1
|
Glowa C, Bendinger AL, Euler-Lange R, Peschke P, Brons S, Debus J, Karger CP. Irradiation with Carbon Ions Effectively Counteracts Hypoxia-related Radioresistance in a Rat Prostate Carcinoma. Int J Radiat Oncol Biol Phys 2024; 120:875-883. [PMID: 38750905 DOI: 10.1016/j.ijrobp.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Hypoxia in tumors is associated with increased malignancy and resistance to conventional photon radiation therapy. This study investigated the potential of particle therapy to counteract radioresistance in syngeneic rat prostate carcinoma. METHODS AND MATERIALS Subcutaneously transplanted R3327-HI tumors were irradiated with photons or carbon ions under acute hypoxic conditions, induced by clamping the tumor-supplying artery 10 min before and during irradiation. Dose-response curves were determined for the endpoint "local tumor control within 300 days" and compared with previously published data acquired under oxic conditions. Doses at 50% tumor control probability (TCD50) were used to quantify hypoxia-induced radioresistance relative to that under oxic conditions and also to quantify the increased effectiveness of carbon ions under oxic and hypoxic conditions relative to photons. RESULTS Compared with those under oxic conditions, TCD50 values under hypoxic conditions increased by a factor of 1.53 ± 0.08 for photons and by a factor of 1.28 ± 0.06 for carbon ions (oxygen enhancement ratio). Compared with those for photons, TCD50 values for carbon ions decreased by a factor of 2.08 ± 0.13 under oxic conditions and by a factor of 2.49 ± 0.08 under hypoxic conditions (relative biological effectiveness). While the slope of the photon dose-response curves increased when changing from oxic to hypoxic conditions, the slopes were steeper and remained unchanged for carbon ions. CONCLUSIONS The reduced oxygen enhancement ratio of carbon ions indicated that the required dose increase in hypoxic tumors was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the effect of intertumor heterogeneity on the radiation response. Therefore, carbon ions may confer a significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiation therapy.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alina L Bendinger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; University of Heidelberg, Faculty of Biosciences, Heidelberg, Germany
| | - Rosemarie Euler-Lange
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Department of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
2
|
Parrella G, Magro G, Chalaszczyk A, Rotondi M, Ciocca M, Glimelius L, Fiore MR, Paganelli C, Orlandi E, Molinelli S, Baroni G. Balancing benefits and limitations of linear energy transfer optimization in carbon ion radiotherapy for large sacral chordomas. Phys Imaging Radiat Oncol 2024; 31:100624. [PMID: 39206357 PMCID: PMC11357807 DOI: 10.1016/j.phro.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Background and Purpose A low linear energy transfer (LET) in the target can reduce the effectiveness of carbon ion radiotherapy (CIRT). This study aimed at exploring benefits and limitations of LET optimization for large sacral chordomas (SC) undergoing CIRT. Materials and Methods Seventeen cases were used to tune LET-based optimization, and seven to independently test interfraction plan robustness. For each patient, a reference plan was optimized on biologically-weighted dose cost functions. For the first group, 7 LET-optimized plans were obtained by increasing the gross tumor volume (GTV) minimum LETd (minLETd) in the range 37-55 keV/μm, in steps of 3 keV/μm. The optimal LET-optimized plan (LETOPT) was the one maximizing LETd, while adhering to clinical acceptability criteria. Reference and LETOPT plans were compared through dose and LETd metrics (D x , L x to x% volume) for the GTV, clinical target volume (CTV), and organs at risk (OARs). The 7 held-out cases were optimized setting minLETd to the average GTV L98% of the investigation cohort. Both reference and LETOPT plans were recalculated on re-evaluation CTs and compared. Results GTV L98% increased from (31.8 ± 2.5)keV/μm to (47.6 ± 3.1)keV/μm on the LETOPT plans, while the fraction of GTV receiving over 50 keV/μm increased on average by 36% (p < 0.001), without affecting target coverage goals, or impacting LETd and dose to OARs. The interfraction analysis showed no significant worsening with minLETd set to 48 keV/μm. Conclusion LETd optimization for large SC could boost the LETd in the GTV without significantly compromising plan quality, potentially improving the therapeutic effects of CIRT for large radioresistant tumors.
Collapse
Affiliation(s)
- Giovanni Parrella
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via G.Ponzio 34/5, 20133 Milan, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Agnieszka Chalaszczyk
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Marco Rotondi
- Raysearch Laboratories, Eugeniavägen 18, 113 68 Stockholm, Sweden
| | - Mario Ciocca
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Lars Glimelius
- Raysearch Laboratories, Eugeniavägen 18, 113 68 Stockholm, Sweden
| | - Maria R. Fiore
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via G.Ponzio 34/5, 20133 Milan, Italy
| | - Ester Orlandi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Via A. Brambilla 74, 27100 Pavia, Italy
- Clinical Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 11 27100 Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via G.Ponzio 34/5, 20133 Milan, Italy
| |
Collapse
|
3
|
Domingo Muñoz I, Van Hoey O, Parisi A, Bassler N, Grzanka L, De Saint-Hubert M, Vaniqui A, Olko P, Sądel M, Stolarczyk L, Vestergaard A, Jäkel O, Gardenali Yukihara E, Brage Christensen J. Assessment of fluence- and dose-averaged linear energy transfer with passive luminescence detectors in clinical proton beams. Phys Med Biol 2024; 69:135004. [PMID: 38774985 DOI: 10.1088/1361-6560/ad4e8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
Objective.This work investigates the use of passive luminescence detectors to determine different types of averaged linear energy transfer (LET-) for the energies relevant to proton therapy. The experimental results are compared to reference values obtained from Monte Carlo simulations.Approach.Optically stimulated luminescence detectors (OSLDs), fluorescent nuclear track detectors (FNTDs), and two different groups of thermoluminescence detectors (TLDs) were irradiated at four different radiation qualities. For each irradiation, the fluence- (LET-f) and dose-averaged LET (LET-d) were determined. For both quantities, two sub-types of averages were calculated, either considering the contributions from primary and secondary protons or from all protons and heavier, charged particles. Both simulated and experimental data were used in combination with a phenomenological model to estimate the relative biological effectiveness (RBE).Main results.All types ofLET-could be assessed with the luminescence detectors. The experimental determination ofLET-fis in agreement with reference data obtained from simulations across all measurement techniques and types of averaging. On the other hand,LET-dcan present challenges as a radiation quality metric to describe the detector response in mixed particle fields. However, excluding secondaries heavier than protons from theLET-dcalculation, as their contribution to the luminescence is suppressed by ionization quenching, leads to equal accuracy betweenLET-fandLET-d. Assessment of RBE through the experimentally determinedLET-dvalues agrees with independently acquired reference values, indicating that the investigated detectors can determineLET-with sufficient accuracy for proton therapy.Significance.OSLDs, TLDs, and FNTDs can be used to determineLET-and RBE in proton therapy. With the capability to determine dose through ionization quenching corrections derived fromLET-, OSLDs and TLDs can simultaneously ascertain dose,LET-, and RBE. This makes passive detectors appealing for measurements in phantoms to facilitate validation of clinical treatment plans or experiments related to proton therapy.
Collapse
Affiliation(s)
- Iván Domingo Muñoz
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Niels Bassler
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Leszek Grzanka
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | | | - Ana Vaniqui
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Paweł Olko
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | - Michał Sądel
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jeppe Brage Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
| |
Collapse
|
4
|
Félix-Bautista R, Hamad Y, Yáñez-González T, Ochoa-Parra P, Granja C, Martišíková M, Mairani A, Gehrke T. Towards precise LET measurements based on energy deposition of therapeutic ions in Timepix3 detectors. Phys Med Biol 2024; 69:125030. [PMID: 38815613 DOI: 10.1088/1361-6560/ad5267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Objective.There is an increasing interest in calculating and measuring linear energy transfer (LET) spectra in particle therapy in order to assess their impact in biological terms. As such, the accuracy of the particle fluence energy spectra becomes paramount. This study focuses on quantifying energy depositions of distinct proton, helium, carbon, and oxygen ion beams using a silicon pixel detector developed at CERN to determine LET spectra in silicon.Approach.While detection systems have been investigated in this pursuit, the scarcity of detectors capable of providing per-ion data with high spatial and temporal resolution remains an issue. This gap is where silicon pixel detector technology steps in, enabling online tracking of single-ion energy deposition. The used detector consisted of a 300µm thick silicon sensor operated in partial depletion.Main results.During post-processing, artifacts in the acquired signals were identified and methods for their corrections were developed. Subsequently, a correlation between measured and Monte Carlo-based simulated energy deposition distributions was performed, relying on a two-step recalibration approach based on linear and saturating exponential models. Despite the observed saturation effects, deviations were confined below 7% across the entire investigated range of track-averaged LET values in silicon from 0.77 keVµm-1to 93.16 keVµm-1.Significance.Simulated and measured mean energy depositions were found to be aligned within 7%, after applying artifact corrections. This extends the range of accessible LET spectra in silicon to clinically relevant values and validates the accuracy and reliability of the measurements. These findings pave the way towards LET-based dosimetry through an approach to translate these measurements to LET spectra in water. This will be addressed in a future study, extending functionality of treatment planning systems into clinical routine, with the potential of providing ion-beam therapy of utmost precision to cancer patients.
Collapse
Affiliation(s)
- Renato Félix-Bautista
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yasmin Hamad
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tomás Yáñez-González
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Currently at Faculty of Mechanical Engineering, Leibniz University of Hannover
| | - Pamela Ochoa-Parra
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Carlos Granja
- ADVACAM, Department of Research and Development, U Pergamenky 12, 17000 Prague, Czech Republic
| | - Mária Martišíková
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Tim Gehrke
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Schafasand M, Resch AF, Nachankar A, Góra J, Martino G, Traneus E, Glimelius L, Georg D, Fossati P, Carlino A, Stock M. Dose averaged linear energy transfer optimization for large sacral chordomas in carbon ion therapy. Med Phys 2024; 51:3950-3960. [PMID: 38696546 DOI: 10.1002/mp.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Carbon ion beams are well accepted as densely ionizing radiation with a high linear energy transfer (LET). However, the current clinical practice does not fully exploit the highest possible dose-averaged LET (LETd) and, consequently, the biological potential in the target. This aspect becomes worse in larger tumors for which inferior clinical outcomes and corresponding lower LETd was reported. PURPOSE The vicinity to critical organs in general and the inferior overall survival reported for larger sacral chordomas treated with carbon ion radiotherapy (CIRT), makes the treatment of such tumors challenging. In this work it was aimed to increase the LETd in large volume tumors while maintaining the relative biological effectiveness (RBE)-weighted dose, utilizing the LETd optimization functions of a commercial treatment planning system (TPS). METHODS Ten reference sequential boost carbon ion treatment plans, designed to mimic clinical plans for large sacral chordoma tumors, were generated. High dose clinical target volumes (CTV-HD) larger than250 cm 3 $250 \,{\rm cm}^{3}$ were considered as large targets. The total RBE-weighted median dose prescription with the local effect model (LEM) wasD RBE , 50 % = 73.6 Gy $\textrm {D}_{\rm RBE, 50\%}=73.6 \,{\rm Gy}$ in 16 fractions (nine to low dose and seven to high dose planning target volume). No LETd optimization was performed in the reference plans, while LETd optimized plans used the minimum LETd (Lmin) optimization function in RayStation 2023B. Three different Lmin values were investigated and specified for the seven boost fractions:L min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ ,L min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ andL min = 100 keV / μ m $\textrm {L}_{\rm min}=100 \,{\rm keV}/{\umu }{\rm m}$ . To compare the LETd optimized against reference plans, LETd and RBE-weighted dose based goals similar to and less strict than clinical ones were specified for the target. The goals for the organs at risk (OAR) remained unchanged. Robustness evaluation was studied for eight scenarios (± 3.5 % $\pm 3.5\%$ range uncertainty and± 3 mm $\pm 3 \,{\rm mm}$ setup uncertainty along the main three axes). RESULTS The optimization method withL min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ resulted in an optimal LETd distribution with an average increase ofLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) in the CTV-HD by8.9 ± 1.5 keV / μ m $8.9\pm 1.5 \,{\rm keV}/{\umu }{\rm m}$ (27 % $27\%$ ) (and6.9 ± 1.3 keV / μ m $6.9\pm 1.3 \,{\rm keV}/{\umu }{\rm m}$ (17 % $17\%$ )), without significant difference in the RBE-weighted dose. By allowing± 5 % $\pm 5\%$ over- and under-dosage in the target, theLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) can be increased by11.3 ± 1.2 keV / μ m $11.3\pm 1.2 \,{\rm keV}/{\umu }{\rm m}$ (34 % $34\%$ ) (and11.7 ± 3.4 keV / μ m $11.7\pm 3.4 \,{\rm keV}/{\umu }{\rm m}$ (29 % $29\%$ )), using the optimization parametersL min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ . The pass rate for the OAR goals in the LETd optimized plans was in the same level as the reference plans. LETd optimization lead to less robust plans compared to reference plans. CONCLUSIONS Compared to conventionally optimized treatment plans, the LETd in the target was increased while maintaining the RBE-weighted dose using TPS LETd optimization functionalities. Regularly assessing RBE-weighted dose robustness and acquiring more in-room images remain crucial and inevitable aspects during treatment.
Collapse
Affiliation(s)
- Mansure Schafasand
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Ankita Nachankar
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- ACMIT Gmbh, Wiener Neustadt, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | | | | | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Piero Fossati
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Markus Stock
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
6
|
Kohno R, Koto M, Ikawa H, Lee SH, Sato K, Hashimoto M, Inaniwa T, Shirai T. High-Linear Energy Transfer Irradiation in Clinical Carbon-Ion Beam With the Linear Energy Transfer Painting Technique for Patients With Head and Neck Cancer. Adv Radiat Oncol 2024; 9:101317. [PMID: 38260238 PMCID: PMC10801634 DOI: 10.1016/j.adro.2023.101317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/10/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose Dose-averaged linear energy transfer (LETd) is one of the important factors in determining clinical outcomes for carbon-ion radiation therapy. Innovative LET painting (LP) has been developed as an advanced form of conventional intensity modulated carbon-ion radiation therapy (IMIT) at the QST Hospital. The study had 2 motivations: to increase the minimum LETd (LETdmin) and to improve uniformity of the LETd distribution within the gross tumor volume (GTV) by using LP treatment plans for patients with head and neck cancer while maintaining the relative biologic effectiveness (RBE)-weighted dose coverage within the planning tumor volume (PTV) the same as in the conventional IMIT plan. Methods and Materials The LP treatment plans were designed with the in-house treatment planning system. For the plans, LETd constraints and LETdmin, goal-LETd, and maximum-LETd (LETdmax) constraints for the GTV were added to the conventional dose constraints in the IMIT prescription. For 13 patients with head and neck cancer, the RBE-weighted dose to 90% (D90) and 50% (D50) of the PTV and the LETdmin, mean (LETdmean), and LETdmax values within the GTV in the LP plans were evaluated by comparing them with those in the conventional IMIT plans. Results The LP for 13 patients with head and neck cancer could keep D90s and D50s for the PTV within 1.0% of those by the conventional IMIT. Among the 13 patients, the mean LETdmin of the LP plans for the GTV was 59.2 ± 7.9 keV/μm, whereas that of the IMIT plans was 45.9 ± 6.0 keV/μm. The LP increased the LETdmin to 8 to 24 keV/μm for the GTV compared with IMIT. Conclusions While maintaining the dose coverage to the PTV as comparable to that for IMIT, the LP increased the mean LETdmin to 13.2 keV/μm for the GTV. For a GTV up to 170 cm3, LETd > 44 keV/μm could be achieved using LP, which according to previous studies was associated with lower recurrence. In addition, the LP method delivered more uniform LETd distributions compared with IMIT.
Collapse
Affiliation(s)
- Ryosuke Kohno
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
- Department of Radiologic Sciences, Graduate School of Health and Welfare Sciences, International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Masashi Koto
- QST Hospital, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Sung Hyun Lee
- Department of Heavy Particle Medical Science, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Kana Sato
- Department of Radiology, IUHW Narita Hospital, Chiba, Japan
| | - Mitsuyasu Hashimoto
- Department of Radiologic Sciences, Graduate School of Health and Welfare Sciences, International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Toshiyuki Shirai
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
7
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
8
|
Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist's viewpoint (Part 3): Chapter 3. Clinical research, Chapter 4. Future challenges, Chapter 5. Discussion, and Conclusion. Radiol Phys Technol 2023; 16:443-470. [PMID: 37882992 DOI: 10.1007/s12194-023-00748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Clinical studies of ion beam therapy have been performed at the Lawrence Berkeley Laboratory (LBL), National Institute of Radiological Sciences (NIRS), Gesellschaft für Schwerionenforschung (GSI), and Deutsches Krebsforschungszentrum (DKFZ), in addition to the development of equipment, biophysical models, and treatment planning systems. Although cancers, including brain tumors and pancreatic cancer, have been treated with the Bevalac's neon-ion beam at the LBL (where the first clinical research was conducted), insufficient results were obtained owing to the limited availability of neon-ion beams and immaturity of related technologies. However, the 184-Inch Cyclotron's helium-ion beam yielded promising results for chordomas and chondrosarcomas at the base of the skull. Using carbon-ion beams, NIRS has conducted clinical trials for the treatment of common cancers for which radiotherapy is indicated. Because better results than X-ray therapy results have been obtained for lung, liver, pancreas, and prostate cancers, as well as pelvic recurrences of rectal cancer, the Japanese government recently approved the use of public medical insurance for carbon-ion radiotherapy, except for lung cancer. GSI obtained better results than LBL for bone and soft tissue tumors, owing to dose enhancement enabled by scanning irradiation. In addition, DKFZ compared treatment results of proton and carbon-ion radiotherapy for these tumors. This article summarizes a series of articles (Parts 1-3) and describes future issues of immune ion beam therapy and linear energy transfer optimization.
Collapse
Affiliation(s)
- Masahiro Endo
- Association for Nuclear Technology in Medicine, Nikkei Bldg., 7-16 Nihombashi-Kodemmacho, Chuo-ku, Tokyo, 103-0001, Japan.
| |
Collapse
|
9
|
Fredriksson A, Glimelius L, Bokrantz R. The LET trilemma: Conflicts between robust target coverage, uniform dose, and dose-averaged LET in carbon therapy. Med Phys 2023; 50:7338-7348. [PMID: 37820319 DOI: 10.1002/mp.16771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Linear energy transfer (LET) is closely related to the biological effect of ionizing radiation. Increasing the dose-averaged LET (LETd ) within the target volume has been proposed as a means to improve clinical outcome for hypoxic tumors. However, doing so can lead to reduced robustness to range uncertainty. PURPOSE To quantify the relationship between robust target coverage, target dose uniformity, and LETd , we employ robust optimization using dose-based and LETd -based functions and allow varying amounts of target non-uniformity. METHODS AND MATERIALS Robust carbon therapy optimization is used to create plans for phantom cases with increasing target sizes (radii 1, 3, and 5 cm). First, the influence of respectively range and setup uncertainty on the LETd in the target is studied. Second, we employ strategies allowing overdosage in the clinical target volume (CTV) or gross tumor volume (GTV), which enable increased LETd in the target. The relationship between robust target coverage and LETd in the target is illustrated by tradeoff curves generated by optimization using varying weights for the LETd -based functions. RESULTS As the range uncertainty used in the robust optimization increased from 0% to 5%, the near-minimum nominal LETd decreased by 17%-29% (9-21 keV/µm) for the different target sizes. The effect of increasing setup uncertainty was marginal. Allowing 10% overdosage in the CTV enabled 9%-29% (6-12 keV/µm) increased near-minimum worst case LETd for the different target sizes, compared to uniform dose plans. When 10% overdosage was allowed in the GTV only, the increase was 1%-20% (1-8 keV/µm). CONCLUSIONS There is an inherent conflict between range uncertainty robustness and high LETd in the target, which is aggravated with increasing target size. For large tumors, it is possible to simultaneously achieve two of the three qualities range robustness, uniform dose, and high LETd in the target.
Collapse
|
10
|
Nachankar A, Schafasand M, Carlino A, Hug E, Stock M, Góra J, Fossati P. Planning Strategy to Optimize the Dose-Averaged LET Distribution in Large Pelvic Sarcomas/Chordomas Treated with Carbon-Ion Radiotherapy. Cancers (Basel) 2023; 15:4903. [PMID: 37835598 PMCID: PMC10571585 DOI: 10.3390/cancers15194903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
To improve outcomes in large sarcomas/chordomas treated with CIRT, there has been recent interest in LET optimization. We evaluated 22 pelvic sarcoma/chordoma patients treated with CIRT [large: HD-CTV ≥ 250 cm3 (n = 9), small: HD-CTV < 250 cm3 (n = 13)], DRBE|LEM-I = 73.6 (70.4-73.6) Gy (RBE)/16 fractions, using the local effect model-I (LEM-I) optimization and modified-microdosimetric kinetic model (mMKM) recomputation. We observed that to improve high-LETd distribution in large tumors, at least 27 cm3 (low-LETd region) of HD-CTV should receive LETd of ≥33 keV/µm (p < 0.05). Hence, LETd optimization using 'distal patching' was explored in a treatment planning setting (not implemented clinically yet). Distal-patching structures were created to stop beams 1-2 cm beyond the HD-PTV-midplane. These plans were reoptimized and DRBE|LEM-I, DRBE|mMKM, and LETd were recomputed. Distal patching increased (a) LETd50% in HD-CTV (from 38 ± 3.4 keV/µm to 47 ± 8.1 keV/µm), (b) LETdmin in low-LETd regions of the HD-CTV (from 32 ± 2.3 keV/µm to 36.2 ± 3.6 keV/µm), (c) the GTV fraction receiving LETd of ≥50 keV/µm, (from <10% to >50%) and (d) the high-LETd component in the central region of the GTV, without significant compromise in DRBE distribution. However, distal patching is sensitive to setup/range uncertainties, and efforts to ascertain robustness are underway, before routine clinical implementation.
Collapse
Affiliation(s)
- Ankita Nachankar
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- ACMIT Gmbh, 2700 Wiener Neustadt, Austria
| | - Mansure Schafasand
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Wien, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Antonio Carlino
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Markus Stock
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Piero Fossati
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| |
Collapse
|
11
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Henjum H, Dahle TJ, Mairani A, Pilskog S, Stokkevåg C, Boer CG, Redalen KR, Minn H, Malinen E, Ytre‐Hauge KS. Combined RBE and OER optimization in proton therapy with FLUKA based on EF5-PET. J Appl Clin Med Phys 2023; 24:e14014. [PMID: 37161820 PMCID: PMC10476997 DOI: 10.1002/acm2.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. METHODS A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and β parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2 ). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18 F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER ) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1 ). RESULTS For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. CONCLUSION The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.
Collapse
Affiliation(s)
- Helge Henjum
- Department of Physics and TechnologyUniversity of BergenBergenNorway
| | - Tordis Johnsen Dahle
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Andrea Mairani
- Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)PaviaItaly
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
| | - Sara Pilskog
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Camilla Stokkevåg
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | | | - Kathrine Røe Redalen
- Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Heikki Minn
- Department of Oncology and RadiotherapyTurku University HospitalTurkuFinland
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - Eirik Malinen
- Department of PhysicsUniversity of OsloOsloNorway
- Department of Medical PhysicsOslo University HospitalOsloNorway
| | | |
Collapse
|
13
|
Yagi M, Tsubouchi T, Hamatani N, Takashina M, Saruwatari N, Minami K, Wakisaka Y, Fujitaka S, Hirayama S, Nihongi H, Hasegawa A, Koizumi M, Shimizu S, Ogawa K, Kanai T. Validation of robust radiobiological optimization algorithms based on the mixed beam model for intensity-modulated carbon-ion therapy. PLoS One 2023; 18:e0288545. [PMID: 37506069 PMCID: PMC10381094 DOI: 10.1371/journal.pone.0288545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, treatment planning systems (TPSs) that can compute the intensities of intensity-modulated carbon-ion therapy (IMCT) using scanned carbon-ion beams are limited. In the present study, the computational efficacy of the newly designed IMCT algorithms was analyzed for the first time based on the mixed beam model with respect to the physical and biological doses; moreover, the validity and effectiveness of the robust radiobiological optimization were verified. A dose calculation engine was independently generated to validate a clinical dose determined in the TPS. A biological assay was performed using the HSGc-C5 cell line to validate the calculated surviving fraction (SF). Both spot control (SC) and voxel-wise worst-case scenario (WC) algorithms were employed for robust radiobiological optimization followed by their application in a Radiation Therapy Oncology Group benchmark phantom under homogeneous and heterogeneous conditions and a clinical case for range and position errors. Importantly, for the first time, both SC and WC algorithms were implemented in the integrated TPS platform that can compute the intensities of IMCT using scanned carbon-ion beams for robust radiobiological optimization. For assessing the robustness, the difference between the maximum and minimum values of a dose-volume histogram index in the examined error scenarios was considered as a robustness index. The relative biological effectiveness (RBE) determined by the independent dose calculation engine exhibited a -0.6% difference compared with the RBE defined by the TPS at the isocenter, whereas the measured and the calculated SF were similar. Regardless of the objects, compared with the conventional IMCT, the robust radiobiological optimization enhanced the sensitivity of the examined error scenarios by up to 19% for the robustness index. The computational efficacy of the novel IMCT algorithms was verified according to the mixed beam model with respect to the physical and biological doses. The robust radiobiological optimizations lowered the impact of range and position uncertainties considerably in the examined scenarios. The robustness of the WC algorithm was more enhanced compared with that of the SC algorithm. Nevertheless, the SC algorithm can be used as an alternative to the WC IMCT algorithm with respect to the computational cost.
Collapse
Affiliation(s)
- Masashi Yagi
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka-shi, Osaka, Japan
| | - Toshiro Tsubouchi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka-shi, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka-shi, Osaka, Japan
| | - Masaaki Takashina
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka-shi, Osaka, Japan
| | - Naoto Saruwatari
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | - Yushi Wakisaka
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka-shi, Osaka, Japan
| | | | - Shusuke Hirayama
- Hitachi, Ltd., Research & Development Group, Hitachi-shi, Ibaraki, Japan
| | - Hideaki Nihongi
- Hitachi, Ltd., Healthcare Innovation Division/Healthcare Business Division, Kashiwa-shi, Chiba, Japan
| | - Azusa Hasegawa
- Department of Radiation Oncology, Osaka Heavy Ion Therapy Center, Osaka-shi, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | - Shinichi Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | - Tatsuaki Kanai
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka-shi, Osaka, Japan
| |
Collapse
|
14
|
Magrin G, Palmans H, Stock M, Georg D. State-of-the-art and potential of experimental microdosimetry in ion-beam therapy. Radiother Oncol 2023; 182:109586. [PMID: 36842667 DOI: 10.1016/j.radonc.2023.109586] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
In radiotherapy, radiation-quality should be an expression of the biological and physical characteristics of ionizing radiation such as spatial distribution of ionization or energy deposition. Linear energy transfer (LET) and lineal energy (y) are two descriptors used to quantify the radiation quality. These two quantities are connected and exhibit similar features. In ion-beam therapy (IBT), lineal energy can be measured with microdosimeters, which are specifically designed to cope with the high fluence of particles in clinical beams, while the quantification of LET is generally based on calculations. In pre-clinical studies, microdosimetric spectra are used for the indirect determination of relative biological effectiveness (RBE), e.g., using the microdosimetric kinetic model (MKM) or biophysical response functions. In this context it is important to consider saturation effects, which occur when the highest values of y become less biologically relevant compared to the relative contribution they make to the physical dose. Recent clinical data suggests that local tumor control and normal tissue effects can be linked to macroscopic and microscopic dosimetry parameters. In particular, positive clinical outcomes have been correlated to the highest LET values in the density distribution, and there is no evident link to the saturation discussed above. A systematic collection of microdosimetric information in combination with clinical data in retrospective studies may clarify the role of radiation quality at the highest LET. In the clinical setting, microdosimetry is not widely used yet, despite its potential to be linked with LET by experimentally-determined y values. Through this connection, both play an important role in complex therapy techniques such as intensity modulated particle therapy (IMPT), LET-painting and multi-ion optimization. This review summarizes the current state of microdosimetry for IBT and its potential, as well as research and development needed to make experimental microdosimetry a mature procedure in a clinical context.
Collapse
Affiliation(s)
- Giulio Magrin
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Hugo Palmans
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; National Physical Laboratory, Teddington, UK
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Karl Landsteiner Universität, Krems, Austria
| | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Medical University of Vienna, Austria.
| |
Collapse
|
15
|
Schafasand M, Resch AF, Traneus E, Glimelius L, Fossati P, Stock M, Gora J, Georg D, Carlino A. Technical note: In silico benchmarking of the linear energy transfer-based functionalities for carbon ion beams in a commercial treatment planning system. Med Phys 2023; 50:1871-1878. [PMID: 36534738 DOI: 10.1002/mp.16174] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The increasing number of studies dealing with linear energy transfer (LET)-based evaluation and optimization in the field of carbon ion radiotherapy (CIRT) indicates the rising demand for LET implementation in commercial treatment planning systems (TPS). Benchmarking studies could play a key role in detecting (and thus preventing) computation errors prior implementing such functionalities in a TPS. PURPOSE This in silico study was conducted to benchmark the following two LET-related functionalities in a commercial TPS against Monte Carlo simulations: (1) dose averaged LET (LETd ) scoring and (2) physical dose filtration based on LET for future LET-based treatment plan evaluation and optimization studies. METHODS The LETd scoring and LET-based dose filtering (in which the deposited dose can be separated into the dose below and above the user specified LET threshold) functionalities for carbon ions in the research version RayStation (RS) 9A-IonPG TPS (RaySearch Laboratories, Sweden) were benchmarked against GATE/Geant4 simulations. Pristine Bragg peaks (BPs) and cuboid targets, positioned at different depths in a homogeneous water phantom and a setup with heterogeneity were used for this study. RESULTS For all setups (homogeneous and heterogeneous), the mean absolute (and relative) LETd difference was less than 1 keV/ μ $\umu$ m (3.5%) in the plateau and target and less than 2 keV/ μ $\umu$ m (8.3%) in the fragmentation tail. The maximum local differences were 4 and 6 keV/ μ $\umu$ m, respectively. The mean absolute (and relative) physical dose differences for both low- and high-LET doses were less than 1 cGy (1.5%) in the plateau, target and tail with a maximum absolute difference of 2 cGy. CONCLUSIONS No computation error was found in the tested functionalities except for LETd in lateral direction outside the target, showing the limitation of the implemented monochrome model in the tested TPS version.
Collapse
Affiliation(s)
- Mansure Schafasand
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Franz Resch
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | | | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
16
|
Varnava M, Musha A, Tashiro M, Kubo N, Okano N, Kawamura H, Ohno T. Dose-volume constraints for head-and-neck cancer in carbon ion radiotherapy: A literature review. Cancer Med 2023; 12:8267-8277. [PMID: 36799088 PMCID: PMC10134371 DOI: 10.1002/cam4.5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) has been applied in cancer treatment for over 25 years. However, guidelines for dose-volume constraints have not been established yet. The aim of this review is to summarize the dose-volume constraints in CIRT for head-and-neck (HN) cancer that were determined through previous clinical studies based on the Japanese models for relative biological effectiveness (RBE). METHODS A literature review was conducted to identify all constraints determined for HN cancer CIRT that are based on the Japanese RBE models. RESULTS Dose-volume constraints are reported for 17 organs at risk (OARs), including the brainstem, ocular structures, masticatory muscles, and skin. Various treatment planning strategies are also presented for reducing the dose delivered to OARs. CONCLUSIONS The reported constraints will provide assistance during treatment planning to ensure that radiation to OARs is minimized, and thus adverse effects are reduced. Although the constraints are given based on the Japanese RBE models, applying the necessary conversion factors will potentially enable their application by institutions worldwide that use the local effect model for RBE.
Collapse
Affiliation(s)
- Maria Varnava
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Atsushi Musha
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Oral and Maxillofacial Surgery and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Nobuteru Kubo
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Naoko Okano
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
17
|
Guardiola C, Bachiller-Perea D, Kole EMM, Fleta C, Quirion D, De Marzi L, Gómez F. First experimental measurements of 2D microdosimetry maps in proton therapy. Med Phys 2023; 50:570-581. [PMID: 36066129 PMCID: PMC10087596 DOI: 10.1002/mp.15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Empirical data in proton therapy indicate that relative biological effectiveness (RBE) is not constant, and it is directly related to the linear energy transfer (LET). The experimental assessment of LET with high resolution would be a powerful tool for minimizing the LET hot spots in intensity-modulated proton therapy, RBE- or LET-guided evaluation and optimization to achieve biologically optimized proton plans, verifying the theoretical predictions of variable proton RBE models, and so on. This could impact clinical outcomes by reducing toxicities in organs at risk. PURPOSE The present work shows the first 2D LET maps obtained at a proton therapy facility using the double scattering delivery mode in clinical conditions by means of new silicon 3D-cylindrical microdetectors. METHODS The device consists of a matrix of 121 independent silicon-based detectors that have 3D-cylindrical electrodes of 25-µm diameter and 20-µm depth, resulting each one of them in a well-defined micrometric radiation sensitive volume etched inside the silicon. They have been specifically designed for a hadron therapy, improving the performance of current silicon-based microdosimeters. Microdosimetry spectra were obtained at different positions of the Bragg curve by using a water-equivalent phantom along an 89-MeV pristine proton beam generated in the Y1 proton passive scattering beamline of the Orsay Proton Therapy Centre (Institut Curie, France). RESULTS Microdosimetry 2D-maps showing the variation of the lineal energy with depth in the three dimensions were obtained in situ during irradiation at clinical fluence rates (∼108 s-1 cm-2 ) for the first time with a spatial resolution of 200 µm, the highest achieved in the transverse plane so far. The experimental results were cross-checked with Monte Carlo simulations and a good agreement between the spectra shapes was found. The experimental frequency-mean lineal energy values in silicon were 1.858 ± 0.019 keV µm-1 at the entrance, 2.61 ± 0.03 keV µm-1 at the proximal distance, 4.97 ± 0.05 keV µm-1 close to the Bragg peak, and 8.6 ± 0.1 keV µm-1 at the distal edge. They are in good agreement with the expected trends in the literature in clinical proton beams. CONCLUSIONS We present the first 2D microdosimetry maps obtained in situ during irradiation at clinical fluence rates in proton therapy. Our results show that the arrays of 3D-cylindrical microdetectors are a reliable microdosimeter to evaluate LET maps not only in the longitudinal axis of the beam, but also in the transverse plane allowing for LET characterization in three dimensions. This work is a proof of principle showing the capacity of our system to deliver LET 2D maps. This kind of experimental data is needed to validate variable proton RBE models and to optimize LET-guided plans.
Collapse
Affiliation(s)
- Consuelo Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France.,Université de Paris, IJCLab, Orsay, France.,Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, Spain
| | - Diana Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France.,Université de Paris, IJCLab, Orsay, France
| | | | - Celeste Fleta
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, Spain
| | - David Quirion
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, Spain
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus Universitaire, bâtiment 101, Orsay, France.,Institut Curie, PSL Research University, Université Paris-Saclay, INSERM LITO, Campus Universitaire, Orsay, France
| | - Faustino Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Potential benefits of using radioactive ion beams for range margin reduction in carbon ion therapy. Sci Rep 2022; 12:21792. [PMID: 36526710 PMCID: PMC9758201 DOI: 10.1038/s41598-022-26290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Sharp dose gradients and high biological effectiveness make ions such as 12C an ideal tool to treat deep-seated tumors, however, at the same time, sensitive to errors in the range prediction. Tumor safety margins mitigate these uncertainties, but during the irradiation they lead to unavoidable damage to the surrounding healthy tissue. To fully exploit the Bragg peak benefits, a large effort is put into establishing precise range verification methods. Despite positron emission tomography being widely in use for this purpose in 12C therapy, the low count rates, biological washout, and broad activity distribution still limit its precision. Instead, radioactive beams used directly for treatment would yield an improved signal and a closer match with the dose fall-off, potentially enabling precise in vivo beam range monitoring. We have performed a treatment planning study to estimate the possible impact of the reduced range uncertainties, enabled by radioactive 11C ions treatments, on sparing critical organs in tumor proximity. Compared to 12C treatments, (i) annihilation maps for 11C ions can reflect sub- millimeter shifts in dose distributions in the patient, (ii) outcomes of treatment planning with 11C significantly improve and (iii) less severe toxicities for serial and parallel critical organs can be expected.
Collapse
|
19
|
Chen M, Cao W, Yepes P, Guan F, Poenisch F, Xu C, Chen J, Li Y, Vazquez I, Yang M, Zhu XR, Zhang X. Impact of dose calculation accuracy on inverse linear energy transfer optimization for intensity‐modulated proton therapy. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mei Chen
- Department of Radiation Oncology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Wenhua Cao
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Pablo Yepes
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
- Physics and Astronomy Department Rice University Houston Texas USA
| | - Fada Guan
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Falk Poenisch
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Cheng Xu
- Department of Radiation Oncology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiayi Chen
- Department of Radiation Oncology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yupeng Li
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Ivan Vazquez
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Ming Yang
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - X. Ronald Zhu
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Xiaodong Zhang
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
20
|
Garrido-Hernandez G, Henjum H, Høiskar MK, Dahle TJ, Redalen KR, Ytre-Hauge KS. Hypoxia adapted relative biological effectiveness models for proton therapy: a simulation study. Biomed Phys Eng Express 2022; 8:065026. [PMID: 36260973 DOI: 10.1088/2057-1976/ac9b5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
In proton therapy, a constant relative biological effectiveness (RBE) factor of 1.1 is applied although the RBE has been shown to depend on factors including the Linear Energy Transfer (LET). The biological effectiveness of radiotherapy has also been shown to depend on the level of oxygenation, quantified by the oxygen enhancement ratio (OER). To estimate the biological effectiveness across different levels of oxygenation the RBE-OER-weighted dose (ROWD) can be used. To investigate the consistency between different approaches to estimate ROWD, we implemented and compared OER models in a Monte Carlo (MC) simulation tool. Five OER models were explored: Wenzl and Wilkens 2011 (WEN), Tinganelliet al2015 (TIN), Strigariet al2018 (STR), Dahleet al2020 (DAH) and Meinet al2021 (MEI). OER calculations were combined with a proton RBE model and the microdosimetric kinetic model for ROWD calculations. ROWD and OER were studied for a water phantom scenario and a head and neck cancer case using hypoxia PET data for the OER calculation. The OER and ROWD estimates from the WEN, MEI and DAH showed good agreement while STR and TIN gave higher OER values and lower ROWD. The WEN, STR and DAH showed some degree of OER-LET dependency while this was negligible for the MEI and TIN models. The ROWD for all implemented models is reduced in hypoxic regions with an OER of 1.0-2.1 in the target volume. While some variations between the models were observed, all models display a large difference in the estimated dose from hypoxic and normoxic regions. This shows the potential to increase the dose or LET in hypoxic regions or reduce the dose to normoxic regions which again could lead to normal tissue sparing. With reliable hypoxia imaging, RBE-OER weighting could become a useful tool for proton therapy plan optimization.
Collapse
Affiliation(s)
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Marte Kåstad Høiskar
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tordis Johnsen Dahle
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
21
|
Kusano Y, Katoh H, Minohara S, Fujii H, Miyasaka Y, Takayama Y, Imura K, Kusunoki T, Miyakawa S, Kamada T, Serizawa I, Takakusagi Y, Mizoguchi N, Tsuchida K, Yoshida D. Robust treatment planning in scanned carbon-ion radiotherapy for pancreatic cancer: Clinical verification using in-room computed tomography images. Front Oncol 2022; 12:974728. [PMID: 36106121 PMCID: PMC9465304 DOI: 10.3389/fonc.2022.974728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeCarbon-ion beam (C-beam) has a sharp dose distribution called the Bragg peak. Carbon-ion radiation therapy, such as stereotactic body radiotherapy in photon radiotherapy, can be completed in a short period by concentrating the radiation dose on the tumor while minimizing the dose to organs at-risk. However, the stopping position of C-beam is sensitive to density variations along the beam path and such variations can lower the tumor dose as well as cause the delivery of an unexpectedly high dose to the organs at risk. We evaluated the clinical efficacy of a robust planning technique considering gastrointestinal gas (G-gas) to deliver accurate radiation doses in carbon-ion radiotherapy for pancreatic cancer.Materials and methodsWe focused on the computed tomography (CT) value replacement method. Replacement signifies the overwriting of CT values in the CT images. The most effective replacement method for robust treatment planning was determined by verifying the effects of the three replacement patterns. We selected 10 consecutive patients. Pattern 1 replaces the CT value of the G-gas contours with the value of the region without G-gas (P1). This condition indicates a no-gas state. Pattern 2 replaces each gastrointestinal contour using the mean CT value of each contour (P2). The effect of G-gas was included in the replacement value. Pattern 3 indicates no replacement (P3). We analyzed variations in the target coverage (TC) and homogeneity index (HI) from the initial plan using in-room CT images. We then performed correlation analysis on the variations in G-gas, TC, and HI to evaluate the robustness against G-gas.ResultsAnalysis of variations in TC and HI revealed a significant difference between P1 and P3 and between P2 and P3. Although no statistically significant difference was observed between P1 and P2, variations, including the median, tended to be fewer in P2. The correlation analyses for G-gas, TC, and HI showed that P2 was less likely to be affected by G-gas.ConclusionFor a treatment plan that is robust to G-gas, P2 mean replacement method should be used. This method does not necessitate any particular software or equipment, and is convenient to implement in clinical practice.
Collapse
Affiliation(s)
- Yohsuke Kusano
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
- *Correspondence: Yohsuke Kusano,
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shinichi Minohara
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Hajime Fujii
- Accelerator Engineering Corporation, Kanagawa Office, Chiba, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Yoshiki Takayama
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Koh Imura
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Terufumi Kusunoki
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Shin Miyakawa
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
22
|
Bachiller-Perea D, Zhang M, Fleta C, Quirion D, Bassignana D, Gómez F, Guardiola C. Microdosimetry performance of the first multi-arrays of 3D-cylindrical microdetectors. Sci Rep 2022; 12:12240. [PMID: 35851050 PMCID: PMC9293924 DOI: 10.1038/s41598-022-14940-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
The present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Each system consists of arrays of independent microdetectors covering 2 mm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×2 mm and 0.4 mm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×12 cm radiation sensitive areas, the sensor distributions are arranged in layouts of 11\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×11 microdetectors and 3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×3 multi-arrays, respectively. We have performed proton irradiations at several energies to compare the microdosimetry performance of the two systems, which have different spatial resolution and detection surface. The unitcell of both arrays is a 3D cylindrical diode with a 25 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm diameter and a 20 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm depth that results in a welldefined and isolated radiation sensitive micro-volume etched inside a silicon wafer. Measurements were carried out at the Accélérateur Linéaire et Tandem à Orsay (ALTO) facility by irradiating the two detection systems with monoenergetic proton beams from 6 to 20 MeV at clinical-equivalent fluence rates. The microdosimetry quantities were obtained with a spatial resolution of 200 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm and 600 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm for the 11\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×11 system and for the 3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×3 multi-array system, respectively. Experimental results were compared with Monte Carlo simulations and an overall good agreement was found. The good performance of both microdetector arrays demonstrates that this architecture and both configurations can be used clinically as microdosimeters for measuring the lineal energy distributions and, thus, for RBE optimization of hadron therapy treatments. Likewise, the results have shown that the devices can be also employed as a multipurpose device for beam monitoring in particle accelerators.
Collapse
Affiliation(s)
- Diana Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France. .,Université Paris-Cité, IJCLab, 91405, Orsay, France.
| | - Mingming Zhang
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.,Université Paris-Cité, IJCLab, 91405, Orsay, France
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| | - David Quirion
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| | - Daniela Bassignana
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| | - Faustino Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Consuelo Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.,Université Paris-Cité, IJCLab, 91405, Orsay, France.,Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| |
Collapse
|
23
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
In-vitro 3D modelling for charged particle therapy - Uncertainties and opportunities. Adv Drug Deliv Rev 2021; 179:114018. [PMID: 34688685 DOI: 10.1016/j.addr.2021.114018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Radiation therapy is a critical component of oncologic management, with more than half of all cancer patients requiring radiotherapy at some point during their disease course. Over the last decade, there has been increasing interest in charged particle therapy due to its advantageous physical and radiobiologic properties, with the therapeutic use of proton beam therapy (PBT) expanding worldwide. However, there remain large gaps in our knowledge of the radiobiologic mechanisms that underlie key aspects of PBT, such as variations in relative biologic effectiveness (RBE), radioresistance, DNA damage response and repair pathways, as well as immunologic effects. In addition, while the emerging technique of ultra-high dose rate or FLASH radiotherapy, with its potential to further reduce normal tissue toxicities, is an exciting development, in-depth study is needed into the postulated biochemical mechanisms that underpin the FLASH effect such as the oxygen depletion hypothesis as well as the relative contributions of immune responses and the tumor microenvironment. Further investigation is also required to ensure that the FLASH effect is not diminished or lost in PBT. Current methods to evaluate the biologic effects of charged particle therapy rely heavily on 2D cell culture systems and/or animal models. However, both of these methods have well-recognized limitations which limit translatability of findings from bench to bedside. The advent of novel three-dimensional in-vitro tumor models offers a more physiologically relevant and high throughput in-vitro system for the study of tumor development as well as novel therapeutic approaches such as PBT. Advances in 3D cell culture methods, together with knowledge of disease mechanism, biomarkers, and genomic data, can be used to design personalized 3D models that most closely recapitulate tumor microenvironmental factors promoting a particular disease phenotype, moving 3D models and PBT into the age of precision medicine.
Collapse
|
26
|
Inaniwa T, Kanematsu N, Shinoto M, Koto M, Yamada S. Adaptation of stochastic microdosimetric kinetic model to hypoxia for hypo-fractionated multi-ion therapy treatment planning. Phys Med Biol 2021; 66. [PMID: 34560678 DOI: 10.1088/1361-6560/ac29cc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
For hypo-fractionated multi-ion therapy (HFMIT), the stochastic microdosimetric kinetic (SMK) model had been developed to estimate the biological effectiveness of radiation beams with wide linear energy transfer (LET) and dose ranges. The HFMIT will be applied to radioresistant tumors with oxygen-deficient regions. The response of cells to radiation is strongly dependent on the oxygen condition in addition to radiation type, LET and absorbed dose. This study presents an adaptation of the SMK model to account for oxygen-pressure dependent cell responses, and develops the oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model. In the model, following assumptions were made: the numbers of radiation-induced sublethal lesions (double-strand breaks) are reduced due to lack of oxygen, and the numbers of oxygen-mediated lesions are reduced for radiation with high LET. The model parameters were determined by fitting survival data under aerobic and anoxic conditions for human salivary gland tumor cells and V79 cells exposed to helium-, carbon-, and neon-ion beams over the LET range of 18.5-654.0 keVμm-1. The OSMK model provided good agreement with the experimental survival data of the cells with determination coefficients >0.9. In terms of oxygen enhancement ratio, the OSMK model reproduced the experimental data behavior, including slight dependence on particle type at the same LET. The OSMK model was then implemented into the in-house treatment planning software for the HFMIT to validate its applicability in clinical practice. A treatment plan with helium- and neon-ion beams was made for a pancreatic cancer case assuming an oxygen-deficient region within the tumor. The biological optimization based on the OSMK model preferentially placed the neon-ion beam to the hypoxic region, while it placed both helium- and neon-ion beams to the surrounding normoxic region. The OSMK model offered the accuracy and usability required for hypoxia-based biological optimization in HFMIT treatment planning.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Shinoto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masashi Koto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Yamada
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
27
|
Molinelli S, Magro G, Mairani A, Allajbej A, Mirandola A, Chalaszczyk A, Imparato S, Ciocca M, Fiore MR, Orlandi E. How LEM-based RBE and dose-averaged LET affected clinical outcomes of sacral chordoma patients treated with carbon ion radiotherapy. Radiother Oncol 2021; 163:209-214. [PMID: 34506829 DOI: 10.1016/j.radonc.2021.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE/OBJECTIVE To understand the role of relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LETd) distributions in the treatment of sacral chordoma (SC) patients with carbon ion radiotherapy (CIRT). MATERIAL/METHODS Clinical plans of 50 SC patients consecutively treated before August 2018 with a local effect model-based optimization were recalculated with the modified microdosimetric kinetic RBE model (mMKM). Twenty-six patients were classified as progressive disease and the relapse volume was contoured on the corresponding follow-up diagnostic sequence. The remaining 24 patients populated the control group. Target prescription dose (DRBE|50%), near-to-minimum- (DRBE|95%) and near-to-maximum- (DRBE|2%) doses were compared between the two cohorts in both RBE systems. LETd distribution was evaluated for in-field relapsed cases with respect to the control group. RESULTS Target DMKM|50% and DMKM|95% were respectively 10% and 18% lower than what we aimed at. Dosimetric evaluators showed no significant difference, in neither of the RBE frameworks, between relapsed and control sets. Half of the relapse volumes were located in a well-covered high dose region. On average, over these cases, median target LETd was significantly lower than the control cohort mean value (27 vs 30 keV/μm). Most notably, the volume receiving dose from high-LET particles (>50 keV/μm) lay substantially below recently reported data in the literature. CONCLUSION A combined multi model RBE- and LET-based optimization could play a key role in the enhancement of the therapeutic ratio of CIRT for large radioresistant tumors such as sacral chordomas.
Collapse
|
28
|
Weber UA, Scifoni E, Durante M. FLASH radiotherapy with carbon ion beams. Med Phys 2021; 49:1974-1992. [PMID: 34318508 DOI: 10.1002/mp.15135] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
FLASH radiotherapy is considered a new potential breakthrough in cancer treatment. Ultra-high dose rates (>40 Gy/s) have been shown to reduce toxicity in the normal tissue without compromising tumor control, resulting in a widened therapeutic window. These high dose rates are more easily achievable in the clinic with charged particles, and clinical trials are, indeed, ongoing using electrons or protons. FLASH could be an attractive solution also for heavier ions such as carbon and could even enhance the therapeutic window. However, it is not yet known whether the FLASH effect will be the same as for sparsely ionizing radiation when densely ionizing carbons ions are used. Here we discuss the technical challenges in beam delivery and present a promising solution using 3D range-modulators in order to apply ultra-high dose rates (UHDR) compatible with FLASH with carbon ions. Furthermore, we will discuss the possible outcome of C-ion therapy at UHDR on the level of the radiobiological and radiation chemical effects.
Collapse
Affiliation(s)
- Uli Andreas Weber
- Biophysics Department, GSI Helhmoltzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emanuele Scifoni
- Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Trento, Italy
| | - Marco Durante
- Biophysics Department, GSI Helhmoltzzentrum für Schwerionenforschung, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
29
|
Yang Y, Vargas CE, Bhangoo RS, Wong WW, Schild SE, Daniels TB, Keole SR, Rwigema JCM, Glass JL, Shen J, DeWees TA, Liu T, Bues M, Fatyga M, Liu W. Exploratory Investigation of Dose-Linear Energy Transfer (LET) Volume Histogram (DLVH) for Adverse Events Study in Intensity Modulated Proton Therapy (IMPT). Int J Radiat Oncol Biol Phys 2021; 110:1189-1199. [PMID: 33621660 DOI: 10.1016/j.ijrobp.2021.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE We proposed a novel tool-a dose linear energy transfer (LET)-volume histogram (DLVH)-and performed an exploratory study to investigate rectal bleeding in prostate cancer treated with intensity modulated proton therapy. METHODS AND MATERIALS The DLVH was constructed with dose and LET as 2 axes, and the normalized volume of the structure was contoured in the dose-LET plane as isovolume lines. We defined the DLVH index, DLv%(d,l) (ie, v% of the structure) to have a dose of ≥d Gy and an LET of ≥l keV/μm, similar to the dose-volume histogram index Dv%. Nine patients with prostate cancer with rectal bleeding (Common Terminology Criteria for Adverse Events grade ≥2) were included as the adverse event group, and 48 patients with no complications were considered the control group. A P value map was constructed by comparison of the DLVH indices of all patients between the 2 groups using the Mann-Whitney U test. Dose-LET volume constraints (DLVCs) were derived based on the P value map with a manual selection procedure facilitated by Spearman's correlation tests. The obtained DLVCs were further cross-validated using a multivariate support vector machine (SVM)-based normal tissue complication probability (NTCP) model with an independent testing data set composed of 8 adverse event and 13 control patients. RESULTS We extracted 2 DLVC constraints. One DLVC was obtained, Vdose/LETboundary:2.5keVμmat 75 Gy to 3.2keVμmat8.65Gy <1.27% (DLVC1), revealing a high LET volume effect. The second DLVC, V(72.2Gy,0keVμm) < 2.23% (DVLC2), revealed a high dose volume effect. The SVM-based NTCP model with 2 DLVCs provided slightly superior performance than using dose only, with an area under the curve of 0.798 versus 0.779 for the testing data set. CONCLUSIONS Our results demonstrated the importance of rectal "hot spots" in both high LET (DLVC1) and high dose (DLVC2) in inducing rectal bleeding. The SVM-based NTCP model confirmed the derived DLVCs as good predictors for rectal bleeding when intensity modulated proton therapy is used to treat prostate cancer.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Ronik S Bhangoo
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Thomas B Daniels
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | | | - Jennifer L Glass
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Todd A DeWees
- Division of Biostatics, Mayo Clinic Arizona, Phoenix, Arizona
| | - Tianming Liu
- Department of Computer Science, the University of Georgia, Athens, Georgia
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
| |
Collapse
|
30
|
Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021; 13:2997. [PMID: 34203882 PMCID: PMC8232608 DOI: 10.3390/cancers13122997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0-1.5 and 1.0-1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0-3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1-4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital—Linkou Branch, Taoyuan 33305, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
31
|
Guardiola C, Bachiller-Perea D, Prieto-Pena J, Jiménez-Ramos MC, García López J, Esnault C, Fleta C, Quirion D, Gómez F. Microdosimetry in low energy proton beam at therapeutic-equivalent fluence rate with silicon 3D-cylindrical microdetectors. Phys Med Biol 2021; 66. [PMID: 33853055 DOI: 10.1088/1361-6560/abf811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
In this work we show the first microdosimetry measurements on a low energy proton beam with therapeutic-equivalent fluence rates by using the second generation of 3D-cylindrical microdetectors. The sensors belong to an improved version of a novel silicon-based 3D-microdetector design with electrodes etched inside silicon, which were manufactured at the National Microelectronics Centre (IMB-CNM, CSIC) in Spain. A new microtechnology has been employed using quasi-toroid electrodes of 25μm diameter and a depth of 20μm within the silicon bulk, resulting in a well-defined cylindrical radiation sensitive volume. These detectors were tested at the 18 MeV proton beamline of the cyclotron at the National Accelerator Centre (CNA, Spain). They were assembled into an in-house low-noise readout electronics to assess their performance at a therapeutic-equivalent fluence rate. Microdosimetry spectra of lineal energy were recorded at several proton energies starting from 18 MeV by adding 50μm thick tungsten foils gradually at the exit-window of the cyclotron external beamline, which corresponds to different depths along the Bragg curve. The experimentalyF¯values in silicon cover from (5.7 ± 0.9) to (8.5 ± 0.4) keV μm-1in the entrance to (27.4 ± 2.3) keV μm-1in the distal edge. Pulse height energy spectra were crosschecked with Monte Carlo simulations and an excellent agreement was obtained. This work demonstrates the capability of the second generation 3D-microdetectors to assess accurate microdosimetric distributions at fluence rates as high as those used in clinical centers in proton therapy.
Collapse
Affiliation(s)
- C Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - D Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - J Prieto-Pena
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| | | | - J García López
- Centro Nacional de Aceleradores, E-41092 Sevilla, Spain.,Departamento de Física Atómica, Molecular y Nuclear, University of Sevilla, E-41080, Sevilla, Spain
| | - C Esnault
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - C Fleta
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - D Quirion
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - F Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| |
Collapse
|
32
|
Mein S, Tessonnier T, Kopp B, Harrabi S, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-Scanning Hadron Arc (SHArc) Therapy: A Study With Light and Heavy Ions. Adv Radiat Oncol 2021; 6:100661. [PMID: 33817410 PMCID: PMC8010580 DOI: 10.1016/j.adro.2021.100661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate the clinical potential of spot-scanning hadron arc (SHArc) therapy with a heavy-ion gantry. METHODS AND MATERIALS A series of in silico studies was conducted via treatment plan optimization in FRoG and the RayStation TPS to compare SHArc therapy against reference plans using conventional techniques with single, parallel-opposed, and 3-field configurations for 3 clinical particle beams (protons [p], helium [4He], and carbon [12C] ions). Tests were performed on water-equivalent cylindrical phantoms for simple targets and clinical-like scenarios with an organ-at-risk in proximity of the target. Effective dose and dose-averaged linear energy transfer (LETD) distributions for SHArc were evaluated against conventional planning techniques applying the modified microdosimetric kinetic model for considering bio-effect with (α/β)x = 2 Gy. A model for hypoxia-induced tumor radio-resistance was developed for particle therapy with dependence on oxygen concentration and particle species/energy (Zeff/β)2 to investigate the impact on effective dose. RESULTS SHArc plans exhibited similar target coverage with unique treatment attributes and distributions compared with conventional planning, with carbon ions demonstrating the greatest potential for tumor control and normal tissue sparing among the arc techniques. All SHArc plans exhibited a low-dose bath outside the target volume with a reduced maximum dose in normal tissues compared with single, parallel-opposed, and 3-field configuration plans. Moreover, favorable LETD distributions were made possible using the SHArc approach, with maximum LETD in the r = 5 mm tumor core (~8 keVμm-1, ~30 keVμm-1, and ~150 keVμm-1 for p, 4He, and 12C ions, respectively) and reductions of high-LET regions in normal tissues and organs-at-risk compared with static treatment beam delivery. CONCLUSION SHArc therapy offers potential treatment benefits such as increased normal tissue sparing. Without explicit consideration of oxygen concentration during treatment planning and optimization, SHArc-C may mitigate tumor hypoxia-induced loss of efficacy. Findings justify further development of robust SHArc treatment planning toward potential clinical translation.
Collapse
Affiliation(s)
- Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Semi Harrabi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| |
Collapse
|
33
|
Nomura K, Iwata H, Toshito T, Omachi C, Nagayoshi J, Nakajima K, Ogino H, Shibamoto Y. Biological effects of passive scattering and spot scanning proton beams at the distal end of the spread-out Bragg peak in single cells and multicell spheroids. Int J Radiat Biol 2021; 97:695-703. [PMID: 33617430 DOI: 10.1080/09553002.2021.1889704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE The present study investigated the biological effects of spot scanning and passive scattering proton therapies at the distal end region of the spread-out Bragg peak (SOBP) using single cell and multicell spheroids. MATERIALS AND METHODS The Geant4 Monte Carlo simulation was used to calculate linear energy transfer (LET) values in passive scattering and spot scanning beams. The biological doses of the two beam options at various points of the distal end region of SOBP were investigated using EMT6 single cells and 0.6-mm V79 spheroids irradiated with 6 and 15 Gy, respectively, by inserting the fractions surviving these doses onto dose-survival curves and reading the corresponding dose. RESULTS LET values in the entrance region of SOBP were similar between the two beam options and increased at the distal end region of SOBP, where the LET value of spot scanning beams was higher than that of passive scattering beams. Increases in biological effects at the distal end region were similarly observed in single cells and spheroids; biological doses at 2-10 mm behind the distal end were 4.5-57% and 5.7-86% higher than physical doses in passive scattering and spot scanning beams, respectively, with the biological doses of spot scanning beams being higher than those of passive scattering beams (p < .05). CONCLUSIONS In single cells and spheroids, the effects of proton irradiation were stronger than expected from measured physical doses at the distal end of SOBP and were correlated with LET increases.
Collapse
Affiliation(s)
- Kento Nomura
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Junpei Nagayoshi
- Department of Radiation Therapy, Nagoya City West Medical Center, Nagoya, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
34
|
Kyriakou I, Tremi I, Georgakilas AG, Emfietzoglou D. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Appl Radiat Isot 2021; 172:109654. [PMID: 33676082 DOI: 10.1016/j.apradiso.2021.109654] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
The increasing clinical use of low-energy photon and electron sources (below few tens of keV) has raised concerns on the adequacy of the existing approximation of an energy-independent radiobiological effectiveness. In this work, the variation of the quality factor (Q) and relative biological effectiveness (RBE) of electrons over the low-medium energy range (0.1 keV-1 MeV) is examined using several microdosimetry-based Monte Carlo methodologies with input data obtained from Geant4-DNA track-structure simulations. The sensitivity of the results to the different methodologies, Geant4-DNA physics models, and target sizes is examined. Calculations of Q and RBE are based on the ICRU Report 40 recommendations, the Kellerer-Hahn approximation, the site version of the theory of dual radiation action (TDRA), the microdosimetric kinetic model (MKM) of cell survival, and the calculated yield of DNA double strand breaks (DSB). The stochastic energy deposition spectra needed as input in the above approaches have been calculated for nanometer spherical volumes using the different electron physics models of Geant4-DNA. Results are normalized at 100 keV electrons which is here considered the reference radiation. It is shown that in the energy range ~50 keV-1 MeV, the calculated Q and RBE are approximately unity (to within 1-2%) irrespective of the methodology, Geant4-DNA physics model, and target size. At lower energies, Q and RBE become energy-dependent reaching a maximum value of ~1.5-2.5 between ~200 and 700 eV. The detailed variation of Q and RBE at low energies depends mostly upon the adopted methodology and target size, and less so upon the Geant4-DNA physics model. Overall, the DSB yield predicts the highest RBE values (with RBEmax≈2.5) whereas the MKM the lowest RBE values (with RBEmax≈1.5). The ICRU Report 40, Kellerer-Hahn, and TDRA methods are in excellent agreement (to within 1-2%) over the whole energy range predicting a Qmax≈2. In conclusion, the approximation Q=RBE=1 was found to be valid only above ~50 keV whereas at lower energies both Q and RBE become strongly energy-dependent. It is envisioned that the present work will contribute towards establishing robust methodologies to determine theoretically the energy-dependence of radiation quality of individual electrons which may then be used in subsequent calculations involving practical electron and photon radiation sources.
Collapse
Affiliation(s)
- Ioanna Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece.
| | - Ioanna Tremi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece
| |
Collapse
|
35
|
Ebner DK, Frank SJ, Inaniwa T, Yamada S, Shirai T. The Emerging Potential of Multi-Ion Radiotherapy. Front Oncol 2021; 11:624786. [PMID: 33692957 PMCID: PMC7937868 DOI: 10.3389/fonc.2021.624786] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Research into high linear energy transfer (LET) radiotherapy now spans over half a century, beginning with helium and deuteron treatment in 1952 and today ranging from fast neutrons to carbon-ions. Owing to pioneering work initially in the United States and thereafter in Germany and Japan, increasing focus is on the carbon-ion beam: 12 centers are in operation, with five under construction and three in planning. While the carbon-ion beam has demonstrated unique and promising suitability in laboratory and clinical trials toward the hypofractionated treatment of hypoxic and/or radioresistant cancer, substantial developmental potential remains. Perhaps most notable is the ability to paint LET in a tumor, theoretically better focusing damage delivery within the most resistant areas. However, the technique may be limited in practice by the physical properties of the beams themselves. A heavy-ion synchrotron may provide irradiation with multiple heavy-ions: carbon, helium, and oxygen are prime candidates. Each ion varies in LET distribution, and so a methodology combining the use of multiple ions into a uniform LET distribution within a tumor may allow for even greater treatment potential in radioresistant cancer.
Collapse
Affiliation(s)
- Daniel K Ebner
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Taku Inaniwa
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
36
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
37
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
38
|
Dose-averaged linear energy transfer per se does not correlate with late rectal complications in carbon-ion radiotherapy. Radiother Oncol 2020; 153:272-278. [PMID: 32898559 DOI: 10.1016/j.radonc.2020.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Several studies have focused on increasing the linear energy transfer (LET) within tumours to achieve higher biological effects in carbon-ion radiotherapy (C-ion RT). However, it remains unclear whether LET affects late complications. We assessed whether physical dose and LET distribution can be specific factors for late rectal complications in C-ion RT. MATERIALS AND METHODS Overall, 134 patients with uterine carcinomas were registered and retrospectively analysed. Of 134 patients, 132 who were followed up for >6 months were enrolled. The correlations between the relative biological effectiveness (RBE)-weighted dose based on the Kanai model (the ostensible "clinical dose"), dose-averaged LET (LETd), or physical dose and rectal complications were evaluated. Rectal complications were graded according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. RESULTS Nine patients developed grade 3 or 4 late rectal complications. Linear regression analysis found that D2cc in clinical dose was the sole risk factor for ≥grade 3 late rectal complications (p = 0.012). The receiver operating characteristic analysis found that D2cc of 60.2 Gy (RBE) was a suitable cut-off value for predicting ≥grade 3 late rectal complications. Among 35 patients whose rectal D2cc was ≥60.2 Gy (RBE), no correlations were found between severe rectal toxicities and LETd alone or physical dose per se. CONCLUSION We demonstrated that severe rectal toxicities were related to the rectal D2cc of the clinical dose in C-ion RT. However, no correlations were found between severe rectal toxicities and LETd alone or physical dose per se.
Collapse
|
39
|
Bertolet A, Carabe A. Proton monoenergetic arc therapy (PMAT) to enhance LETd within the target. Phys Med Biol 2020; 65:165006. [PMID: 32428896 DOI: 10.1088/1361-6560/ab9455] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We show the performance and feasibility of a proton arc technique so-called proton monoenergetic arc therapy (PMAT). Monoenergetic partial arcs are selected to place spots at the middle of a target and its potential to enhance the dose-averaged linear energy transfer (LETd) distribution within the target. Single-energy partial arcs in a single 360 degree gantry rotation are selected to deposit Bragg's peaks at the central part of the target to increase LETd values. An in-house inverse planning optimizer seeks for homogeneous doses at the target while keeping the dose to organs at risk (OARs) within constraints. The optimization consists of balancing the weights of spots coming out of selected partial arcs. A simple case of a cylindrical target in a phantom is shown to illustrate the method. Three different brain cancer cases are then considered to produce actual clinical plans, compared to those clinically used with pencil beam scanning (PBS). The relative biological effectiveness (RBE) is calculated according to the microdosimetric kinetic model (MKM). For the ideal case of a cylindrical target placed in a cylindrical phantom, the mean LETd in the target increases from 2.8 keV μm-1 to 4.0 keV μm-1 when comparing a three-field PBS plan with PMAT. This is replicated for clinical plans, increasing the mean RBE-weighted doses to the CTV by 3.1%, 1.7% and 2.5%, respectively, assuming an [Formula: see text] ratio equal to 10 Gy in the CTV. In parallel, LETd to OARs near the distal edge of the tumor decrease for all cases and metrics (mean LETd, LD,2% and LD,98%). The PMAT technique increases the LETd within the target, being feasible for the production of clinical plans meeting physical dosimetric requirements for both target and OARs. Thus, PMAT increases the RBE within the target, which may lead to a widening of the therapeutic index in proton radiotherapy that would be highlighted for low [Formula: see text] ratios and hyperfractionated schedules.
Collapse
Affiliation(s)
- A Bertolet
- Department of Radiation Oncology, Hospital of The University of Pennsylvania, Philadelphia 19104, PA, United States of America
| | | |
Collapse
|
40
|
Dahle TJ, Rusten E, Stokkevåg CH, Silvoniemi A, Mairani A, Fjæra LF, Rørvik E, Henjum H, Wright P, Boer CG, Forsback S, Minn H, Malinen E, Ytre-Hauge KS. The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors. Phys Med 2020; 76:166-172. [PMID: 32683269 DOI: 10.1016/j.ejmp.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia. METHODS The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO2) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO2 ranging from strongly hypoxic to normoxic (0.01-30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO2 estimated voxel-by-voxel using [18F]-EF5 PET. An RBE of 1.1 and the Rørvik RBE model were used for the ROWD calculations. RESULTS The SOBP in water had decreasing ROWD with decreasing pO2. In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses. CONCLUSION We realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO2 and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.
Collapse
Affiliation(s)
- Tordis Johnsen Dahle
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - Espen Rusten
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Camilla Hanquist Stokkevåg
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Antti Silvoniemi
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland; Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland
| | - Andrea Mairani
- Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), Str. Campeggi, 53, 27100 Pavia, Italy; Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Eivind Rørvik
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Pauliina Wright
- Department of Oncology and Radiotherapy, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland; Department of Medical Physics, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Camilla Grindeland Boer
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Sarita Forsback
- Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland; Department of Oncology and Radiotherapy, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Eirik Malinen
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | | |
Collapse
|
41
|
Sørensen BS, Horsman MR. Tumor Hypoxia: Impact on Radiation Therapy and Molecular Pathways. Front Oncol 2020; 10:562. [PMID: 32373534 PMCID: PMC7186437 DOI: 10.3389/fonc.2020.00562] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 01/25/2023] Open
Abstract
Tumor hypoxia is a common feature of the microenvironment in solid tumors, primarily due to an inadequate, and heterogeneous vascular network. It is associated with resistance to radiotherapy and results in a poorer clinical outcome. The presence of hypoxia in tumors can be identified by various invasive and non-invasive techniques, and there are a number of approaches by which hypoxia can be modified to improve outcome. However, despite these factors and the ongoing extensive pre-clinical studies, the clinical focus on hypoxia is still to a large extent lacking. Hypoxia is a major cellular stress factor and affects a wide range of molecular pathways, and further understanding of the molecular processes involved may lead to greater clinical applicability of hypoxic modifiers. This review is a discussion of the characteristics of tumor hypoxia, hypoxia-related molecular pathways, and the role of hypoxia in treatment resistance. Understanding the molecular aspects of hypoxia will improve our ability to clinically monitor hypoxia and to predict and modify the therapeutic response.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
42
|
Scholz M. State-of-the-Art and Future Prospects of Ion Beam Therapy: Physical and Radiobiological Aspects. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2935240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Ma D, Bronk L, Kerr M, Sobieski M, Chen M, Geng C, Yiu J, Wang X, Sahoo N, Cao W, Zhang X, Stephan C, Mohan R, Grosshans DR, Guan F. Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep 2020; 10:3199. [PMID: 32081928 PMCID: PMC7035246 DOI: 10.1038/s41598-020-60246-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
In current treatment plans of intensity-modulated proton therapy, high-energy beams are usually assigned larger weights than low-energy beams. Using this form of beam delivery strategy cannot effectively use the biological advantages of low-energy and high-linear energy transfer (LET) protons present within the Bragg peak. However, the planning optimizer can be adjusted to alter the intensity of each beamlet, thus maintaining an identical target dose while increasing the weights of low-energy beams to elevate the LET therein. The objective of this study was to experimentally validate the enhanced biological effects using a novel beam delivery strategy with elevated LET. We used Monte Carlo and optimization algorithms to generate two different intensity-modulation patterns, namely to form a downslope and a flat dose field in the target. We spatially mapped the biological effects using high-content automated assays by employing an upgraded biophysical system with improved accuracy and precision of collected data. In vitro results in cancer cells show that using two opposed downslope fields results in a more biologically effective dose, which may have the clinical potential to increase the therapeutic index of proton therapy.
Collapse
Affiliation(s)
- Duo Ma
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lawrence Bronk
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew Kerr
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mary Sobieski
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Mei Chen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Changran Geng
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Joycelyn Yiu
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David R Grosshans
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Fada Guan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
45
|
Liu C, Patel SH, Shan J, Schild SE, Vargas CE, Wong WW, Ding X, Bues M, Liu W. Robust Optimization for Intensity Modulated Proton Therapy to Redistribute High Linear Energy Transfer from Nearby Critical Organs to Tumors in Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2020; 107:181-193. [PMID: 31987967 DOI: 10.1016/j.ijrobp.2020.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We propose linear energy transfer (LET)-guided robust optimization in intensity modulated proton therapy for head and neck cancer. This method simultaneously considers LET and physical dose distributions of tumors and organs at risk (OARs) with uncertainties. METHODS AND MATERIALS Fourteen patients with head and neck cancer were included in this retrospective study. Cord, brain stem, brain, and oral cavity were considered. Two algorithms, voxel-wise worst-case robust optimization and LET-guided robust optimization (LETRO), were used to generate intensity modulated proton therapy plans for each patient. The latter method directly optimized LET distributions rather than indirectly as in previous methods. LET-volume histograms (LETVHs) were generated, and high LET was redistributed from nearby OARs to tumors in a user-defined way via LET-volume constraints. Dose-volume histogram indices, such as clinical target volume (CTV) D98% and D2%-D98%, cord Dmax, brain stem Dmax, brain Dmax, and oral cavity Dmean, were calculated. Plan robustness was quantified using the worst-case analysis method. LETVH indices analogous to dose-volume histogram indices were used to characterize LET distributions. The Wilcoxon signed rank test was performed to measure statistical significance. RESULTS In the nominal scenario, LETRO provided higher LET distributions in the CTV (unit: keV/μm; CTV LET98%: 1.18 vs 1.08, LETRO vs RO, P = .0031) while preserving comparable physical dose and plan robustness. LETRO achieved significantly reduced LET distributions in the cord, brain stem, and oral cavity compared with RO (cord LETmax: 7.20 vs 8.20, P = .0010; brain stem LETmax: 10.95 vs 12.05, P = .0007; oral cavity LETmean: 2.11 vs 3.12, P = .0052) and had comparable physical dose and plan robustness in all OARs. In the worst-case scenario, LETRO achieved significantly higher LETmean in the CTV, reduced LETmax in the brain, and was comparable to other LETVH indices (CTV LETmean: 3.26 vs 3.35, P = .0012; brain LETmax: 24.80 vs 22.00, P = .0016). CONCLUSIONS LETRO robustly optimized LET and physical dose distributions simultaneously. It redistributed high LET from OARs to targets with slightly modified physical dose and plan robustness.
Collapse
Affiliation(s)
- Chenbin Liu
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - Jie Shan
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - Xiaoning Ding
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona.
| |
Collapse
|
46
|
Ying CK, Bolst D, Rosenfeld A, Guatelli S. Characterization of the Mixed Radiation Field Produced by Carbon and Oxygen Ion Beams of Therapeutic Energy: A Monte Carlo Simulation Study. J Med Phys 2020; 44:263-269. [PMID: 31908385 PMCID: PMC6936202 DOI: 10.4103/jmp.jmp_40_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: The main advantages of charged particle radiotherapy compared to conventional X-ray external beam radiotherapy are a better tumor conformality coupled with the capability of treating deep-seated radio-resistant tumors. This work investigates the possibility to use oxygen beams for hadron therapy, as an alternative to carbon ions. Materials and Methods: Oxygen ions have the advantage of a higher relative biological effectiveness (RBE) and better conformality to the tumor target. This work describes the mixed radiation field produced by an oxygen beam in water and compares it to the one produced by a therapeutic carbon ion beam. The study has been performed using Geant4 simulations. The dose is calculated for incident carbon ions with energies of 162 MeV/u and 290 MeV/u, and oxygen ions with energies of 192 MeV/u and 245 MeV/u, and hence that the range of the primary oxygen ions projectiles in water was located at the same depth as the carbon ions. Results: The results show that the benefits of oxygen ions are more pronounced when using lower energies because of a slightly higher peak-to-entrance ratio, which allows either providing higher dose in tumor target or reducing it in the surrounding healthy tissues. It is observed that, per incident particle, oxygen ions deliver higher doses than carbon ions. Conclusions: This result coupled with the higher RBE shows that it may be possible to use a lower fluence of oxygen ions to achieve the same therapeutic dose in the patient as that obtained with carbon ion therapy.
Collapse
Affiliation(s)
- C K Ying
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - David Bolst
- Centre of Medical Radiation Physics, University of Wollongong, NSW, Australia
| | - Anatoly Rosenfeld
- Centre of Medical Radiation Physics, University of Wollongong, NSW, Australia
| | - Susanna Guatelli
- Centre of Medical Radiation Physics, University of Wollongong, NSW, Australia
| |
Collapse
|
47
|
Hagiwara Y, Bhattacharyya T, Matsufuji N, Isozaki Y, Takiyama H, Nemoto K, Tsuji H, Yamada S. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer. Clin Transl Radiat Oncol 2019; 21:19-24. [PMID: 31886424 PMCID: PMC6920502 DOI: 10.1016/j.ctro.2019.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 01/11/2023] Open
Abstract
High LET and high RBE of carbon ion made it a promising tool for treating pancreatic cancers. Dose averaged LET minimum within the GTV is significantly associated with local control. Outcome of CIRT in pancreatic cancers can be improved by modulating dose averaged LET within the GTV.
Background and purpose High linear energy transfer (LET) radiation carbon-ion radiotherapy (C-ion RT) is one of the most promising modalities for treating unresectable primary pancreatic cancers. However, how LET contributes to a therapeutic effect is not clear. To assess whether there is an enhanced effect of high LET radiation on tumour control, we aimed to determine the impact of dose-averaged LET on local control (LC) of primary pancreatic tumours. Materials and methods A retrospective analysis of 18 patients with primary pancreatic carcinomas treated with definitive C-ion RT with concurrent chemotherapy in 2013 was conducted. The dose of irradiation was 55.2 Gy (RBE). The relationship between dose-averaged LET and LC of primary tumours was evaluated. Results All patients had histologically confirmed adenocarcinoma. The median follow-up duration was 22 months. The actuarial LC and overall survival (OS) at 18 months were 62.5% and 70.1%, respectively. There were no cases of grade ≥3 late toxicities observed. Local recurrences developed in four patients (22%), all of which were infield central recurrences. Although there were no significant differences in gross tumour volume (GTV) dose coverage, patients with higher minimum dose-averaged LET (LETmin) values within the GTV had better LC (dose-averaged LETmin ≥44 keV/microm; 18-months LC 100.0% vs 34.3%; p = 0.0366). Conclusion Dose-averaged LETmin within the GTV was significantly associated with LC of primary pancreatic cancers. Our data suggest that outcomes for patients with unresectable primary pancreatic cancers receiving C-ion RT can be improved by modulating the dose-averaged LET within the GTV.
Collapse
Affiliation(s)
- Yasuhito Hagiwara
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan.,Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Iida-nishi 2-2-2, Yamagata-shi, 990-9585 Yamagata, Japan
| | - Tapesh Bhattacharyya
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Naruhiro Matsufuji
- Department of Accelerator and Medical Physics, Research Center for Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Yuka Isozaki
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Hirotoshi Takiyama
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Kenji Nemoto
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Iida-nishi 2-2-2, Yamagata-shi, 990-9585 Yamagata, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Shigeru Yamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan.,Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| |
Collapse
|
48
|
Blakely EA, Faddegon B, Tinkle C, Bloch C, Dominello M, Griffin RJ, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: The United States needs at least one carbon ion facility. J Appl Clin Med Phys 2019; 20:6-13. [PMID: 31573146 PMCID: PMC6839391 DOI: 10.1002/acm2.12727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023] Open
Affiliation(s)
| | - Bruce Faddegon
- Department of Radiation OncologyUniversity of California – San FranciscoSan FranciscoCAUSA
| | - Christopher Tinkle
- Department of Radiation OncologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Charles Bloch
- Department of Radiation OncologyUniversity of WashingtonSeattleWAUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Robert J Griffin
- Department of OncologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Michael C Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA,Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
49
|
Sánchez‐Parcerisa D, López‐Aguirre M, Dolcet Llerena A, Udías JM. MultiRBE: Treatment planning for protons with selective radiobiological effectiveness. Med Phys 2019; 46:4276-4284. [DOI: 10.1002/mp.13718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel Sánchez‐Parcerisa
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | - Miguel López‐Aguirre
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | | | - José Manuel Udías
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| |
Collapse
|
50
|
Bhattacharyya T, Koto M, Ikawa H, Hayashi K, Hagiwara Y, Makishima H, Kasuya G, Yamamoto N, Kamada T, Tsuji H. First prospective feasibility study of carbon-ion radiotherapy using compact superconducting rotating gantry. Br J Radiol 2019; 92:20190370. [PMID: 31317764 PMCID: PMC6849685 DOI: 10.1259/bjr.20190370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: We had developed compact rotating gantry for carbon ion using superconducting magnets in 2015 which became clinically operational in 2017. The objective of this study was to assess the clinical feasibility and safety of using compact rotating gantry with three-dimensional active scanning in delivery of carbon-ion radiotherapy (C-ion RT) for relatively stationary tumours. Methods: A prospective feasibility study was conducted with 10 patients who had been treated with C-ion RT using compact rotating gantry between April 2017 and April 2018 at Hospital of the National Institute of Radiological Sciences (NIRS) for head and neck and prostate cancers. The primary end point was evaluation of acute toxicities within 3 months of starting C-ion RT. Results: Out of 10 cases 8 were of head and neck cancers and 2 were of prostate cancers. All of those eight head and neck cases were of locally advanced stages. Both of the prostate cancer patients belong to intermediate risk categories. None of the patients developed even Grade 2 or more severe skin reactions. Six out of eight cases with head and neck cancers experienced Grade 2 mucosal reactions; however, nobody developed Grade 3 or more severe mucosal reactions. There was no gastrointestinal reaction observed in prostate cancer patients. One patient developed Grade 2 genitourinary reaction. Conclusion: C-ion RT using compact rotating gantry and three-dimensional active scanning is a safe and feasible treatment for relatively less mobile tumours. Advances in knowledge: This study will be the first step to establish the use of superconducting rotating gantry in C-ionRT in clinical setting paving the way for treating large number of patients and make it a standard of practice in the future.
Collapse
Affiliation(s)
- Tapesh Bhattacharyya
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Masashi Koto
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Kazuhiko Hayashi
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Yasuhito Hagiwara
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Goro Kasuya
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Naoyoshi Yamamoto
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| |
Collapse
|