1
|
Takarada WH, Nazareno MH, de Freitas RA, Orth ES. Cellulose-derived biocatalysts and neutralizing gels for pesticides: How to eliminate and avoid intoxication? JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137576. [PMID: 39954422 DOI: 10.1016/j.jhazmat.2025.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The threat of intoxication by organophosphates - pesticides and chemical warfare - is a real concern worldwide. Fast, efficient and non-aggressive approaches for prevention and treatment are required. The use of functionalized biopolymers towards chemical neutralization of organophosphate is strategic since it is environmentally friendly. Herein, three carboxymethyl cellulose-derived biocatalysts were achieved via covalent functionalization with hydroxamates and imidazoles, targeted on the carboxylic acids of the cellulosic biopolymer. The aimed strategy was successful, confirmed by characterizations with Fourier-transform infrared spectroscopy, potentiometric titration, thermogravimetric analysis, zeta potential titrations, size-exclusion chromatography with multi-angle static light scattering, colorimetric test with iron (III) and rheological assays. The materials in colloidal form were highly reactive in the catalytic neutralization -evaluated by kinetic studies - with rate enhancements up to 107-fold for the real-life Paraoxon, compared to the reaction in the absence of biocatalysts. Chemical selectivity towards the phosphorus center was accomplished - the desirable pathway that leads to less toxic products - and maintained the reactivity for at least 5 reaction cycles. Furthermore, the biocatalysts were processed as neutralizing gels aiming for skin intoxication prevention against organophosphates. Indeed, in vitro permeation assays evidenced that the gels eliminated 100 % of the toxic agent after 24 hours. The gels were able to destroy the organophosphates, whilst the phenolic degradation product was detected in assay. Thus, these results emphasize the potential of biocompatible polymeric materials as interesting platforms to anchor reactive groups to design catalytic materials aiming chemical decontamination and security.
Collapse
Affiliation(s)
- Willian H Takarada
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, Curitiba, PR CEP 81531-980, Brazil
| | - Mariana H Nazareno
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, Curitiba, PR CEP 81531-980, Brazil
| | - Rilton A de Freitas
- Department of Pharmaceutical Sciences, Universidade Federal do Paraná (UFPR), Curitiba, PR CEP 80210-170, Brazil
| | - Elisa S Orth
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, Curitiba, PR CEP 81531-980, Brazil.
| |
Collapse
|
2
|
Shukla N, Singhmar V, Sayala J, Patra AK. A Multifaceted Luminescent Europium(III) Probe for the Discrimination of Nucleoside Phosphates and Detection of Organophosphate Nerve Agents. Inorg Chem 2025; 64:1287-1301. [PMID: 39798099 DOI: 10.1021/acs.inorgchem.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis. Furthermore, developing reliable, easy-to-use optical sensors for extremely toxic organophosphonates/nerve-agents is critical to counter public health threats. Luminescent lanthanide(III) complexes have emerged as promising optical bioprobes owing to intraconfigurational f → f transitions. Herein, we present strategically designed Eu(III) probes: [Eu(THC)(X)3]Cl (Eu.1) and [Eu(TBC)(X)3]Cl/Br (Eu.2) containing pentadentate terpyridine dicarboxylates: 4'-(3,4,5-trihydroxyphenyl)-[2,2':6',2″-terpyridine]-6,6″-dicarboxylic acid (THC) and 4'-phenyl-[2,2':6',2″-terpyridine]-6,6″-dicarboxylic acid (TBC) and X = solvent. The Eu.1 probe is systematically evaluated for discrimination of various NPs and as a luminescent chemodosimetric probe for diethyl chlorophosphate (DCP) as a G-series nerve agent mimic. The time-delayed luminescence is used for discrimination between various adenine-based NPs under physiological conditions. The Eu.1 probe shows high affinity and selectivity for ADP enabling continuous monitoring of the ADP/ATP ratio in a simulated enzymatic reaction. Additionally, Eu.1 acted as a chemodosimetric probe for DCP. The interaction produces a change in the sensitization pathway, enhancing the Eu(III)-based luminescence with a ppb level of detection of DCP (LOD = 758 ppb). Our innovative approach expands applications of lanthanide luminescence for probing nucleotides and the detection of lethal nerve agents.
Collapse
Affiliation(s)
- Nitin Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Virjesh Singhmar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Juhi Sayala
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Krishnan JKS, Moffett JR, Puthillathu N, Johnson EA, Namboodiri AM. Isoflurane-lipid emulsion injection as an anticonvulsant and neuroprotectant treatment for nerve agent exposure. Front Pharmacol 2024; 15:1466351. [PMID: 39415842 PMCID: PMC11479933 DOI: 10.3389/fphar.2024.1466351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
We have shown that briefly inhaled isoflurane rapidly halts convulsions and protects the central nervous system (CNS) from organophosphate-induced neuronal loss when administered at 5% for 5 min, even as late as 1 h after organophosphate exposure. In the current study we investigated if an injectable form of isoflurane was as effective as inhaled isoflurane. We used a mixture of 10% isoflurane dissolved in an IV-compatible lipid-water emulsion for intravenous administration. Rats with an implanted jugular vein cannula were infused with 1,000 μL of the 10% isoflurane-lipid emulsion (ILE) mixture at a rate of 200 μL per minute, which achieved full anesthesia lasting approximately 10 min. When administered 30 min after a highly lethal dose of the organophosphate insecticide paraoxon (POX), the short-duration administration halted convulsions over the course of the study and prevented the great majority of neuronal loss as shown by Fluoro-Jade B staining (FJB). Our results indicate that injectable isoflurane is very effective for treating organophosphate poisoning, negating the need for vaporizer equipment and enabling intravenous therapy.
Collapse
Affiliation(s)
- Jishnu K. S. Krishnan
- Uniformed Services University of the Health Sciences, Anatomy, Physiology and Genetics Department and Neuroscience Program, Bethesda, MD, United States
| | - John R. Moffett
- Uniformed Services University of the Health Sciences, Anatomy, Physiology and Genetics Department and Neuroscience Program, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Chemistry and Biochemistry, Interdisciplinary Graduate Program in Biophysics, Ohio State University, Columbus, OH, United States
| | - Erik A. Johnson
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Aryan M. Namboodiri
- Uniformed Services University of the Health Sciences, Anatomy, Physiology and Genetics Department and Neuroscience Program, Bethesda, MD, United States
| |
Collapse
|
4
|
Prchalova E, Andrys R, Pejchal J, Kohoutova Z, Knittelova K, Hofmanova T, Skarka A, Dlabkova A, Psotka M, Prchal L, Musilek K, Karasova JZ, Malinak D. Brominated oxime nucleophiles are efficiently reactivating cholinesterases inhibited by nerve agents. Arch Toxicol 2024; 98:2937-2952. [PMID: 38789714 DOI: 10.1007/s00204-024-03791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.
Collapse
Affiliation(s)
- Eliska Prchalova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zuzana Kohoutova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Tereza Hofmanova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Adam Skarka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Alzbeta Dlabkova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - David Malinak
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- University Hospital in Hradec Kralove, Biomedical Research Center, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Chappell WP, Schur N, Vogel JA, Sammis GM, Melvin PR, Ball ND. Poison to Promise: The Resurgence of Organophosphorus Fluoride Chemistry. Chem 2024; 10:1644-1654. [PMID: 38947532 PMCID: PMC11212144 DOI: 10.1016/j.chempr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Organophosphorus(V) fluorides have a long and tumultuous history, with early applications as toxins and nerve agents reflecting their poisonous past. Behind these very real safety considerations, there is also growing potential in a wide range of fields, from chemical biology to drug development. The recent inclusion of organophosphorus(V) fluorides in click chemistry exemplifies the promise these compounds possess and brings these molecules to the brink of a resurgence. In this Perspective, we delve into the history of P(V)-F compounds, discuss the precautions needed to work with them safely, and explore recent advancements in their synthesis and application. We conclude by discussing how this field can continue on a path toward innovation.
Collapse
Affiliation(s)
- William P. Chappell
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Natalie Schur
- Department of Chemistry, Pomona College, 645 North College
Avenue, Claremont, California 91711, United States of America
| | - James A. Vogel
- Department of Chemistry, Bryn Mawr College, Bryn Mawr,
Pennsylvania 19010, United States of America
| | - Glenn M. Sammis
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Patrick R. Melvin
- Department of Chemistry, Bryn Mawr College, Bryn Mawr,
Pennsylvania 19010, United States of America
| | - Nicholas D. Ball
- Department of Chemistry, Pomona College, 645 North College
Avenue, Claremont, California 91711, United States of America
- Lead contact
| |
Collapse
|
6
|
Noga M, Michalska A, Jurowski K. The estimation of acute oral toxicity (LD 50) of G-series organophosphorus-based chemical warfare agents using quantitative and qualitative toxicology in silico methods. Arch Toxicol 2024; 98:1809-1825. [PMID: 38493428 DOI: 10.1007/s00204-024-03714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
The idea of this study was the estimation of the theoretical acute toxicity (t-LD50, rat, oral dose) of organophosphorus-based chemical warfare agents from the G-series (n = 12) using different in silico methods. Initially identified in Germany, the G-type nerve agents include potent compounds such as tabun, sarin, and soman. Despite their historical significance, there is a noticeable gap in acute toxicity data for these agents. This study employs qualitative (STopTox and AdmetSAR) and quantitative (TEST; CATMoS; ProTox-II and QSAR Toolbox) in silico methods to predict LD50 values, offering an ethical alternative to animal testing. Additionally, we conducted quantitative extrapolation from animals, and the results of qualitative tests confirmed the acute toxicity potential of these substances and enabled the identification of toxicophoric groups. According to our estimations, the most lethal agents within this category were GV, soman (GD), sarin (GB), thiosarin (GBS), and chlorosarin (GC), with t-LD50 values (oral administration, extrapolated from rat to human) of 0.05 mg/kg bw, 0.08 mg/kg bw, 0.12 mg/kg bw, 0.15 mg/kg bw, and 0.17 mg/kg bw, respectively. On the contrary, compounds with a cycloalkane attached to the phospho-oxygen linkage, specifically methyl cyclosarin and cyclosarin, were found to be the least toxic, with values of 2.28 mg/kg bw and 3.03 mg/kg bw. The findings aim to fill the knowledge gap regarding the acute toxicity of these agents, highlighting the need for modern toxicological methods that align with ethical considerations, next-generation risk assessment (NGRA) and the 3Rs (replacement, reduction and refinement) principles.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland.
| |
Collapse
|
7
|
Noga M, Michalska A, Jurowski K. The acute toxicity of Novichok's degradation products using quantitative and qualitative toxicology in silico methods. Arch Toxicol 2024; 98:1469-1483. [PMID: 38441627 DOI: 10.1007/s00204-024-03695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 03/27/2024]
Abstract
The emergence of Novichok agents, potent organophosphorus nerve agents, has spurred the demand for advanced analytical methods and toxicity assessments as a result of their involvement in high-profile incidents. This study focuses on the degradation products of Novichok agents, particularly their potential toxic effects on biological systems. Traditional in vivo methods for toxicity evaluation face ethical and practical constraints, prompting a shift toward in silico toxicology research. In this context, we conducted a comprehensive qualitative and quantitative analysis of acute oral toxicity (AOT) for Novichok degradation products, using various in silico methods, including TEST, CATMoS, ProTox-II, ADMETlab, ACD/Labs Percepta, and QSAR Toolbox. Adopting these methodologies aligns with the 3Rs principle, emphasising Replacement, Reduction, and Refinement in the realm of toxicological studies. Qualitative assessments with STopTox and admetSAR revealed toxic profiles for all degradation products, with predicted toxicophores highlighting structural features responsible for toxicity. Quantitative predictions yielded varied estimates of acute oral toxicity, with the most toxic degradation products being EOPAA, MOPGA, MOPAA, MPGA, EOPGA, and MPAA, respectively. Structural modifications common to all examined hydrolytic degradation products involve substituting the fluorine atom with a hydroxyl group, imparting consequential effects on toxicity. The need for sophisticated analytical techniques for identifying and quantifying Novichok degradation products is underscored due to their inherent reactivity. This study represents a crucial step in unravelling the complexities of Novichok toxicity, highlighting the ongoing need for research into its degradation processes to refine analytical methodologies and fortify readiness against potential threats.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Lodz, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Lodz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Lodz, Poland.
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszow, Poland.
| |
Collapse
|
8
|
Clay WK, Buck AK, He Y, Hernández Sánchez DN, Ward NA, Lear JM, Nguyen KQ, Clark BH, Sapia RJ, Lalisse RF, Sriraman A, Cadieux CL, McElroy CA, Callam CS, Hadad CM. Treatment of Organophosphorus Poisoning with 6-Alkoxypyridin-3-ol Quinone Methide Precursors: Resurrection of Methylphosphonate-Aged Acetylcholinesterase. Chem Res Toxicol 2024; 37:643-657. [PMID: 38556765 DOI: 10.1021/acs.chemrestox.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 μM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.
Collapse
Affiliation(s)
- William K Clay
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne K Buck
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiran He
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dalyanne N Hernández Sánchez
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan A Ward
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy M Lear
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kenny Q Nguyen
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin H Clark
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ryan J Sapia
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aishwarya Sriraman
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - C Linn Cadieux
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Craig A McElroy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Chen F, Zhang T, Xiao P, Shao L, Zhang X, Wang L, Ren X, Qin C, Jiao Y. Occurrence and health risk of pesticide residues in Chinese herbal medicines from Shandong Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25940-25951. [PMID: 38491238 DOI: 10.1007/s11356-024-32693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Pesticide residue was one of the stress factors affecting quality and safety of Chinese herbal medicines (CHMs). The present study was designed to investigate the occurrence and dietary exposure of 70 pesticide residues in 307 samples of CHMs, including 104 American ginseng, 100 Ganoderma lucidum (G. lucidum), and 103 Dendrobium officinale (D. officinale) in Shandong Province, China. The study revealed that a total of 29 pesticides were detected in the majority (92.5%) of samples, and the pesticide residues of 85 (27.7%) samples exceeded the maximum residue levels (MRLs). Particularly, the maximum concentration of chlorpyrifos was 23.8 mg kg-1, almost 50 times of the MRLs in food in GB 2763-2021, while there's no standard restrictions specified in CHMs in China. The chronic, acute, and cumulative risk assessment results indicated that risk exposure of the three types of CHMs were unlikely to pose a health risk to consumers. However, more attention should be paid to the multiple residues with the presence of four or more pesticides in one sample and high over-standard rate of pesticides. The pesticide users and the government should pay more attention to the pesticides used in CHMs and regularly monitor the presence of these compounds. The study recommended the MRLs of these pesticides in CHMs should be established and perfected by the relevant departments in China.
Collapse
Affiliation(s)
- Fangfang Chen
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Peirui Xiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lijun Shao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinxin Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Ren
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, People's Republic of China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China.
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
10
|
Macedo MB, Cunha EO, Reis AD, Machado MS, de Campos D, Malysz T, Dallegrave E. Morphometric Evaluation of the Recurrent Laryngeal Nerve of Wistar Rats Exposed to Pesticides. J Voice 2024; 38:264-272. [PMID: 34782225 DOI: 10.1016/j.jvoice.2021.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
The literature has been shown that exposition by inhalation to chemical compounds can cause vocal disorders and dysphagia in humans, in addition to other symptoms that are manifested according to the type, concentration and duration of exposure to the substance. Cypermethrin and dichlorvos are pesticides widely used in agriculture, public health, veterinary, and home environments. Despite the scientific evidence that cypermethrin and dichlorvos can cause neurodegenerative damage and motor alterations, there are no studies evaluating the toxic effects of these pesticides on the morphology of structures responsible for vocal mobility, especially to the Recurrent Laryngeal Nerve (RLN). Considering the association between vocal disorders in humans and variations in RLN and morphometry, the aim of this study was to evaluate the possible alterations in the microstructure of RLN secondary to subchronic exposure to cypermethrin (pyrethroid) and dichlorvos (organophosphate) in Wistar rats. The experimental protocol (approved by CEUA-UFCSPA: 321/15 and 323/15) consisted of 15 male Wistar rats, allocated in 3 groups: Control (n = 5, exposed to water), Cypermethrin (n = 5, exposed to cypermethrin - 1/10 of the inhalation median lethal concentration [LC50] - 0.25 mg/L) and dichlorvos (n = 5, exposed to dichlorvos - 1/10 of the LC50 - 1.5 mg/L). Inhalation exposure was performed for 4 hours, 5 times per week, for 6 weeks. The nerves were collected, histologically processed and analyzed using morphometric parameters measured using ZEN 2.6 (Zeiss - Germany). The cypermethrin and dichlorvos groups showed significant changes (P < 0.001, ANOVA) in the g-ratio and in the thickness of the myelin sheath of the RLN when compared to the control animals, however, none of the other parameters evaluated showed statistically significant differences. These findings indicate that repeated inhalation exposure to commercial products of cypermethrin and dichlorvos is able to modify the structure of the RLN and possibly generating vocal changes and / or dysphagia.
Collapse
Affiliation(s)
- Mateus Belmonte Macedo
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Laboratory of Research in Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Eduarda Oliveira Cunha
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Laboratory of Research in Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Aléxia Dos Reis
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Laboratory of Research in Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Márcia Salgado Machado
- Department of Speech Therapy and Audiology, University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Laboratory of Research in Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Deivis de Campos
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Life Sciences, University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brazil; Graduate Program in Health Promotion, University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brazil
| | - Taís Malysz
- Graduate Program in Neurosciences, Basic Health Sciences Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eliane Dallegrave
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Laboratory of Research in Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Noga M, Michalska A, Jurowski K. The prediction of acute toxicity (LD 50) for organophosphorus-based chemical warfare agents (V-series) using toxicology in silico methods. Arch Toxicol 2024; 98:267-275. [PMID: 38051368 PMCID: PMC10761519 DOI: 10.1007/s00204-023-03632-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Nerve agents are organophosphate chemical warfare agents that exert their toxic effects by irreversibly inhibiting acetylcholinesterase, affecting the breakdown of the neurotransmitter acetylcholine in the synaptic cleft. Due to the risk of exposure to dangerous nerve agents and for animal welfare reasons, in silico methods have been used to assess acute toxicity safely. The next-generation risk assessment (NGRA) is a new approach for predicting toxicological parameters that can meet modern requirements for toxicological research. The present study explains the acute toxicity of the examined V-series nerve agents (n = 9) using QSAR models. Toxicity Estimation Software Tool (ver. 4.2.1 and ver. 5.1.2), QSAR Toolbox (ver. 4.6), and ProTox-II browser application were used to predict the median lethal dose. The Simplified Molecular Input Line Entry Specification (SMILES) was the input data source. The results indicate that the most deadly V-agents were VX and VM, followed by structural VX analogues: RVX and CVX. The least toxic turned out to be V-sub x and Substance 100A. In silico methods for predicting various parameters are crucial for filling data gaps ahead of experimental research and preparing for the upcoming use of nerve agents.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland.
| |
Collapse
|
12
|
Puthillathu N, Moffett JR, Korotcov A, Bosomtwi A, Vengilote R, Krishnan JKS, Johnson EA, Arun P, Namboodiri AM. Brief isoflurane administration as an adjunct treatment to control organophosphate-induced convulsions and neuropathology. Front Pharmacol 2023; 14:1293280. [PMID: 38230376 PMCID: PMC10790757 DOI: 10.3389/fphar.2023.1293280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024] Open
Abstract
Organophosphate-based chemical agents (OP), including nerve agents and certain pesticides such as paraoxon, are potent acetylcholinesterase inhibitors that cause severe convulsions and seizures, leading to permanent central nervous system (CNS) damage if not treated promptly. The current treatment regimen for OP poisoning is intramuscular injection of atropine sulfate with an oxime such as pralidoxime (2-PAM) to mitigate cholinergic over-activation of the somatic musculature and autonomic nervous system. This treatment does not provide protection against CNS cholinergic overactivation and therefore convulsions require additional medication. Benzodiazepines are the currently accepted treatment for OP-induced convulsions, but the convulsions become refractory to these GABAA agonists and repeated dosing has diminishing effectiveness. As such, adjunct anticonvulsant treatments are needed to provide improved protection against recurrent and prolonged convulsions and the associated excitotoxic CNS damage that results from them. Previously we have shown that brief, 4-min administration of 3%-5% isoflurane in 100% oxygen has profound anticonvulsant and CNS protective effects when administered 30 min after a lethal dose of paraoxon. In this report we provide an extended time course of the effectiveness of 5% isoflurane delivered for 5 min, ranging from 60 to 180 min after a lethal dose of paraoxon in rats. We observed substantial effectiveness in preventing neuronal loss as shown by Fluoro-Jade B staining when isoflurane was administered 1 h after paraoxon, with diminishing effectiveness at 90, 120 and 180 min. In vivo magnetic resonance imaging (MRI) derived T2 and mean diffusivity (MD) values showed that 5-min isoflurane administration at a concentration of 5% prevents brain edema and tissue damage when administered 1 h after a lethal dose of paraoxon. We also observed reduced astrogliosis as shown by GFAP immunohistochemistry. Studies with continuous EEG monitoring are ongoing to demonstrate effectiveness in animal models of soman poisoning.
Collapse
Affiliation(s)
- Narayanan Puthillathu
- Department of Anatomy, Physiology, and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - John R. Moffett
- Department of Anatomy, Physiology, and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alexandru Korotcov
- Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Asamoah Bosomtwi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Ranjini Vengilote
- Department of Anatomy, Physiology, and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jishnu K. S. Krishnan
- Department of Anatomy, Physiology, and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Erik A. Johnson
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Peethambaran Arun
- Department of Anatomy, Physiology, and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Aryan M. Namboodiri
- Department of Anatomy, Physiology, and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
13
|
Kuca K, Valle da Silva JA, Nepovimova E, Pham NL, Wu W, Valis M, Wu Q, França TCC. Pralidoxime-like reactivator with increased lipophilicity - Molecular modeling and in vitro study. Chem Biol Interact 2023; 385:110734. [PMID: 37788753 DOI: 10.1016/j.cbi.2023.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) reactivators (2-PAM, trimedoxime, obidoxime, asoxime) have become an integral part of antidotal treatment in cases of nerve agent and organophosphorus (OP) pesticide poisonings. They are often referred to as specific antidotes due to their ability to restore AChE function when it has been covalently inhibited by an OP compound. Currently available commercial reactivators exhibit limited ability to penetrate the blood-brain barrier, where reactivation of inhibited AChE is crucial. Consequently, there have been numerous efforts to discover more brain-penetrating AChE reactivators. In this study, we examined a derivative of 2-PAM designed to possess increased lipophilicity. This enhanced lipophilicity was achieved through the incorporation of a benzyl group into its molecular structure. Initially, a molecular modeling study was conducted, followed by a comparison of its reactivation efficacy with that of 2-PAM against 10 different AChE inhibitors in vitro. Unfortunately, this relatively significant structural modification of 2-PAM resulted in a decrease in its reactivation potency. Consequently, this derivative cannot be considered as a broad-spectrum AChE reactivator.
Collapse
Affiliation(s)
- Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Jorge Alberto Valle da Silva
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro/RJ, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ngoc Lam Pham
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Martin Valis
- Department of Neurology, University Hospital Hradec Kralove, Hradec Kralove, 500 05, Czech Republic
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Tanos Celmar Costa França
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
14
|
Pampalakis G. Underestimations in the In Silico-Predicted Toxicities of V-Agents. J Xenobiot 2023; 13:615-624. [PMID: 37873816 PMCID: PMC10594428 DOI: 10.3390/jox13040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
V-agents are exceedingly toxic nerve agents. Recently, it was highlighted that V-agents constitute a diverse subclass of compounds with most of them not extensively studied. Although chemical weapons have been banned under the Chemical Weapons Convention (CWC), there is an increased concern for chemical terrorism. Thus, it is important to understand their properties and toxicities, especially since some of these agents are not included in the CWC list. Nonetheless, to achieve this goal, the testing of a huge number of compounds is needed. Alternatively, in silico toxicology offers a great advantage for the rapid assessment of toxic compounds. Here, various in silico tools (TEST, VEGA, pkCSM ProTox-II) were used to estimate the acute oral toxicity (LD50) of different V-agents and compare them with experimental values. These programs underestimated the toxicity of V-agents, and certain V-agents were estimated to be relatively non-toxic. TEST was also used to estimate the physical properties and found to provide good approximations for densities, surface tensions and vapor pressures but not for viscosities. Thus, attention should be paid when interpreting and estimating the toxicities of V-agents in silico, and it is necessary to conduct future detailed experiments to understand their properties and develop effective countermeasures.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Pampalakis G, Kostoudi S. Chemical, Physical, and Toxicological Properties of V-Agents. Int J Mol Sci 2023; 24:ijms24108600. [PMID: 37239944 DOI: 10.3390/ijms24108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
V-agents are exceedingly toxic organophosphate nerve agents. The most widely known V-agents are the phosphonylated thiocholines VX and VR. Nonetheless, other V-subclasses have been synthesized. Here, a holistic overview of V-agents is provided, where these compounds have been categorized based on their structures to facilitate their study. A total of seven subclasses of V-agents have been identified, including phospho(n/r)ylated selenocholines and non-sulfur-containing agents, such as VP and EA-1576 (EA: Edgewood Arsenal). Certain V-agents have been designed through the conversion of phosphorylated pesticides to their respective phosphonylated analogs, such as EA-1576 derived from mevinphos. Further, this review provides a description of their production, physical properties, toxicity, and stability during storage. Importantly, V-agents constitute a percutaneous hazard, while their high stability ensures the contamination of the exposed area for weeks. The danger of V-agents was highlighted in the 1968 VX accident in Utah. Until now, VX has been used in limited cases of terrorist attacks and assassinations, but there is an increased concern about potential terrorist production and use. For this reason, studying the chemistry of VX and other less-studied V-agents is important to understand their properties and develop potential countermeasures.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stavroula Kostoudi
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Jin Q, Zhang Y, Cui Y, Shi M, Shi J, Zhu S, Shi T, Zhang R, Chen X, Zong X, Wang C, Li L. PGC 1α-Mediates Mitochondrial Damage in the Liver by Inhibiting the Mitochondrial Respiratory Chain as a Non-cholinergic Mechanism of Repeated Low-Level Soman Exposure. Biol Pharm Bull 2023; 46:563-573. [PMID: 37005300 DOI: 10.1248/bpb.b22-00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
This work aimed to assess whether mitochondrial damage in the liver induced by subacute soman exposure is caused by peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and whether PGC-1α regulates mitochondrial respiratory chain damage. Toxicity mechanism research may provide theoretical support for developing anti-toxic drugs in the future. First, a soman animal model was established in male Sprague-Dawley (SD) rats by subcutaneous soman injection. Then, liver damage was biochemically evaluated, and acetylcholinesterase (AChE) activity was also determined. Transmission electron microscopy (TEM) was performed to examine liver mitochondrial damage, and high-resolution respirometry was carried out for assessing mitochondrial respiration function. In addition, complex I-IV levels were quantitatively evaluated in isolated liver mitochondria by enzyme-linked immunosorbent assay (ELISA). PGC-1α levels were detected with a Jess capillary-based immunoassay device. Finally, oxidative stress was analyzed by quantifying superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and reactive oxygen species (ROS) levels. Repeated low-level soman exposure did not alter AChE activity, while increasing morphological damage of liver mitochondria and liver enzyme levels in rat homogenates. Complex I, II and I + II activities were 2.33, 4.95, and 5.22 times lower after treatment compared with the control group, respectively. Among complexes I-IV, I-III decreased significantly (p < 0.05), and PGC-1α levels were 1.82 times lower after soman exposure than in the control group. Subacute soman exposure significantly increased mitochondrial ROS production, which may cause oxidate stress. These findings indicated dysregulated mitochondrial energy metabolism involves PGC-1α protein expression imbalance, revealing non-cholinergic mechanisms for soman toxicity.
Collapse
Affiliation(s)
- Qian Jin
- State Key Laboratory of NBC Protection for Civilian
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian
| | - Yalan Cui
- State Key Laboratory of NBC Protection for Civilian
| | - Meng Shi
- State Key Laboratory of NBC Protection for Civilian
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian
| | | | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian
| |
Collapse
|
17
|
Agarwal G, Tichenor H, Roo S, Lane TR, Ekins S, McElroy CA. Targeted Metabolomics of Organophosphate Pesticides and Chemical Warfare Nerve Agent Simulants Using High- and Low-Dose Exposure in Human Liver Microsomes. Metabolites 2023; 13:metabo13040495. [PMID: 37110155 PMCID: PMC10144572 DOI: 10.3390/metabo13040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Our current understanding of organophosphorus agent (pesticides and chemical warfare nerve agents) metabolism in humans is limited to the general transformation by cytochrome P450 enzymes and, to some extent, by esterases and paraoxonases. The role of compound concentrations on the rate of clearance is not well established and is further explored in the current study. We discuss the metabolism of 56 diverse organophosphorus compounds (both pesticides and chemical warfare nerve agent simulants), many of which were explored at two variable dose regimens (high and low), determining their clearance rates (Clint) in human liver microsomes. For compounds that were soluble at high concentrations, 1D-NMR, 31P, and MRM LC-MS/MS were used to calculate the Clint and the identity of certain metabolites. The determined Clint rates ranged from 0.001 to 2245.52 µL/min/mg of protein in the lower dose regimen and from 0.002 to 98.57 µL/min/mg of protein in the high dose regimen. Though direct equivalency between the two regimens was absent, we observed (1) both mono- and bi-phasic metabolism of the OPs and simulants in the microsomes. Compounds such as aspon and formothion exhibited biphasic decay at both high and low doses, suggesting either the involvement of multiple enzymes with different KM or substrate/metabolite effects on the metabolism. (2) A second observation was that while some compounds, such as dibrom and merphos, demonstrated a biphasic decay curve at the lower concentrations, they exhibited only monophasic metabolism at the higher concentration, likely indicative of saturation of some metabolic enzymes. (3) Isomeric differences in metabolism (between Z- and E- isomers) were also observed. (4) Lastly, structural comparisons using examples of the oxon group over the original phosphorothioate OP are also discussed, along with the identification of some metabolites. This study provides initial data for the development of in silico metabolism models for OPs with broad applications.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hunter Tichenor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah Roo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas R. Lane
- Collaborations Pharmaceutical Inc., Raleigh, NC 27606, USA
| | - Sean Ekins
- Collaborations Pharmaceutical Inc., Raleigh, NC 27606, USA
| | - Craig A. McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
18
|
Piel S, Janowska JI, Ward JL, McManus MJ, Jose JS, Starr J, Sheldon M, Clayman CL, Elmér E, Hansson MJ, Jang DH, Karlsson M, Ehinger JK, Kilbaugh TJ. Succinate prodrugs in combination with atropine and pralidoxime protect cerebral mitochondrial function in a rodent model of acute organophosphate poisoning. Sci Rep 2022; 12:20329. [PMID: 36434021 PMCID: PMC9700731 DOI: 10.1038/s41598-022-24472-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Pesticides account for hundreds of millions of cases of acute poisoning worldwide each year, with organophosphates (OPs) being responsible for the majority of all pesticide-related deaths. OPs inhibit the enzyme acetylcholinesterase (AChE), which leads to impairment of the central- and peripheral nervous system. Current standard of care (SOC) alleviates acute neurologic-, cardiovascular- and respiratory symptoms and reduces short term mortality. However, survivors often demonstrate significant neurologic sequelae. This highlights the critical need for further development of adjunctive therapies with novel targets. While the inhibition of AChE is thought to be the main mechanism of injury, mitochondrial dysfunction and resulting metabolic crisis may contribute to the overall toxicity of these agents. We hypothesized that the mitochondrially targeted succinate prodrug NV354 would support mitochondrial function and reduce brain injury during acute intoxication with the OP diisopropylfluorophosphate (DFP). To this end, we developed a rat model of acute DFP intoxication and evaluated the efficacy of NV354 as adjunctive therapy to SOC treatment with atropine and pralidoxime. We demonstrate that NV354, in combination with atropine and pralidoxime therapy, significantly improved cerebral mitochondrial complex IV-linked respiration and reduced signs of brain injury in a rodent model of acute DFP exposure.
Collapse
Affiliation(s)
- Sarah Piel
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I. Janowska
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - J. Laurenson Ward
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Meagan J. McManus
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Joshua S. Jose
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Malkah Sheldon
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Carly L. Clayman
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Eskil Elmér
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,Abliva AB, Lund, Sweden
| | - Magnus J. Hansson
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,Abliva AB, Lund, Sweden
| | - David H. Jang
- grid.25879.310000 0004 1936 8972Division of Medical Toxicology, Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Michael Karlsson
- grid.475435.4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Johannes K. Ehinger
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,grid.4514.40000 0001 0930 2361Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Todd J. Kilbaugh
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
19
|
Maksimović ŽM, Škrbić R, Stojiljković MP. Dose-Dependency of Toxic Signs and Outcomes of Paraoxon Poisoning in Rats. ACTA MEDICA (HRADEC KRALOVE) 2022; 65:8-17. [PMID: 35793503 DOI: 10.14712/18059694.2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organophosphorus compounds induce irreversible inhibition of acetylcholinesterase, which then produces clinically manifested muscarinic, nicotinic and central effects. The aim of the study was to analyse the clinical signs of acute paraoxon poisoning in rats and to determine the relationship between the intensity of signs of poisoning and the dose of paraoxon and/or the outcome of poisoning in rats. Animals were treated with either saline or atropine (10 mg/kg intramuscularly). The median subcutaneous lethal dose (LD50) of paraoxon was 0.33 mg/kg and protective ratio of atropine was 2.73. The presence and intensity of signs of poisoning in rats (dyspnoea, lacrimation, exophthalmos, fasciculations, tremor, ataxia, seizures, piloerection, stereotypic movements) were observed and recorded for 4 h after the injection of paraoxon. Intensity of these toxic phenomena was evaluated as: 0 - absent, 1 - mild/moderate, 2 - severe. Fasciculations, seizures and tremor were more intense at higher doses of paraoxon and in non-survivors. In unprotected rats piloerection occurred more often and was more intense at higher doses of paraoxon as well as in non-survivors. In atropine-protected rats, piloerection did not correlate with paraoxon dose or outcome of poisoning. The intensity of fasciculations and seizures were very strong prognostic parameters of the poisoning severity.
Collapse
Affiliation(s)
- Žana M Maksimović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina.
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Miloš P Stojiljković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
20
|
Stigler L, Köhler A, Koller M, Job L, Escher B, Potschka H, Thiermann H, Skerra A, Worek F, Wille T. Post-VX exposure treatment of rats with engineered phosphotriesterases. Arch Toxicol 2021; 96:571-583. [PMID: 34962578 PMCID: PMC8837561 DOI: 10.1007/s00204-021-03199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/05/2022]
Abstract
The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M−1 min−1) towards VX and a preferential hydrolysis of the more toxic P(−) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg−1 i.v.: PTE-2 dosed at 1.3 mg kg−1 i.v. (PTE-2.1) and 2.6 mg kg−1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg−1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.
Collapse
Affiliation(s)
- Lisa Stigler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Anja Köhler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Laura Job
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Benjamin Escher
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, Königinstraße 16, 80539, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
21
|
Reactive Organic Suspensions Comprising ZnO, TiO 2, and Zeolite Nanosized Adsorbents: Evaluation of Decontamination Efficiency on Soman and Sulfur Mustard. TOXICS 2021; 9:toxics9120334. [PMID: 34941768 PMCID: PMC8707968 DOI: 10.3390/toxics9120334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/17/2023]
Abstract
This paper comprises an extensive study on the evaluation of decontamination efficiency of three types of reactive organic suspensions (based on nanosized adsorbents) on two real chemical warfare agents: soman (GD) and sulfur mustard (HD). Three types of nanoparticles (ZnO, TiO2, and zeolite) were employed in the decontamination formulations, for enhancing the degradation of the toxic agents. The efficacy of each decontamination solution was investigated by means of GC-MS analysis, considering the initial concentration of toxic agent and the residual toxic concentration, measured at different time intervals, until the completion of the decontamination process. The conversion of the two chemical warfare agents (HD and GD) into their decontamination products was also monitored for 24 h.
Collapse
|
22
|
Bajgar J, Kuca K, Kassa J. Inhibition of cholinesterases following percutaneous intoxication with V agents in rats. TOXIN REV 2021. [DOI: 10.1080/15569543.2018.1564773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jiri Bajgar
- Department of Chemistry Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Kassa
- Department of Toxicology and Military Pharmacy Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
Bakr RO, Shahat EA, Elissawy AE, Fayez AM, Eldahshan OA. Evaluation of the hepatoprotective activity of Pulicaria incisa subspecies candolleana and in silico screening of its isolated phenolics. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113767. [PMID: 33444722 DOI: 10.1016/j.jep.2020.113767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 11/05/2020] [Accepted: 12/24/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulicaria incisa sub. candolleana E. Gamal-Eldin (Asteraceae) was traditionally used by Bedouins as a refreshing tea and as hypoglycemic, in gastrointestinal ailments, sinusitis and headache. Recently a great correlation has been established between liver cirrhosis and gastrointestinal dysfunction reflected by abdominal bloating, pain, diarrhea, constipation, besides decreased food intake. So far, the hepatoprotective effect of P. incisa sub. candolleana E. Gamal-Eldin was not studied before although other Pulicaria species have previously shown hepatoprotective and antioxidant effects. AIM OF THE STUDY In this study, we aimed to identify the phytochemical constituents of the P. incisa sub. candolleana E. Gamal-Eldin hydroethanolic extract (PICE), as well as to evaluate the hepatoprotective, anti-inflammatory and antioxidant activities in methotrexate (MTX)- intoxicated rats. Besides, the molecular interaction between the isolated compounds and cyclooxygenase-2 (COX-2) and phospholipase 2 (PLA-2) were assessed by in-silico screening. MATERIAL AND METHODS The main phytoconstituents were characterized using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Vacuum liquid chromatography (VLC) aided by preparative high-performance liquid chromatography (HPLC) were also used to isolate the major phenolics from the hydroethanolic extract. Their structures were elucidated using different spectroscopic analysis methods, including 1D and 2D nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI/MS). The hepatoprotective activity of three doses (100, 250, 500 mg/kg) of PICE in MTX-intoxicated rats was assessed and compared to silymarin as a standard. Additionally, in silico docking study on cyclooxygenase-2 (COX-2) and phospholipase 2 (PLA-2) was performed to justify the anti-inflammatory activity of the isolated compounds. RESULTS Thirteen compounds were tentatively identified, including flavonoids and phenolic acids. Four main isolated compounds were identified as, eugenol-1-O-β-glucoside, 5-O-caffeoylquinic acid, 3, 5-di-O-caffeoylquinic acid and quercetin-3-O-β-glucoside. Treatment of MTX-intoxicated rats with the 250 mg/kg extract reversed the altered levels of biochemical markers of liver damage, ameliorated the oxidant status and reduced the inflammatory mediators, similar to treatment with silymarin. Quercetin-3-O-β-glucoside showed the best docking energy score of -19.12 kcal/mol against COX-2, forming four binding interactions with residues Leu 353, Arg 121, Tyr 356 and Ala 528, followed by 3,5-di-O-caffeoylquinic acid (-18.01 kcal/mol). CONCLUSION This study reveals P. incisa sub. candolleana as a rich source of phenolics including flavonoids, supporting its anti-inflammatory and hepatoprotective effects and suggesting its usage as a promising candidate in inflammatory conditions.
Collapse
Affiliation(s)
- Riham O Bakr
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Esraa A Shahat
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ahmed E Elissawy
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| | - Ahmed M Fayez
- Pharmacology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Center for Drug Discovery Research and Development, Ain Shams University, Egypt.
| |
Collapse
|
24
|
Lumley L, Du F, Marrero-Rosado B, Stone M, Keith ZM, Schultz C, Whitten K, Walker K, Acon-Chen C, Wright L, Shih TM. Soman-induced toxicity, cholinesterase inhibition and neuropathology in adult male Göttingen minipigs. Toxicol Rep 2021; 8:896-907. [PMID: 33996503 PMCID: PMC8095108 DOI: 10.1016/j.toxrep.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
Animal models are essential for evaluating the toxicity of chemical warfare nerve agents (CWNAs) to extrapolate to human risk and are necessary to evaluate the efficacy of medical countermeasures. The Göttingen minipig is increasingly used for toxicological studies because it has anatomical and physiological characteristics that are similar to those of humans. Our objective was to determine whether the minipig would be a useful large animal model to evaluate the toxic effects of soman (GD). We determined the intramuscular (IM) median lethal dose (LD50) of GD in adult male Göttingen minipigs using an up-and-down dosing method. In addition to lethality estimates, we characterized the observable signs of toxicity, blood and tissue cholinesterase (ChE) activity and brain pathology following GD exposure. The 24 h LD50 of GD was estimated to be 4.7 μg/kg, with 95 % confidence limits of 3.6 and 6.3 μg/kg. As anticipated, GD inhibited ChE activity in blood and several tissues. Neurohistopathological analysis showed neurodegeneration and neuroinflammation in survivors exposed to 4.7 μg/kg of GD, including in the primary visual cortex and various thalamic nuclei. These findings suggest that the minipig will be a useful large animal model for assessing drugs to mitigate neuropathological effects of exposure to CWNAs.
Collapse
Affiliation(s)
- Lucille Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Fu Du
- FD NeuroTechnologies, Inc., Columbia, MD, United States
| | - Brenda Marrero-Rosado
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Michael Stone
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Zora-Maya Keith
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Caroline Schultz
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kimberly Whitten
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Katie Walker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Cindy Acon-Chen
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Linnzi Wright
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Tsung-Ming Shih
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
25
|
Zhao Y, Lu F, Zhang Y, Zhang M, Zhao Y, Luo J, Kong H, Qu H. Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice. Int J Nanomedicine 2021; 16:2203-2217. [PMID: 33762821 PMCID: PMC7982445 DOI: 10.2147/ijn.s291670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It is well known that smoking is harmful to health; however, it can also ameliorate anxiety. To date, it is unclear whether any nanoparticles found in cigarette mainstream smoke (CS) contribute to this effect. AIM The aim of this study was to assess the particle composition of CS to identify novel anti-anxiety components. METHODS Carbon dots (CDs) from CS (CS-CDs) were characterised using high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. The anti-anxiety effects of CS-CDs in mouse models were evaluated and confirmed with the elevated plus maze and open-field tests. RESULTS The quantum yield of CS-CDs was 13.74%, with a composition of C, O, and N. In addition, the surface groups contained O-H, C-H, C=O, C-N, N-H, C-O-C, and COO- bonds. Acute toxicity testing revealed that CS-CDs had low in vitro and in vivo toxicity within a certain concentration range. The results of the elevated plus maze and open-field tests showed that CS-CDs had a significant anti-anxiety effect and a certain sedative effect in mice. The mechanism of these effects may be related to the decrease in glutamate levels and promotion of norepinephrine production in the mouse brain, and the decrease in dopamine in mouse serum due to CS-CDs. CONCLUSION CS-CDs may have anti-anxiety and certain sedative effects. This study provides a new perspective for a more comprehensive understanding of the components, properties, and functions of CS. Furthermore, it offers a novel target for the development of smoking cessation treatments, such as nicotine replacement therapy.
Collapse
Affiliation(s)
- Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Fang Lu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yusheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
26
|
Lu YS, Vijayakumar S, Chaix A, Pimentel BR, Bentz KC, Li S, Chan A, Wahl C, Ha JS, Hunka DE, Boss GR, Cohen SM, Sailor MJ. Remote Detection of HCN, HF, and Nerve Agent Vapors Based on Self-Referencing, Dye-Impregnated Porous Silicon Photonic Crystals. ACS Sens 2021; 6:418-428. [PMID: 33263399 DOI: 10.1021/acssensors.0c01931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A one-dimensional photonic crystal is prepared from porous silicon (pSi) and impregnated with a chemically specific colorimetric indicator dye to provide a self-referenced vapor sensor for the selective detection of hydrogen fluoride (HF), hydrogen cyanide (HCN), and the chemical nerve agent diisopropyl fluorophosphate (DFP). The photonic crystal is prepared with two stop bands: one that coincides with the optical absorbance of the relevant activated indicator dye and the other in a spectrally "clear" region, to provide a reference. The inner pore walls of the pSi sample are then modified with octadecylsilane to provide a hydrophobic interior, and the indicator dye of interest is then loaded into the mesoporous matrix. Remote analyte detection is achieved by measurement of the intensity ratio of the two stop bands in the white light reflectance spectrum, which provides a means to reliably detect colorimetric changes in the indicator dye. Indicator dyes were chosen for their specificity for the relevant agents: rhodamine-imidazole (RDI) for HF and DFP, and monocyanocobinamide (MCbi) for HCN. The ratiometric readout allows detection of HF and HCN at concentrations (14 and 5 ppm, respectively) that are below their respective IDLH (immediately dangerous to life and health) concentrations (30 ppm for HF; 50 ppm for HCN); detection of DFP at a concentration of 114 ppb is also demonstrated. The approach is insensitive to potential interferents such as ammonia, hydrogen chloride, octane, and the 43-component mixture of VOCs known as EPA TO-14A, and to variations in relative humidity (20-80% RH). Detection of HF and HCN spiked into the complex mixture EPA TO-14A is demonstrated. The approach provides a general means to construct robust remote detection systems for chemical agents.
Collapse
Affiliation(s)
- Yi-Sheng Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Sanahan Vijayakumar
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Arnaud Chaix
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Brian R. Pimentel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kyle C. Bentz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Charlotte Wahl
- Leidos, 10260 Campus Point Drive, San Diego, California 92121, United States
| | - James S. Ha
- Leidos, 10260 Campus Point Drive, San Diego, California 92121, United States
| | - Deborah E. Hunka
- Leidos, 10260 Campus Point Drive, San Diego, California 92121, United States
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael J. Sailor
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
27
|
Maksimović Ž, Duka D, Bednarčuk N, Škrbić R, Stojiljković M. Onset rate and intensity of signs of organophosphate poisoning related to paraoxon dose and survival in rats. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-31191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Oganophosphorus compounds (OP) bind to acetylcholinesterase (AChE) and inactivate it. In the synaptic cleft, undestroyed and accumulated acetylcholine produce the acute cholinergic effects. The aim of this study was to determine the frequency, speed of onset and intensity of certain signs of paraoxon poisoning depending on dose and outcome of poisoning. Methods: The study was conducted in adult Wistar rats. The median lethal dose (LD50) of paraoxon as well as protective ratio (PR) of atropine (10 mg/kg intramuscularly) was determined. Clinical signs of poisoning were observed: fasciculations, tremor, seizures, ataxia, piloerection, lacrimation, exophthalmos, bizzare/stereotypic behaviour and dyspnoea. The time from paraoxon injection to the first appearance of the sign of poisoning was recorded as well as the intensity of poisoning with evaluation at 10 time intervals throughout the 4 h observational period. Results: The LD50 of paraoxon was 0.33 mg/kg (subcutaneously) and PR of atropine was 2.73. Dose-dependent, piloerection occurred more often (p = 0.009) and at higher intensity (p = 0.016) at higher doses. Fasciculations, tremor, seizures and ataxia occurred significantly earlier at higher doses of paraoxon (p = 0.015, 0.002, 0.021 and 0.016, respectively), as well as the intensity of seizure, tremor and fasciculation. Piloerection (p = 0.002) and seizures occurred more frequently (p = 0.009) in non-survivors. Fasciculations, tremor, seizures and ataxia occurred significantly earlier and at higher intensity in non-survivors (p < 0.001, for all parameters), as well as dyspnoea (p = 0.009 and p = 0.048). In atropine-protected rats, nicotinic effects persevered, so they were the prognostic parameter of the severity of the poisoning. Conclusion: Seizures and fasciculations followed by tremor were strong prognostic parameters of the probability of lethal outcome of paraoxon poisoning. Also, the mentioned poisoning signs were with their intensity and speed of occurrence in a clear positive correlation with the administered dose of paraoxon. Even at high doses of paraoxon, atropine blocked the muscarinic (but not nicotinic) effects and somewhat mitigated the CNS toxic effects.
Collapse
|
28
|
Wang S, Gu M, Luan CC, Wang Y, Gu X, He JH. Biocompatibility and biosafety of butterfly wings for the clinical use of tissue-engineered nerve grafts. Neural Regen Res 2021; 16:1606-1612. [PMID: 33433491 PMCID: PMC8323676 DOI: 10.4103/1673-5374.303041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In a previous study, we used natural butterfly wings as a cell growth matrix for tissue engineering materials and found that the surface of different butterfly wings had different ultramicrostructures, which can affect the qualitative growth of cells and regulate cell growth, metabolism, and gene expression. However, the biocompatibility and biosafety of butterfly wings must be studied. In this study, we found that Sprague-Dawley rat dorsal root ganglion neurons could grow along the structural stripes of butterfly wings, and Schwann cells could normally attach to and proliferate on different species of butterfly wings. The biocompatibility and biosafety of butterfly wings were further examined through subcutaneous implantation in Sprague-Dawley rats, intraperitoneal injection in Institute of Cancer Research mice, intradermal injection in rabbits, and external application to guinea pigs. Our results showed that butterfly wings did not induce toxicity, and all examined animals exhibited normal behaviors and no symptoms, such as erythema or edema. These findings suggested that butterfly wings possess excellent biocompatibility and biosafety and can be used as a type of tissue engineering material. This study was approved by the Experimental Animal Ethics Committee of Jiangsu Province of China (approval No. 20190303-18) on March 3, 2019.
Collapse
Affiliation(s)
- Shu Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei Province, China
| | - Cheng-Cheng Luan
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu Wang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiang-Hong He
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
29
|
Izquierdo PG, O'Connor V, Green AC, Holden-Dye L, Tattersall JEH. C. elegans pharyngeal pumping provides a whole organism bio-assay to investigate anti-cholinesterase intoxication and antidotes. Neurotoxicology 2020; 82:50-62. [PMID: 33176172 DOI: 10.1016/j.neuro.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Inhibition of acetylcholinesterase by either organophosphates or carbamates causes anti-cholinesterase poisoning. This arises through a wide range of neurotoxic effects triggered by the overstimulation of the cholinergic receptors at synapses and neuromuscular junctions. Without intervention, this poisoning can lead to profound toxic effects, including death, and the incomplete efficacy of the current treatments, particularly for oxime-insensitive agents, provokes the need to find better antidotes. Here we show how the non-parasitic nematode Caenorhabditis elegans offers an excellent tool for investigating the acetylcholinesterase intoxication. The C. elegans neuromuscular junctions show a high degree of molecular and functional conservation with the cholinergic transmission that operates in the autonomic, central and neuromuscular synapses in mammals. In fact, the anti-cholinesterase intoxication of the worm's body wall neuromuscular junction has been unprecedented in understanding molecular determinants of cholinergic function in nematodes and other organisms. We extend the use of the model organism's feeding behaviour as a tool to investigate carbamate and organophosphate mode of action. We show that inhibition of the cholinergic-dependent rhythmic pumping of the pharyngeal muscle correlates with the inhibition of the acetylcholinesterase activity caused by aldicarb, paraoxons and DFP exposure. Further, this bio-assay allows one to address oxime dependent reversal of cholinesterase inhibition in the context of whole organism recovery. Interestingly, the recovery of the pharyngeal function after such anti-cholinesterase poisoning represents a sensitive and easily quantifiable phenotype that is indicative of the spontaneous recovery or irreversible modification of the worm acetylcholinesterase after inhibition. These observations highlight the pharynx of C. elegans as a new tractable approach to explore anti-cholinesterase intoxication and recovery with the potential to resolve critical genetic determinants of these neurotoxins' mode of action.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Vincent O'Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - Lindy Holden-Dye
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| |
Collapse
|
30
|
Katyal P, Chu S, Montclare JK. Enhancing organophosphate hydrolase efficacy via protein engineering and immobilization strategies. Ann N Y Acad Sci 2020; 1480:54-72. [PMID: 32814367 DOI: 10.1111/nyas.14451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 01/30/2023]
Abstract
Organophosphorus compounds (OPs), developed as pesticides and chemical warfare agents, are extremely toxic chemicals that pose a public health risk. Of the different detoxification strategies, organophosphate-hydrolyzing enzymes have attracted much attention, providing a potential route for detoxifying those exposed to OPs. Phosphotriesterase (PTE), also known as organophosphate hydrolase (OPH), is one such enzyme that has been extensively studied as a catalytic bioscavenger. In this review, we will discuss the protein engineering of PTE aimed toward improving the activity and stability of the enzyme. In order to make enzyme utilization in OP detoxification more favorable, enzyme immobilization provides an effective means to increase enzyme activity and stability. Here, we present several such strategies that enhance the storage and operational stability of PTE/OPH.
Collapse
Affiliation(s)
- Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, Brooklyn, New York
| | - Stanley Chu
- Department of Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, Brooklyn, New York
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, Brooklyn, New York.,Department of Radiology, New York University Langone Health, New York, New York.,Department of Biomaterials, New York University College of Dentistry, New York, New York.,Department of Chemistry, New York University, New York, New York
| |
Collapse
|
31
|
Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, Gu Y, Xu Y, Chen J, Wu X, Ren F. A Novel Drug Delivery Carrier Comprised of Nimodipine Drug Solution and a Nanoemulsion: Preparation, Characterization, in vitro, and in vivo Studies. Int J Nanomedicine 2020; 15:1161-1172. [PMID: 32110014 PMCID: PMC7036601 DOI: 10.2147/ijn.s226591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Nimodipine (NIMO) is used clinically to treat ischemic damage resulting from subarachnoid hemorrhage. However, clinical application of NIMO is limited by poor aqueous solubility and low safety. To overcome these limitations, a novel two-vial NIMO-loaded nanoemulsion (NIMO-TNE) was designed in this study. Methods NIMO-TNE was prepared by mixing a nimodipine-polyethylene glycol 400 (NIMO-PEG400) solution and a commercially available 20% injectable blank nanoemulsion (BNE). Drug distribution in NIMO-TNE, physical stability, and dilution stability were evaluated in vitro, and pharmacokinetics and pharmacodynamics were evaluated in vivo. Safety was assessed using the hemolysis test and the intravenous irritation test, and acute toxicity of NIMO-TNE was compared with that of commercial Nimotop injection. Results Drug loading (DL) in NIMO-TNE was enhanced 5-fold compared with that in Nimotop injection. The mean particle size of NIMO-TNE was 241.53 ± 1.48 nm. NIMO-TNE and NIMO-TNE diluted in 5% glucose injection and 0.9% sodium chloride was stable for a sufficient duration to allow for clinical use. In addition, NIMO-TNE exhibited a similar pharmacokinetic profile and similar brain ischemia reduction in a rat middle cerebral artery occlusion (MCAO) model compared to Nimotop injection. Furthermore, NIMO-TNE did not induce hemolysis at 37°C, and NIMO-TNE induced less intravenous irritation than Nimotop injection. Moreover, NIMO-TNE could be injected at a 23-fold higher dose than the LD50 of Nimotop injection with no obvious toxicity or side effects. Conclusion NIMO-TNE is a promising formulation suitable for intravenous injection, is easy to prepare, and exhibits excellent safety.
Collapse
Affiliation(s)
- Saixu Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiyong Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiqin Fu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yamin Shi
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Qi Dai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuyan Tang
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yongwei Gu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Youfa Xu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Jianming Chen
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Xin Wu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Jett DA, Spriggs SM. Translational research on chemical nerve agents. Neurobiol Dis 2020; 133:104335. [DOI: 10.1016/j.nbd.2018.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
|
33
|
Poisoning with Soman, an Organophosphorus Nerve Agent, Alters Fecal Bacterial Biota and Urine Metabolites: a Case for Novel Signatures for Asymptomatic Nerve Agent Exposure. Appl Environ Microbiol 2018; 84:AEM.00978-18. [PMID: 30217846 DOI: 10.1128/aem.00978-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
The experimental pathophysiology of organophosphorus (OP) chemical exposure has been extensively reported. Here, we describe an altered fecal bacterial biota and urine metabolome following intoxication with soman, a lipophilic G class chemical warfare nerve agent. Nonanesthetized Sprague-Dawley male rats were subcutaneously administered soman at 0.8 (subseizurogenic) or 1.0 (seizurogenic) of the 50% lethal dose (LD50) and evaluated for signs of toxicity. Animals were stratified based on seizing activity to evaluate effects of soman exposure on fecal bacterial biota and urine metabolites. Soman exposure reshaped fecal bacterial biota by altering Facklamia, Rhizobium, Bilophila, Enterobacter, and Morganella genera of the Firmicutes and Proteobacteria phyla, some of which are known to hydrolyze OP chemicals. However, analogous changes were not observed in the bacterial biota of the ileum, which remained the same irrespective of dose or seizing status of animals after soman intoxication. However, at 75 days after soman exposure, the bacterial biota stabilized and no differences were observed between groups. Interestingly, in considering just the seizing status of animals, we found that the urine metabolomes were markedly different. Leukotriene C4, kynurenic acid, 5-hydroxyindoleacetic acid, norepinephrine, and aldosterone were excreted at much higher rates at 72 h in seizing animals, consistent with early multiorgan involvement during soman poisoning. These findings demonstrate the feasibility of using the dysbiosis of fecal bacterial biota in combination with urine metabolome alterations as forensic evidence for presymptomatic OP exposure temporally to enable administration of neuroprotective therapies of the future.IMPORTANCE The paucity of assays to determine physiologically relevant OP exposure presents an opportunity to explore the use of fecal bacteria as sentinels in combination with urine to assess changes in the exposed host. Recent advances in sequencing technologies and computational approaches have enabled researchers to survey large community-level changes of gut bacterial biota and metabolomic changes in various biospecimens. Here, we profiled changes in fecal bacterial biota and urine metabolome following a chemical warfare nerve agent exposure. The significance of this work is a proof of concept that the fecal bacterial biota and urine metabolites are two separate biospecimens rich in surrogate indicators suitable for monitoring OP exposure. The larger value of such an approach is that assays developed on the basis of these observations can be deployed in any setting with moderate clinical chemistry and microbiology capability. This can enable estimation of the affected radius as well as screening, triage, or ruling out of suspected cases of exposures in mass casualty scenarios, transportation accidents involving hazardous materials, refugee movements, humanitarian missions, and training settings when coupled to an established and validated decision tree with clinical features.
Collapse
|
34
|
Experimental hydrophilic reactivator: bisoxime with three positive charges. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Reymond C, Jaffré N, Taudon N, Menneteau M, Chaussard H, Denis J, Castellarin C, Dhote F, Dorandeu F. Superior efficacy of HI-6 dimethanesulfonate over pralidoxime methylsulfate against Russian VX poisoning in cynomolgus monkeys (Macaca fascicularis). Toxicology 2018; 410:96-105. [PMID: 30218682 DOI: 10.1016/j.tox.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
Abstract
Organophosphorus nerve agents still represent a serious risk to human health. In the French armed forces, the current emergency treatment against OP intoxications is a fully licensed wet-dry dual-chambered autoinjector (Ineurope ®), that contains pralidoxime methylsulfate (2-PAM) to reactivate inhibited acetylcholinesterase (AChE), atropine sulfate (AS) and avizafone chlorhydrate (AVZ). While this treatment is effective against several of the known nerve agents, it shows little efficacy against the Russian VX (VR), one of the most toxic compounds. HI-6 dimethanesulfonate (HI-6 DMS) is an oxime able to reactivate in vitro and in vivo VR-inhibited AChE. To confirm the superiority of HI-6 DMS towards 2-PAM prior to licensing, we compared the two 3-drug-combinations (HI-6 vs 2-PAM, 33 and 18 mg/kg respectively, equimolar doses; AS/AVZ 0.25/0.175 mg/kg respectively) in VR-poisoned cynomolgus macaques, the model required by the French drug regulatory agency. In parallel we performed HI-6 pharmacokinetics analysis using a one compartment model. A better efficacy of the HI-6 DMS combination was clearly observed: up to 5 LD50 of VR (i.m.), a single administration of the HI-6 DMS combination, shortly after the onset of clinical signs, prevented death of the four intoxicated animals. Conversely 2-PAM only prevented death in one out of three subjects exposed to the same amount of VR. As expected with V agents, reinhibition of blood AChE was observed but without any apparent impact on the clinical recovery of the animals. A single administration of the HI-6 DMS combination was still but partially effective at 15 LD50 of VR, allowing a 50% survival rate.
Collapse
Affiliation(s)
- Chloé Reymond
- Institut de Recherche Biomédicale des Armées (IRBA), département de Toxicologie et Risques Chimiques, F-91 220 Brétigny-sur-Orge, France
| | - Nina Jaffré
- Institut de Recherche Biomédicale des Armées (IRBA), département de Toxicologie et Risques Chimiques, F-91 220 Brétigny-sur-Orge, France.
| | - Nicolas Taudon
- Institut de Recherche Biomédicale des Armées (IRBA), département des Plateformes et Recherche Technologique, F-91 220 Brétigny-sur-Orge, France
| | - Mathilde Menneteau
- Institut de Recherche Biomédicale des Armées (IRBA), département de Toxicologie et Risques Chimiques, F-91 220 Brétigny-sur-Orge, France
| | - Hervé Chaussard
- Institut de Recherche Biomédicale des Armées (IRBA), unité Animalerie, F-91 220 Brétigny-sur-Orge, France
| | - Josiane Denis
- Institut de Recherche Biomédicale des Armées (IRBA), département de Toxicologie et Risques Chimiques, F-91 220 Brétigny-sur-Orge, France
| | - Cédric Castellarin
- Institut de Recherche Biomédicale des Armées (IRBA), département des Plateformes et Recherche Technologique, F-91 220 Brétigny-sur-Orge, France
| | - Franck Dhote
- Institut de Recherche Biomédicale des Armées (IRBA), département de Toxicologie et Risques Chimiques, F-91 220 Brétigny-sur-Orge, France
| | - Frédéric Dorandeu
- Institut de Recherche Biomédicale des Armées (IRBA), département de Toxicologie et Risques Chimiques, F-91 220 Brétigny-sur-Orge, France; Ecole du Val-de-Grâce, 1 place Alphonse Laveran, 75230 Paris, France
| |
Collapse
|
36
|
Kuca K, Musilek K, Jun D, Nepovimova E, Soukup O, Korabecny J, França TCC, de Castro AA, Krejcar O, da Cunha EFF, Ramalho TC. Oxime K074 – in vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1485702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tanos C. C. França
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| | | | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Teodorico C. Ramalho
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
37
|
Wilson C, Cooper NJ, Briggs ME, Cooper AI, Adams DJ. Investigating the breakdown of the nerve agent simulant methyl paraoxon and chemical warfare agents GB and VX using nitrogen containing bases. Org Biomol Chem 2018; 16:9285-9291. [DOI: 10.1039/c8ob02475h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A range of nitrogen containing bases was tested for the hydrolysis of a nerve agent simulant, methyl paraoxon (MP), and the chemical warfare agents, GB and VX.
Collapse
Affiliation(s)
- Craig Wilson
- Materials Innovation Factory and Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | | | - Michael E. Briggs
- Materials Innovation Factory and Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Andrew I. Cooper
- Materials Innovation Factory and Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Dave J. Adams
- School of Chemistry
- College of Science and Engineering
- University of Glasgow
- Glasgow
- UK
| |
Collapse
|
38
|
Thors L, Koch M, Wigenstam E, Koch B, Hägglund L, Bucht A. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin. Chem Biol Interact 2017; 273:82-89. [DOI: 10.1016/j.cbi.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/15/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
39
|
Salerno A, Pitault I, Devers T, Pelletier J, Briançon S. Model-based optimization of parameters for degradation reaction of an organophosphorus pesticide, paraoxon, using CeO 2 nanoparticles in water media. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:18-28. [PMID: 28499266 DOI: 10.1016/j.etap.2017.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/24/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
Degradation and body surface decontamination is vital to prevent the skin penetration of paraoxon (POX), an organophosphorus pesticide, and victims poisoning. CeO2 demonstrated a good efficacy for the degradation of POX. The aim of the study was to develop a model which includes the impact of weight of CeO2, POX and diluent volumes on the degradation kinetics. The modelling was realized with rapid and simple experiments carried out in tubes, in aqueous diluent which contained ions in order to be in accordance with in vitro skin decontamination conditions. CeO2 had degraded from 5% (in case of 7.5mmol of POX per gram of CeO2) to 100% (0.002mmol of POX per gram of CeO2) of POX. Different kinetic models were tested. Using the particle aggregation kinetic model, the simulated and experimental data were in a good accordance. It highlighted the importance of particles aggregation due to salts and consistency of the mix on the degradation efficiency of CeO2. The model worked also really well to predict the degradation efficiency of CeO2 powders during in vitro skin experiments. However, it did not correctly forecast with an aqueous decontaminant, containing CeO2.
Collapse
Affiliation(s)
- Alicia Salerno
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100, Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire de Dermopharmacie et Cosmétologie, Institut des Sciences Pharmaceutiques et Biologique, F-69373, Lyon, France
| | - Isabelle Pitault
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100, Villeurbanne, France.
| | - Thierry Devers
- Interfaces Confinement Matériaux et Nanostructures, IUT de Chartres, Université d'Orléans, F-28000, Chartres, France
| | - Jocelyne Pelletier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100, Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire de Dermopharmacie et Cosmétologie, Institut des Sciences Pharmaceutiques et Biologique, F-69373, Lyon, France
| | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100, Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire de Dermopharmacie et Cosmétologie, Institut des Sciences Pharmaceutiques et Biologique, F-69373, Lyon, France
| |
Collapse
|
40
|
Snider TH, Babin MC, Jett DA, Platoff GE, Yeung DT. Toxicity and median effective doses of oxime therapies against percutaneous organophosphorus pesticide and nerve agent challenges in the Hartley guinea pig. J Toxicol Sci 2017; 41:511-21. [PMID: 27432237 DOI: 10.2131/jts.41.511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Anticholinesterases, such as organophosphorus pesticides and warfare nerve agents, present a significant health threat. Onset of symptoms after exposure can be rapid, requiring quick-acting, efficacious therapy to mitigate the effects. The goal of the current study was to identify the safest antidote with the highest therapeutic index (TI = oxime 24-hr LD50/oxime ED50) from a panel of four oximes deemed most efficacious in a previous study. The oximes tested were pralidoxime chloride (2-PAM Cl), MMB4 DMS, HLö-7 DMS, and obidoxime Cl2. The 24-hr median lethal dose (LD50) for the four by intramuscular (IM) injection and the median effective dose (ED50) were determined. In the ED50 study, male guinea pigs clipped of hair received 2x LD50 topical challenges of undiluted Russian VX (VR), VX, or phorate oxon (PHO) and, at the onset of cholinergic signs, IM therapy of atropine (0.4 mg/kg) and varying levels of oxime. Survival was assessed at 3 hr after onset clinical signs. The 3-hr 90th percentile dose (ED90) for each oxime was compared to the guinea pig pre-hospital human-equivalent dose of 2-PAM Cl, 149 µmol/kg. The TI was calculated for each OP/oxime combination. Against VR, MMB4 DMS had a higher TI than HLö-7 DMS, whereas 2-PAM Cl and obidoxime Cl2 were ineffective. Against VX, MMB4 DMS > HLö-7 DMS > 2-PAM Cl > obidoxime Cl2. Against PHO, all performed better than 2-PAM Cl. MMB4 DMS was the most effective oxime as it was the only oxime with ED90 < 149 µmol/kg against all three topical OPs tested.
Collapse
|
41
|
Salerno A, Devers T, Bolzinger MA, Pelletier J, Josse D, Briançon S. In vitro skin decontamination of the organophosphorus pesticide Paraoxon with nanometric cerium oxide CeO 2. Chem Biol Interact 2017; 267:57-66. [DOI: 10.1016/j.cbi.2016.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/25/2022]
|
42
|
Thors L, Lindberg S, Johansson S, Koch B, Koch M, Hägglund L, Bucht A. RSDL decontamination of human skin contaminated with the nerve agent VX. Toxicol Lett 2017; 269:47-54. [PMID: 28179194 DOI: 10.1016/j.toxlet.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 11/19/2022]
Abstract
Dermal exposure to low volatile organophosphorus compounds (OPC) may lead to penetration through the skin and uptake in the blood circulation. Skin decontamination of toxic OPCs, such as pesticides and chemical warfare nerve agents, might therefore be crucial for mitigating the systemic toxicity following dermal exposure. Reactive skin decontamination lotion (RSDL) has been shown to reduce toxic effects in animals dermally exposed to the nerve agent VX. In the present study, an in vitro flow-through diffusion cell was utilized to evaluate the efficacy of RSDL for decontamination of VX exposed to human epidermis. In particular, the impact of timing in the initiation of decontamination and agent dilution in water was studied. The impact of the lipophilic properties of VX in the RSDL decontamination was additionally addressed by comparing chemical degradation in RSDL and decontamination efficacy between the VX and the hydrophilic OPC triethyl phosphonoacetate (TEPA). The epidermal membrane was exposed to 20, 75 or 90% OPC diluted in deionized water and the decontamination was initiated 5, 10, 30, 60 or 120min post-exposure. Early decontamination of VX with RSDL, initiated 5-10min after skin exposure, was very effective. Delayed decontamination initiated 30-60min post-exposure was less effective but still the amount of penetrated agent was significantly reduced, while further delayed start of decontamination to 120min resulted in very low efficacy. Comparing RSDL decontamination of VX with that of TEPA showed that the decontamination efficacy at high agent concentrations was higher for VX. The degradation mechanism of VX and TEPA during decontamination was dissected by 31P NMR spectroscopy of the OPCs following reactions with RSDL and its three nucleophile components. The degradation rate was clearly associated with the high pH of the specific solution investigated; i.e. increased pH resulted in a more rapid degradation. In addition, the solubility of the OPC in RSDL also influenced the degradation rate since the degradation of VX was significantly faster when the NMR analysis was performed in the organic solvent acetonitrile compared to water. In conclusion, we have applied the in vitro flow-through diffusion cell for evaluation of skin decontamination procedures of human epidermis exposed to OPCs. It was demonstrated that early decontamination is crucial for efficient mitigation of epidermal penetration of VX and that almost complete removal of the nerve agent from the skin surface is possible. Our data also indicate that the pH of RSDL together with the solubility of OPC in RSDL are of primary importance for the decontamination efficacy.
Collapse
Affiliation(s)
- L Thors
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden.
| | - S Lindberg
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - S Johansson
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - B Koch
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - M Koch
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - L Hägglund
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - A Bucht
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden; Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
43
|
Chronic Treatment with Naltrexone Prevents Memory Retention Deficits in Rats Poisoned with the Sarin Analog Diisopropylfluorophosphate (DFP) and Treated with Atropine and Pralidoxime. J Med Toxicol 2016; 11:433-8. [PMID: 25925946 DOI: 10.1007/s13181-015-0480-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Humans and rats poisoned with sarin develop chronic neurological disabilities that are not prevented with standardized antidotal therapy. We hypothesized that rats poisoned with the sarin analogue diisopropylfluorophosphate (DFP) and resuscitated with atropine and pralidoxime would have long-term memory deficits that were preventable with naltrexone treatment. Long Evans rats (250-275 g) were randomized to: DFP (N = 8): single subcutaneous (SC) injection of DFP (5 mg/kg). Treatment (N = 9): DFP (5 mg/kg) followed by chronic naltrexone (5 mg/kg/day × 12 weeks). Control (N = 12): single SC injection of isopropyl alcohol, (DFP vehicle) followed by chronic naltrexone (5 mg/kg/day). If toxicity developed after injection, antidotal therapy was initiated with atropine (2 mg/kg) and pralidoxime (25 mg/kg) and repeated as needed. After 12 weeks, rats underwent testing for place learning (acquisition) across 5 days of training using the Morris Water Maze. On day 6 a memory retention test was performed. Statistical analysis was performed using IBM SPSS Statistics. Rats receiving DFP rapidly developed toxicity requiring antidotal rescue. No differences in acquisition were seen between the DFP vs. DFP + naltrexone rats. During memory testing, DFP-poisoned rats spent significantly less time (29.4 ± 2.11 versus 38.5 ± 2.5 s, p < 0.05) and traveled less distance (267 ± 24.6 versus 370 ± 27.5 cm, p < 0.05) in the target quadrant compared to the treatment group. Treatment rats performed as well as control rats (p > 0.05) on the test for memory retention. Poisoning with DFP induced impaired memory retention. Deficits were not prevented by acute rescue with atropine and pralidoxime. Chronic naltrexone treatment led to preserved memory after DFP poisoning.
Collapse
|
44
|
Smith C, Lee R, Moran A, Sipos M. Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs. Neurotoxicol Teratol 2016; 54:36-45. [DOI: 10.1016/j.ntt.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
45
|
Wright LKM, Lee RB, Clarkson ED, Lumley LA. Female rats are less susceptible during puberty to the lethal effects of percutaneous exposure to VX. Toxicol Rep 2015; 3:895-899. [PMID: 28959617 PMCID: PMC5615417 DOI: 10.1016/j.toxrep.2015.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023] Open
Abstract
Nerve agents with low volatility such as VX are primarily absorbed through the skin when released during combat or a terrorist attack. The barrier function of the stratum corneum may be compromised during certain stages of development, allowing VX to more easily penetrate through the skin. However, age-related differences in the lethal potency of VX have yet to be evaluated using the percutaneous (pc) route of exposure. Thus, we estimated the 24 and 48 h median lethal dose for pc exposure to VX in male and female rats during puberty and early adulthood. Pubescent, female rats were less susceptible than both their male and adult counterparts to the lethal effects associated with pc exposure to VX possibly because of hormonal changes during that stage of development. This study emphasizes the need to control for both age and sex when evaluating the toxicological effects associated with nerve agent exposure in the rat model.
Collapse
Key Words
- (AChE), acetylcholinesterase
- (ANOVA), analysis of variance
- (BARDA), Biomedical Advanced Research and Development Authority
- (CI), confidence interval
- (LD50), median lethal dose
- (PND), postnatal day
- (SC), subcutaneous or subcutaneously
- (TEWL), transepidermal water loss
- (USAMRICD), US Army Medical Research Institute of Chemical Defense
- (pc), percutaneous or percutaneously
- Median lethal dose
- Nerve agent
- Percutaneous
- Puberty
- Rat
- VX
- VX (PubChem CID: 39793)
Collapse
Affiliation(s)
- Linnzi K M Wright
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA.,Edgewood Chemical Biological Center, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Robyn B Lee
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Edward D Clarkson
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
46
|
Phillips KF, Deshpande LS. Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness. Neurotoxicology 2015; 52:127-33. [PMID: 26619911 DOI: 10.1016/j.neuro.2015.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/20/2015] [Accepted: 11/22/2015] [Indexed: 02/02/2023]
Abstract
Approximately 175,000-250,000 of the returning veterans from the 1991 Persian Gulf War exhibit chronic multi-symptom illnesses that includes neurologic co-morbidities such as depression, anxiety and cognitive impairments. Amongst a host of causative factors, exposure to low levels of the nerve agent Sarin has been strongly implicated for expression of Gulf War Illness (GWI). Nerve agents similar to pesticides are organophosphate (OP) compounds. There is evidence from civilian population that exposure to OPs such as in agricultural workers and nerve agents such as the survivors and first-responders of the Tokyo subway Sarin gas attack suffer from chronic neurological problems similar to GWI symptoms. Given this unique chemical profile, OPs are ideal to study the effects of nerve agents and develop models of GWI in civilian laboratories. In this study, we used repeated low-dose exposure to OP agent diisopropyl fluorophosphate (DFP) over a 5-day period to approximate the duration and level of Sarin exposure during the Persian Gulf War. We tested the rats at 3-months post DFP exposure. Using a battery of behavioral assays, we observed the presence of symptoms of chronic depression, anxiety and memory problems as characterized by increased immobility time in the Forced Swim Test, anhedonia in the Sucrose Preference Test, anxiety in the Elevated Plus Maze, and spatial memory impairments in the Object Location Test, respectively. Chronic low dose DFP exposure was also associated with hippocampal neuronal damage as characterized by the presence of Fluoro-Jade staining. Given that OP exposure is considered a leading cause of GWI related morbidities, this animal model will be ideally suited to study underlying molecular mechanisms for the expression of GWI neurological symptoms and identify drugs for the effective treatment of GWIs.
Collapse
Affiliation(s)
- Kristin F Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
47
|
Wright LKM, Lee RB, Vincelli NM, Whalley CE, Lumley LA. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages. Toxicol Lett 2015; 241:167-74. [PMID: 26621540 DOI: 10.1016/j.toxlet.2015.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/09/2015] [Accepted: 11/21/2015] [Indexed: 12/17/2022]
Abstract
Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX.
Collapse
Affiliation(s)
- Linnzi K M Wright
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Robyn B Lee
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Nicole M Vincelli
- Edgewood Chemical Biological Center (ECBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Christopher E Whalley
- Edgewood Chemical Biological Center (ECBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA.
| |
Collapse
|
48
|
Rojas A, Ganesh T, Lelutiu N, Gueorguieva P, Dingledine R. Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus. Neuropharmacology 2015; 93:15-27. [PMID: 25656476 PMCID: PMC4387070 DOI: 10.1016/j.neuropharm.2015.01.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/20/2022]
Abstract
Exposure to high levels of organophosphorus compounds (OP) can induce status epilepticus (SE) in humans and rodents via acute cholinergic toxicity, leading to neurodegeneration and brain inflammation. Currently there is no treatment to combat the neuropathologies associated with OP exposure. We recently demonstrated that inhibition of the EP2 receptor for PGE2 reduces neuronal injury in mice following pilocarpine-induced SE. Here, we investigated the therapeutic effects of an EP2 inhibitor (TG6-10-1) in a rat model of SE using diisopropyl fluorophosphate (DFP). We tested the hypothesis that EP2 receptor inhibition initiated well after the onset of DFP-induced SE reduces the associated neuropathologies. Adult male Sprague-Dawley rats were injected with pyridostigmine bromide (0.1 mg/kg, sc) and atropine methylbromide (20 mg/kg, sc) followed by DFP (9.5 mg/kg, ip) to induce SE. DFP administration resulted in prolonged upregulation of COX-2. The rats were administered TG6-10-1 or vehicle (ip) at various time points relative to DFP exposure. Treatment with TG6-10-1 or vehicle did not alter the observed behavioral seizures, however six doses of TG6-10-1 starting 80-150 min after the onset of DFP-induced SE significantly reduced neurodegeneration in the hippocampus, blunted the inflammatory cytokine burst, reduced microglial activation and decreased weight loss in the days after status epilepticus. By contrast, astrogliosis was unaffected by EP2 inhibition 4 d after DFP. Transient treatments with the EP2 antagonist 1 h before DFP, or beginning 4 h after DFP, were ineffective. Delayed mortality, which was low (10%) after DFP, was unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor within a time window that coincides with the induction of cyclooxygenase-2 by DFP is neuroprotective and accelerates functional recovery of rats.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - Thota Ganesh
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nadia Lelutiu
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Paoula Gueorguieva
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Raymond Dingledine
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|