1
|
Liao Y, Li Y, Wang L, Zhang Y, Sang L, Wang Q, Li P, Xiong K, Qiu M, Zhang J. The Injury Progression in Acute Blast-Induced Mild Traumatic Brain Injury in Rats Reflected by Diffusion Tensor Imaging and Immunohistochemical Examination. J Neurotrauma 2024. [PMID: 38877821 DOI: 10.1089/neu.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Diffusion tensor imaging (DTI) has emerged as a promising neuroimaging tool for detecting blast-induced mild traumatic brain injury (bmTBI). However, lack of refined acute-phase monitoring and reliable imaging biomarkers hindered its clinical application in early diagnosis of bmTBI, leading to potential long-term disability of patients. In this study, we used DTI in a rat model of bmTBI generated by exposing to single lateral blast waves (151.16 and 349.75 kPa, lasting 47.48 ms) released in a confined bioshock tube, to investigate whole-brain DTI changes at 1, 3, and 7 days after injury. Combined assessment of immunohistochemical analysis, transmission electron microscopy, and behavioral readouts allowed for linking DTI changes to synchronous cellular damages and identifying stable imaging biomarkers. The corpus callosum (CC) and brainstem were identified as predominantly affected regions, in which reduced fractional anisotropy (FA) was detected as early as the first day after injury, with a maximum decline occurring at 3 days post-injury before returning to near normal levels by 7 days. Axial diffusivity (AD) values within the CC and brainstem also significantly reduced at 3 days post-injury. In contrast, the radial diffusivity (RD) in the CC showed acute elevation, peaking at 3 days after injury before normalizing by the 7-day time point. Damages to nerve fibers, including demyelination and axonal degeneration, progressed in lines with changes in DTI parameters, supporting a real-time macroscopic reflection of microscopic neuronal fiber injury by DTI. The most sensitive biomarker was identified as a decrease in FA, AD, and an increase in RD within the CC on the third day after injury, supporting the diagnostic utility of DTI in cases of bmTBI in the acute phase.
Collapse
Affiliation(s)
- Yalan Liao
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, China
| | - Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Qiannan Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Arora P, Sharma A, Trivedi R, Sharma P, Padhy S, Shah S, Dutta SK, Manda K, Rana P. Lipidomic Analysis Reveals Systemic Alterations in Servicemen Exposed to Repeated Occupational Low-Level Blast Waves. Mil Med 2024:usae268. [PMID: 38776149 DOI: 10.1093/milmed/usae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Occupational exposure to blast is a prevalent risk experienced by military personnel. While low-level exposure may not manifest immediate signs of illness, prolonged and repetitive exposure may result in neurophysiological dysfunction. Such repeated exposure to occupational blasts has been linked to structural and functional modifications in the brain, adversely affecting the performance of servicemen in the field. These neurological changes can give rise to symptoms resembling concussion and contribute to the development of post-traumatic stress disorder. MATERIALS AND METHODS To understand long-term effects of blast exposure, the study was conducted to assess memory function, serum circulatory protein and lipid biomarkers, and associated concussive symptomology in servicemen. Concussion-like symptoms were assessed using the Rivermead Post-Concussion Symptoms Questionnaire (RPSQ) along with memory function using PGI memory scale. The serum protein biomarkers were quantified using a sandwich ELISA assay, and the serum lipid profile was measured using liquid chromatography-mass spectrometer. RESULTS The findings revealed that repeated low-level blast exposure resulted in impaired memory function, accompanied by elevated levels of serum neurofilament light chain (neuroaxonal injury) and C-reactive protein. Furthermore, alterations in the lipid profile were observed, with an increase in lipid species associated with immune activation. These changes collectively point to systemic inflammation, neuronal injury, and memory dysfunction as pathological characteristics of repeated low-level blast exposure. CONCLUSION The results of our preliminary investigation offer valuable insights for further large-scale study and provide a guiding principle that necessitates a suitable mitigation approach to safeguard the health of personnel against blast overpressure.
Collapse
Affiliation(s)
- Palkin Arora
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Apoorva Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Priyanka Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Sankarsan Padhy
- RADAR and Sensor Wing, Proof and Experimental Establishment (PXE), DRDO, Chandipur, Balasore, Odisha 756025, India
| | - Shahnawaj Shah
- RADAR and Sensor Wing, Proof and Experimental Establishment (PXE), DRDO, Chandipur, Balasore, Odisha 756025, India
| | - Suman K Dutta
- Military Wing, Proof and Experimental Establishment (PXE), DRDO, Chandipur, Balasore, Odisha 756025, India
| | - Kailash Manda
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Poonam Rana
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| |
Collapse
|
3
|
Kawauchi S, Yoshida K, Osawa T, Muramatsu Y, Nawashiro H, Karna SP, Gupta RK, Nishidate I, Sato S. Effects of isolated and combined exposure of the brain and lungs to a laser-induced shock wave(s) on physiological and neurological responses in rats. J Neurotrauma 2022; 39:1533-1546. [PMID: 35652331 DOI: 10.1089/neu.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been suggested to be caused by direct head exposure and by torso exposure to a shock wave (thoracic hypotheses). However, it is unclear how torso exposure affects the brain in real-time. This study applied a mild-impulse laser-induced shock wave(s) (LISW[s]) only to the brain (Group 1), lungs (Group 2), or to the brain and lungs (Group 3) in rats. Since LISWs are unaccompanied by a dynamic pressure in principle, the effects of acceleration can be excluded, allowing analysis of the pure primary mechanism. For all rat groups, real-time monitoring of the brain and systemic responses were conducted for up to 1 h postexposure and motor function assessments for up to 7 days postexposure. As previously reported, brain exposure alone caused cortical spreading depolarization (CSD), followed by long-lasting hypoxemia/oligemia in the cortices (Group 1). It was found that even LISW application only to the lungs caused prolonged hypoxemia and mitochondrial dysfunction in the cortices (Group 2). Importantly, CSD and mitochondrial dysfunction were significantly exacerbated by combined exposure (Group 3) compared with those caused by brain exposure alone (Group 1). Motor dysfunction was observed in all groups, but their time courses depended on the exposure schemes. Rats of Group 1 exhibited the most evident motor dysfunction at 1 day postexposure, and it did not change much for up to 7 days postexposure. Alternatively, two groups of rats with lung exposure (Groups 2&3) exhibited continuously aggravated motor functions for up to 7 days postexposure, suggesting different mechanisms for motor dysfunction caused by brain exposure and that caused by lung exposure. As for the reported thoracic hypotheses, our observations seem to support the volumetric blood surge and vago-vagal reflex. Overall, the results of this study indicate the importance of the torso guard to protect the brain.
Collapse
Affiliation(s)
- Satoko Kawauchi
- National Defense Medical College, 13077, Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Tokorozawa, Saitama, Japan, 359-8513;
| | - Keiichiro Yoshida
- National Defense Medical College, 13077, Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan;
| | - Takuya Osawa
- Tokyo University of Agriculture and Technology, Graduate School of Bio-Applications & Systems Engineering, Koganei, Japan;
| | - Yuriko Muramatsu
- National Defense Medical College, 13077, Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan;
| | - Hiroshi Nawashiro
- Tokorozawa Central Hospital, Division of Neurosurgery, Tokorozawa, Japan;
| | - Shashi P Karna
- US Army Combat Capabilities Development Command Army Research Laboratory, Aberdeen Proving Ground, United States;
| | - Raj K Gupta
- US Army Medical Research and Development Command, 19919, DoD Blast Injury Research Program Coordinating Office, Fort Detrick, Maryland, United States;
| | - Izumi Nishidate
- Tokyo University of Agriculture and Technology, Graduate School of Bio-Applications & Systems Engineering, Koganei, Japan;
| | - Shunichi Sato
- National Defense Medical College, 13077, Division of Bioinformation and Therapeutic Systems, Research Institute, 3-2, Namiki, Tokorozawa, Saitama, Japan, 359-8513;
| |
Collapse
|
4
|
Bishop R, Won SJ, Irvine KA, Basu J, Rome ES, Swanson RA. Blast-induced axonal degeneration in the rat cerebellum in the absence of head movement. Sci Rep 2022; 12:143. [PMID: 34996954 PMCID: PMC8741772 DOI: 10.1038/s41598-021-03744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Blast exposure can injure brain by multiple mechanisms, and injury attributable to direct effects of the blast wave itself have been difficult to distinguish from that caused by rapid head displacement and other secondary processes. To resolve this issue, we used a rat model of blast exposure in which head movement was either strictly prevented or permitted in the lateral plane. Blast was found to produce axonal injury even with strict prevention of head movement. This axonal injury was restricted to the cerebellum, with the exception of injury in visual tracts secondary to ocular trauma. The cerebellar axonal injury was increased in rats in which blast-induced head movement was permitted, but the pattern of injury was unchanged. These findings support the contentions that blast per se, independent of head movement, is sufficient to induce axonal injury, and that axons in cerebellar white matter are particularly vulnerable to direct blast-induced injury.
Collapse
Affiliation(s)
- Robin Bishop
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Seok Joon Won
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA.
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA.
| | - Karen-Amanda Irvine
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Jayinee Basu
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Eric S Rome
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Raymond A Swanson
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| |
Collapse
|
5
|
Tong C, Cong P, Liu Y, Shi X, Shi L, Mao S, Zhao Y, Hou M, Liu Y. Tandem Mass Tag-Based Quantitative Proteomic Analysis Reveals Pathways Involved in Brain Injury Induced by Chest Exposure to Shock Waves. Front Mol Neurosci 2021; 14:688050. [PMID: 34630032 PMCID: PMC8496458 DOI: 10.3389/fnmol.2021.688050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Recurrent chest blast exposure can lead to brain inflammation, oxidative stress, and mental disorders in soldiers. However, the mechanism that underlies brain injury caused indirectly by chest blasts remains unclear. It is urgent to find additional reliable biomarkers to reveal the intimate details of the pathogenesis of this phenomenon. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in rat brain at different time points after a chest blast. Data are available via ProteomeXchange with the identifier PXD025204. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Database for Annotation, Visualization and Integrated Discovery (DAVID), and Cytoscape analyses were used to analyze the proteomic profiles of blast-exposed rats. In addition, we performed Western blotting to verify protein levels. We identified 6,931 proteins, of which 255 were differentially expressed and 43, 84, 52, 97, and 49 were identified in brain tissues at 12, 24, 48, and 72 h and 1 week after chest blast exposure, respectively. In this study, the GO, KEGG, Clusters of Orthologous Groups of proteins, and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analyses indicated that brain damage caused by chest blast exposure involved many important biological processes and signaling pathways, such as inflammation, cell adhesion, phagocytosis, neuronal and synaptic damage, oxidative stress, and apoptosis. Furthermore, Western blotting confirmed that these differentially expressed proteins and affected signaling pathways were associated with brain damage caused by chest blast exposure. This study identifies potential protein biomarkers of brain damage caused indirectly by chest blast and new targets for the treatment of this condition.
Collapse
Affiliation(s)
- Changci Tong
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Peifang Cong
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Ying Liu
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Xiuyun Shi
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Lin Shi
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Shun Mao
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | | | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Yunen Liu
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Al-Hajj S, Dhaini HR, Mondello S, Kaafarani H, Kobeissy F, DePalma RG. Beirut Ammonium Nitrate Blast: Analysis, Review, and Recommendations. Front Public Health 2021; 9:657996. [PMID: 34150702 PMCID: PMC8212863 DOI: 10.3389/fpubh.2021.657996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
A massive chemical detonation occurred on August 4, 2020 in the Port of Beirut, Lebanon. An uncontrolled fire in an adjacent warehouse ignited ~2,750 tons of Ammonium Nitrate (AN), producing one of the most devastating blasts in recent history. The blast supersonic pressure and heat wave claimed the lives of 220 people and injured more than 6,500 instantaneously, with severe damage to the nearby dense residential and commercial areas. This review represents one of the in-depth reports to provide a detailed analysis of the Beirut blast and its health and environmental implications. It further reviews prior AN incidents and suggests actionable recommendations and strategies to optimize chemical safety measures, improve emergency preparedness, and mitigate the delayed clinical effects of blast and toxic gas exposures. These recommended actionable steps offer a starting point for government officials and policymakers to build frameworks, adopt regulations, and implement chemical safety protocols to ensure safe storage of hazardous materials as well as reorganizing healthcare system disaster preparedness to improve emergency preparedness in response to similar large-scale disasters and promote population safety. Future clinical efforts should involve detailed assessment of physical injuries sustained by blast victims, with systemic mitigation and possible treatment of late blast effects involving individuals, communities and the region at large.
Collapse
Affiliation(s)
- Samar Al-Hajj
- Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Haytham Kaafarani
- Division of Trauma, Emergency Surgery and Surgical Critical Care. Massachusetts General Hospital, Boston, MA, United States
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, United States
| |
Collapse
|
7
|
Yuan W, Dudley J, Slutsky-Ganesh AB, Leach J, Scheifele P, Altaye M, Barber Foss KD, Diekfuss JD, Rhea CK, Myer GD. White Matter Alteration Following SWAT Explosive Breaching Training and the Moderating Effect of a Neck Collar Device: A DTI and NODDI Study. Mil Med 2021; 186:1183-1190. [PMID: 33939823 DOI: 10.1093/milmed/usab168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Special Weapons and Tactics (SWAT) personnel who practice breaching with blast exposure are at risk for blast-related head trauma. We aimed to investigate the impact of low-level blast exposure on underlying white matter (WM) microstructure based on diffusion tensor imaging (DTI) and neurite orientation and density imaging (NODDI) in SWAT personnel before and after breacher training. Diffusion tensor imaging is an advanced MRI technique sensitive to underlying WM alterations. NODDI is a novel MRI technique emerged recently that acquires diffusion weighted data from multiple shells modeling for different compartments in the microstructural environment in the brain. We also aimed to evaluate the effect of a jugular vein compression collar device in mitigating the alteration of the diffusion properties in the WM as well as its role as a moderator on the association between the diffusion property changes and the blast exposure. MATERIALS AND METHODS Twenty-one SWAT personnel (10 non-collar and 11 collar) completed the breacher training and underwent MRI at both baseline and after blast exposure. Diffusion weighted data were acquired with two shells (b = 1,000, 2,000 s/mm2) on 3T Phillips scanners. Diffusion tensor imaging metrices, including fractional anisotropy, mean, axial, and radial diffusivity, and NODDI metrics, including neurite density index (NDI), isotropic volume fraction (fiso), and orientation dispersion index, were calculated. Tract-based spatial statistics was used in the voxel-wise statistical analysis. Post hoc analyses were performed for the quantification of the pre- to post-blast exposure diffusion percentage change in the WM regions with significant group difference and for the assessment of the interaction of the relationship between blast exposure and diffusion alteration. RESULTS The non-collar group exhibited significant pre- to post-blast increase in NDI (corrected P < .05) in the WM involving the right internal capsule, the right posterior corona radiation, the right posterior thalamic radiation, and the right sagittal stratum. A subset of these regions showed significantly greater alteration in NDI and fiso in the non-collar group when compared with those in the collar group (corrected P < .05). In addition, collar wearing exhibited a significant moderating effect for the alteration of fiso for its association with average peak pulse pressure. CONCLUSIONS Our data provided initial evidence of the impact of blast exposure on WM diffusion alteration based on both DTI and NODDI. The mitigating effect of WM diffusivity changes and the moderating effect of collar wearing suggest that the device may serve as a promising solution to protect WM against blast exposure.
Collapse
Affiliation(s)
- Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexis B Slutsky-Ganesh
- Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - James Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Pete Scheifele
- Department of Communication Sciences and Disorders, University of Cincinnati, College of Allied Health Sciences, Cincinnati, OH 45219, USA.,Department of Medical Education, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kim D Barber Foss
- Emory Sports Performance and Research Center, Flowery Branch, GA 30542, USA
| | - Jed D Diekfuss
- Emory Sports Performance and Research Center, Flowery Branch, GA 30542, USA.,Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher K Rhea
- Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Gregory D Myer
- Emory Sports Performance and Research Center, Flowery Branch, GA 30542, USA.,Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Sports Medicine Center, Atlanta, GA 30329, USA.,The Micheli Center for Sports Injury Prevention, Waltham, MA 02453, USA
| |
Collapse
|
8
|
Tate DF, Dennis EL, Adams JT, Adamson MM, Belanger HG, Bigler ED, Bouchard HC, Clark AL, Delano-Wood LM, Disner SG, Eapen BC, Franz CE, Geuze E, Goodrich-Hunsaker NJ, Han K, Hayes JP, Hinds SR, Hodges CB, Hovenden ES, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Lindsey HM, Morey RA, Newsome MR, Ollinger J, Pugh MJ, Scheibel RS, Shenton ME, Sullivan DR, Taylor BA, Troyanskaya M, Velez C, Wade BS, Wang X, Ware AL, Zafonte R, Thompson PM, Wilde EA. Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines. Brain Imaging Behav 2021; 15:585-613. [PMID: 33409819 PMCID: PMC8035292 DOI: 10.1007/s11682-020-00423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - John T Adams
- Western University of Health Sciences, Pomona, CA, USA
| | - Maheen M Adamson
- Defense and Veterans Brain Injury Center, VA Palo Alto, Palo Alto, CA, USA
- Neurosurgery, Stanford School of Medicine, Stanford, CA, USA
| | - Heather G Belanger
- United States Special Operations Command (USSOCOM), Tampa, FL, USA
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
- St Michaels Inc, Tampa, FL, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Heather C Bouchard
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Alexandra L Clark
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lisa M Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Seth G Disner
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Blessen C Eapen
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- University Medical Center Utrecht, Utrecht, Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Naomi J Goodrich-Hunsaker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Kihwan Han
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Sidney R Hinds
- Department of Defense/United States Army Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Elizabeth S Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Mary Jo Pugh
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Randall S Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Brockton Division, VA Boston Healthcare System, Brockton, MA, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Brian A Taylor
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Benjamin Sc Wade
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, USC, Los Angeles, CA, USA
- Department of Pediatrics, USC, Los Angeles, CA, USA
- Department of Psychiatry, USC, Los Angeles, CA, USA
- Department of Radiology, USC, Los Angeles, CA, USA
- Department of Engineering, USC, Los Angeles, CA, USA
- Department of Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Aravind A, Ravula AR, Chandra N, Pfister BJ. Behavioral Deficits in Animal Models of Blast Traumatic Brain Injury. Front Neurol 2020; 11:990. [PMID: 33013653 PMCID: PMC7500138 DOI: 10.3389/fneur.2020.00990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/29/2020] [Indexed: 01/30/2023] Open
Abstract
Blast exposure has been identified to be the most common cause for traumatic brain injury (TBI) in soldiers. Over the years, rodent models to mimic blast exposures and the behavioral outcomes observed in veterans have been developed extensively. However, blast tube design and varying experimental parameters lead to inconsistencies in the behavioral outcomes reported across research laboratories. This review aims to curate the behavioral outcomes reported in rodent models of blast TBI using shockwave tubes or open field detonations between the years 2008–2019 and highlight the important experimental parameters that affect behavioral outcome. Further, we discuss the role of various design parameters of the blast tube that can affect the nature of blast exposure experienced by the rodents. Finally, we assess the most common behavioral tests done to measure cognitive, motor, anxiety, auditory, and fear conditioning deficits in blast TBI (bTBI) and discuss the advantages and disadvantages of these tests.
Collapse
Affiliation(s)
- Aswati Aravind
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Arun Reddy Ravula
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
10
|
Robinson-Freeman KE, Collins KL, Garber B, Terblanche R, Risling M, Vermetten E, Besemann M, Mistlin A, Tsao JW. A Decade of mTBI Experience: What Have We Learned? A Summary of Proceedings From a NATO Lecture Series on Military mTBI. Front Neurol 2020; 11:836. [PMID: 32982907 PMCID: PMC7477387 DOI: 10.3389/fneur.2020.00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI, also known as a concussion) as a consequence of battlefield blast exposure or blunt force trauma has been of increasing concern to militaries during recent conflicts. This concern is due to the frequency of exposure to improvised explosive devices for forces engaged in operations both in Iraq and Afghanistan coupled with the recognition that mTBI may go unreported or undetected. Blasts can lead to mTBI through a variety of mechanisms. Debate continues as to whether exposure to a primary blast wave alone is sufficient to create brain injury in humans, and if so, exactly how this occurs with an intact skull. Resources dedicated to research in this area have also varied substantially among contributing NATO countries. Most of the research has been conducted in the US, focused on addressing uncertainties in management practices. Development of objective diagnostic tests should be a top priority to facilitate both diagnosis and prognosis, thereby improving management. It is expected that blast exposure and blunt force trauma to the head will continue to be a potential source of injury during future conflicts. An improved understanding of the effects of blast exposure will better enable military medical providers to manage mTBI cases and develop optimal protective measures. Without the immediate pressures that come with a high operational tempo, the time is right to look back at lessons learned, make full use of available data, and modify mitigation strategies with both available evidence and new evidence as it comes to light. Toward that end, leveraging our cooperation with the civilian medical community is critical because the military experience over the past 10 years has led to a renewed interest in many similar issues pertaining to mTBI in the civilian world. Such cross-fertilization of knowledge will undoubtedly benefit all. This paper highlights similarities and differences in approach to mTBI patient care in NATO and partner countries and provides a summary of and lessons learned from a NATO lecture series on the topic of mTBI, demonstrating utility of having patients present their experiences to a medical audience, linking practical clinical care to policy approaches.
Collapse
Affiliation(s)
| | - Kassondra L Collins
- Department of Physical Therapy, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryan Garber
- Research and Analysis Section, Directorate of Mental Health, Canadian Forces Health Services Group, Ottawa, ON, Canada
| | - Ronel Terblanche
- Centre for Mental and Cognitive Health, DMRC Headey Court, Epsom, United Kingdom
| | - Marten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Eric Vermetten
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Markus Besemann
- Physical Medicine and Rehabilitation, Canadian Forces Health Services Group, Ottawa, ON, Canada
| | - Alan Mistlin
- Centre for Mental and Cognitive Health, DMRC Headey Court, Epsom, United Kingdom
| | - Jack W Tsao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| |
Collapse
|
11
|
Skotak M, Townsend MT, Ramarao KV, Chandra N. A Comprehensive Review of Experimental Rodent Models of Repeated Blast TBI. Front Neurol 2019; 10:1015. [PMID: 31611839 PMCID: PMC6776622 DOI: 10.3389/fneur.2019.01015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
We reviewed the relevant literature delineating advances in the development of the experimental models of repeated blast TBI (rbTBI). It appears this subject is a relatively unexplored area considering the first work published in 2007 and the bulk of peer-reviewed papers was published post-2011. There are merely 34 papers published to date utilizing rodent rbTBI models. We performed an analysis and extracted basic parameters to capture the characteristics of the exposure conditions (the blast intensity, inter-exposure interval and the number of exposures), the age and weight of the animal models most commonly used in the studies, and their endpoints. Our analysis revealed three strains of rodents are predominantly used: Sprague Dawley and Long Evans rats and wild type (C57BL/6J) mice, and young adult animals 8 to 12-week-old are a preferred choice. Typical exposure conditions are the following: (1) peak overpressure in the 27–145 kPa (4–21 psi) range, (2) number of exposures: 2 (13.9%), 3 (63.9%), 5 (16.7%), or 12 (5.6%) with a single exposure used for a baseline comparison in 41.24% of the studies. Two inter-exposure interval durations were used: (1) short (1–30 min.) and (2) extended (24 h) between consecutive shock wave exposures. The experiments included characterization of repeated blast exposure effects on auditory, ocular and neurological function, with a focus on brain etiology in most of the published work. We present an overview of major histopathological findings, which are supplemented by studies implementing MRI (DTI) and behavioral changes after rbTBI in the acute (1–7 days post-injury), subacute (7–14 days), and chronic (>14 days) phases post-injury.
Collapse
Affiliation(s)
- Maciej Skotak
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Molly T Townsend
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Kakulavarapu V Ramarao
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
12
|
Weppner J, Linsenmeyer M, Ide W. Military Blast-Related Traumatic Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2019. [DOI: 10.1007/s40141-019-00241-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Cao R, Zhang C, Mitkin VV, Lankford MF, Li J, Zuo Z, Meyer CH, Goyne CP, Ahlers ST, Stone JR, Hu S. Comprehensive Characterization of Cerebrovascular Dysfunction in Blast Traumatic Brain Injury Using Photoacoustic Microscopy. J Neurotrauma 2019; 36:1526-1534. [PMID: 30501547 DOI: 10.1089/neu.2018.6062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blast traumatic brain injury (bTBI) is a leading contributor to combat-related injuries and death. Although substantial emphasis has been placed on blast-induced neuronal and axonal injuries, co-existing dysfunctions in the cerebral vasculature, particularly the microvasculature, remain poorly understood. Here, we studied blast-induced cerebrovascular dysfunctions in a rat model of bTBI (blast overpressure: 187.8 ± 18.3 kPa). Using photoacoustic microscopy (PAM), we quantified changes in cerebral hemodynamics and metabolism-including blood perfusion, oxygenation, flow, oxygen extraction fraction, and the metabolic rate of oxygen-4 h post-injury. Moreover, we assessed the effect of blast exposure on cerebrovascular reactivity (CVR) to vasodilatory stimulation. With vessel segmentation, we extracted these changes at the single-vessel level, revealing their dependence on vessel type (i.e., artery vs. vein) and diameter. We found that bTBI at this pressure level did not induce pronounced baseline changes in cerebrovascular diameter, blood perfusion, oxygenation, flow, oxygen extraction, and metabolism, except for a slight sO2 increase in small veins (<45 μm) and blood flow increase in large veins (≥45 μm). In contrast, this blast exposure almost abolished CVR, including arterial dilation, flow upregulation, and venous sO2 increase. This study is the most comprehensive assessment of cerebrovascular structure and physiology in response to blast exposure to date. The observed impairment in CVR can potentially cause cognitive decline due to the mismatch between cognitive metabolic demands and vessel's ability to dynamically respond to meet the demands. Also, the impaired CVR can lead to increased vulnerability of the brain to metabolic insults, including hypoxia and ischemia.
Collapse
Affiliation(s)
- Rui Cao
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Chenchu Zhang
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Vladimir V Mitkin
- 2 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia
| | - Miles F Lankford
- 3 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Jun Li
- 4 Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Zhiyi Zuo
- 4 Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Craig H Meyer
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Christopher P Goyne
- 2 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia
| | - Stephen T Ahlers
- 5 Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - James R Stone
- 3 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Song Hu
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
14
|
Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol 2019; 56:5332-5345. [DOI: 10.1007/s12035-018-1454-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
15
|
Wu YT, Adnan A. Damage and Failure of Axonal Microtubule under Extreme High Strain Rate: An In-Silico Molecular Dynamics Study. Sci Rep 2018; 8:12260. [PMID: 30115936 PMCID: PMC6095851 DOI: 10.1038/s41598-018-29804-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 02/01/2023] Open
Abstract
As a major cytoskeleton element of the axon, the breaking of microtubules (MTs) has been considered as a major cause of the axon degeneration. High strain rate loading is considered as one of the key factors in microtubule breaking. Due to the small size of microtubule, the real-time behavior of microtubule breaking is hard to capture. This study employs fully-atomistic molecular dynamics (MD) simulation to determine the failure modes of microtubule under different loadings conditions such as, unidirectional stretching, bending and hydrostatic expansion. For each loading conditions, MT is subjected to extreme high strain rate (108-109 s-1) loading. We argue that such level of high strain rate may be realized during cavitation bubble implosion. For each loading type, we have determined the critical energy for MT rupture. The associated rupture mechanisms are also discussed. We observed that the stretching has the lowest energy barrier to break the MT at the nanosecond time scale. Moreover, the breakage between the dimers starts at ~16% of total strain when stretched, which is much smaller compared to the reported strain-at-failure (50%) for lower strain rate loading. It suggests that MT fails at a significantly smaller strain states when loaded at higher strain rates.
Collapse
Affiliation(s)
- Yuan-Ting Wu
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
16
|
Dougherty AL, MacGregor AJ, Viirre E, Clouser MC, Han PP, Quinn KH, Galarneau MR. Preliminary study of hearing protection and non-impact, blast-induced concussion in US military personnel. Brain Inj 2018; 32:1423-1428. [DOI: 10.1080/02699052.2018.1496476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Amber L. Dougherty
- Medical Modeling, Simulation, and Mission Support Department, Naval Health Research Center, San Diego, CA, USA
| | - Andrew J. MacGregor
- Medical Modeling, Simulation, and Mission Support Department, Naval Health Research Center, San Diego, CA, USA
| | - Erik Viirre
- Department of Cognitive Science, University of California San Diego, San Diego, CA, USA
| | - Mary C. Clouser
- Medical Modeling, Simulation, and Mission Support Department, Naval Health Research Center, San Diego, CA, USA
| | - Peggy P. Han
- Medical Modeling, Simulation, and Mission Support Department, Naval Health Research Center, San Diego, CA, USA
| | - Kimberly H. Quinn
- Medical Modeling, Simulation, and Mission Support Department, Naval Health Research Center, San Diego, CA, USA
| | - Michael R. Galarneau
- Medical Modeling, Simulation, and Mission Support Department, Naval Health Research Center, San Diego, CA, USA
| |
Collapse
|
17
|
Bonnette S, Diekfuss JA, Kiefer AW, Riley MA, Barber Foss KD, Thomas S, DiCesare CA, Yuan W, Dudley J, Reches A, Myer GD. A jugular vein compression collar prevents alterations of endogenous electrocortical dynamics following blast exposure during special weapons and tactical (SWAT) breacher training. Exp Brain Res 2018; 236:2691-2701. [PMID: 29987537 DOI: 10.1007/s00221-018-5328-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
Exposure to explosive blasts places one at risk for traumatic brain injury, especially for special weapons and tactics (SWAT) and military personnel, who may be repeatedly exposed to blasts. In the current study, the effectiveness of a jugular vein compression collar to prevent alterations in resting-state electrocortical activity following a single-SWAT breacher training session was investigated. SWAT team personnel were randomly assigned to wear a compression collar during breacher training and resting state electroencephalography (EEG) was measured within 2 days prior to and two after breacher training. It was hypothesized that significant changes in brain dynamics-indicative of possible underlying neurodegenerative processes-would follow blast exposure for those who did not wear the collar, with ameliorated changes for the collar-wearing group. Using recurrence quantification analysis (RQA) it was found that participants who did not wear the collar displayed longer periods of laminar electrocortical behavior (as indexed by RQA's vertical max line measure) after breacher training. It is proposed that the blast wave exposure for the no-collar group may have reduced the number of pathways, via axonal disruption-for electrical transmission-resulting in the EEG signals becoming trapped in laminar states for longer periods of time. Longer laminar states have been associated with other electrocortical pathologies, such as seizure, and may be important for understanding head trauma and recovery.
Collapse
Affiliation(s)
- Scott Bonnette
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Jed A Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam W Kiefer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Center for Cognition, Action, and Perception, Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| | - Michael A Riley
- Center for Cognition, Action, and Perception, Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| | - Kim D Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Staci Thomas
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher A DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Gregory D Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| |
Collapse
|
18
|
Kuriakose M, Rama Rao KV, Younger D, Chandra N. Temporal and Spatial Effects of Blast Overpressure on Blood-Brain Barrier Permeability in Traumatic Brain Injury. Sci Rep 2018; 8:8681. [PMID: 29875451 PMCID: PMC5989233 DOI: 10.1038/s41598-018-26813-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a “signature wound” in soldiers during training and in combat and has also become a major cause of morbidity in civilians due to increased insurgency. This work examines the role of blood-brain barrier (BBB) disruption as a result of both primary biomechanical and secondary biochemical injury mechanisms in bTBI. Extravasation of sodium fluorescein (NaF) and Evans blue (EB) tracers were used to demonstrate that compromise of the BBB occurs immediately following shock loading, increases in intensity up to 4 hours and returns back to normal in 24 hours. This BBB compromise occurs in multiple regions of the brain in the anterior-posterior direction of the shock wave, with maximum extravasation seen in the frontal cortex. Compromise of the BBB is confirmed by (a) extravasation of tracers into the brain, (b) quantification of tight-junction proteins (TJPs) in the brain and the blood, and (c) tracking specific blood-borne molecules into the brain and brain-specific proteins into the blood. Taken together, this work demonstrates that the BBB compromise occurs as a part of initial biomechanical loading and is a function of increasing blast overpressures.
Collapse
Affiliation(s)
- Matthew Kuriakose
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA.
| | - Daniel Younger
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA.
| |
Collapse
|
19
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
20
|
Davenport ND, Lamberty GJ, Nelson NW, Lim KO, Armstrong MT, Sponheim SR. PTSD confounds detection of compromised cerebral white matter integrity in military veterans reporting a history of mild traumatic brain injury. Brain Inj 2018; 30:1491-1500. [PMID: 27834537 DOI: 10.1080/02699052.2016.1219057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PRIMARY OBJECTIVE Based on high comorbidity between mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) among deployed military service members, this study tested the hypothesis that the presence of PTSD disrupts the association between mTBI and lower white matter integrity identified in non-military samples. Research design/Methods and procedures: In a sample of 124 recent veterans with a range of mTBI and PTSD history, diffusion tensor imaging (DTI) metrics of white matter integrity in 20 regions were compared using multiple mTBI and PTSD contrasts. MAIN OUTCOMES AND RESULTS Civilian mTBI was associated with lower global anisotropy, higher global diffusivity and higher diffusivity in 17 of 20 regions. No main effects of deployment mTBI were observed, but an interaction between deployment mTBI and lifetime PTSD on FA was observed globally and in 10 regions. Impact and blast mTBI demonstrated similar but weaker effects to those of civilian and deployment mTBI, respectively, demonstrating the context of mTBI is more relevant to white matter integrity than mechanism of injury. CONCLUSIONS Overall, a main effect of civilian mTBI indicates long-term disruptions to white matter are likely present, while the interaction between deployment mTBI and PTSD indicates that a history of PTSD alters this relationship.
Collapse
Affiliation(s)
- Nicholas D Davenport
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA
| | - Greg J Lamberty
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA
| | - Nathaniel W Nelson
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,c Graduate School of Professional Psychology, University of St. Thomas , Minneapolis , MN , USA
| | - Kelvin O Lim
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA.,d Department of Psychology , University of Minnesota , Minneapolis , MN , USA
| | | | - Scott R Sponheim
- a Minneapolis Veterans Affairs Health Care System , Minneapolis , MN , USA.,b Department of Psychiatry , University of Minnesota , Minneapolis , MN , USA.,d Department of Psychology , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
21
|
Tang S, Xu S, Fourney WL, Leiste UH, Proctor JL, Fiskum G, Gullapalli RP. Central Nervous System Changes Induced by Underbody Blast-Induced Hyperacceleration: An in Vivo Diffusion Tensor Imaging and Magnetic Resonance Spectroscopy Study. J Neurotrauma 2017; 34:1972-1980. [DOI: 10.1089/neu.2016.4650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
- Core for Translational Research in Imaging at Maryland, University of Maryland, Baltimore, Maryland
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
- Core for Translational Research in Imaging at Maryland, University of Maryland, Baltimore, Maryland
| | - William L. Fourney
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland
- Center of Energetics Concepts Development, University of Maryland, College Park, Maryland
| | - Ulrich H. Leiste
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland
- Center of Energetics Concepts Development, University of Maryland, College Park, Maryland
| | - Julie L. Proctor
- Department of Anesthesiology, University of Maryland, Baltimore, Maryland
- Shock, Trauma, and Anesthesiology Research Center, University of Maryland, Baltimore, Maryland
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland, Baltimore, Maryland
- Shock, Trauma, and Anesthesiology Research Center, University of Maryland, Baltimore, Maryland
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
- Core for Translational Research in Imaging at Maryland, University of Maryland, Baltimore, Maryland
| |
Collapse
|
22
|
De Guzman E, Ament A. Neurobehavioral Management of Traumatic Brain Injury in the Critical Care Setting: An Update. Crit Care Clin 2017; 33:423-440. [PMID: 28601130 DOI: 10.1016/j.ccc.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is an alteration in brain function, or other evidence of brain pathology, caused by an external force. TBI is a major cause of disability and mortality worldwide. Post-traumatic amnesia, or the interval from injury until the patient is oriented and able to form and later recall new memories, is an important index of TBI severity and functional outcome. This article will discuss the updates in the epidemiology, definition and classification, pathophysiology, diagnosis, and management of common acute neuropsychiatric sequelae of traumatic brain injury that the critical care specialist may encounter.
Collapse
Affiliation(s)
- Earl De Guzman
- Psychosomatic Medicine, Department of Psychiatry, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA
| | - Andrea Ament
- Psychosomatic Medicine, Department of Psychiatry, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA.
| |
Collapse
|
23
|
Protection against Blast-Induced Traumatic Brain Injury by Increase in Brain Volume. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2075463. [PMID: 28553646 PMCID: PMC5434276 DOI: 10.1155/2017/2075463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a leading cause of injuries in recent military conflicts and it is responsible for an increased number of civilian casualties by terrorist attacks. bTBI includes a variety of neuropathological changes depending on the intensity of blast overpressure (BOP) such as brain edema, neuronal degeneration, diffuse axonal damage, and vascular dysfunction with neurological manifestations of psychological and cognitive abnormalities. Internal jugular vein (IJV) compression is known to reduce intracranial compliance by causing an increase in brain volume and was shown to reduce brain damage during closed impact-induced TBI. We investigated whether IJV compression can attenuate signs of TBI in rats after exposure to BOP. Animals were exposed to three 110 ± 5 kPa BOPs separated by 30 min intervals. Exposure to BOP resulted in a significant decrease of neuronal nuclei (NeuN) together with upregulation of aquaporin-4 (AQP-4), 3-nitrotyrosine (3-NT), and endothelin 1 receptor A (ETRA) expression in frontal cortex and hippocampus one day following exposures. IJV compression attenuated this BOP-induced increase in 3-NT in cortex and ameliorated the upregulation of AQP-4 in hippocampus. These results suggest that elevated intracranial pressure and intracerebral volume have neuroprotective potential in blast-induced TBI.
Collapse
|
24
|
Ferrero K, Silver M, Cocchetto A, Masliah E, Langford D. CNS findings in chronic fatigue syndrome and a neuropathological case report. J Investig Med 2017; 65:974-983. [PMID: 28386034 DOI: 10.1136/jim-2016-000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 11/04/2022]
Abstract
Chronic fatigue syndrome (CFS) is characterized as a persistent, debilitating complex disorder of unknown etiology, whereby patients suffer from extreme fatigue, which often presents with symptoms that include chronic pain, depression, weakness, mood disturbances, and neuropsychological impairment. In this mini review and case report, we address central nervous system (CNS) involvement of CFS and present neuropathological autopsy findings from a patient who died with a prior diagnosis of CFS. Among the most remarkable pathological features of the case are focal areas of white matter loss, neurite beading, and neuritic pathology of axons in the white matter with axonal spheroids. Atypical neurons displaying aberrant sprouting processes in response to injury are observed throughout cortical gray and white matter. Abundant amyloid deposits identical to AD plaques with accompanying intracellular granular structures are observed as well. Neurofibrillary tangles are also present in the white matter of the frontal cortex, thalamus and basal ganglia. Taken together, these neuropathological findings warrant further studies into CNS disease associated with CFS.
Collapse
Affiliation(s)
- Kimberly Ferrero
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Mitchell Silver
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Alan Cocchetto
- State University of New York at Alfred, Engineering Technologies, Alfred, New York, USA
| | - Eliezer Masliah
- University of California San Diego, La Jolla, California, USA
| | - Dianne Langford
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Singh AK, Ditkofsky NG, York JD, Abujudeh HH, Avery LA, Brunner JF, Sodickson AD, Lev MH. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing. Radiographics 2016; 36:295-307. [PMID: 26761543 DOI: 10.1148/rg.2016150114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries.
Collapse
Affiliation(s)
- Ajay K Singh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| | - Noah G Ditkofsky
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| | - John D York
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| | - Hani H Abujudeh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| | - Laura A Avery
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| | - John F Brunner
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| | - Aaron D Sodickson
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| | - Michael H Lev
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, FND-210, Boston, MA 02114 (A.K.S., H.H.A., L.A.A., M.H.L.); Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (N.G.D.); Department of Radiology, Naval Medical Center, Portsmouth, Va (J.D.Y.); Department of Radiology, University of Southern California, Los Angeles, Calif (J.F.B.); and Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A.D.S.)
| |
Collapse
|
26
|
Affiliation(s)
- Graham Martin
- Accident Compensation Corporation of New Zealand, Wellington, New Zealand
| |
Collapse
|
27
|
Wang H, Zhang YP, Cai J, Shields LBE, Tuchek CA, Shi R, Li J, Shields CB, Xu XM. A Compact Blast-Induced Traumatic Brain Injury Model in Mice. J Neuropathol Exp Neurol 2016; 75:183-96. [PMID: 26802177 DOI: 10.1093/jnen/nlv019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a common injury on the battlefield and often results in permanent cognitive and neurological abnormalities. We report a novel compact device that creates graded bTBI in mice. The injury severity can be controlled by precise pressures that mimic Friedlander shockwave curves. The mouse head was stabilized with a head fixator, and the body was protected with a metal shield; shockwave durations were 3 to 4 milliseconds. Reflective shockwave peak readings at the position of the mouse head were 12 6 2.6 psi, 50 6 20.3 psi, and 100 6 33.1 psi at 100, 200, and 250 psi predetermined driver chamber pressures, respectively. The bTBIs of 250 psi caused 80% mortality, which decreased to 27% with the metal shield. Brain and lung damage depended on the shockwave duration and amplitude. Cognitive deficits were assessed using the Morris water maze, Y-maze, and open-field tests. Pathological changes in the brain included disruption of the blood-brain barrier, multifocal neuronal and axonal degeneration, and reactive gliosis assessed by Evans Blue dye extravasation, silver and Fluoro-Jade B staining, and glial fibrillary acidic protein immunohistochemistry, respectively. Behavioral and pathological changes were injury severity-dependent. This mouse bTBI model may be useful for investigating injury mechanisms and therapeutic strategies associated with bTBI.
Collapse
|
28
|
Mishra V, Skotak M, Schuetz H, Heller A, Haorah J, Chandra N. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Sci Rep 2016; 6:26992. [PMID: 27270403 PMCID: PMC4895217 DOI: 10.1038/srep26992] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.
Collapse
Affiliation(s)
- Vikas Mishra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Maciej Skotak
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Heather Schuetz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - Abi Heller
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - James Haorah
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| |
Collapse
|
29
|
Donnan J, Walsh S, Fortin Y, Gaskin J, Sikora L, Morrissey A, Collins K, MacDonald D. Factors associated with the onset and progression of neurotrauma: A systematic review of systematic reviews and meta-analyses. Neurotoxicology 2016; 61:234-241. [PMID: 27006002 DOI: 10.1016/j.neuro.2016.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 01/07/2023]
Abstract
Neurotrauma, including traumatic brain injury (TBI) and spinal cord injury (SCI), is a preventable condition that imposes an important burden on the Canadian society. In this study, the current evidence on risk factors for the onset and progression of neurotrauma is systematically reviewed and synthesized. Searches of the Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects (DARE), Medline and Medline in Process (via OVID), EMBASE and PsycINFO from inception to February 2013 were conducted to identify relevant systematic reviews and meta-analyses published in English or French. Two referees screened and assessed the quality of the studies using the AMSTAR tool. Thirty-two studies examined at least one risk factor for the onset of neurotrauma. Thirteen studies passed the quality assessment and the majority evaluated the impact of protective equipment in sports. Helmets effectively reduce TBI from bicycling, skiing, snowboarding, ice hockey and motorcycling. There was no evidence of a protective effect of helmets for SCI. No studies contributed evidence on risk factors for the onset of SCI. Of two studies examining risk factors for the progression of neurotrauma, only injury severity was found to be associated with poorer post-injury outcomes. Substantial evidence supports the use of helmets for the prevention of TBI in sports and motorcycling and face shields in ice hockey. Addressing bicycle helmet legislation across Canada may be an effective option for reducing TBI caused by bicycle accidents. Limited evidence on relevant risk factors for spinal cord injuries and neurotrauma progression was available.
Collapse
Affiliation(s)
- Jennifer Donnan
- School of Pharmacy, Memorial University of Newfoundland, Health Science Centre, St. John's, NL, Canada.
| | - Stephanie Walsh
- Newfoundland and Labrador Centre for Health Information, St. John's, NL, Canada
| | - Yannick Fortin
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Janet Gaskin
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Lindsey Sikora
- Health Sciences Library, University of Ottawa, Ottawa, ON, Canada
| | - Andrea Morrissey
- School of Pharmacy, Memorial University of Newfoundland, Health Science Centre, St. John's, NL, Canada
| | - Kayla Collins
- School of Pharmacy, Memorial University of Newfoundland, Health Science Centre, St. John's, NL, Canada
| | - Don MacDonald
- School of Pharmacy, Memorial University of Newfoundland, Health Science Centre, St. John's, NL, Canada
| |
Collapse
|
30
|
Stemper BD, Shah AS, Budde MD, Olsen CM, Glavaski-Joksimovic A, Kurpad SN, McCrea M, Pintar FA. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury. Front Neurol 2016; 7:31. [PMID: 27014184 PMCID: PMC4789366 DOI: 10.3389/fneur.2016.00031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements.
Collapse
Affiliation(s)
- Brian D. Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher M. Olsen
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Frank A. Pintar
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
31
|
Hue CD, Cho FS, Cao S, Nicholls RE, Vogel Iii EW, Sibindi C, Arancio O, Dale Bass CR, Meaney DF, Morrison Iii B. Time Course and Size of Blood-Brain Barrier Opening in a Mouse Model of Blast-Induced Traumatic Brain Injury. J Neurotrauma 2015; 33:1202-11. [PMID: 26414212 DOI: 10.1089/neu.2015.4067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing number of studies have reported blood-brain barrier (BBB) dysfunction after blast-induced traumatic brain injury (bTBI). Despite this evidence, there is limited quantitative understanding of the extent of BBB opening and the time course of damage after blast injury. In addition, many studies do not report kinematic parameters of head motion, making it difficult to separate contributions of primary and tertiary blast-loading. Detailed characterization of blast-induced BBB damage may hold important implications for serum constituents that may potentially cross the compromised barrier and contribute to neurotoxicity, neuroinflammation, and persistent neurologic deficits. Using an in vivo bTBI model, systemic administration of sodium fluorescein (NaFl; 376 Da), Evans blue (EB; 69 kDa when bound to serum albumin), and dextrans (3-500 kDa) was used to estimate the pore size of BBB opening and the time required for recovery. Exposure to blast with 272 ± 6 kPa peak overpressure, 0.69 ± 0.01 ms duration, and 65 ± 1 kPa*ms impulse resulted in significant acute extravasation of NaFl, 3 kDa dextran, and EB. However, there was no significant acute extravasation of 70 kDa or 500 kDa dextrans, and minimal to no extravasation of NaFl, dextrans, or EB 1 day after exposure. This study presents a detailed analysis of the time course and pore size of BBB opening after bTBI, supported by a characterization of kinematic parameters associated with blast-induced head motion.
Collapse
Affiliation(s)
- Christopher D Hue
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Frances S Cho
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Siqi Cao
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Russell E Nicholls
- 2 Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University , New York, New York
| | - Edward W Vogel Iii
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Cosmas Sibindi
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Ottavio Arancio
- 2 Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University , New York, New York
| | - Cameron R Dale Bass
- 3 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - David F Meaney
- 4 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Barclay Morrison Iii
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
32
|
Courtney A, Courtney M. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms. Front Neurol 2015; 6:221. [PMID: 26539158 PMCID: PMC4609847 DOI: 10.3389/fneur.2015.00221] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism.
Collapse
Affiliation(s)
- Amy Courtney
- Exponent Engineering and Scientific Consulting, Philadelphia, PA, USA
| | | |
Collapse
|
33
|
Abstract
OBJECTIVE Use diffusion tensor imaging to investigate white matter alterations associated with blast exposure with or without acute symptoms of traumatic brain injury (TBI). PARTICIPANTS Forty-five veterans of the recent military conflicts included 23 exposed to primary blast without TBI symptoms, 6 having primary blast with mild TBI, and 16 unexposed to blast. DESIGN Cross-sectional case-control study. MAIN MEASURES Neuropsychological testing and diffusion tensor imaging metrics that quantified the number of voxel clusters with altered fractional anisotropy (FA) radial diffusivity, and axial diffusivity, regardless of their spatial location. RESULTS Significantly lower FA and higher radial diffusivity were observed in veterans exposed to primary blast with and without mild TBI relative to blast-unexposed veterans. Voxel clusters of lower FA were spatially dispersed and heterogeneous across affected individuals. CONCLUSION These results suggest that lack of clear TBI symptoms following primary blast exposure may not accurately reflect the extent of brain injury. If confirmed, our findings would argue for supplementing the established approach of making diagnoses based purely on clinical history and observable acute symptoms with novel neuroimaging-based diagnostic criteria that "look below the surface" for pathology.
Collapse
|
34
|
Awwad HO, Gonzalez LP, Tompkins P, Lerner M, Brackett DJ, Awasthi V, Standifer KM. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats. Front Neurol 2015; 6:132. [PMID: 26136722 PMCID: PMC4470265 DOI: 10.3389/fneur.2015.00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/22/2015] [Indexed: 01/15/2023] Open
Abstract
Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6).
Collapse
Affiliation(s)
- Hibah O Awwad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Oklahoma Center for Neuroscience, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Larry P Gonzalez
- Oklahoma Center for Neuroscience, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Department of Psychiatry and Behavioral Sciences, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Paul Tompkins
- Department of Neurosurgery, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Megan Lerner
- Department of Surgery, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Oklahoma City VA Medical Center , Oklahoma City, OK , USA
| | - Daniel J Brackett
- Department of Surgery, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Oklahoma Center for Neuroscience, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| |
Collapse
|
35
|
Ahmed F, Plantman S, Cernak I, Agoston DV. The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice. Front Neurol 2015; 6:114. [PMID: 26124743 PMCID: PMC4464198 DOI: 10.3389/fneur.2015.00114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023] Open
Abstract
Time-dependent changes in blood-based protein biomarkers can help identify the pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits.
Collapse
Affiliation(s)
- Farid Ahmed
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, MD , USA
| | - Stefan Plantman
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Ibolja Cernak
- Faculty of Rehabilitation Medicine, Canadian Military and Veterans' Clinical Rehabilitation Research, University of Alberta , Edmonton, AB , Canada
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, MD , USA ; Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
36
|
Kabu S, Jaffer H, Petro M, Dudzinski D, Stewart D, Courtney A, Courtney M, Labhasetwar V. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury. PLoS One 2015; 10:e0127971. [PMID: 26024446 PMCID: PMC4449023 DOI: 10.1371/journal.pone.0127971] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20–130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies that can prevent the resulting cascade of neurodegeneration.
Collapse
Affiliation(s)
- Shushi Kabu
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Hayder Jaffer
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Marianne Petro
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Dave Dudzinski
- Lerner Research Institute, Medical Device Solutions, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Desiree Stewart
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Amy Courtney
- BTG Research, Colorado Springs, Colorado, United States of America
| | - Michael Courtney
- BTG Research, Colorado Springs, Colorado, United States of America
| | - Vinod Labhasetwar
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Young L, Rule GT, Bocchieri RT, Walilko TJ, Burns JM, Ling G. When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain. Front Neurol 2015; 6:89. [PMID: 25999910 PMCID: PMC4423508 DOI: 10.3389/fneur.2015.00089] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The incidence of traumatic brain injuries (TBI) in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems.
Collapse
Affiliation(s)
- Leanne Young
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., Dallas, TX, USA
- Center for Brain Health, University of Texas at Dallas, Dallas, TX, USA
| | - Gregory T. Rule
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., San Antonio, TX, USA
| | - Robert T. Bocchieri
- Silicon Valley Office, Applied Research Associates, Inc., Los Altos, CA, USA
| | - Timothy J. Walilko
- Rocky Mountain Division, Applied Research Associates, Inc., Littleton, CO, USA
| | - Jennie M. Burns
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., San Antonio, TX, USA
| | - Geoffrey Ling
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
38
|
Elder GA, Stone JR, Ahlers ST. Effects of low-level blast exposure on the nervous system: is there really a controversy? Front Neurol 2014; 5:269. [PMID: 25566175 PMCID: PMC4271615 DOI: 10.3389/fneur.2014.00269] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/29/2014] [Indexed: 12/20/2022] Open
Abstract
High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of "low-level" blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James R. Stone
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| |
Collapse
|
39
|
Wang C, Pahk JB, Balaban CD, Miller MC, Wood AR, Vipperman JS. Computational study of human head response to primary blast waves of five levels from three directions. PLoS One 2014; 9:e113264. [PMID: 25409326 PMCID: PMC4237386 DOI: 10.1371/journal.pone.0113264] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.
Collapse
Affiliation(s)
- Chenzhi Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jae Bum Pahk
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carey D. Balaban
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark C. Miller
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Adam R. Wood
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey S. Vipperman
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
40
|
Zhang J, Carnduff L, Norman G, Josey T, Wang Y, Sawyer TW, Martyniuk CJ, Langlois VS. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury. PLoS One 2014; 9:e104518. [PMID: 25136963 PMCID: PMC4138085 DOI: 10.1371/journal.pone.0104518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023] Open
Abstract
With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis.
Collapse
Affiliation(s)
- Jing Zhang
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Lisa Carnduff
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Grant Norman
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Tyson Josey
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Yushan Wang
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | - Thomas W. Sawyer
- Defence Research and Development Canada – Suffield, Medicine Hat, Alberta, Canada
| | | | - Valerie S. Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
41
|
Simard JM, Pampori A, Keledjian K, Tosun C, Schwartzbauer G, Ivanova S, Gerzanich V. Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain. J Neurotrauma 2014; 31:1292-304. [PMID: 24673157 DOI: 10.1089/neu.2013.3016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) caused by an explosive blast (blast-TBI) is postulated to result, in part, from transvascular transmission to the brain of a hydrodynamic pulse (a.k.a., volumetric blood surge, ballistic pressure wave, hydrostatic shock, or hydraulic shock) induced in major intrathoracic blood vessels. This mechanism of blast-TBI has not been demonstrated directly. We tested the hypothesis that a blast wave impacting the thorax would induce a hydrodynamic pulse that would cause pathological changes in the brain. We constructed a Thorax-Only Blast Injury Apparatus (TOBIA) and a Jugular-Only Blast Injury Apparatus (JOBIA). TOBIA delivered a collimated blast wave to the right lateral thorax of a rat, precluding direct impact on the cranium. JOBIA delivered a blast wave to the fluid-filled port of an extracorporeal intravenous infusion device whose catheter was inserted retrograde into the jugular vein, precluding lung injury. Long Evans rats were subjected to sublethal injury by TOBIA or JOBIA. Blast injury induced by TOBIA was characterized by apnea and diffuse bilateral hemorrhagic injury to the lungs associated with a transient reduction in pulse oximetry signals. Immunolabeling 24 h after injury by TOBIA showed up-regulation of tumor necrosis factor alpha, ED-1, sulfonylurea receptor 1 (Sur1), and glial fibrillary acidic protein in veins or perivenular tissues and microvessels throughout the brain. The perivenular inflammatory effects induced by TOBIA were prevented by ligating the jugular vein and were reproduced using JOBIA. We conclude that blast injury to the thorax leads to perivenular inflammation, Sur1 up-regulation, and reactive astrocytosis resulting from the induction of a hydrodynamic pulse in the vasculature.
Collapse
Affiliation(s)
- J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
42
|
McCabe JT, Moratz C, Liu Y, Burton E, Morgan A, Budinich C, Lowe D, Rosenberger J, Chen H, Liu J, Myers M. Application of high-intensity focused ultrasound to the study of mild traumatic brain injury. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:965-978. [PMID: 24462152 DOI: 10.1016/j.ultrasmedbio.2013.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/13/2013] [Accepted: 11/16/2013] [Indexed: 06/03/2023]
Abstract
Though intrinsically of much higher frequency than open-field blast overpressures, high-intensity focused ultrasound (HIFU) pulse trains can be frequency modulated to produce a radiation pressure having a similar form. In this study, 1.5-MHz HIFU pulse trains of 1-ms duration were applied to intact skulls of mice in vivo and resulted in blood-brain barrier disruption and immune responses (astrocyte reactivity and microglial activation). Analyses of variance indicated that 24 h after HIFU exposure, staining density for glial fibrillary acidic protein was elevated in the parietal and temporal regions of the cerebral cortex, corpus callosum and hippocampus, and staining density for the microglial marker, ionized calcium binding adaptor molecule, was elevated 2 and 24 h after exposure in the corpus callosum and hippocampus (all statistical test results, p < 0.05). HIFU shows promise for the study of some bio-effect aspects of blast-related, non-impact mild traumatic brain injuries in animals.
Collapse
Affiliation(s)
- Joseph T McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA; Graduate Program in Neuroscience, USUHS, Bethesda, Maryland, USA; The Center for Neuroscience and Regenerative Medicine, USUHS, Bethesda, Maryland, USA.
| | - Chantal Moratz
- Graduate Program in Neuroscience, USUHS, Bethesda, Maryland, USA; The Center for Neuroscience and Regenerative Medicine, USUHS, Bethesda, Maryland, USA; Department of Medicine, USUHS, Bethesda, Maryland, USA
| | - Yunbo Liu
- Center for Devices and Radiological Health, Food and Drug Administration, White Oak, Maryland, USA
| | - Ellen Burton
- The Center for Neuroscience and Regenerative Medicine, USUHS, Bethesda, Maryland, USA; Department of Medicine, USUHS, Bethesda, Maryland, USA
| | - Amy Morgan
- The Center for Neuroscience and Regenerative Medicine, USUHS, Bethesda, Maryland, USA; Department of Medicine, USUHS, Bethesda, Maryland, USA
| | - Craig Budinich
- Graduate Program in Neuroscience, USUHS, Bethesda, Maryland, USA
| | - Dennell Lowe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - John Rosenberger
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - HuaZhen Chen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - Jiong Liu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - Matthew Myers
- Center for Devices and Radiological Health, Food and Drug Administration, White Oak, Maryland, USA
| |
Collapse
|
43
|
Chen Y, Garcia GE, Huang W, Constantini S. The involvement of secondary neuronal damage in the development of neuropsychiatric disorders following brain insults. Front Neurol 2014; 5:22. [PMID: 24653712 PMCID: PMC3949352 DOI: 10.3389/fneur.2014.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022] Open
Abstract
Neuropsychiatric disorders are one of the leading causes of disability worldwide and affect the health of billions of people. Previous publications have demonstrated that neuropsychiatric disorders can cause histomorphological damage in particular regions of the brain. By using a clinical symptom-comparing approach, 55 neuropsychiatric signs or symptoms related usually to 14 types of acute and chronic brain insults were identified and categorized in the present study. Forty percent of the 55 neuropsychiatric signs and symptoms have been found to be commonly shared by the 14 brain insults. A meta-analysis supports existence of the same neuropsychiatric signs or symptoms in all brain insults. The results suggest that neuronal damage might be occurring in the same or similar regions or structures of the brain. Neuronal cell death, neural loss, and axonal degeneration in some parts of the brain (the limbic system, basal ganglia system, brainstem, cerebellum, and cerebral cortex) might be the histomorphological basis that is responsible for the neuropsychiatric symptom clusters. These morphological alterations may be the result of secondary neuronal damage (a cascade of progressive neural injury and neuronal cell death that is triggered by the initial insult). Secondary neuronal damage causes neuronal cell death and neural injury in not only the initial injured site but also remote brain regions. It may be a major contributor to subsequent neuropsychiatric disorders following brain insults.
Collapse
Affiliation(s)
- Yun Chen
- BrightstarTech Inc. , Clarksburg, MD , USA
| | - Gregory E Garcia
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground , Aberdeen, MD , USA
| | - Wei Huang
- Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
44
|
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res 2014; 5:454-71. [PMID: 24493632 DOI: 10.1007/s12975-014-0327-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/09/2013] [Accepted: 01/05/2014] [Indexed: 12/14/2022]
Abstract
The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA,
| | | | | | | | | | | |
Collapse
|
45
|
The Rehabilitation Institute of Chicago Military Traumatic Brain Injury Screening Instrument. J Head Trauma Rehabil 2014; 29:99-107. [DOI: 10.1097/htr.0b013e318294dd37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Prima V, Serebruany VL, Svetlov A, Hayes RL, Svetlov SI. Impact of moderate blast exposures on thrombin biomarkers assessed by calibrated automated thrombography in rats. J Neurotrauma 2013; 30:1881-7. [PMID: 23805797 DOI: 10.1089/neu.2012.2758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe blast exposures are frequently complicated with fatal intracranial hemorrhages. However, many more sustain low level blasts without tissue damage detectable by brain imaging. To investigate effects of nonlethal blast on thrombin-related biomarkers, rats were subjected to two different types of head-directed blast: 1) moderate "composite" blast with strong head acceleration or 2) moderate primary blast, without head acceleration. Thrombin generation (TG) ex vivo after blast was studied by calibrated automated thrombography (CAT). In the same blood samples, we assessed maximal concentration of TG (TGmax), start time, peak time, mean time, and concentrations of protein markers for vascular/hemostatic dysfunctions: integrin α/β, soluble endothelial selectin (sE-selectin), soluble intercellular cell adhesion molecule-1 (sICAM-1), and matrix metalloproteinases (MMP)-2, MMP-8, and MMP-13. Blast remarkably affected all TG indices. In animals exposed to "composite" blast, TGmax peaked at 6 h (∼4.5-fold vs. control), sustained at day 1 (∼3.8-fold increase), and declined to a 2-fold increase over control at day 7 post-blast. After primary blast, TGmax also rose to ∼4.2-fold of control at 6 h, dropped to ∼1.7-fold of control at day 1, and then exhibited a slight secondary increase at 2-fold of control at day 7. Other TG indices did not differ significantly between two types of blast exposure. The changes were also observed in other microvascular/inflammatory/hemostatic biomarkers. Integrin α/β and sICAM-1 levels were elevated after both "composite" and primary blast at 6 h, 1 day, and 7 days. sE-selectin exhibited near normal levels after "composite" blast, but increased significantly at 7 days after primary blast; MMP-2, MMP-8, and MMP-13 slightly rose after "composite" blast and significantly increased (∼2-4-fold) after primary blast. In summary, CAT may have a clinical diagnostic utility in combination with selected set of microvascular/inflammatory biomarkers in patients subjected to low/moderate level blast exposures.
Collapse
|
47
|
Hue CD, Cao S, Haider SF, Vo KV, Effgen GB, Vogel E, Panzer MB, Bass CR“D, Meaney DF, Morrison B. Blood-Brain Barrier Dysfunction after Primary Blast Injury in vitro. J Neurotrauma 2013; 30:1652-63. [DOI: 10.1089/neu.2012.2773] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christopher D. Hue
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Siqi Cao
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Syed F. Haider
- Department of Biology, The City College of New York, New York, New York
| | - Kiet V. Vo
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Gwen B. Effgen
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Edward Vogel
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Matthew B. Panzer
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
48
|
Sosa MAG, De Gasperi R, Paulino AJ, Pricop PE, Shaughness MC, Maudlin-Jeronimo E, Hall AA, Janssen WGM, Yuk FJ, Dorr NP, Dickstein DL, McCarron RM, Chavko M, Hof PR, Ahlers ST, Elder GA. Blast overpressure induces shear-related injuries in the brain of rats exposed to a mild traumatic brain injury. Acta Neuropathol Commun 2013; 1:51. [PMID: 24252601 PMCID: PMC3893550 DOI: 10.1186/2051-5960-1-51] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/06/2013] [Indexed: 01/22/2023] Open
Abstract
Background Blast-related traumatic brain injury (TBI) has been a significant cause of injury in the military operations of Iraq and Afghanistan, affecting as many as 10-20% of returning veterans. However, how blast waves affect the brain is poorly understood. To understand their effects, we analyzed the brains of rats exposed to single or multiple (three) 74.5 kPa blast exposures, conditions that mimic a mild TBI. Results Rats were sacrificed 24 hours or between 4 and 10 months after exposure. Intraventricular hemorrhages were commonly observed after 24 hrs. A screen for neuropathology did not reveal any generalized histopathology. However, focal lesions resembling rips or tears in the tissue were found in many brains. These lesions disrupted cortical organization resulting in some cases in unusual tissue realignments. The lesions frequently appeared to follow the lines of penetrating cortical vessels and microhemorrhages were found within some but not most acute lesions. Conclusions These lesions likely represent a type of shear injury that is unique to blast trauma. The observation that lesions often appeared to follow penetrating cortical vessels suggests a vascular mechanism of injury and that blood vessels may represent the fault lines along which the most damaging effect of the blast pressure is transmitted.
Collapse
|
49
|
Chen Y, Huang W, Constantini S. The Differences between Blast-Induced and Sports-Related Brain Injuries. Front Neurol 2013; 4:119. [PMID: 23966976 PMCID: PMC3743039 DOI: 10.3389/fneur.2013.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yun Chen
- BrightstarTech, Inc. Clarksburg, MD, USA
| | | | | |
Collapse
|
50
|
Rosenfeld JV, McFarlane AC, Bragge P, Armonda RA, Grimes JB, Ling GS. Blast-related traumatic brain injury. Lancet Neurol 2013; 12:882-893. [PMID: 23884075 DOI: 10.1016/s1474-4422(13)70161-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A bomb blast may cause the full severity range of traumatic brain injury (TBI), from mild concussion to severe, penetrating injury. The pathophysiology of blast-related TBI is distinctive, with injury magnitude dependent on several factors, including blast energy and distance from the blast epicentre. The prevalence of blast-related mild TBI in modern war zones has varied widely, but detection is optimised by battlefield assessment of concussion and follow-up screening of all personnel with potential concussive events. There is substantial overlap between post-concussive syndrome and post-traumatic stress disorder, and blast-related mild TBI seems to increase the risk of post-traumatic stress disorder. Post-concussive syndrome, post-traumatic stress disorder, and chronic pain are a clinical triad in this patient group. Persistent impairment after blast-related mild TBI might be largely attributable to psychological factors, although a causative link between repeated mild TBIs caused by blasts and chronic traumatic encephalopathy has not been established. The application of advanced neuroimaging and the identification of specific molecular biomarkers in serum for diagnosis and prognosis are rapidly advancing, and might help to further categorise these injuries.
Collapse
Affiliation(s)
- Jeffrey V Rosenfeld
- Department of Surgery, Monash University, Melbourne, VIC, Australia; Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia; Centre of Excellence in Traumatic Brain Injury Research, National Trauma Research Institute, Melbourne, VIC, Australia.
| | - Alexander C McFarlane
- Centre for Traumatic Stress Studies, University of Adelaide, Adelaide, SA, Australia
| | - Peter Bragge
- Centre of Excellence in Traumatic Brain Injury Research, National Trauma Research Institute, Melbourne, VIC, Australia
| | - Rocco A Armonda
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jamie B Grimes
- Defense and Veterans Brain Injury Center, Silver Spring, MD, USA
| | - Geoffrey S Ling
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|