates. Immunohistochemical analysis of Sept4 null mice showed that compensatory expression of SEPT5 in the phalangeal process of Deiters' cells may have caused functional compensation of hearing ability in Sept4 null mice.
Collapse
Affiliation(s)
- Atsuhiro Yoshida
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto City, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Parker MA. Biotechnology in the treatment of sensorineural hearing loss: foundations and future of hair cell regeneration. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2011; 54:1709-1731. [PMID: 21386039 PMCID: PMC3163053 DOI: 10.1044/1092-4388(2011/10-0149)] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PURPOSE To provide an overview of the methodologies involved in the field of hair cell regeneration. First, the author provides a tutorial on the biotechnological foundations of this field to assist the reader in the comprehension and interpretation of the research involved in hair cell regeneration. Next, the author presents a review of stem cell and gene therapy and provides a critical appraisal of their application to hair cell regeneration. The methodologies used in these approaches are highlighted. METHOD The author conducted a narrative review of the fields of cellular, molecular, and developmental biology, tissue engineering, and stem cell and gene therapy using the PubMed database. RESULTS The use of biotechnological approaches to the treatment of hearing loss--approaches such as stem cell and gene therapy-has led to new methods of regenerating cochlear hair cells in mammals. CONCLUSIONS Incredible strides have been made in assembling important pieces of the puzzle that comprise hair cell regeneration. However, mammalian hair cell regeneration using stem cell and gene therapy are years--if not decades--away from being clinically feasible. If the goals of the biological approaches are met, these therapies may represent future treatments for hearing loss.
Collapse
|
20
|
TAK1 expression in the cochlea: a specific marker for adult supporting cells. J Assoc Res Otolaryngol 2011; 12:471-83. [PMID: 21472480 DOI: 10.1007/s10162-011-0265-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022] Open
Abstract
Transforming growth factor-β-activated kinase-1 (TAK1) is a mitogen activated protein kinase kinase kinase that is involved in diverse biological roles across species. Functioning downstream of TGF-β and BMP signaling, TAK1 mediates the activation of the c-Jun N-terminal kinase signaling pathway, serves as the target of pro-inflammatory cytokines, such as TNF-α, mediates NF-κβ activation, and plays a role in Wnt/Fz signaling in mesenchymal stem cells. Expression of TAK1 in the cochlea has not been defined. Data mining of previously published murine cochlear gene expression databases indicated that TAK1, along with TAK1 interacting proteins 1 (TAB1), and 2 (TAB2), is expressed in the developing and adult cochlea. The expression of TAK1 in the developing cochlea was confirmed using RT-PCR and immunohistochemistry. Immunolabeling of TAK1 in embryonic, neonatal, and mature cochleas via DAB chromogenic and fluorescent immunohistochemistry indicated that TAK1 is broadly expressed in both the developing otocyst and periotic mesenchyme at E12.5 but becomes more restricted to specific types of supporting cells as the organ of Corti matures. By P1, TAK1 immunolabeling is found in cells of the stria vascularis, hair cells, supporting cells, and Kölliker's organ. By P16, TAK1 labeling is limited to cochlear supporting cells. In the adult cochlea, TAK1 immunostaining is only present in the cytoplasm of Deiters' cells, pillar cells, inner phalangeal cells, and inner border cells, with no expression in any other cochlear cell types. While the role of TAK1 in the inner ear is unclear, TAK1 expression may be used as a novel marker for specific sub-populations of supporting cells.
Collapse
|
21
|
Primary cilia dynamics instruct tissue patterning and repair of corneal endothelium. Proc Natl Acad Sci U S A 2011; 108:2819-24. [PMID: 21285373 DOI: 10.1073/pnas.1016702108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary cilia are required for several signaling pathways, but their function in cellular morphogenesis is poorly understood. Here we show that emergence of an hexagonal cellular pattern during development of the corneal endothelium (CE), a monolayer of neural crest-derived cells that maintains corneal transparency, depends on a precise temporal control of assembly of primary cilia that subsequently disassemble in adult corneal endothelial cells (CECs). However, cilia reassembly occurs rapidly in response to an in vivo mechanical injury and precedes basal body polarization and cellular elongation in mature CECs neighboring the wound. In contrast, CE from hypomorphic IFT88 mutants (Tg737(orpk)) or following in vivo lentiviral-mediated IFT88 knockdown display dysfunctional cilia and show disorganized patterning, mislocalization of junctional markers, and accumulation of cytoplasmic acetylated tubulin. Our results indicate an active role of cilia in orchestrating coordinated morphogenesis of CECs during development and repair and define the murine CE as a powerful in vivo system to study ciliary-based cellular dynamics.
Collapse
|
22
|
Malicki J, Avanesov A, Li J, Yuan S, Sun Z. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2011; 101:39-74. [PMID: 21550439 DOI: 10.1016/b978-0-12-387036-0.00003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cilium, a previously little studied cell surface protrusion, has emerged as an important organelle in vertebrate cells. This tiny structure is essential for normal embryonic development, including the formation of left-right asymmetry, limb morphogenesis, and the differentiation of sensory cells. In the adult, cilia also function in a variety of processes, such as the survival of photoreceptor cells, and the homeostasis in several tissues, including the epithelia of nephric ducts. Human ciliary malfunction is associated with situs inversus, kidney cysts, polydactyly, blindness, mental retardation, obesity, and many other abnormalities. The genetic accessibility and optical transparency of the zebrafish make it an excellent vertebrate model system to study cilia biology. In this chapter, we describe the morphology and distribution of cilia in zebrafish embryonic and larval organs. We also provide essential protocols to analyze cilia formation and function.
Collapse
Affiliation(s)
- Jarema Malicki
- Division of Craniofacial and Molecular Genetics, Tufts University, Massachusetts, USA
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Bredberg GÖR, Ades HW, Engström H. Scanning Electron Microscopy of the Normal and Pathologically Altered Organ of Corti. Acta Otolaryngol 2009. [DOI: 10.3109/00016487209122688] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
References. Acta Otolaryngol 2009. [DOI: 10.3109/00016486809122157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Cohen GM, Fermin CD. The Development of Hair Cells in the Embryonic Chick's Basilar Papilla. Acta Otolaryngol 2009. [DOI: 10.3109/00016487809124756] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Hultcrantz M, Anniko M, Borg E. Structure and Function of the Adult Cochlea Following Prenatal Irradiation. Acta Otolaryngol 2009. [DOI: 10.3109/00016488509121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
|
29
|
Summary. Acta Otolaryngol 2009. [DOI: 10.3109/00016486809122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Lim DJ, Anniko M. Developmental Morphology of the Mouse Inner Ear: A scanning electron microscopic observation. Acta Otolaryngol 2009. [DOI: 10.3109/00016488509121766] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
References. Acta Otolaryngol 2009. [DOI: 10.3109/00016486809122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
References. Acta Otolaryngol 2009. [DOI: 10.3109/00016486709127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Thelen N, Breuskin I, Malgrange B, Thiry M. Early identification of inner pillar cells during rat cochlear development. Cell Tissue Res 2009; 337:1-14. [PMID: 19444473 DOI: 10.1007/s00441-009-0810-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/16/2009] [Indexed: 01/02/2023]
Abstract
Although the structure of the auditory organ in mature mammals, the organ of Corti, is clearly established, its development is far from being elucidated. Here, we examine its spatio-temporal development in rats from embryonic day 16 (E16) to E19 by using cytochemical and immunocytochemical methods at the light- and electron-microscope levels. We demonstrate that the organ of Corti develops from a non-proliferating cell zone that is located in the junctional region between two edges of the dorsal epithelium of the cochlear duct. We also reveal that the first cells to develop in this zone are the inner pillar cells, a particular type of non-sensory supporting cell, which arise in the base of the cochlear duct at the boundary between the two ridges at E16. Cell differentiation in this prosensory region continues according to a base-to-apex gradient; the inner hair cells appear in the greater epithelial ridge at E17 and the outer hair cells in the lesser epithelial ridge at E18. At E19, the various cell types of the organ of Corti are in place. Finally, we show that unlike the development of all the supporting cell types of the organ of Corti, the development of inner pillar cells within the prosensory domain seems not to involve Notch1 activation. These results highlight the central role that the inner pillar cells probably play in the development of the organ of Corti.
Collapse
Affiliation(s)
- Nicolas Thelen
- Cellular Biology Unit, Center for Cellular and Molecular Neuroscience, University of Liège, C.H.U. Sart Tilman, B36, 4000, Liège, Belgium.
| | | | | | | |
Collapse
|
34
|
Bosher SK. The possible importance of the labyrinthine fluids in the pathogenesis of sensorineural deafness. In: Sensorineural hearing loss. CIBA FOUNDATION SYMPOSIUM 2008:199-212. [PMID: 5210910 DOI: 10.1002/9780470719756.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Koike-Tani M, Kanda T, Saitoh N, Yamashita T, Takahashi T. Involvement of AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in developing rats. J Physiol 2008; 586:2263-75. [PMID: 18339695 DOI: 10.1113/jphysiol.2007.142547] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Paired-pulse facilitation (PPF) and depression (PPD) are forms of short-term plasticity that are generally thought to reflect changes in transmitter release probability. However, desensitization of postsynaptic AMPA receptors (AMPARs) significantly contributes to PPD at many glutamatergic synapses. To clarify the involvement of AMPAR desensitization in synaptic PPD, we compared PPD with AMPAR desensitization, induced by paired-pulse glutamate application in patches excised from postsynaptic cells at the calyx of Held synapse of developing rats. We found that AMPAR desensitization contributed significantly to PPD before the onset of hearing (P10-12), but that its contribution became negligible after hearing onset. During postnatal development (P7-21) the recovery of AMPARs from desensitization became faster. Concomitantly, glutamate sensitivity of AMPAR desensitization declined. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated a developmental decline of GluR1 expression that correlated with speeding of the recovery of AMPARs from desensitization. Transmitter release probability declined during the second postnatal week (P7-14). Manipulation of the extracellular Ca2+/Mg2+ ratio, to match release probability at P7-8 and P13-15 synapses, revealed that the release probability is also an important factor determining the involvement of AMPAR desensitization in PPD. We conclude that the extent of involvement of AMPAR desensitization in short-term synaptic depression is determined by both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Maki Koike-Tani
- Doshisha University Faculty of Life and Medical Sciences, 619-0225, Japan
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
Primary cilia are essential components of diverse cellular processes. Many of the requirements can be linked to the apparent signaling function of primary cilia. Recent studies have also uncovered a role for primary cilia in planar cell polarity (PCP) signaling. PCP refers to the coordinated orientation of cells along an axis parallel to the plane of the cell sheet. In vertebrates, the inner ear sensory organs display distinctive forms of PCP. One of the inner ear PCP characteristics is the coordinated positioning of a primary cilium eccentrically in every sensory hair cell within each organ. The inner ear, therefore, provides an opportunity to explore the cellular role of primary cilia in PCP signaling. In this chapter, we will introduce the PCP of the inner ear sensory organs, describe the conserved mechanism underlying the establishment of the planar polarity axis in invertebrates and vertebrates, and highlight a unique requirement for primary cilia in PCP regulation in vertebrates. Additionally, we will discuss a potentially ubiquitous role for cilia in cellular polarization in general.
Collapse
|
38
|
Jones C, Roper VC, Foucher I, Qian D, Banizs B, Petit C, Yoder BK, Chen P. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 2007; 40:69-77. [PMID: 18066062 DOI: 10.1038/ng.2007.54] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/21/2007] [Indexed: 11/09/2022]
Abstract
Planar cell polarity (PCP) refers to coordinated polarization of cells within the plane of a cell sheet. A conserved signaling pathway is required for the establishment of PCP in epithelial tissues and for polarized cellular rearrangements known as convergent extension. During PCP signaling, core PCP proteins are sorted asymmetrically along the polarization axis; this sorting is thought to direct coordinated downstream morphogenetic changes across the entire tissue. Here, we show that a gene encoding a ciliary protein (a 'ciliary gene'), Ift88, also known as Polaris, is required for establishing epithelial PCP and for convergent extension of the cochlear duct of Mus musculus. We also show that the proper positioning of ciliary basal bodies and the formation of polarized cellular structures are disrupted in mice with mutant ciliary proteins ('ciliary mutants'), whereas core PCP proteins are partitioned normally along the polarization axis. Thus, our data uncover a distinct requirement for ciliary genes in basal body positioning and morphological polarization during PCP regulation.
Collapse
Affiliation(s)
- Chonnettia Jones
- Department of Cell Biology, Emory University School of Medicine, 615 Michael St., Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hume CR, Bratt DL, Oesterle EC. Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr Patterns 2007; 7:798-807. [PMID: 17604700 PMCID: PMC2043117 DOI: 10.1016/j.modgep.2007.05.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/03/2007] [Accepted: 05/21/2007] [Indexed: 12/12/2022]
Abstract
A cascade of transcription factors is believed to regulate the coordinate differentiation of primordial inner ear cells into the subtypes of hair cells and supporting cells. While candidate genes involved in this process have been identified, the temporal and spatial patterns of expression of many of these have not been carefully described during the extended period of inner ear development and functional maturation. We systematically examined the expression of two such transcription factors, LHX3 and SOX2, from the time of hair cell terminal mitoses into adulthood. We show that LHX3 is expressed specifically in auditory and vestibular hair cells soon after terminal mitoses and persists into the adult in vestibular hair cells. While SOX2 expression is widespread in the inner ear sensory epithelia prior to hair cell differentiation, it has a unique pattern of expression in the mature auditory and vestibular organs.
Collapse
Affiliation(s)
- Clifford R Hume
- Department of Otolaryngology - Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, VMBHRC, CHDD, CD176, Box 357923, 1959 NE Pacific, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
40
|
Mustapha M, Beyer LA, Izumikawa M, Swiderski DL, Dolan DF, Raphael Y, Camper SA. Whirler mutant hair cells have less severe pathology than shaker 2 or double mutants. J Assoc Res Otolaryngol 2007; 8:329-37. [PMID: 17619105 PMCID: PMC2538434 DOI: 10.1007/s10162-007-0083-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 04/23/2007] [Indexed: 01/16/2023] Open
Abstract
MYOSIN XV is a motor protein that interacts with the PDZ domain-containing protein WHIRLIN and transports WHIRLIN to the tips of the stereocilia. Shaker 2 (sh2) mice have a mutation in the motor domain of MYOSIN XV and exhibit congenital deafness and circling behavior, probably because of abnormally short stereocilia. Whirler (wi) mice have a similar phenotype caused by a deletion in the third PDZ domain of WHIRLIN. We compared the morphology of Whrn (wi/wi) and Myo15 (sh2/sh2) sensory hair cells and found that Myo15 (sh2/sh2) have more frequent pathology at the base of inner hair cells than Whrn (wi/wi), and shorter outer hair cell stereocilia. Considering the functional and morphologic similarities in the phenotypes caused by mutations in Myo15 and Whrn, and the physical interaction between their encoded proteins, we used a genetic approach to test for functional overlap. Double heterozygotes (Myo15 (sh2/+), Whrn (wi/+)) have normal hearing and no increase in hearing loss compared to normal littermates. Single and double mutants (Myo15 (sh2/sh2), Whrn (wi/wi)) exhibit abnormal persistence of kinocilia and microvilli, and develop abnormal cytoskeletal architecture. Double mutants are also similar to the single mutants in viability, circling behavior, and lack of a Preyer reflex. The morphology of cochlear hair cell stereocilia in double mutants reflects a dominance of the more severe Myo15 (sh2/sh2) phenotype over the Whrn (wi/wi) phenotype. This suggests that MYOSIN XV may interact with other proteins besides WHIRLIN that are important for hair cell maturation.
Collapse
Affiliation(s)
- Mirna Mustapha
- Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 East Catherine Street, Ann Arbor, MI 48109-0618 USA
| | - Lisa A. Beyer
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Masahiko Izumikawa
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Donald L. Swiderski
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - David F. Dolan
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Yehoash Raphael
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 East Catherine Street, Ann Arbor, MI 48109-0618 USA
| |
Collapse
|
41
|
Erazo-Fischer E, Striessnig J, Taschenberger H. The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse. J Neurosci 2007; 27:1725-37. [PMID: 17301180 PMCID: PMC6673733 DOI: 10.1523/jneurosci.4116-06.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied how afferent nerve activity affects the in vivo maturation of a fast glutamatergic CNS synapse, the calyx of Held. To address this question, we exploited the distinct presynaptic Ca2+ channel subtypes governing transmitter release at the cochlear inner hair cell (IHC)-spiral neuron synaptic junction compared with those at higher synapses along the auditory pathways. We characterized the functional properties of calyx synapses in wild type (wt) compared with those developing in Ca(V)1.3 subunit-deficient (Ca(V)1.3-/-) mice. Ca(V)1.3-/- mice are deaf because of an absence of glutamate release from IHC, which results in a complete lack of cochlea-driven nerve activity. Presynaptic Ca2+ channel properties, Ca2+ dependence of exocytosis, number of readily releasable quanta, and AMPA mEPSCs were unchanged in postnatal day 14 (P14) to P17 calyx synapses of Ca(V)1.3-/- mice. However, synaptic strength was augmented because presynaptic action potentials were broader, leading to increased quantal release, consistent with lower paired-pulse ratios and stronger depression during repetitive synaptic stimulation. Furthermore, asynchronous release after trains was elevated presumably because of higher residual Ca2+ accumulating in the presynaptic terminals. Finally, we measured larger NMDA EPSCs with higher sensitivity to the NR2B subunit-specific antagonist ifenprodil in P14-P17 synapses of Ca(V)1.3-/- compared with wt mice. These results suggest that auditory activity is required for the adjustment of synaptic strength as well as for the downregulation of synaptic NMDA receptors during postnatal development of the calyx of Held. In contrast, properties of the presynaptic release machinery and postsynaptic AMPA receptors are unaffected by chronic changes in the level of afferent activity at this synapse.
Collapse
Affiliation(s)
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
42
|
Abstract
The sensory epithelia of the inner ear contain mechanosensory hair cells and non-sensory supporting cells. Both classes of cell are heterogeneous, with phenotypes varying both between and within epithelia. The specification of individual cells as distinct types of hair cell or supporting cell is regulated through intra- and extracellular signalling pathways that have been poorly understood. However, new methodologies have resulted in significant steps forward in our understanding of the molecular pathways that direct cells towards these cell fates.
Collapse
Affiliation(s)
- Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35 Convent Dr., Bethesda, Maryland 20892, USA.
| |
Collapse
|
43
|
Jin ZH, Kikuchi T, Tanaka K, Kobayashi T. Expression of glutamate transporter GLAST in the developing mouse cochlea. TOHOKU J EXP MED 2004; 200:137-44. [PMID: 14521256 DOI: 10.1620/tjem.200.137] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The immunohistochemical localization of glutamate transporter GLAST in the developing mouse cochlea was studied at different ages between 0 and 30 days after birth (DAB). In the adult mouse cochlea, intense GLAST-like immunoreactivity was found in the supporting cells adjacent to the inner hair cells of the organ of Corti, the type II and suprastrial fibrocytes of the cochlear lateral wall, the fibrocytes of the spiral limbus and the satellite cells surrounding the spiral ganglion cells. At 0 DAB, weak GLAST-like immunoreactivity was found in the supporting cells around the immature inner hair cells. Immature fibrocytes in the cochlea were also positively immunostained. At 3 DAB, weak immunostaining of GLAST appeared in the immature satellite cells in the spiral ganglion. The GLAST-like immunoreactivity in the supporting cells around the inner hair cells, in the fiborocytes in the spiral ligament and the spiral limbus and in the satellite cells in the spiral ganglion increased progressively during the second postnatal week, and reached the adult level at 15 DAB. This time course correlates with the electrophysiological onset and maturation of the mouse auditory function, which is mediated by glutamatergic neurotransmission. These results suggest that the expression of GLAST may be needed for the efficient removal and metabolism of the released glutamate in the cochlea and may play important roles in the onset and maturation of the auditory system.
Collapse
Affiliation(s)
- Zhen-Hua Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | |
Collapse
|
44
|
Merves M, Krane CM, Dou H, Greinwald JH, Menon AG, Choo D. Expression of aquaporin 1 and 5 in the developing mouse inner ear and audiovestibular assessment of an Aqp5 null mutant. J Assoc Res Otolaryngol 2003; 4:264-75. [PMID: 12943377 PMCID: PMC3202717 DOI: 10.1007/s10162-002-3033-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 11/07/2002] [Indexed: 10/26/2022] Open
Abstract
To examine the potential roles of aquaporins 1 and 5 (AQP1 and AQP5, respectively) in inner ear development and function, we defined their spatial and temporal expression patterns in the developing mouse inner ear and examined the morphologic and physiologic effects of loss of Aqp5 function. Standard in situ hybridization (ISH) and immunohistochemical (IHC) assays were used for expression studies with routine morphologic, behavioral, and physiologic assessments of hearing and balance in Aqp5 null mutant mice. AQP1 was first detected at embryonic day 10.5 (E10.5) in the otocyst but eventually localized to specific nonsensory portions of the inner ear and connective tissue cells surrounding the membranous labyrinth. AQP5 displayed specific cochlear expression, first detectable at E15.5 in the nonsensory epithelium and later restricted to the lateral wall of the cochlear duct near the spiral prominence. AQP5 expression continued through postnatal periods with a change of expression domain to the stria vascularis between postnatal day 7 (P7) and P14. By in situ hybridization and immunohistochemical techniques, subtle differences between transcript and protein expression patterns were noted for both AQP1 and 5. Although AQP5 is dynamically expressed in the developing mouse inner ear, adult Aqp5 knockout mice show normal hearing when tested and normal inner ear structural development. These results suggest redundant or alternative mechanisms that likely regulate water homeostasis in the developing and mature inner ear.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Aquaporin 1
- Aquaporin 5
- Aquaporins/deficiency
- Aquaporins/metabolism
- Behavior, Animal
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Ear, Inner/pathology
- Ear, Inner/physiopathology
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development
- Evoked Potentials, Auditory, Brain Stem
- Hearing
- Membrane Proteins
- Mice
- Mice, Inbred Strains
- Mice, Knockout
Collapse
Affiliation(s)
- Michele Merves
- Department of Pediatric Otolaryngology, Center for Hearing and Deafness Research, Cincinnati, OH 45229, USA
| | - Carissa M. Krane
- Department of Biology, University of Dayton, Dayton, OH 45404, USA
| | - Hongwei Dou
- Department of Pediatric Otolaryngology, Center for Hearing and Deafness Research, Cincinnati, OH 45229, USA
| | - John H. Greinwald
- Department of Pediatric Otolaryngology, Center for Hearing and Deafness Research, Cincinnati, OH 45229, USA
| | - Anil G. Menon
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Daniel Choo
- Department of Pediatric Otolaryngology, Center for Hearing and Deafness Research, Cincinnati, OH 45229, USA
| |
Collapse
|
45
|
Romand R, Hashino E, Dollé P, Vonesch JL, Chambon P, Ghyselinck NB. The retinoic acid receptors RARalpha and RARgamma are required for inner ear development. Mech Dev 2002; 119:213-23. [PMID: 12464434 DOI: 10.1016/s0925-4773(02)00385-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To define the signal transduction pathway of retinoic acid during inner ear development, we analyzed the expression patterns of transcripts encoding the three retinoic acid receptors (RARalpha, beta, and gamma) and related them to phenotypes resulting from single or compound inactivation of these nuclear receptors. The expression of all three RARs was observed in the developing mouse otocyst as early as embryonic day 10.5 (E10.5)-E12.5 and continued into adulthood. Expression domains of the three RAR receptors, however, were largely non-overlapping: RARalpha was predominantly expressed in the developing sensory epithelium, RARbeta in inner ear mesenchymal tissues and RARgamma in the differentiating otic capsule. In the adult, RARalpha and RARgamma transcripts were found in the organ of Corti and the spiral ganglion, whereas RARbeta transcripts were localized in mesenchyme-derived tissues. RARalpha, beta, and gamma null mutant mice, as well as RARalpha/RARbeta and RARbeta/RARgamma combined null fetuses, did not present any noticeable morphological abnormalities in the inner ear. In contrast, RARalpha/RARgamma null mutants displayed a severe hypoplasia of the otocyst that was already visible at E10.5 without any visible endolymphatic duct. The hypoplastic otocyst in RARalpha/RARgamma null mutants was characterized by impaired chondrocyte differentiation and neural development. After the second week of gestation, these mutant fetuses lacked all of the semi-circular canals and the endolymphatic duct and displayed strong anomalies in the inner ear structures. The morphological deficits were generally more severe in the cochlear portion than in the vestibular portion of the inner ear. Altogether, these results demonstrate that RARalpha and RARgamma play an essential role in the initial differentiation of otic placode derivatives, whereas RARbeta plays a minimal role in this process.
Collapse
Affiliation(s)
- Raymond Romand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Collège de France, B.P. 10142, 67404 Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
46
|
Simmons DD. Development of the inner ear efferent system across vertebrate species. JOURNAL OF NEUROBIOLOGY 2002; 53:228-50. [PMID: 12382278 DOI: 10.1002/neu.10130] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inner ear efferent neurons are part of a descending centrifugal pathway from the hindbrain known across vertebrates as the octavolateralis efferent system. This centrifugal pathway terminates on either sensory hair cells or eighth nerve ganglion cells. Most studies of efferent development have used either avian or mammalian models. Recent studies suggest that prevailing notions of the development of efferent innervation need to be revised. In birds, efferents reside in a single, diffuse nucleus, but segregate according to vestibular or cochlear projections. In mammals, the auditory and vestibular efferents are completely separate. Cochlear efferents can be divided into at least two distinct, descending medial and lateral pathways. During development, inner ear efferents appear to be a specific motor neuron phenotype, but unlike motor neurons have contralateral projections, innervate sensory targets, and, at least in mammals, also express noncholinergic neurotransmitters. Contrary to prevailing views, newer data suggest that medial efferent neurons mature early, are mostly, if not exclusively, cholinergic, and project transiently to the inner hair cell region of the cochlea before making final synapses on outer hair cells. On the other hand, lateral efferent neurons mature later, are neurochemically heterogeneous, and project mostly, but not exclusively to the inner hair cell region. The early efferent innervation to the ear may serve an important role in the maturation of afferent responses. This review summarizes recent data on the neurogenesis, pathfinding, target selection, innervation, and onset of neurotransmitter expression in cholinergic efferent neurons.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Harold W Siebens Hearing Research Center, Central Institute for the Deaf and Departments of Otolaryngology and of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
47
|
Marcus DC, Wu T, Wangemann P, Kofuji P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 2002; 282:C403-7. [PMID: 11788352 DOI: 10.1152/ajpcell.00312.2001] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stria vascularis of the cochlea generates the endocochlear potential and secretes K(+). K(+) is the main charge carrier and the endocochlear potential the main driving force for the sensory transduction that leads to hearing. Stria vascularis consists of two barriers, marginal cells that secrete potassium and basal cells that are coupled via gap junctions to intermediate cells. Mice lacking the KCNJ10 (Kir4.1) K(+) channel in strial intermediate cells did not generate an endocochlear potential. Endolymph volume and K(+) concentration ([K(+)]) were reduced. These studies establish that the KCNJ10 K(+) channel provides the molecular mechanism for generation of the endocochlear potential in concert with other transport pathways that establish the [K(+)] difference across the channel. KCNJ10 is also a limiting pathway for K(+) secretion.
Collapse
Affiliation(s)
- Daniel C Marcus
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Before mice start to hear at approximately postnatal day 10, their cochlear inner hair cells (IHCs) spontaneously generate Ca(2+) action potentials. Therefore, immature IHCs could stimulate the auditory pathway, provided that they were already competent for transmitter release. Here, we combined patch-clamp capacitance measurements and fluorimetric [Ca(2+)](i) recordings to study the presynaptic function of IHCs during cochlear maturation. Ca(2+)-dependent exocytosis and subsequent endocytic membrane retrieval were already observed near the date of birth. Ca(2+) action potentials triggered exocytosis in immature IHCs, which probably activates the auditory pathway before it becomes responsive to sound. IHCs underwent profound changes in Ca(2+)-channel expression and secretion during their postnatal development. Ca(2+)-channel expression increased toward the end of the first week, providing for large secretory responses during this period and thereafter declined to reach mature levels. The efficacy whereby Ca(2+) influx triggers exocytosis increased toward maturation, such that vesicle fusion caused by a given Ca(2+) current occurred faster in mature IHCs. The observed changes in Ca(2+)-channel expression and synaptic efficacy probably reflected the ongoing synaptogenesis in IHCs that had been described previously in morphological studies.
Collapse
|
49
|
Liu GB, Mark RF. Functional development of the inferior colliculus (IC) and its relationship with the auditory brainstem response (ABR) in the tammar wallaby (Macropus eugenii). Hear Res 2001; 157:112-23. [PMID: 11470191 DOI: 10.1016/s0378-5955(01)00289-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To discover the developmental relationship between the auditory brainstem response (ABR) and the focal inferior colliculus (IC) response, 32 young tammar wallabies were used, by the application of simultaneous ABR and focal brainstem recordings, in response to acoustic clicks and tone bursts of seven frequencies. The IC of the tammar wallaby undergoes a rapid functional development from postnatal day (PND) 114 to 160. The earliest (PND 114) auditory evoked response was recorded from the rostral IC. With development, more caudal parts of the IC became functional until age about PND 127, when all parts of the IC were responsive to sound. Along a dorsoventral direction, the duration of the IC response decreased, the peak latency shortened, while the amplitude increased, reaching a maximum value at the central IC, then decreased. After PND 160, the best frequency (BF) of the ventral IC was the highest, with values between 12.5 and 16 kHz, the BF of the dorsal IC was the lowest, varying between 3.2 and 6.4 kHz, while the BF of the central IC was between 6.4 and 12.5 kHz. Between PND 114 and 125, the IC response did not have temporal correlation with the ABR. Between PND 140 and 160, only the early components of the responses from the ventral and central IC correlated with the P4 waves of the ABR. After PND 160, responses recorded from different depths of the IC had a temporal correlation with the ABR.
Collapse
Affiliation(s)
- G B Liu
- Vision, Touch and Hearing Research Centre, The University of Queensland, St. Lucia, Brisbane, Australia.
| | | |
Collapse
|
50
|
High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. J Neurosci 2001. [PMID: 11331363 DOI: 10.1523/jneurosci.21-10-03342.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Central auditory relay synapses in mature animals follow high-frequency inputs for computation of sound localization. In immature mice, however, transmission at the calyx of Held synapse in auditory brainstem was inaccurate for high-frequency inputs because the summed slow synaptic potential components caused aberrant firings or blocked action potentials. As the mice matured, synaptic potentials became shorter, with smaller and faster NMDA receptor components, thereby establishing the precise one-to-one transmission for high-frequency inputs. Developmental acquisition of this high-fidelity transmission could be mimicked experimentally in immature mice by blocking NMDA receptors with d(-)2-amino-5-phosphonovaleric acid (d-APV). Furthermore, bilateral cochlear ablations at postnatal day 7 (P7) attenuated the developmental decrease of NMDA receptor expression and prevented the acquisition of high-fidelity transmission. We suggest that auditory activity, which begins at P10-P12 in mice, downregulates the expression of postsynaptic NMDA receptors, thereby contributing to the establishment of high-fidelity synaptic transmission.
Collapse
|