1
|
de Paiva IHR, da Silva RS, Mendonça IP, de Souza JRB, Peixoto CA. Semaglutide Attenuates Anxious and Depressive-Like Behaviors and Reverses the Cognitive Impairment in a Type 2 Diabetes Mellitus Mouse Model Via the Microbiota-Gut-Brain Axis. J Neuroimmune Pharmacol 2024; 19:36. [PMID: 39042202 DOI: 10.1007/s11481-024-10142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Newly conducted research suggests that metabolic disorders, like diabetes and obesity, play a significant role as risk factors for psychiatric disorders. This connection presents a potential avenue for creating novel antidepressant medications by repurposing drugs originally developed to address antidiabetic conditions. Earlier investigations have shown that GLP-1 (Glucagon-like Peptide-1) analogs exhibit neuroprotective qualities in various models of neurological diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, and stroke. Moreover, GLP-1 analogs have demonstrated the capability to enhance neurogenesis, a process recognized for its significance in memory formation and the cognitive and emotional aspects of information processing. Nonetheless, whether semaglutide holds efficacy as both an antidepressant and anxiolytic agent remains uncertain. To address this, our study focused on a mouse model of depression linked to type 2 diabetes induced by a High Fat Diet (HFD). In this model, we administered semaglutide (0.05 mg/Kg intraperitoneally) on a weekly basis to evaluate its potential as a therapeutic option for depression and anxiety. Diabetic mice had higher blood glucose, lipidic profile, and insulin resistance. Moreover, mice fed HFD showed higher serum interleukin (IL)-1β and lipopolysaccharide (LPS) associated with impaired humor and cognition. The analysis of behavioral responses revealed that the administration of semaglutide effectively mitigated depressive- and anxiety-like behaviors, concurrently demonstrating an enhancement in cognitive function. Additionally, semaglutide treatment protected synaptic plasticity and reversed the hippocampal neuroinflammation induced by HFD fed, improving activation of the insulin pathway, demonstrating the protective effects of semaglutide. We also found that semaglutide treatment decreased astrogliosis and microgliosis in the dentate gyrus region of the hippocampus. In addition, semaglutide prevented the DM2-induced impairments of pro-opiomelanocortin (POMC), and G-protein-coupled receptor 43 (GPR43) and simultaneously increased the NeuN + and Glucagon-like Peptide-1 receptor (GLP-1R+) neurons in the hippocampus. Our data also showed that semaglutide increased the serotonin (5-HT) and serotonin transporter (5-HTT) and glutamatergic receptors in the hippocampus. At last, semaglutide changed the gut microbiota profile (increasing Bacterioidetes, Bacteroides acidifaciens, and Blautia coccoides) and decreased leaky gut, improving the gut-brain axis. Taken together, semaglutide has the potential to act as a therapeutic tool for depression and anxiety.
Collapse
MESH Headings
- Animals
- Glucagon-Like Peptides/pharmacology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/prevention & control
- Cognitive Dysfunction/etiology
- Cognitive Dysfunction/metabolism
- Depression/drug therapy
- Depression/psychology
- Depression/metabolism
- Male
- Anxiety/drug therapy
- Anxiety/psychology
- Anxiety/etiology
- Gastrointestinal Microbiome/drug effects
- Mice, Inbred C57BL
- Brain-Gut Axis/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/metabolism
- Disease Models, Animal
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil.
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Recife, Brazil.
| |
Collapse
|
2
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
3
|
Liu F, Liu C, Lee IXY, Lin MTY, Liu YC. Corneal dendritic cells in diabetes mellitus: A narrative review. Front Endocrinol (Lausanne) 2023; 14:1078660. [PMID: 36777336 PMCID: PMC9911453 DOI: 10.3389/fendo.2023.1078660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes mellitus is a global public health problem with both macrovascular and microvascular complications, such as diabetic corneal neuropathy (DCN). Using in-vivo confocal microscopy, corneal nerve changes in DCN patients can be examined. Additionally, changes in the morphology and quantity of corneal dendritic cells (DCs) in diabetic corneas have also been observed. DCs are bone marrow-derived antigen-presenting cells that serve both immunological and non-immunological roles in human corneas. However, the role and pathogenesis of corneal DC in diabetic corneas have not been well understood. In this article, we provide a comprehensive review of both animal and clinical studies that report changes in DCs, including the DC density, maturation stages, as well as relationships between the corneal DCs, corneal nerves, and corneal epithelium, in diabetic corneas. We have also discussed the associations between the changes in corneal DCs and various clinical or imaging parameters, including age, corneal nerve status, and blood metabolic parameters. Such information would provide valuable insight into the development of diagnostic, preventive, and therapeutic strategies for DM-associated ocular surface complications.
Collapse
Affiliation(s)
- Fengyi Liu
- University of Cambridge, Girton College, Cambridgeshire, United Kingdom
| | - Chang Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Isabelle Xin Yu Lee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Molly Tzu Yu Lin
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yu-Chi Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Yu-Chi Liu,
| |
Collapse
|
4
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
5
|
Moreira AP, Vizuete AFK, Zin LEF, de Marques CO, Pacheco RF, Leal MB, Gonçalves CA. The Methylglyoxal/RAGE/NOX-2 Pathway is Persistently Activated in the Hippocampus of Rats with STZ-Induced Sporadic Alzheimer's Disease. Neurotox Res 2022; 40:395-409. [PMID: 35106732 DOI: 10.1007/s12640-022-00476-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in humans, with a high social and economic cost. AD is predominantly a sporadic disease, and the intracerebroventricular (ICV) administration of streptozotocin (STZ) has been widely used as an AD-like model of dementia. While the etiology of AD remains unknown, changes such as glucose metabolism and activation of receptors for advanced glycation end products (RAGE) seem to underlie its pathogenesis. We hypothesized that methylglyoxal, an endogenous toxin derived from the glycolytic pathway, could be the precursor of advanced glycated end products that activates RAGE and that, consequently, may activate membrane NADPH oxidase (NOX), contributing to the inflammatory status of the model and the disease. We administered ICV-STZ to Wistar rats and evaluated several neurochemical parameters in the hippocampus, particularly glyoxalase 1 (GLO-1) activity, which serves as an index of high levels of methylglyoxal, and the contents of RAGE and NOX-2, the most abundant brain NOX isoform. At the times evaluated (4 and 24 weeks after STZ), we observed cognitive deficit, increased beta-amyloid content, and increased tau phosphorylation. A persistent increase in GLO-1 activity was found, as well as increases in RAGE and NOX-2 contents, suggesting astroglial and microglial commitment. The increase in NOX-2 may reflect elevated microglial activity (confirmed by IBA-1 marker), which may contribute to the synaptic dysfunction and pruning described in the literature, both in this model and AD patients. Furthermore, reinforcing this possibility, we found a reduction in cholinergic communication in the hippocampus (as shown by decreased choline acetyltransferase), a reduction in BDNF, and an increase in TGF-β, the combination of which may result in synaptic deterioration.
Collapse
Affiliation(s)
- Ana Paula Moreira
- Laboratory of Calcium-Binding Proteins in the Central Nervous System, Postgraduate Program in Biochemistry, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600-Anexo, Lab33, Porto Alegre, 90035-003, Brazil
| | - Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the Central Nervous System, Postgraduate Program in Biochemistry, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600-Anexo, Lab33, Porto Alegre, 90035-003, Brazil
| | - Lisandra Eda Fusinato Zin
- Laboratory of Calcium-Binding Proteins in the Central Nervous System, Postgraduate Program in Biochemistry, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600-Anexo, Lab33, Porto Alegre, 90035-003, Brazil
| | - Charlanne Oliveira de Marques
- Laboratory of Calcium-Binding Proteins in the Central Nervous System, Postgraduate Program in Biochemistry, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600-Anexo, Lab33, Porto Alegre, 90035-003, Brazil
| | - Rafaela Ferreira Pacheco
- Laboratory of Calcium-Binding Proteins in the Central Nervous System, Postgraduate Program in Biochemistry, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600-Anexo, Lab33, Porto Alegre, 90035-003, Brazil
| | - Miriara B Leal
- Laboratory of Calcium-Binding Proteins in the Central Nervous System, Postgraduate Program in Biochemistry, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600-Anexo, Lab33, Porto Alegre, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the Central Nervous System, Postgraduate Program in Biochemistry, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600-Anexo, Lab33, Porto Alegre, 90035-003, Brazil.
| |
Collapse
|
6
|
Nevo-Shenker M, Shalitin S. The Impact of Hypo- and Hyperglycemia on Cognition and Brain Development in Young Children with Type 1 Diabetes. Horm Res Paediatr 2022; 94:115-123. [PMID: 34247158 DOI: 10.1159/000517352] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
Human and experimental animal data suggest both hyperglycemia and hypoglycemia can lead to altered brain structure and neurocognitive function in type 1 diabetes (T1D). Young children with T1D are prone to extreme fluctuations in glucose levels. The overlap of these potential dysglycemic insults to the brain during the time of most active brain and cognitive development may cause cellular and structural injuries that appear to persist into adult life. Brain structure and cognition in persons with T1D are influenced by age of onset, exposure to glycemic extremes such as severe hypoglycemic episodes, history of diabetic ketoacidosis, persistent hyperglycemia, and glucose variability. Studies using brain imaging techniques have shown brain changes that appear to be influenced by metabolic abnormalities characteristic of diabetes, changes apparent at diagnosis and persistent throughout adulthood. Some evidence suggests that brain injury might also directly contribute to psychological and mental health outcomes. Neurocognitive deficits manifest across multiple cognitive domains. Moreover, impaired executive function and mental health can affect patients' adherence to treatment. This review summarizes the current data on the impact of glycemic extremes on brain structure and cognitive function in youth with T1D and the use of new diabetes technologies that may reduce these complications.
Collapse
Affiliation(s)
- Michal Nevo-Shenker
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Shlomit Shalitin
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne) 2022; 13:1047545. [PMID: 36619556 PMCID: PMC9816389 DOI: 10.3389/fendo.2022.1047545] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is the most important substrate for proper brain functioning and development, with an increased glucose consumption in relation to the need of creating new brain structures and connections. Therefore, alterations in glucose homeostasis will inevitably be associated with changes in the development of the Nervous System. Several studies demonstrated how the alteration of glucose homeostasis - both hyper and hypoglycemia- may interfere with the development of brain structures and cognitivity, including deficits in intelligence quotient, anomalies in learning and memory, as well as differences in the executive functions. Importantly, differences in brain structure and functionality were found after a single episode of diabetic ketoacidosis suggesting the importance of glycemic control and stressing the need of screening programs for type 1 diabetes to protect children from this dramatic condition. The exciting progresses of the neuroimaging techniques such as diffusion tensor imaging, has helped to improve the understanding of the effects, outcomes and mechanisms underlying brain changes following dysglycemia, and will lead to more insights on the physio-pathological mechanisms and related neurological consequences about hyper and hypoglycemia.
Collapse
|
8
|
Zhu X, Zhang YM, Zhang MY, Chen YJ, Liu YW. Hesperetin ameliorates diabetes-associated anxiety and depression-like behaviors in rats via activating Nrf2/ARE pathway. Metab Brain Dis 2021; 36:1969-1983. [PMID: 34273043 DOI: 10.1007/s11011-021-00785-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Diabetes-associated affective disorders are of wide concern, and oxidative stress plays a vital role in the pathological process. This study was to investigate the cerebroprotective effects of hesperetin against anxious and depressive disorders caused by diabetes, exploring the potential mechanisms related to activation of Nrf2/ARE pathway. Streptozotocin-induced diabetic rats were intragastrically administrated with hesperetin (0, 50, and 150 mg/kg) for 10 weeks. Forced swimming test, open field test, and elevated plus maze were used to evaluate the anxiety and depression-like behaviors of rats. The brain was collected for assays of Nrf2/ARE pathway. Moreover, high glucose-cultured SH-SY5Y cells were used to further examine the neuroprotective effects of hesperetin and underlying mechanisms. Hesperetin showed anxiolytic and antidepressant effects in diabetic rats according to the behavior tests, and increased p-Nrf2 in cytoplasm and Nrf2 in nucleus followed by elevations in mRNA levels and protein expression of glyoxalase 1 (Glo-1) and γ-glutamylcysteine synthetase (γ-GCS) in brain, known target genes of Nrf2/ARE signaling. Moreover, hesperetin attenuated high glucose-induced neuronal damages through activation of the classical Nrf2/ARE pathway in SH-SY5Y cells. Further study indicated that PKC inhibition or GSK-3β activation pretreatment attenuated even abolished the effect of hesperetin on the protein expression of Glo-1 and γ-GCS in high glucose-cultured SH-SY5Y cells. In summary, hesperetin ameliorated diabetes-associated anxiety and depression-like behaviors in rats, which was achieved through activation of the Nrf2/ARE pathway. Furthermore, an increase in nuclear Nrf2 phosphorylation from PKC activation and GSK-3β inhibition contributed to the activation of Nrf2/ARE pathway by hesperetin.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Meng-Ya Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ya-Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
9
|
Pathology, Risk Factors, and Oxidative Damage Related to Type 2 Diabetes-Mediated Alzheimer's Disease and the Rescuing Effects of the Potent Antioxidant Anthocyanin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4051207. [PMID: 33728019 PMCID: PMC7936905 DOI: 10.1155/2021/4051207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
The pathology and neurodegeneration in type 2 diabetes- (T2D-) mediated Alzheimer's disease (AD) have been reported in several studies. Despite the lack of information regarding the basic underlying mechanisms involved in the development of T2D-mediated AD, some common features of the two conditions have been reported, such as brain atrophy, reduced cerebral glucose metabolism, and insulin resistance. T2D phenotypes such as glucose dyshomeostasis, insulin resistance, impaired insulin signaling, and systemic inflammatory cytokines have been shown to be involved in the progression of AD pathology by increasing amyloid-beta accumulation, tau hyperphosphorylation, and overall neuroinflammation. Similarly, oxidative stress, mitochondrial dysfunction, and the generation of advanced glycation end products (AGEs) and their receptor (RAGE) as a result of chronic hyperglycemia may serve as critical links between diabetes and AD. The natural dietary polyflavonoid anthocyanin enhances insulin sensitivity, attenuates insulin resistance at the level of the target tissues, inhibits free fatty acid oxidation, and abrogates the release of peripheral inflammatory cytokines in obese (prediabetic) individuals, which are responsible for insulin resistance, systemic hyperglycemia, systemic inflammation, brain metabolism dyshomeostasis, amyloid-beta accumulation, and neuroinflammatory responses. In this review, we have shown that obesity may induce T2D-mediated AD and assessed the recent therapeutic advances, especially the use of anthocyanin, against T2D-mediated AD pathology. Taken together, the findings of current studies may help elucidate a new approach for the prevention and treatment of T2D-mediated AD by using the polyflavonoid anthocyanin.
Collapse
|
10
|
Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen MJAP. Vascular Hypothesis of Alzheimer Disease: Topical Review of Mouse Models. Arterioscler Thromb Vasc Biol 2021; 41:1265-1283. [PMID: 33626911 DOI: 10.1161/atvbaha.120.311911] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Dorien M A Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Louise van der Weerd
- Departments of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands (L.v.d.W.)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije University of Amsterdam, the Netherlands (H.E.d.V.)
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| |
Collapse
|
11
|
Shabir O, Moll TA, Matuszyk MM, Eyre B, Dake MD, Berwick J, Francis SE. Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mech Ageing Dev 2020; 192:111361. [DOI: 10.1016/j.mad.2020.111361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
12
|
Ebrahimpour S, Esmaeili A, Dehghanian F, Beheshti S. Effects of quercetin-conjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting microRNAs/NF-κB pathway. Sci Rep 2020; 10:15070. [PMID: 32934245 PMCID: PMC7493930 DOI: 10.1038/s41598-020-71678-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) have an ameliorative effect on diabetes-induced memory impairment. The current study aimed to compare the effect of quercetin (QC) and QCSPIONs on inflammation-related microRNAs and NF-κB signaling pathways in the hippocampus of diabetic rats. The expression levels of miR-146a, miR-9, NF-κB, and NF-κB-related downstream genes, including TNF-α, BACE1, AβPP, Bax, and Bcl-2 were measured using quantitative real-time PCR. To determine the NF-κB activity, immunohistochemical expression of NF-κB/p65 phosphorylation was employed. Computer simulated docking analysis also performed to find the QC target proteins involved in the NF-κB pathway. Results indicate that diabetes significantly upregulated the expression levels of miR-146a, miR-9, TNF-α, NF-κB, and subsequently AβPP, BACE1, and Bax. Expression analysis shows that QCSPIONs are more effective than pure QC in reducing the expression of miR-9. Interestingly, QCSPIONs reduce the pathological activity of NF-κB and subsequently normalize BACE1, AβPP, and the ratio of Bax/Bcl-2 expression better than pure QC. Comparative docking analyses also show the stronger binding affinity of QC to IKK and BACE1 proteins compared to specific inhibitors of each protein. In conclusion, our study suggests the potent efficacy of QCSPIONs as a promising drug delivery system in memory improvement through targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Shiva Ebrahimpour
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran.
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran
| |
Collapse
|
13
|
Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 2020; 62:101095. [PMID: 32535272 DOI: 10.1016/j.arr.2020.101095] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes are the most common metabolic disorders, which are strongly related to Alzheimer's disease (AD) in aging. Diabetes and obesity can lead to the accumulation of amyloid plaques, neurofibrillary tangles (NFTs), and other symptoms of AD through several pathways, including insulin resistance, hyperglycemia, hyperinsulinemia, chronic inflammation, oxidative stress, adipokines dysregulation, and vascular impairment. Currently, the use of polyphenols has been expanded in animal models and in-vitro studies because of their comparatively negligible adverse effects. Among them, quercetin (QT) is one of the most abundant polyphenolic flavonoids, which is present in fruits and vegetables and displays many biological, health-promoting effects in a wide range of diseases. The low bioavailability and poor solubility of QT have also led researchers to make various QT-involved nanoparticles (NPs) to overcome these limitations. In this paper, we review significant molecular mechanisms induced by diabetes and obesity that increase AD pathogenesis. Then, we summarize in vitro, in vivo, and clinical evidence regarding the anti-Alzheimer, anti-diabetic and anti-obesity effects of QT. Finally, QT in pure and combination form using NPs has been suggested as a promising therapeutic agent for future studies.
Collapse
|
14
|
Kong Y, Liu C, Zhou Y, Qi J, Zhang C, Sun B, Wang J, Guan Y. Progress of RAGE Molecular Imaging in Alzheimer's Disease. Front Aging Neurosci 2020; 12:227. [PMID: 32848706 PMCID: PMC7417350 DOI: 10.3389/fnagi.2020.00227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by senile plaques (SPs), which are caused by amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) of abnormal hyperphosphorylated tau protein. The receptor for advanced glycation end products (RAGE) binds to advanced glycation end products deposited during vascular dysfunction. Alzheimer’s disease may occur when RAGE binds to Aβ and releases reactive oxygen species, further exacerbating Aβ deposition and eventually leading to SPs and NFTs. As it is involved in early AD, RAGE may be considered as a more potent biomarker than Aβ. Positron emission tomography provides valuable information regarding the underlying pathological processes of AD many years before the appearance of clinical symptoms. Thus, to further reveal the role of RAGE in AD pathology and for early diagnosis of AD, a tracer that targets RAGE is needed. In this review, we first describe the early diagnosis of AD and then summarize the interaction between RAGE and Aβ and Tau that is required to induce AD pathology, and finally focus on RAGE-targeting probes, highlighting the potential of RAGE to be used as an effective target. The development of RAGE probes is expected to aid in AD diagnosis and treatment.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Kong Y, Wang F, Wang J, Liu C, Zhou Y, Xu Z, Zhang C, Sun B, Guan Y. Pathological Mechanisms Linking Diabetes Mellitus and Alzheimer's Disease: the Receptor for Advanced Glycation End Products (RAGE). Front Aging Neurosci 2020; 12:217. [PMID: 32774301 PMCID: PMC7388912 DOI: 10.3389/fnagi.2020.00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes and Alzheimer’s disease (AD) place a significant burden on health care systems in the world and its aging populations. These diseases have long been regarded as separate entities; however, advanced glycation end products (AGEs) and the receptors for AGEs (RAGE) may be a link between diabetes and AD. In our study, mice injected with AGEs through stereotaxic surgery showed significant AD-like features: behavior showed decreased memory; immunofluorescence showed increased phosphorylated tau and APP. These results suggest links between diabetes and AD. Patients with diabetes are at a higher risk of developing AD, and the possible underlying molecular components of this association are now beginning to emerge.
Collapse
Affiliation(s)
- Yanyan Kong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengqin Xu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Lin T, Chiu Y, Lin C, Lin C, Chao C, Chen Y, Yang S, Lin W, Mei Hsieh‐Li H, Wu Y, Chang K, Lee‐Chen G, Chen C. Exploration of multi-target effects of 3-benzoyl-5-hydroxychromen-2-one in Alzheimer's disease cell and mouse models. Aging Cell 2020; 19:e13169. [PMID: 32496635 PMCID: PMC7433010 DOI: 10.1111/acel.13169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubule-associated protein Tau, abundant in the central nervous system (CNS), plays crucial roles in microtubule assembly and stabilization. Abnormal Tau phosphorylation and aggregation are a common pathogenic hallmark in Alzheimer's disease (AD). Hyperphosphorylation of Tau could change its conformation and result in self-aggregation, increased oxidative stress, and neuronal death. In this study, we examined the potential of licochalcone A (a natural chalcone) and five synthetic derivatives (LM compounds) for inhibiting Tau misfolding, scavenging reactive oxygen species (ROS) and providing neuroprotection in human cells expressing proaggregant ΔK280 TauRD -DsRed. All test compounds were soluble up to 100 μM in cell culture media and predicted to be orally bioavailable and CNS-active. Among them, licochalcone A and LM-031 markedly reduced Tau misfolding and associated ROS, promoted neurite outgrowth, and inhibited caspase 3 activity in ΔK280 TauRD -DsRed 293 and SH-SY5Y cells. Mechanistic studies showed that LM-031 upregulates HSPB1 chaperone, NRF2/NQO1/GCLC pathway, and CREB-dependent BDNF/AKT/ERK/BCL2 pathway in ΔK280 TauRD -DsRed SH-SY5Y cells. Decreased neurite outgrowth upon induction of ΔK280 TauRD -DsRed was rescued by LM-031, which was counteracted by knockdown of NRF2 or CREB. LM-031 further rescued the downregulated NRF2 and pCREB, reduced Aβ and Tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin-induced hyperglycemic 3 × Tg-AD mice. Our findings strongly indicate the potential of LM-031 for modifying AD progression by targeting HSPB1 to reduce Tau misfolding and activating NRF2 and CREB pathways to suppress apoptosis and promote neuron survival, thereby offering a new drug development avenue for AD treatment.
Collapse
Affiliation(s)
- Te‐Hsien Lin
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Ya‐Jen Chiu
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Chih‐Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Chung‐Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research Chang Gung University/Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Chih‐Ying Chao
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Yu‐Chieh Chen
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Shu‐Mei Yang
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Wenwei Lin
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Hsiu Mei Hsieh‐Li
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Yih‐Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Kuo‐Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| | - Guey‐Jen Lee‐Chen
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Chiung‐Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan Taiwan
| |
Collapse
|
17
|
Jung S, Hyun J, Nah J, Han J, Kim SH, Park J, Oh Y, Gwon Y, Moon S, Jo DG, Jung YK. SERP1 is an assembly regulator of γ-secretase in metabolic stress conditions. Sci Signal 2020; 13:13/623/eaax8949. [PMID: 32184288 DOI: 10.1126/scisignal.aax8949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme γ-secretase generates β-amyloid (Aβ) peptides by cleaving amyloid protein precursor (APP); the aggregation of these peptides is associated with Alzheimer's disease (AD). Despite the development of various γ-secretase regulators, their clinical use is limited by coincident disruption of other γ-secretase-regulated substrates, such as Notch. Using a genome-wide functional screen of γ-secretase activity in cells and a complementary DNA expression library, we found that SERP1 is a previously unknown γ-secretase activator that stimulates Aβ generation in cells experiencing endoplasmic reticulum (ER) stress, such as is seen with diabetes. SERP1 interacted with a subcomplex of γ-secretase (APH1A/NCT) through its carboxyl terminus to enhance the assembly and, consequently, the activity of the γ-secretase holoenzyme complex. In response to ER stress, SERP1 preferentially recruited APP rather than Notch into the γ-secretase complex and enhanced the subcellular localization of the complex into lipid rafts, increasing Aβ production. Moreover, SERP1 abundance, γ-secretase assembly, and Aβ production were increased both in cells exposed to high amounts of glucose and in diabetic AD model mice. Conversely, Aβ production was decreased by knocking down SERP1 in cells or in the hippocampi of mice. Compared to postmortem samples from control individuals, those from patients with AD showed increased SERP1 expression in the hippocampus and parietal lobe. Together, our findings suggest that SERP1 is an APP-biased regulator of γ-secretase function in the context of cell stress, providing a possible molecular explanation for the link between diabetes and sporadic AD.
Collapse
Affiliation(s)
- Sunmin Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Junho Hyun
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jonghee Han
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jaesang Park
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yoonseo Oh
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Youngdae Gwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seowon Moon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
18
|
Chen YC, Chiu YJ, Lin CH, Hsu WC, Wu JL, Huang CH, Lin CW, Yao CF, Huang HJ, Lo YS, Chen CM, Wu YR, Chang KH, Lee-Chen GJ, Mei Hsieh-Li H. Indole Compound NC009-1 Augments APOE and TRKA in Alzheimer's Disease Cell and Mouse Models for Neuroprotection and Cognitive Improvement. J Alzheimers Dis 2020; 67:737-756. [PMID: 30689566 DOI: 10.3233/jad-180643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), associated with abnormal accumulation of amyloid-β (Aβ), is the most common cause of dementia among older people. A few studies have identified substantial AD biomarkers in blood but their results were inconsistent. Here we screened gene expression alterations on Aβ-GFP SH-SY5Y neuronal model for AD, and evaluated the findings on peripheral leukocytes from 78 patients with AD and 56 healthy controls. The therapeutic responses of identified biomarker candidates were further examined in Aβ-GFP SH-SY5Y neuronal and APP/PS1/Tau triple transgenic (3×Tg-AD) mouse models. Downregulation of apolipoprotein E (APOE) and tropomyosin receptor kinase A (TRKA) were detected in Aβ-GFP SH-SY5Y cells and validated by peripheral leukocytes from AD patients. Treatment with an in-house indole compound NC009-1 upregulated the expression of APOE and TRKA accompanied with improvement of neurite outgrowth in Aβ-GFP SH-SY5Y cells. NC009-1 further rescued the downregulated APOE and TRKA and reduced Aβ and tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin-induced hyperglycemic 3×Tg-AD mice. These results suggest the role of APOE and TRKA as potential peripheral biomarkers in AD, and offer a new drug development target of AD treatment. Further studies of a large series of AD patients will be warranted to verify the findings and confirm the correlation between these markers and therapeutic efficacy.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Chuin Hsu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Dementia Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Lu Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chen-Hsiang Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
19
|
Li H, Wang Y, Zhou Z, Tian F, Yang H, Yan J. Combination of leflunomide and benazepril reduces renal injury of diabetic nephropathy rats and inhibits high-glucose induced cell apoptosis through regulation of NF-κB, TGF-β and TRPC6. Ren Fail 2020; 41:899-906. [PMID: 31552773 PMCID: PMC6764370 DOI: 10.1080/0886022x.2019.1665547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: To investigate effects of combination use of leflunomide and benazepril on diabetic nephropathy (DN) both in vivo and in vitro. Methods: The streptozotocin (STZ) induced Sprague-Dawley rats were treated with leflunomide (15 mg/kg/d), benazepril (15 mg/kg/d) or both the two drugs. Fasting blood glucose (FBG) and renal function indexes including blood urea nitrogen (BUN), serum creatinine (Scr), and proteinuria and kidney/body weight ratio (KW/BW) were measured. HE staining was used for histological analysis. The rat glomerular mesangial cells (RMCs) were treated with high-glucose (150 mg/ml) and the leflunomide and benazepril with both concentrations of 50 μmol/l were used to treat the high-glucose induced cells. TUNEL assay was used for measurement of cell apoptosis. Western blotting was conducted to determine expression of nuclear factor Kappa B (NF-κB), transforming growth factor-β (TGF-β) and transient receptor potential canonical 6 (TRPC6). Results: The body weight was significantly lower and all indexes of FBG, BUN, Scr, proteinuria and KW/BW ratio, GFR, as well as inflammatory factors TNF-α and IL-6 were significantly increased in the DN group after STZ treatment for 4 weeks. The treatment with leflunomide, benazepril or the both dramatically reduced the above effects induced by STZ, and the alteration was the most significant in the combination group. Treatment of leflunomide and benazepril significantly reduced expression levels of NF-κB, TGF-β and TRPC6 in renal tissues of DN rats as well as in high-glucose induced RMCs. It was also observed leflunomide and benazepril reduced high-glucose induced cell apoptosis of RMCs. Conclusion: The combination use of leflunomide and benazepril could improve the renal function and reduce the renal injury of DN rats and could reduce the levels of NF-κb, TGF-β and TRPC6 in both DN rats and high-glucose induced RMCs.
Collapse
Affiliation(s)
- Huili Li
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Yuanyuan Wang
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Zhangqing Zhou
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Fang Tian
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Huanhuan Yang
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Juzhen Yan
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| |
Collapse
|
20
|
Fiory F, Perruolo G, Cimmino I, Cabaro S, Pignalosa FC, Miele C, Beguinot F, Formisano P, Oriente F. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci 2019; 13:868. [PMID: 31474827 PMCID: PMC6706784 DOI: 10.3389/fnins.2019.00868] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
The advances in medicine, together with lifestyle modifications, led to a rising life expectancy. Unfortunately, however, aging is accompanied by an alarming boost of age-associated chronic pathologies, including neurodegenerative and metabolic diseases. Interestingly, a non-negligible interplay between alterations of glucose homeostasis and brain dysfunction has clearly emerged. In particular, epidemiological studies have pointed out a possible association between Type 2 Diabetes (T2D) and Parkinson’s Disease (PD). Insulin resistance, one of the major hallmark for etiology of T2D, has a detrimental influence on PD, negatively affecting PD phenotype, accelerating its progression and worsening cognitive impairment. This review aims to provide an exhaustive analysis of the most recent evidences supporting the key role of insulin resistance in PD pathogenesis. It will focus on the relevance of insulin in the brain, working as pro-survival neurotrophic factor and as a master regulator of neuronal mitochondrial function and oxidative stress. Insulin action as a modulator of dopamine signaling and of alpha-synuclein degradation will be described in details, too. The intriguing idea that shared deregulated pathogenic pathways represent a link between PD and insulin resistance has clinical and therapeutic implications. Thus, ongoing studies about the promising healing potential of common antidiabetic drugs such as metformin, exenatide, DPP IV inhibitors, thiazolidinediones and bromocriptine, will be summarized and the rationale for their use to decelerate neurodegeneration will be critically assessed.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
21
|
Huang HJ, Chen SL, Huang HY, Sun YC, Lee GC, Lee-Chen GJ, Hsieh-Li HM, Su MT. Chronic low dose of AM404 ameliorates the cognitive impairment and pathological features in hyperglycemic 3xTg-AD mice. Psychopharmacology (Berl) 2019; 236:763-773. [PMID: 30426182 PMCID: PMC6469654 DOI: 10.1007/s00213-018-5108-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE Hyperglycemia accelerates the progression of Alzheimer's disease (AD), and GSK3β plays a potential link between AD and hyperglycemia. Therefore, a direct or indirect GSK3β inhibition may have potential to delay the progression of AD. Our previous biochemical assay identified AM404 as a GSK3β inhibitor at high dose (IC50 = 5.353 μM); however, other study suggests that AM404 impaired synaptic plasticity of hippocampus at high dose (10 mg/kg; i.p.). Therefore, the dose and duration of treatment are crucial for the effects of AM404. OBJECTIVE The effects and molecular mechanisms of AM404 at low dose were evaluated from in vitro to in vivo models. METHODS AM404 (0.1-0.5 μM) was tested on tau hyperphosphorylated mouse hippocampal primary cultures treated with Wortmannin (WT) and GF109203X (GFX). Hyperglycemic triple transgenic AD (3×Tg-AD) mice at 6 months old were intraperitoneally injected with AM404 (0.25 mg/kg) for 4 weeks. The spatial learning and memory of mice were measured using the Morris water maze. Mouse brain and serum samples were collected for pathological analyses. RESULTS AM404 (0.5 μM) exhibited significantly augmented neuroprotection toward tau hyperphosphorylation in primary cultures. The chronic systemic administration of AM404 (0.25 mg/kg) attenuated cognitive deficits in hyperglycemic 3×Tg-AD mice. Moreover, chronic low dose of AM404 significantly attenuated Aβ production, tau protein phosphorylation, and inflammation associated with an increase of pS473Akt and pS9-GSK3β. Therefore, AM404 at low dose, not only increased neuroprotection, but also ameliorated cognitive deficit, could be partly by regulating the Akt/GSK3β signaling, which may contribute to downregulation of Aβ, tau hyperphosphorylation, and inflammation in hyperglycemic 3×Tg-AD mice. CONCLUSIONS These results highlight that chronic administration of AM404 at low dose may be through the Akt/GSK3β pathway to ameliorate the impairment in hyperglycemic 3×Tg-AD mice.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, 11260 Taiwan
| | - Shu-Ling Chen
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Hsin-Yu Huang
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Ying-Chieh Sun
- 0000 0001 2158 7670grid.412090.eDepartment of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Guan-Chiun Lee
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Guey-Jen Lee-Chen
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
22
|
Murtishaw AS, Heaney CF, Bolton MM, Belmonte KCD, Langhardt MA, Kinney JW. Intermittent streptozotocin administration induces behavioral and pathological features relevant to Alzheimer's disease and vascular dementia. Neuropharmacology 2018; 137:164-177. [PMID: 29738850 DOI: 10.1016/j.neuropharm.2018.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 01/21/2023]
Abstract
RATIONALE Diabetes mellitus (DM) is a major risk factor for Alzheimer's disease and vascular dementia. Few animal models exist that focus on the metabolic contributions to dementia onset and progression. Thus, there is strong scientific rationale to explore the effects of streptozotocin (STZ), a diabetogenic compound, on vascular and inflammatory changes within the brain. OBJECTIVE AND METHODS The present study was designed to evaluate the effect of staggered, low-dose administration of STZ on behavioral and cognitive deficits, neuroinflammation, tau pathology, and histopathological alterations related to dementia. RESULTS Staggered administration (Days 1, 2, 3, 14, 15) of streptozotocin (40 mg/kg/mL) induced a diabetic-like state in mice, resulting in sustained hyperglycemia. STZ-treated animals displayed memory deficits in the novel object recognition task as well as increased tau phosphorylation and increased neuroinflammation. Additionally, STZ led to altered insulin signaling, exhibited by decreased plasma insulin and decreased levels of insulin degrading enzyme and pAKT within the hippocampus. CONCLUSIONS STZ-treated animals exhibit cognitive deficits and histopathological changes seen in dementia. This model of dementia warrants continued investigation to better understand the role that DM plays in dementia-related alterations.
Collapse
Affiliation(s)
- Andrew S Murtishaw
- Neurobiology of Disease and Behavior Laboratory, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Chelcie F Heaney
- Neurobiology of Disease and Behavior Laboratory, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Monica M Bolton
- Neurobiology of Disease and Behavior Laboratory, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Krystal Courtney D Belmonte
- Neurobiology of Disease and Behavior Laboratory, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Michael A Langhardt
- Neurobiology of Disease and Behavior Laboratory, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Jefferson W Kinney
- Neurobiology of Disease and Behavior Laboratory, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
23
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
24
|
Hu Q, Yu B, Chen Q, Wang Y, Ling Y, Sun S, Shi Y, Zhou C. Effect of Linguizhugan decoction on neuroinflammation and expression disorder of the amyloid β‑related transporters RAGE and LRP‑1 in a rat model of Alzheimer's disease. Mol Med Rep 2017; 17:827-834. [PMID: 29115637 PMCID: PMC5780161 DOI: 10.3892/mmr.2017.7983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/02/2017] [Indexed: 01/23/2023] Open
Abstract
Linguizhugan decoction (LGZG), a notable prescription in Traditional Chinese Medicine, is a classical formula for the treatment of Alzheimer's disease (AD), inflammatory injury and fluid retention. The present study aimed to investigate the neuroprotective effect of LGZG on an amyloid β (Aβ)-induced AD rat model. Sprague-Dawley rats were administered with Aβ1-42 to induce AD and inflammatory responses, and subsequently with LGZG (4.8, 2.4 or 1.2 g/kg), donepezil (2 mg/kg) or distilled water for 30 consecutive days. Learning and memory behaviors were evaluated via Morris water maze test. The neuronal impairment of AD rats was observed via hematoxylin-eosin staining. The levels of pro-inflammatory cytokines, and Aβ in the brain tissue were detected with ELISA kits. Protein expression levels of mitogen-activated protein kinase and nuclear factor-κB signalling were measured by western blot analysis. The expression of lipoprotein receptor-related protein-1 (LRP-1) and receptor for advanced glycation endproducts (RAGE) in the brain were detected by western blot analysis, reverse transcription-quantitative polymerase chain reaction and immunohistochemistry analysis. LGZG was demonstrated to significantly improve learning and memory ability, and ameliorate neuroinflammation in AD rats. LGZG increased the levels of LRP-1 and decreased the levels of RAGE. Furthermore, the present results demonstrated that LGZG treatment significantly inhibited MAPK and NF-κB signalling, and reduced the production of pro-inflammatory cytokines and Aβ accumulation in AD rats. LGZG exhibited a potential protective effect on Aβ1-42-induced AD by regulating Aβ transportation, and inhibiting RAGE/MAPK and NF-κB signalling. These results suggest that LGZG may be considered for the treatment of AD.
Collapse
Affiliation(s)
- Qianfeng Hu
- Department of Febrile Disease, Basic Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Beibei Yu
- Department of Febrile Disease, Basic Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Qinlei Chen
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Yi Wang
- Department of Febrile Disease, Basic Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Yun Ling
- Department of Febrile Disease, Basic Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Songxian Sun
- Department of Febrile Disease, Basic Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Yinlong Shi
- Department of Febrile Disease, Basic Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Chunxiang Zhou
- Department of Febrile Disease, Basic Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
25
|
Inhibitory effect of alliin from Allium sativum on the glycation of superoxide dismutase. Int J Biol Macromol 2017; 103:182-193. [DOI: 10.1016/j.ijbiomac.2017.05.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023]
|
26
|
Hayashi-Park E, Ozment BN, Griffith CM, Zhang H, Patrylo PR, Rose GM. Experimentally induced diabetes worsens neuropathology, but not learning and memory, in middle aged 3xTg mice. Behav Brain Res 2017; 322:280-287. [DOI: 10.1016/j.bbr.2016.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 01/21/2023]
|
27
|
Byun K, Yoo Y, Son M, Lee J, Jeong GB, Park YM, Salekdeh GH, Lee B. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacol Ther 2017; 177:44-55. [PMID: 28223234 DOI: 10.1016/j.pharmthera.2017.02.030] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced glycation end products (AGEs) and their receptor have been implicated in the progressions of many intractable diseases, such as diabetes and atherosclerosis, and are also critical for pathologic changes in chronic degenerative diseases, such as Alzheimer's disease, Parkinson's disease, and alcoholic brain damage. Recently activated macrophages were found to be a source of AGEs, and the most abundant form of AGEs, AGE-albumin excreted by macrophages has been implicated in these diseases and to act through common pathways. AGEs inhibition has been shown to prevent the pathogenesis of AGEs-related diseases in human, and therapeutic advances have resulted in several agents that prevent their adverse effects. Recently, anti-inflammatory molecules that inhibit AGEs have been shown to be good candidates for ameliorating diabetic complications as well as degenerative diseases. This review was undertaken to present, discuss, and clarify current understanding regarding AGEs formation in association with macrophages, different diseases, therapeutic and diagnostic strategy and links with RAGE inhibition.
Collapse
Affiliation(s)
- Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea; Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea
| | - YongCheol Yoo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-811, Republic of Korea
| | - Myeongjoo Son
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea
| | - Jaesuk Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea
| | - Young Mok Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-811, Republic of Korea.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Bonghee Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea; Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea.
| |
Collapse
|
28
|
Suantawee T, Cheng H, Adisakwattana S. Protective effect of cyanidin against glucose- and methylglyoxal-induced protein glycation and oxidative DNA damage. Int J Biol Macromol 2016; 93:814-821. [PMID: 27645922 DOI: 10.1016/j.ijbiomac.2016.09.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/21/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
Abstract
Cyanidin, a natural anthocyanin abundant in fruits and vegetables, has shown the health benefits due to its pharmacological properties. However, there was no evidence regarding anti-glycation activity of cyanidin. The aim of the study was to investigate the inhibitory effect of cyanidin on methylglyoxal (MG)- and glucose-induced protein glycation in bovine serum albumin (BSA) as well as oxidative DNA damage. Free radical scavenging activity and the MG-trapping ability of cyanidin were also investigated. The results demonstrated that cyanidin (0.125-1mM) significantly inhibited the formation of fluorescent and non-fluorescent AGEs in BSA/MG and BSA/glucose systems. There was a significantly improved protein thiol in BSA/MG and BSA/glucose when incubated with cyanidin. Correspondingly, cyanidin decreased the level of protein carbonyl content in BSA/glucose system. Moreover, cyanidin (0.5-1mM) prevented lysine/MG-mediated oxidative DNA damage in the absence or presence of copper ion. The results demonstrated that cyanidin showed the MG-trapping ability in a concentration-dependent manner. Cyanidin also reduced superoxide anion and hydroxyl radical generation in lysine/MG system. The mechanism by which cyanidin inhibited protein glycation was the MG-trapping ability and the free radical scavenging activity. The present study suggests that cyanidin might be a promising antiglycation agent for preventing or ameliorating AGEs-mediated diabetic complications.
Collapse
Affiliation(s)
- Tanyawan Suantawee
- Program in Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sirichai Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1037-1045. [PMID: 27156888 DOI: 10.1016/j.bbadis.2016.04.017] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022]
Abstract
Cognitive decline in chronic diabetic patients is a less investigated topic. Diabetes and obesity are among the modifiable risk factors for Alzheimer's disease (AD), the most common form of dementia. Studies have identified several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, and inflammation that are observed in these disorders. Advanced glycation end products generated by chronic hyperglycemia and their receptor RAGE provide critical links between diabetes and AD. Peripheral inflammation observed in obesity leads to insulin resistance and type 2 diabetes. Although the brain is an immune-privileged organ, cross-talks between peripheral and central inflammation have been reported. Damage to the blood brain barrier (BBB) as seen with aging can lead to infiltration of immune cells into the brain, leading to the exacerbation of central inflammation. Neuroinflammation, which has emerged as an important cause of cognitive dysfunction, could provide a central mechanism for aging-associated ailments. To further add to these injuries, adult neurogenesis that provides neuronal plasticity is also impaired in the diabetic brain. This review discusses these molecular mechanisms that link obesity, diabetes and AD. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Subbiah Pugazhenthi
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, CO, USA; Department of Medicine, University of Colorado - Denver, Aurora, CO, USA.
| | - Limei Qin
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, CO, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
30
|
Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev 2016; 64:272-87. [DOI: 10.1016/j.neubiorev.2016.03.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/26/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
|
31
|
Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, Chang L, Yan LJ, Zhao B. Role of RAGE in Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:483-95. [PMID: 26175217 DOI: 10.1007/s10571-015-0233-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/29/2015] [Indexed: 01/11/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer's disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE-Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China.
| | - Nannuan Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Biyong Qin
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Yingjun Zhou
- Physical Examination Center, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Liying Chang
- Department of Neurology, Xiangyang Center Hospital, The First Affiliated Hospital, Hubei University of Arts and Science, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences,UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Bin Zhao
- Department of Neurology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| |
Collapse
|
32
|
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 2015; 20:431-46. [PMID: 26558318 DOI: 10.1517/14728222.2016.1111873] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This review focuses on the multi-ligand receptor of the immunoglobulin superfamily--receptor for advanced glycation endproducts (RAGE). The accumulation of the multiple ligands of RAGE in cellular stress milieux links RAGE to the pathobiology of chronic disease and natural aging. AREAS COVERED In this review, we present a discussion on the ligands of RAGE and the implications of these ligand families in disease. We review the recent literature on the role of ligand-RAGE interaction in the consequences of natural aging; the macro- and microvascular complications of diabetes; obesity and insulin resistance; autoimmune disorders and chronic inflammation; and tumors and Alzheimer's disease. We discuss the mechanisms of RAGE signaling through its intracellular binding effector molecule--the formin DIAPH1. Physicochemical evidence of how the RAGE cytoplasmic domain binds to the FH1 (formin homology 1) domain of DIAPH1, and the consequences thereof, are also reviewed. EXPERT OPINION We discuss the modalities of RAGE antagonism currently in preclinical and clinical studies. Finally, we present the rationale behind potentially targeting the RAGE cytoplasmic domain-DIAPH1 interaction as a logical strategy for therapeutic intervention in the pathological settings of chronic diseases and aging wherein RAGE ligands accumulate and signal.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| | - Alexander Shekhtman
- b Department of Chemistry , University at Albany, State University of New York , Albany , NY 12222 , USA
| | - Ann Marie Schmidt
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| |
Collapse
|
33
|
Bilotta F, Lauretta MP, Tewari A, Haque M, Hara N, Uchino H, Rosa G. Insulin and the Brain: A Sweet Relationship With Intensive Care. J Intensive Care Med 2015; 32:48-58. [PMID: 26168800 DOI: 10.1177/0885066615594341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/28/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin receptors (IRs) in the brain have unique molecular features and a characteristic pattern of distribution. Their possible functions extend beyond glucose utilization. In this systematic review, we explore the interactions between insulin and the brain and its implications for anesthesiologists, critical care physicians, and other medical disciplines. METHODS A literature search of published preclinical and clinical studies between 1978 and 2014 was conducted, yielding 5996 articles. After applying inclusion and exclusion criteria, 92 studies were selected for this systematic review. RESULTS The IRs have unique molecular features, pattern of distribution, and mechanism of action. It has effects on neuronal function, metabolism, and neurotransmission. The IRs are involved in neuronal apoptosis and neurodegenerative processes. CONCLUSION In this systematic review, we present a close relationship between insulin and the brain, with discernible effects on memory, learning abilities, and motor functions. The potential therapeutic effects extend from acute brain insults such as traumatic brain injury, brain ischemia, and hemorrhage, to chronic neurodegenerative diseases such as Alzheimer and Parkinson disease. An understanding of the wider effects of insulin conveyed in this review will prompt anaesthesiologists and critical care physicians to consider its therapeutic potential and guide future studies.
Collapse
Affiliation(s)
- F Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M P Lauretta
- Anesthesia and Intensive Care Department, "La Sapienza" University of Rome, Rome, Italy .,Critical Care Department, University College London Hospital, London, United Kingdom
| | - A Tewari
- Department of Pediatric Neuroanesthesia and IONM, Cincinnati Children Hospital & Medical Center, Cincinnati, OH, USA
| | - M Haque
- Anesthesia and Critical Care Department, University College London Hospital, London, United Kingdom
| | - N Hara
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - H Uchino
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - G Rosa
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
34
|
Increased Spontaneous Central Bleeding and Cognition Impairment in APP/PS1 Mice with Poorly Controlled Diabetes Mellitus. Mol Neurobiol 2015; 53:2685-97. [PMID: 26156287 PMCID: PMC4823354 DOI: 10.1007/s12035-015-9311-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common causes of dementia, and borderlines are blurred in many cases. Aging remains the main risk factor to suffer dementia; however, epidemiological studies reveal that diabetes may also predispose to suffer AD. In order to further study this relationship, we have induced hypoinsulinemic diabetes to APPswe/PS1dE9 (APP/PS1) mice, a classical model of AD. APP/PS1 mice received streptozotocin (STZ) ip at 18 weeks of age, when AD pathology is not yet established in this animal model. Cognition was evaluated at 26 weeks of age in the Morris water maze and the new object discrimination tests. We observed that STZ-induced episodic and working memory impairment was significantly worsened in APP/PS1 mice. Postmortem assessment included brain atrophy, amyloid-beta and tau pathology, spontaneous bleeding, and increased central inflammation. Interestingly, in APP/PS1-STZ diabetic mice, we detected a shift in Aβ soluble/insoluble levels, towards more toxic soluble species. Phospho-tau levels were also increased in APP/PS1-STZ mice, accompanied by an exacerbated inflammatory process, both in the close proximity to senile plaque (SP) and in SP-free areas. The presence of hemorrhages was significantly higher in APP/PS1-STZ mice, and although pericytes and endothelium were only partially affected, it remains possible that blood-brain barrier alterations underlie observed pathological features. Our data support the implication of the diabetic process in AD and VaD, and it is feasible that improving metabolic control could delay observed central pathology.
Collapse
|
35
|
Mauras N, Mazaika P, Buckingham B, Weinzimer S, White NH, Tsalikian E, Hershey T, Cato A, Cheng P, Kollman C, Beck RW, Ruedy K, Aye T, Fox L, Arbelaez AM, Wilson D, Tansey M, Tamborlane W, Peng D, Marzelli M, Winer KK, Reiss AL. Longitudinal assessment of neuroanatomical and cognitive differences in young children with type 1 diabetes: association with hyperglycemia. Diabetes 2015; 64:1770-9. [PMID: 25488901 PMCID: PMC4407847 DOI: 10.2337/db14-1445] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022]
Abstract
Significant regional differences in gray and white matter volume and subtle cognitive differences between young diabetic and nondiabetic children have been observed. Here, we assessed whether these differences change over time and the relation with dysglycemia. Children ages 4 to <10 years with (n = 144) and without (n = 72) type 1 diabetes (T1D) had high-resolution structural MRI and comprehensive neurocognitive tests at baseline and 18 months and continuous glucose monitoring and HbA1c performed quarterly for 18 months. There were no differences in cognitive and executive function scores between groups at 18 months. However, children with diabetes had slower total gray and white matter growth than control subjects. Gray matter regions (left precuneus, right temporal, frontal, and parietal lobes and right medial-frontal cortex) showed lesser growth in diabetes, as did white matter areas (splenium of the corpus callosum, bilateral superior-parietal lobe, bilateral anterior forceps, and inferior-frontal fasciculus). These changes were associated with higher cumulative hyperglycemia and glucose variability but not with hypoglycemia. Young children with T1D have significant differences in total and regional gray and white matter growth in brain regions involved in complex sensorimotor processing and cognition compared with age-matched control subjects over 18 months, suggesting that chronic hyperglycemia may be detrimental to the developing brain.
Collapse
Affiliation(s)
- Nelly Mauras
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Clinic, Jacksonville, FL
| | - Paul Mazaika
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Bruce Buckingham
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Stuart Weinzimer
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Neil H White
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Eva Tsalikian
- Pediatric Endocrinology, University of Iowa, Iowa City, IA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Allison Cato
- Division of Neurology, Nemours Children's Clinic, Jacksonville, FL
| | | | | | - Roy W Beck
- Jaeb Center for Health Research, Tampa, FL
| | | | - Tandy Aye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Larry Fox
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Clinic, Jacksonville, FL
| | - Ana Maria Arbelaez
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Darrell Wilson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Michael Tansey
- Pediatric Endocrinology, University of Iowa, Iowa City, IA
| | - William Tamborlane
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Daniel Peng
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Matthew Marzelli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA Department of Bioengineering, Stanford University School of Medicine, Stanford, CA
| | - Karen K Winer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA Department of Pediatrics, Stanford University School of Medicine, Stanford, CA Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|