1
|
Djumaeva N. A successful application of information technologies in the treatment of multiple sclerosis: a case report. J Med Case Rep 2024; 18:561. [PMID: 39582025 PMCID: PMC11587738 DOI: 10.1186/s13256-024-04909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a chronic disease of the central nervous system characterized by inflammation, neurodegeneration, and failure of the central nervous system's repair mechanisms. The role of infectious agents against the background of genetic predisposition is currently considered a possible pathogenesis factor of this disease. CASE PRESENTATION We report the case of a 52-year-old white (Russian) female musician with 15-year history of relapsing-remitting multiple sclerosis who had repeatedly received conventional therapy without much benefit. In 2017, she was admitted to the outpatient department of the Institute of Virology, where she was treated with erythromycin and acyclovir (tablet forms), which were not applied in the traditional way but through the "device for transfer of information from the drug to the human body." The received effect led to suppression of the disease activity, a significant reduction in the symptoms of the disease, prevention of further increase in neurological manifestations of the disease, and improvement in the dynamics of the manifestation of the disease according to brain magnetic resonance imaging. CONCLUSION The described case report is innovative and presents for the first time the results of a noninvasive approach to the treatment of a patient with multiple sclerosis in whom information about various medications was introduced into different parts of the body, including the brain. The results obtained may indicate a possible role of infectious agents in the genesis of multiple sclerosis. It indicates a potential impact on them by using a "device for transfer of information from the drug to the human body." The study was conducted in accordance with the principles of the Declaration of Helsinki. It was approved by the Institutional Review Board of the Research Institute of Virology of Uzbekistan (no. 12/8-1500, 1/3/2017).
Collapse
Affiliation(s)
- Naylya Djumaeva
- Microbiology, Infectious and Parasitic Diseases, The Research Institute of Virology of the National Specialized Scientific and Practical Medical Center for Epidemiology, 7A Yangi Shahar Street, 100194, Tashkent, Uzbekistan.
| |
Collapse
|
2
|
Seyedolmohadesin M, Ashkani M, Ghadikolaei TS, Mirshekar M, Bostanghadiri N, Aminzadeh S. Unraveling the complex relationship: Multiple sclerosis, urinary tract infections, and infertility. Mult Scler Relat Disord 2024; 84:105512. [PMID: 38428292 DOI: 10.1016/j.msard.2024.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune system disorder that affects the central nervous system (CNS) and progressively damages nerve fibers and protective myelin. People with MS often experience a wide range of complications, including lower urinary tract dysfunction, urinary tract infections (UTIs) and sexual dysfunction. MS is common in young people and can lead to sexual dysfunction (SD) and infertility, which becomes more pronounced as the disease progresses. RESULTS Over the past two decades, significant advances have been made in the management of MS, which may slow the progression of the disease and alter its course. However, UTI and SD remain significant challenges for these patients. Awareness of the underlying complications of MS, such as UTIs and infertility, is crucial for prevention, early detection and appropriate treatment, as there is a causal relationship between UTIs and the use of corticosteroids during an attack. CONCLUSION This article provides an overview of potential microbial pathogens that contribute to the development of MS, as well as an assessment of people with MS who report UTIs and infertility.
Collapse
Affiliation(s)
- Maryam Seyedolmohadesin
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Azad University, Tehran, Iran
| | - Maedeh Ashkani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Taravat Sadeghi Ghadikolaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Aminzadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
4
|
Tenório MDL, Araujo JMS, de Melo EV, Cazzaniga RA, Aragão ALF, Valois LQ, Severo J, Santos-Filho MAA, Menezes-Silva L, Machado JA, Reed SG, Duthie MS, de Almeida RP, Bezerra-Santos M, de Jesus AR. Association between asthma, rhinitis and atopic dermatitis with leprosy: A case-control study. Indian J Dermatol Venereol Leprol 2023; 89:834-841. [PMID: 37067141 DOI: 10.25259/ijdvl_347_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
Background Considering the cross-regulation of Th1 and Th2 responses, we hypothesised that atopic diseases (Th2) inhibit the protective Th1 immune response to Mycobacterium leprae and exacerbates leprosy. Objective In this study, we aimed to evaluate the association between leprosy and atopic diseases. Methods To evaluate the association of atopic diseases with leprosy, we conducted a case-control study that included leprosy patients (n = 333) and their household contacts (n = 93). The questionnaire from the International Study of Asthma and Allergies in Childhood, which is validated in several countries for epidemiological diagnosis of atopic diseases, was applied to determine the occurrence of atopic diseases, allergic rhinitis, asthma, and atopic dermatitis among leprosy patients and the household contacts. Results Considering clinical and epidemiological data, among the leprosy group 51.6% (n = 172) were determined to have at least one atopic disease, while atopy was observed less frequently at 40.86% among household contacts (n = 38). When two or more atopic diseases were assessed, the frequency was significantly higher among the leprosy patients than in the household contacts (21.9% vs. 11.8%; P-value = 0.03). Likewise, the frequency of asthma was significantly higher among leprosy patients (21%) than in the household contacts (10.8%; P-value = 0.02). Thus, our analyses revealed an association of atopic diseases with leprosy, with a significant linear increase in the occurrence of leprosy with an increase in the number of atopic diseases (P-value = 0.01). Limitation Due to the difficulties in recruiting household contacts that have prolonged contact with patients, but are not genetically related to the patient, the household contacts group is smaller than the leprosy patient group. Conclusion The data reveal an association between atopic diseases and leprosy outcomes. This knowledge could improve the treatment of leprosy patients with co-incident atopic diseases.
Collapse
Affiliation(s)
- Martha Débora Lira Tenório
- Department of Medicine, Dermathology Clinic, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Jonnia Maria Sherlock Araujo
- Department of Medicine, Dermathology Clinic, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, Dermathology Clinic, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Rodrigo Anselmo Cazzaniga
- Immunology and Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Ana-Luiza Furtado Aragão
- Department of Medicine, Dermathology Clinic, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Laís Quadros Valois
- Department of Medicine, Dermathology Clinic, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Joanna Severo
- Immunology and Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | | | - Lucas Menezes-Silva
- Immunology and Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Julianne Alves Machado
- Clinical Immunology Clinic, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Steven G Reed
- Department of Vaccines, Host Directed Therapeutics (HDT) Bio Corp, Seattle, Washington, United States
| | - Malcolm S Duthie
- Department of Vaccines, Host Directed Therapeutics (HDT) Bio Corp, Seattle, Washington, United States
| | - Roque Pacheco de Almeida
- Immunology and Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Marcio Bezerra-Santos
- Immunology and Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Amélia Ribeiro de Jesus
- Immunology and Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
5
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
6
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
7
|
Ghasemi M, Farazandeh D, Amini B, Sedaghat M, Najafi A, Khayatzadeh Kakhki S, Torabi P, Jafarimehrabady N, Bitaraf A, Shariati H, Gholampour G, Kazemi S, Naser Moghadasi A, Vajihinejad M. The association of upper respiratory infections with neuro-radiological course and attack rate of multiple sclerosis: Results from a large prospective cohort. Mult Scler J Exp Transl Clin 2023; 9:20552173231196992. [PMID: 37767104 PMCID: PMC10521289 DOI: 10.1177/20552173231196992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Although upper respiratory infections (URIs) are linked to multiple sclerosis (MS) attacks, SARS-COV2 has not been compared to URIs for attack rates. Objectives This study aimed to evaluate the attack rate and the results of neuroimaging in MS patients with URIs caused by COVID-19 and non-COVID-19 infections (NC-URI). Methods From May 2020 to April 2021, we followed 362 patients with relapsing-remitting MS in a prospective cohort design. Patients were monitored regularly every 12 weeks; an magnetic resonance imaging (MRI) scan was performed at enrollment and every time a relapse occurred. Poisson analysis was used to determine exacerbation rate ratios (RR) and the MRI parameters were tested using chi-square analysis. Results 347 patients with an average age of 38 and a female ratio of 86% were included. A RR of 2.24 (p < 0.001) was observed for exacerbations during the at-risk period (ARP). Attacks related to COVID-19 (RR = 2.13, p = 0.001) and NC-URIs (RR = 2.39, p < 0.001) were comparable regarding the increased risk of exacerbation (p = 0.62). Exacerbations within or outside the ARP did not significantly alter the number of baseline GAD-enhancing lesions (p > 0.05 for both). Conclusion COVID-19 has been shown to increase the risk of MS exacerbations, like other viral URIs.
Collapse
Affiliation(s)
- Moein Ghasemi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Dorreh Farazandeh
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behnam Amini
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mona Sedaghat
- Faculty of Medicine, Razi Educational and Therapeutic Psychiatric Center, University of Social Welfare and Rehabilitation, Tehran, Iran
| | - Anahita Najafi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Pouya Torabi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Ali Bitaraf
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Golsa Gholampour
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Saminnaz Kazemi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Vajihinejad
- Department of Pathology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Urusov AE, Aulova KS, Dmitrenok PS, Buneva VN, Nevinsky GA. EAE of Mice: Enzymatic Cross Site-Specific Hydrolysis of H2A Histone by IgGs against H2A, H1, H2B, H3, and H4 Histones and Myelin Basic Protein. Int J Mol Sci 2023; 24:ijms24108636. [PMID: 37239982 DOI: 10.3390/ijms24108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Histones play vital roles in chromatin function and gene transcription; however, they are very harmful in the intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibodies-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against individual histones (H2A, H1, H2B, H3, and H4) and MBP were isolated from the blood of experimental-autoimmune-encephalomyelitis-prone C57BL/6 mice by several affinity chromatographies. These Abs-abzymes corresponded to various stages of EAE development: spontaneous EAE, MOG, and DNA-histones accelerated the onset, acute, and remission stages. IgGs-abzymes against MBP and five individual histones showed unusual polyreactivity in the complex formation and enzymatic cross-reactivity in the specific hydrolysis of the H2A histone. All the IgGs of 3-month-old mice (zero time) against MBP and individual histones demonstrated from 4 to 35 different H2A hydrolysis sites. The spontaneous development of EAE over 60 days led to a significant change in the type and number of H2A histone hydrolysis sites by IgGs against five histones and MBP. Mice treatment with MOG and the DNA-histone complex changed the type and number of H2A hydrolysis sites compared to zero time. The minimum number (4) of different H2A hydrolysis sites was found for IgGs against H2A (zero time), while the maximum (35) for anti-H2B IgGs (60 days after mice treatment with DNA-histone complex). Overall, it was first demonstrated that at different stages of EAE evolution, IgGs-abzymes against individual histones and MBP could significantly differ in the number and type of specific sites of H2A hydrolysis. The possible reasons for the catalytic cross-reactivity and great differences in the number and type of histone H2A cleavage sites were analyzed.
Collapse
Affiliation(s)
- Andrey E Urusov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Kseniya S Aulova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Urusov AE, Aulova KS, Dmitrenok PS, Buneva VN, Nevinsky GA. EAE of Mice: Enzymatic Cross Site-Specific Hydrolysis of H2B Histone by IgGs against H1, H2A, H2B, H3, and H4 Histones and Myelin Basic Protein. Molecules 2023; 28:molecules28072973. [PMID: 37049736 PMCID: PMC10095689 DOI: 10.3390/molecules28072973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Histones have vital roles in chromatin functioning and gene transcription. At the same time, they are pernicious in intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin–proteolipid sheath. Antibody-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against five individual histones (H2B, H1, H2A, H3, and H4) and MBP were isolated from the blood of experimental autoimmune encephalomyelitis-prone C57BL/6 mice by affinity chromatography. Abzymes corresponding to various stages of EAE development, including spontaneous EAE, myelin oligodendrocyte glycoprotein (MOG)- and DNA-histone complex-accelerated onset, as well as acute and remission stages, were analyzed. IgG-abzymes against MBP and five individual histones showed unusual polyreactivity in complex formation and enzymatic cross-reactivity in the specific hydrolysis of H2B histone. All IgGs against MBP and individual histones in 3-month-old mice (zero time) demonstrated from 4 to 11 different H2B hydrolysis sites. Spontaneous development of EAE during 60 days led to a significant change in the type and number of H2B hydrolysis sites by IgGs against the five histones and MBP. Mouse treatment with MOG and DNA-histone complex changed the type and number of H2B hydrolysis sites compared to zero time. The minimum number (3) of different H2B hydrolysis sites was found for IgGs against H3 20 days after mouse immunization with DNA-histone complex, whereas the maximum number (33) for anti-H2B IgGs was found 60 days after mouse treatment with DNA-histone complex. Overall, this is the first study to demonstrate that at different stages of EAE evolution, IgG-abzymes against five individual histones and MBP could significantly differ in the specific sites and number of H2B hydrolysis sites. Possible reasons for the catalytic cross-reactivity and significant differences in the number and type of histone H2B cleavage sites were analyzed.
Collapse
|
10
|
Rahmani M, Moghadasi AN, Shahi S, Eskandarieh S, Azizi H, Hasanzadeh A, Ahmadzade A, Dehnavi AZ, Farahani RH, Aminianfar M, Naeini AR. COVID-19 and its implications on the clinico-radiological course of multiple sclerosis: A case-control study. Med Clin (Barc) 2023; 160:187-192. [PMID: 36089420 PMCID: PMC9364744 DOI: 10.1016/j.medcli.2022.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease that has been related to several risk factors such as various viral infections. We carried out this study in order to establish a relationship between COVID-19 infection and MS severity. METHODS In a case-control study, we recruited patients with relapsing-remitting multiple sclerosis (RRMS). Patients were divided into two groups based on positive COVID-19 PCR at the end of the enrollment phase. Each patient was prospectively followed for 12 months. Demographical, clinical, and past medical history were collected during routine clinical practice. Assessments were performed every six months; MRI was performed at enrollment and 12 months later. RESULTS Three hundred and sixty-two patients participated in this study. MS patients with COVID-19 infection had significantly higher increases in the number of MRI lesions (p: 0.019, OR(CI): 6.37(1.54-26.34)) and EDSS scores (p: 0.017), but no difference was found in total annual relapses or relapse rates. COVID-19 infections were positively correlated with EDSS progression (p: 0.02) and the number of new MRI lesions (p: 0.004) and predicted the likelihood of the number of new MRI lesions by an odds of 5.92 (p: 0.018). CONCLUSION COVID-19 may lead to higher disability scores in the RRMS population and is associated with developing new Gd-enhancing lesions in MRI imaging. However, no difference was observed between the groups regarding the number of relapses during follow-up.
Collapse
Affiliation(s)
- Mohammad Rahmani
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Shahi
- Tehran Heart Center, Cardiovascular Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Ali Zare Dehnavi
- Department of Neurology, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Hamidi Farahani
- Department of Infectious Diseases, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Aminianfar
- Department of Infectious and Tropical Diseases, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Ranjbar Naeini
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Rahmani M, Moghadasi AN, Shahi S, Eskandarieh S, Azizi H, Hasanzadeh A, Ahmadzade A, Dehnavi AZ, Farahani RH, Aminianfar M, Naeini AR. COVID-19 and its implications on the clinico-radiological course of multiple sclerosis: A case-control study. MEDICINA CLINICA (ENGLISH ED.) 2023; 160:187-192. [PMID: 36883067 PMCID: PMC9983351 DOI: 10.1016/j.medcle.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/22/2022] [Indexed: 03/06/2023]
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease that has been related to several risk factors such as various viral infections. We carried out this study in order to establish a relationship between COVID-19 infection and MS severity. Methods In a case-control study, we recruited patients with relapsing-remitting multiple sclerosis (RRMS). Patients were divided into two groups based on positive COVID-19 PCR at the end of the enrollment phase. Each patient was prospectively followed for 12 months. Demographical, clinical, and past medical history were collected during routine clinical practice. Assessments were performed every six months; MRI was performed at enrollment and 12 months later. Results Three hundred and sixty-two patients participated in this study. MS patients with COVID-19 infection had significantly higher increases in the number of MRI lesions (p: 0.019, OR(CI): 6.37(1.54-26.34)) and EDSS scores (p: 0.017), but no difference was found in total annual relapses or relapse rates. COVID-19 infections were positively correlated with EDSS progression (p: 0.02) and the number of new MRI lesions (p: 0.004) and predicted the likelihood of the number of new MRI lesions by an odds of 5.92 (p: 0.018). Conclusion COVID-19 may lead to higher disability scores in the RRMS population and is associated with developing new Gd-enhancing lesions in MRI imaging. However, no difference was observed between the groups regarding the number of relapses during follow-up.
Collapse
Affiliation(s)
- Mohammad Rahmani
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Shahi
- Tehran Heart Center, Cardiovascular Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Ali Zare Dehnavi
- Department of Neurology, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Hamidi Farahani
- Department of Infectious Diseases, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Aminianfar
- Department of Infectious and Tropical Diseases, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Ranjbar Naeini
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, Luzzi S, Vignini A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45:1443-1470. [PMID: 36826039 PMCID: PMC9954863 DOI: 10.3390/cimb45020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Multiple sclerosis (MS) represents the most common acquired demyelinating disorder of the central nervous system (CNS). Its pathogenesis, in parallel with the well-established role of mechanisms pertaining to autoimmunity, involves several key functions of immune, glial and nerve cells. The disease's natural history is complex, heterogeneous and may evolve over a relapsing-remitting (RRMS) or progressive (PPMS/SPMS) course. Acute inflammation, driven by infiltration of peripheral cells in the CNS, is thought to be the most relevant process during the earliest phases and in RRMS, while disruption in glial and neural cells of pathways pertaining to energy metabolism, survival cascades, synaptic and ionic homeostasis are thought to be mostly relevant in long-standing disease, such as in progressive forms. In this complex scenario, many mechanisms originally thought to be distinctive of neurodegenerative disorders are being increasingly recognized as crucial from the beginning of the disease. The present review aims at highlighting mechanisms in common between MS, autoimmune diseases and biology of neurodegenerative disorders. In fact, there is an unmet need to explore new targets that might be involved as master regulators of autoimmunity, inflammation and survival of nerve cells.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Giordano D’Andreamatteo
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Gabriella Cacchiò
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Sonila Alia
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Mauro Silvestrini
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Cristina Paci
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Simona Luzzi
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
- Correspondence:
| |
Collapse
|
13
|
Hassani A, Khan G. What do animal models tell us about the role of EBV in the pathogenesis of multiple sclerosis? Front Immunol 2022; 13:1036155. [PMID: 36466898 PMCID: PMC9712437 DOI: 10.3389/fimmu.2022.1036155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/02/2022] [Indexed: 02/20/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), marked primarily by demyelination, inflammation, and neurodegeneration. While the prevalence and incidence rates of MS are on the rise, the etiology of the disease remains enigmatic. Nevertheless, it is widely acknowledged that MS develops in persons who are both genetically predisposed and exposed to a certain set of environmental factors. One of the most plausible environmental culprits is Epstein-Barr virus (EBV), a common herpesvirus asymptomatically carried by more than 90% of the adult population. How EBV induces MS pathogenesis remains unknown. A comprehensive understanding of the biology of EBV infection and how it contributes to dysfunction of the immune system and CNS, requires an appreciation of the viral dynamics within the host. Here, we aim to outline the different animal models, including nonhuman primates (NHP), rodents, and rabbits, that have been used to elucidate the link between EBV and MS. This review particularly focuses on how the disruption in virus-immune interaction plays a role in viral pathogenesis and promotes neuroinflammation. We also summarize the effects of virus titers, age of animals, and route of inoculation on the neuroinvasiveness and neuropathogenic potential of the virus. Reviewing the rich data generated from these animal models could provide directions for future studies aimed to understand the mechanism(s) by which EBV induces MS pathology and insights for the development of prophylactic and therapeutic interventions that could ameliorate the disease.
Collapse
Affiliation(s)
- Asma Hassani
- Dept of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Urusov AE, Aulova KS, Dmitrenok PS, Buneva VN, Nevinsky GA. Experimental Autoimmune Encephalomyelitis of Mice: Enzymatic Cross Site-Specific Hydrolysis of H4 Histone by IgGs against Histones and Myelin Basic Protein. Int J Mol Sci 2022; 23:ijms23169182. [PMID: 36012448 PMCID: PMC9409114 DOI: 10.3390/ijms23169182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Histones play vital roles in chromatin functioning and gene transcription, but in intercellular space, they are harmful due to stimulating systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the most important protein of the axon myelin–proteolipid sheath. Antibodies-abzymes with different catalytic activities are critical and specific features of some autoimmune diseases. Five IgG preparations against histones (H4, H1, H2A, H2B, and H3) and against MBP corresponding to different spontaneous, MOG (myelin oligodendrocyte glycoprotein of mice), and DNA–histones that accelerated onset, acute, and remission stages of experimental autoimmune encephalomyelitis (EAE; model of human multiple sclerosis) development were obtained from EAE-prone C57BL/6 mice by several affinity chromatographies. IgG-abzymes against five histones and MBP possess unusual polyreactivity in complexation and catalytic cross-reactivity in the hydrolysis of histone H4. IgGs against five histones and MBP corresponding to 3 month-old mice (zero time) in comparison with Abs corresponding to spontaneous development of EAE during 60 days differ in type and number of H4 sites for hydrolysis. Immunization of mice with MOG and DNA–histones complex results in an acceleration of EAE development associated with an increase in the activity of antibodies in H4 hydrolysis. Twenty days after mouse immunization with MOG or DNA–histones complex, the IgGs hydrolyze H4 at other additional sites compared to zero time. The maximum number of different sites of H4 hydrolysis was revealed for IgGs against five histones and MBP at 60 days after immunization of mice with MOG and DNA–histones. Overall, it first showed that at different stages of EAE development, abzymes could significantly differ in specific sites of H4 hydrolysis.
Collapse
Affiliation(s)
- Andrey E. Urusov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Kseniya S. Aulova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Pavel S. Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
15
|
Sato F, Nakamura Y, Katsuki A, Khadka S, Ahmad I, Omura S, Martinez NE, Tsunoda I. Curdlan, a Microbial β-Glucan, Has Contrasting Effects on Autoimmune and Viral Models of Multiple Sclerosis. Front Cell Infect Microbiol 2022; 12:805302. [PMID: 35198458 PMCID: PMC8859099 DOI: 10.3389/fcimb.2022.805302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelination and axonal degeneration in the central nervous system (CNS). Bacterial and fungal infections have been associated with the development of MS; microbial components that are present in several microbes could contribute to MS pathogenesis. Among such components, curdlan is a microbial 1,3-β-glucan that can stimulate dendritic cells, and enhances T helper (Th) 17 responses. We determined whether curdlan administration could affect two animal models for MS: an autoimmune model, experimental autoimmune encephalomyelitis (EAE), and a viral model, Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). We induced relapsing-remitting EAE by sensitizing SJL/J mice with the myelin proteolipid protein (PLP)139-151 peptide and found that curdlan treatment prior to PLP sensitization converted the clinical course of EAE into hyperacute EAE, in which the mice developed a progressive motor paralysis and died within 2 weeks. Curdlan-treated EAE mice had massive infiltration of T cells and neutrophils in the CNS with higher levels of Th17 and Th1 responses, compared with the control EAE mice. On the other hand, in TMEV-IDD, we found that curdlan treatment reduced the clinical scores and axonal degeneration without changes in inflammation or viral persistence in the CNS. In summary, although curdlan administration exacerbated the autoimmune MS model by enhancing inflammatory demyelination, it suppressed the viral MS model with reduced axonal degeneration. Therefore, microbial infections may play contrasting roles in MS depending on its etiology: autoimmunity versus viral infection.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Yumina Nakamura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Aoshi Katsuki
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ijaz Ahmad
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| |
Collapse
|
16
|
Pérez-Pérez S, Domínguez-Mozo MI, García-Martínez MÁ, Ballester-González R, Nieto-Gañán I, Arroyo R, Alvarez-Lafuente R. Epstein-Barr Virus Load Correlates with Multiple Sclerosis-Associated Retrovirus Envelope Expression. Biomedicines 2022; 10:biomedicines10020387. [PMID: 35203596 PMCID: PMC8962350 DOI: 10.3390/biomedicines10020387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
pHERV-W ENV and syncytin-1, the envelope proteins of the human endogenous retrovirus W family (HERV-W), have been proposed as etiological factors for MS development. In addition, herpesviruses, such as the Epstein-Barr virus (EBV) and the human herpesvirus 6A/B (HHV-6A/B), have been also strongly associated with the disease. This work aims to study the possible link between viral loads and antibody titers against EBV and HHV-6A/B and the pHERV-W ENV/syncytin-1 protein/gene expression. For this purpose, we conducted a 12-month longitudinal study involving 98 RRMS patients. Peripheral blood samples were obtained from each patient. Serum antibody titers against EBV and HHV-6A/B were determined by ELISA, while viral loads were analyzed using qPCR. HLA MS-related alleles were also genotyped. pHERV-W ENV/syncytin-1 protein and gene expression levels in immune cells were assessed by flow cytometry and qPCR, respectively. We found that the 12-month variation of the pHERV-W ENV gene expression levels positively correlated with the variation of the EBV viral load, especially in those patients with high baseline EBV loads. Therefore, these results could support previous studies pointing to the transactivation of pHERV-W ENV by EBV. However, further studies are needed to better understand this possible relationship.
Collapse
Affiliation(s)
- Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (S.P.-P.); (M.I.D.-M.); (M.Á.G.-M.)
| | - María Inmaculada Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (S.P.-P.); (M.I.D.-M.); (M.Á.G.-M.)
| | - María Ángel García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (S.P.-P.); (M.I.D.-M.); (M.Á.G.-M.)
| | - Rubén Ballester-González
- Immunology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (R.B.-G.); (I.N.-G.)
| | - Israel Nieto-Gañán
- Immunology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (R.B.-G.); (I.N.-G.)
| | - Rafael Arroyo
- Neurology Department, Hospital Universitario Quironsalud Madrid, 28223 Madrid, Spain;
| | - Roberto Alvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (S.P.-P.); (M.I.D.-M.); (M.Á.G.-M.)
- Correspondence:
| |
Collapse
|
17
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
18
|
T-Cell Response against Varicella Zoster Virus in Patients with Multiple Sclerosis during Relapse and Remission. Int J Mol Sci 2021; 23:ijms23010298. [PMID: 35008726 PMCID: PMC8745673 DOI: 10.3390/ijms23010298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
An association between varicella zoster virus (VZV) and multiple sclerosis (MS) has been reported in Mexican populations. The aim of this study was to compare the response of T cells from MS patients, during relapse and remission, to in vitro stimulation with VZV, adenovirus (AV) and Epstein–Barr virus (EBV). Proliferation and cytokine secretion of T cells from 29 relapsing-remitting MS patients and 38 healthy controls (HC) were analyzed by flow cytometry after stimulating with VZV, AV or EBV. IgG and IgM levels against VZV and EBV were quantified using Enzyme-Linked Immunosorbent Assay. Relapsing MS patients showed a higher percentage of responding CD4+ and CD8+ T cells against VZV compared to AV. In HC and remitting MS patients, proliferation of CD4+ T cells was higher when stimulated with VZV as compared to EBV. Moreover, T cells isolated from remitting patients secreted predominantly Th1 cytokines when cell cultures were stimulated with VZV. Finally, high concentration of anti-VZV IgG was found in sera from patients and controls. The results support previous studies of an VZV-MS association in the particular population studied and provide additional information about the possible role of this virus in the pathogenesis of MS.
Collapse
|
19
|
Bacterial variation in the oral microbiota in multiple sclerosis patients. PLoS One 2021; 16:e0260384. [PMID: 34847159 PMCID: PMC8631616 DOI: 10.1371/journal.pone.0260384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microorganisms in oral cavity are called oral microbiota, while microbiome consists of total genome content of microorganisms in a host. Interaction between host and microorganisms is important in nervous system development and nervous diseases such as Autism, Alzheimer, Parkinson and Multiple Sclerosis (MS). Bacterial infections, as an environmental factor in MS pathogenesis play role in T helper 17(Th17) increase and it enhancing the production of pro-inflammatory cytokines such as Interlukin-21(IL-21), IL-17 and IL -22. Oral microbiota consists diverse populations of cultivable and uncultivable bacterial species. Denaturing gradient gel electrophoresis (DGGE) is an acceptable method for identification of uncultivable bacteria. In this study, we compared the bacterial population diversity in the oral cavity between MS and healthy people. METHODS From October to March 2019, samples were taken at Kermanshah University of Medical Sciences' MS patients center. A total of 30 samples were taken from MS patients and another 30 samples were taken from healthy people. Phenotypic tests were used to identify bacteria after pure cultures were obtained. DNA was extracted from 1 mL of saliva, and PCR products produced with primers were electrophoresed on polyacrylamide gels. RESULTS The genera Staphylococcus, Actinomyces, Fusobacterium, Bacteroides, Porphyromonas, Prevotella, Veillonella, Propionibacterium and uncultivable bacteria with accession number MW880919-25, JQ477416.1, KF074888.1 and several other un-culturable strains were significantly more abundant in the MS group while Lactobacillus and Peptostreptococcus were more prevalent in the normal healthy group according to logistic regression method. CONCLUSION Oral micro-organisms may alleviate or exacerbate inflammatory condition which impact MS disease pathogenesis. It may be assumed that controlling oral infections may result in reduction of MS disease progression.
Collapse
|
20
|
Pérez-Pérez S, Domínguez-Mozo MI, García-Martínez MÁ, García-Frontini MC, Villarrubia N, Costa-Frossard L, Villar LM, Arroyo R, Álvarez-Lafuente R. Anti-Human Herpesvirus 6 A/B Antibodies Titers Correlate With Multiple Sclerosis-Associated Retrovirus Envelope Expression. Front Immunol 2021; 12:798003. [PMID: 34912348 PMCID: PMC8666430 DOI: 10.3389/fimmu.2021.798003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Human endogenous retrovirus W family envelope proteins (pHERV-W ENV/syncytin-1) have been repeatedly associated with multiple sclerosis (MS). Here, we have focused on the study of pHERV-W ENV/syncytin-1 expression levels in MS patients (relapsing and progressive forms) and in healthy donors (HD) and on exploring their possible relationship with Epstein-Barr virus (EBV) and human herpesvirus-6A/B (HHV-6A/B). We included blood samples from 101 MS patients and 37 HD to analyze antiviral antibody titers by ELISA and pHERV-W ENV/syncytin-1 expression levels by flow cytometry as well as by qPCR. Patients with relapsing MS forms showed significantly higher pHERV-W ENV/syncytin-1 protein and gene expression levels than HD. Progressive MS patients also showed significantly higher protein and gene expression levels than both HD and relapsing MS patients. Regarding antiviral antibodies titers, anti-HHV-6A/B IgM levels were positively correlated with pHERV-W ENV/syncytin-1 protein expression levels in patients with relapsing MS, while in the progressive forms patients this correlation was found with anti-HHVA/B IgG levels. Therefore, pHERV-W ENV could be involved in MS pathogenesis, playing a role in relapsing and progressive forms. Besides, anti-HHV-6A/B antibodies positively correlated with pHERV-W ENV expression. Further studies are needed to better understand this possible relationship.
Collapse
Affiliation(s)
- Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María I. Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M. Ángel García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M. Celeste García-Frontini
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Luisa M. Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rafael Arroyo
- Neurology Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
21
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Cruciani C, Puthenparampil M, Tomas-Ojer P, Jelcic I, Docampo MJ, Planas R, Manogaran P, Opfer R, Wicki C, Reindl M, Jelcic I, Lutterotti A, Martin R, Sospedra M. T-Cell Specificity Influences Disease Heterogeneity in Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1075. [PMID: 34535569 PMCID: PMC8453544 DOI: 10.1212/nxi.0000000000001075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Encouraged by the enormous progress that the identification of specific autoantigens added to the understanding of neurologic autoimmune diseases, we undertook here an in-depth study of T-cell specificities in the autoimmune disease multiple sclerosis (MS), for which the spectrum of responsible autoantigens is not fully defined yet. The identification of target antigens in MS is crucial for therapeutic strategies aimed to induce antigen-specific tolerance. In addition, knowledge of relevant T-cell targets can improve our understanding of disease heterogeneity, a hallmark of MS that complicates clinical management. METHODS The proliferative response and interferon gamma (IFN-γ) release of CSF-infiltrating CD4+ T cells from patients with MS against several autoantigens was used to identify patients with different intrathecal T-cell specificities. Fresh CSF-infiltrating and paired circulating lymphocytes in these patients were characterized in depth by ex vivo immunophenotyping and transcriptome analysis of relevant T-cell subsets. Further examination of these patients included CSF markers of inflammation and neurodegeneration and a detailed characterization with respect to demographic, clinical, and MRI features. RESULTS By testing CSF-infiltrating CD4+ T cells from 105 patients with MS against seven long-known myelin and five recently described GDP-l-fucose synthase peptides, we identified GDP-l-fucose synthase and myelin oligodendrocyte glycoprotein (35-55) responder patients. Immunophenotyping of CSF and paired blood samples in these patients revealed a significant expansion of an effector memory (CCR7- CD45RA-) CD27- Th1 CD4+ cell subset in GDP-l-fucose synthase responders. Subsequent transcriptome analysis of this subset demonstrated expression of Th1 and cytotoxicity-associated genes. Patients with different intrathecal T-cell specificities also differ regarding inflammation- and neurodegeneration-associated biomarkers, imaging findings, expression of HLA class II alleles, and seasonal distribution of the time of the lumbar puncture. DISCUSSION Our observations reveal an association between autoantigen reactivity and features of disease heterogeneity that strongly supports an important role of T-cell specificity in MS pathogenesis. These data have the potential to improve patient classification in clinical practice and to guide the development of antigen-specific tolerization strategies.
Collapse
Affiliation(s)
- Carolina Cruciani
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Marco Puthenparampil
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Paula Tomas-Ojer
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Ivan Jelcic
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Maria Jose Docampo
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Raquel Planas
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Praveena Manogaran
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Roland Opfer
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Carla Wicki
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Markus Reindl
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Ilijas Jelcic
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Andreas Lutterotti
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Roland Martin
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria
| | - Mireia Sospedra
- From the Neuroimmunology and MS Research (NIMS) (C.C., M.P., P.T.O., I.J., M.J.D., R.P., P.M., C.W., I.J., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich, Switzerland; Department of Neuroscience DNS (M.P.), University-Hospital of Padova, Italy; Jung Diagnostics GmbH (R.O.), HIP - Health Innovation Port, Germany; Department of Health Sciences and Technology (C.W.), ETH Zurich, Switzerland; and Clinical Department of Neurology (M.R.), Medical University of Innsbruck, Austria.
| |
Collapse
|
23
|
Li T, Li H, Li Y, Dong SA, Yi M, Zhang QX, Feng B, Yang L, Shi FD, Yang CS. Multi-Level Analyses of Genome-Wide Association Study to Reveal Significant Risk Genes and Pathways in Neuromyelitis Optica Spectrum Disorder. Front Genet 2021; 12:690537. [PMID: 34367251 PMCID: PMC8335167 DOI: 10.3389/fgene.2021.690537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system and it is understandable that environmental and genetic factors underlie the etiology of NMOSD. However, the susceptibility genes and associated pathways of NMOSD patients who are AQP4-Ab positive and negative have not been elucidated. Methods Secondary analysis from a NMOSD Genome-wide association study (GWAS) dataset originally published in 2018 (215 NMOSD cases and 1244 controls) was conducted to identify potential susceptibility genes and associated pathways in AQP4-positive and negative NMOSD patients, respectively (132 AQP4-positive and 83 AQP4-negative). Results In AQP4-positive NMOSD cases, five shared risk genes were obtained at chromosome 6 in AQP4-positive NMOSD cases by using more stringent p-Values in both methods (p < 0.05/16,532), comprising CFB, EHMT2, HLA-DQA1, MSH5, and SLC44A4. Fifty potential susceptibility gene sets were determined and 12 significant KEGG pathways were identified. Sixty-seven biological process pathways, 32 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained from the GO annotations of the 128 pathways identified. In the AQP4 negative NMOSD group, no significant genes were obtained by using more stringent p-Values in both methods (p < 0.05/16,485). The 22 potential susceptibility gene sets were determined. There were no shared potential susceptibility genes between the AQP4-positive and negative groups, furthermore, four significant KEGG pathways were also identified. Of the GO annotations of the 165 pathways identified, 99 biological process pathways, 37 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained. Conclusion The potential molecular mechanism underlying NMOSD may be related to proteins encoded by these novel genes in complements, antigen presentation, and immune regulation. The new results may represent an improved comprehension of the genetic and molecular mechanisms underlying NMOSD.
Collapse
Affiliation(s)
- Ting Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - He Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Ming Yi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Feng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chun-Sheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Simões JLB, de Araújo JB, Bagatini MD. Anti-inflammatory Therapy by Cholinergic and Purinergic Modulation in Multiple Sclerosis Associated with SARS-CoV-2 Infection. Mol Neurobiol 2021; 58:5090-5111. [PMID: 34247339 PMCID: PMC8272687 DOI: 10.1007/s12035-021-02464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The virus "acute respiratory syndrome coronavirus 2" (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19), initially responsible for an outbreak of pneumonia in Wuhan, China, which, due to the high level of contagion and dissemination, has become a pandemic. The clinical picture varies from mild to critical cases; however, all of these signs already show neurological problems, from sensory loss to neurological diseases. Thus, patients with multiple sclerosis (MS) infected with the new coronavirus are more likely to develop severe conditions; in addition to worsening the disease, this is due to the high level of pro-inflammatory cytokines, which is closely associated with increased mortality both in COVID-19 and MS. This increase is uncontrolled and exaggerated, characterizing the cytokine storm, so a possible therapy for this neuronal inflammation is the modulation of the cholinergic anti-inflammatory pathway, since acetylcholine (ACh) acts to reduce pro-inflammatory cytokines and acts directly on the brain for being released by cholinergic neurons, as well as acting on other cells such as immune and blood cells. In addition, due to tissue damage, there is an exacerbated release of adenosine triphosphate (ATP), potentiating the inflammatory process and activating purinergic receptors which act directly on neuroinflammation and positively modulate the inflammatory cycle. Associated with this, in neurological pathologies, there is greater expression of P2X7 in the cells of the microglia, which positively activates the immune inflammatory response. Thus, the administration of blockers of this receptor can act in conjunction with the action of ACh in the anticholinergic inflammatory pathway. Finally, there will be a reduction in the cytokine storm and triggered hyperinflammation, as well as the level of mortality in patients with multiple sclerosis infected with SARS-CoV-2 and the development of possible neurological damage.
Collapse
|
25
|
Ma C, Li S, Hu Y, Ma Y, Wu Y, Wu C, Liu X, Wang B, Hu G, Zhou J, Yang S. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. J Exp Med 2021; 218:e20201796. [PMID: 33710283 PMCID: PMC7961553 DOI: 10.1084/jem.20201796] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
The role of the PYHIN family member absent in melanoma 2 (AIM2), another important inflammasome sensor, in EAE remains unclear. In this study, we found that AIM2 negatively regulates the pathogenesis of EAE independent of inflammasome activation. AIM2 deficiency enhanced microglia activation and infiltration of peripheral immune cells into the CNS, thereby promoting neuroinflammation and demyelination during EAE. Mechanistically, AIM2 negatively regulates the DNA-PK-AKT3 in microglia to control neuroinflammation synergistically induced by cGAS and DNA-PK. Administration of a DNA-PK inhibitor reduced the severity of the EAE. Collectively, these findings identify a new role for AIM2 in controlling the onset of EAE. Furthermore, delineation of the underlying inflammasome-independent mechanism highlights cGAS and DNA-PK signaling as potential targets for the treatment of heterogeneous MS.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- DNA-Activated Protein Kinase/genetics
- DNA-Activated Protein Kinase/immunology
- DNA-Activated Protein Kinase/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression/immunology
- Inflammasomes/genetics
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microglia/immunology
- Microglia/metabolism
- Microglia/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Mice
Collapse
Affiliation(s)
- Chunmei Ma
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yingchao Hu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yan Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqing Wu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Chunyan Wu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xue Liu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Yang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Melnick M, Gonzales P, LaRocca TJ, Song Y, Wuu J, Benatar M, Oskarsson B, Petrucelli L, Dowell RD, Link CD, Prudencio M. Application of a bioinformatic pipeline to RNA-seq data identifies novel viruslike sequence in human blood. G3-GENES GENOMES GENETICS 2021; 11:6259144. [PMID: 33914880 PMCID: PMC8661426 DOI: 10.1093/g3journal/jkab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Numerous reports have suggested that infectious agents could play a role in neurodegenerative diseases, but specific etiological agents have not been convincingly demonstrated. To search for candidate agents in an unbiased fashion, we have developed a bioinformatic pipeline that identifies microbial sequences in mammalian RNA-seq data, including sequences with no significant nucleotide similarity hits in GenBank. Effectiveness of the pipeline was tested using publicly available RNA-seq data and in a reconstruction experiment using synthetic data. We then applied this pipeline to a novel RNA-seq dataset generated from a cohort of 120 samples from amyotrophic lateral sclerosis patients and controls, and identified sequences corresponding to known bacteria and viruses, as well as novel virus-like sequences. The presence of these novel virus-like sequences, which were identified in subsets of both patients and controls, were confirmed by quantitative RT-PCR. We believe this pipeline will be a useful tool for the identification of potential etiological agents in the many RNA-seq datasets currently being generated.
Collapse
Affiliation(s)
- Marko Melnick
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| | - Robin D Dowell
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, 80303, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| |
Collapse
|
27
|
Skripchenko EY, Zheleznikova GF, Alekseeva LA, Skripchenko NV, Astapova AV, Gorelik EY, Vilnitz AA. [Herpesviruses and biomarkers in disseminated encephalomyelitis and multiple sclerosis in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:138-145. [PMID: 33834732 DOI: 10.17116/jnevro2021121031138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relevance of the study of demyelinating diseases is due to their increasing frequency in children, clarification of the role of infectious agents in their genesis, as well as the possibility of transformation of disseminated encephalomyelitis into multiple sclerosis. The literature review presents the currently available information on the causes of the development of demyelinating diseases, biomarkers of disseminated encephalomyelitis and multiple sclerosis, the causes of an unfavorable course and possible laboratory parameters indicating the transition from one disease to another, which can be used as prognostic factors. The authors also noted the experience of the authors on the importance of adequate etiopathogenetic therapy in changing the nature of the course of the disease, in particular, when confirming the relationship between the frequency of exacerbations of ADEM and MS with the activation of herpesvirus infections, courses of specific antiviral therapy are effective, as well as pathogenetic therapy aimed at correcting endothelial dysfunction using the drug cytoflavin.
Collapse
Affiliation(s)
- E Yu Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia.,Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - G F Zheleznikova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - L A Alekseeva
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - N V Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia.,Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - A V Astapova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - E Yu Gorelik
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - A A Vilnitz
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| |
Collapse
|
28
|
Ermakov EA, Kabirova EM, Buneva VN, Nevinsky GA. IgGs-Abzymes from the Sera of Patients with Multiple Sclerosis Recognize and Hydrolyze miRNAs. Int J Mol Sci 2021; 22:2812. [PMID: 33802122 PMCID: PMC8000798 DOI: 10.3390/ijms22062812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Autoantibodies-abzymes hydrolyzing DNA, myelin basic protein, and oligosaccharides have been revealed in the sera of patients with multiple sclerosis (MS). In MS, specific microRNAs are found in blood and cerebrospinal fluid, which are characterized by increased expression. Autoantibodies, specifically hydrolyzing four different miRNAs, were first detected in the blood of schizophrenia patients. Here, we present the first evidence that 23 IgG antibodies of MS patients effectively recognize and hydrolyze four neuroregulatory miRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219-5p) and four immunoregulatory miRNAs (miR-21-3p, miR-146a-3p, miR-155-5p, and miR-326). Several known criteria were checked to show that the recognition and hydrolysis of miRNAs is an intrinsic property of MS IgGs. The hydrolysis of all miRNAs is mostly site-specific. The major and moderate sites of the hydrolysis of each miRNA for most of the IgG preparations coincided; however, some of them showed other specific sites of splitting. Several individual IgGs hydrolyzed some miRNAs almost nonspecifically at nearly all internucleoside bonds or demonstrated a combination of site-specific and nonspecific splitting. Maximum average relative activity (RA) was observed in the hydrolysis of miR-155-5p for IgGs of patients of two types of MS-clinically isolated syndrome and relapsing-remitting MS-but was also high for patients with primary progressive and secondary progressive MS. Differences between RAs of IgGs of four groups of MS patients and healthy donors were statistically significant (p < 0.015). There was a tendency of decreasing efficiency of hydrolysis of all eight miRNAs during remission compared with the exacerbation of the disease.
Collapse
Affiliation(s)
| | | | | | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave, 630090 Novosibirsk, Russia; (E.A.E.); (E.M.K.); (V.N.B.)
| |
Collapse
|
29
|
Xu Y, Smith KA, Hiyoshi A, Piehl F, Olsson T, Montgomery S. Hospital-diagnosed infections before age 20 and risk of a subsequent multiple sclerosis diagnosis. Brain 2021; 144:2390-2400. [PMID: 33693538 DOI: 10.1093/brain/awab100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The involvement of specific viral and bacterial infections as risk factors for multiple sclerosis has been studied extensively. However, whether this extends to infections in a broader sense is less clear and little is known about whether risk of a multiple sclerosis diagnosis is associated with other types and sites of infections, such as of the CNS. This study aims to assess if hospital-diagnosed infections by type and site before age 20 years are associated with risk of a subsequent multiple sclerosis diagnosis and whether this association is explained entirely by infectious mononucleosis, pneumonia, and CNS infections. Individuals born in Sweden between 1970-1994 were identified using the Swedish Total Population Register (n = 2,422,969). Multiple sclerosis diagnoses from age 20 years and hospital-diagnosed infections before age 20 years were identified using the Swedish National Patient Register. Risk of a multiple sclerosis diagnosis associated with various infections in adolescence (11-19 years) and earlier childhood (birth-10 years) was estimated using Cox regression, with adjustment for sex, parental socioeconomic position, and infection type. None of the infections by age 10 years were associated with risk of a multiple sclerosis diagnosis. Any infection in adolescence increased the risk of a multiple sclerosis diagnosis (hazard ratio 1.33, 95% confidence interval 1.21-1.46) and remained statistically significant after exclusion of infectious mononucleosis, pneumonia, and CNS infection (hazard ratio 1.17, 95% confidence interval 1.06-1.30). CNS infection in adolescence (excluding encephalomyelitis to avoid including acute disseminated encephalitis) increased the risk of a multiple sclerosis diagnosis (hazard ratio 1.85, 95% confidence interval 1.11-3.07). The increased risk of a multiple sclerosis diagnosis associated with viral infection in adolescence was largely explained by infectious mononucleosis. Bacterial infections in adolescence increased risk of a multiple sclerosis diagnosis, but the magnitude of risk reduced after excluding infectious mononucleosis, pneumonia and CNS infection (hazard ratio 1.31, 95% confidence interval 1.13-1.51). Respiratory infection in adolescence also increased risk of a multiple sclerosis diagnosis (hazard ratio 1.51, 95% confidence interval 1.30-1.75), but was not statistically significant after excluding infectious mononucleosis and pneumonia. These findings suggest that a variety of serious infections in adolescence, including novel evidence for CNS infections, are risk factors for a subsequent multiple sclerosis diagnosis, further demonstrating adolescence is a critical period of susceptibility to environmental exposures that raise the risk of a multiple sclerosis diagnosis. Importantly, this increased risk cannot be entirely explained by infectious mononucleosis, pneumonia, or CNS infections.
Collapse
Affiliation(s)
- Yin Xu
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Kelsi A Smith
- Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.,Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
30
|
Libbey JE, Fujinami RS. Viral mouse models used to study multiple sclerosis: past and present. Arch Virol 2021; 166:1015-1033. [PMID: 33582855 PMCID: PMC7882042 DOI: 10.1007/s00705-021-04968-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory demyelinating disease of the central nervous system. Although the etiology of MS is unknown, genetics and environmental factors, such as infections, play a role. Viral infections of mice have been used as model systems to study this demyelinating disease of humans. Three viruses that have long been studied in this capacity are Theiler’s murine encephalomyelitis virus, mouse hepatitis virus, and Semliki Forest virus. This review describes the viruses themselves, the infection process, the disease caused by infection and its accompanying pathology, and the model systems and their usefulness in studying MS.
Collapse
Affiliation(s)
- J E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - R S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
31
|
Baranova SV, Dmitrenok PS, Buneva VN, Sedykh SE, Nevinsky GA. HIV-Infected Patients: Cross Site-Specific Hydrolysis of H3 and H4 Histones and Myelin Basic Protein with Antibodies against These Three Proteins. Molecules 2021; 26:E316. [PMID: 33435385 PMCID: PMC7826842 DOI: 10.3390/molecules26020316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Histones play important roles in chromatin functioning and gene transcription, but in the intercellular space, they are harmful since they stimulate systemic inflammatory and toxic responses. Electrophoretically homogeneous IgGs against myelin basic protein (MBP), as well as H3 and H4 histones, were isolated from sera of HIV-infected patients. In contrast to known classical proteases, these IgGs split exclusively only histones and MBP but no other control proteins. Among 13 sites of hydrolysis of H3 by IgGs against H3 and 14 sites for anti-MBP IgGs, only two sites of the hydrolysis were the same. Between seven cleavage sites of H4 with IgGs against H4 and 9 sites of this histone hydrolysis by antibodies against MBP, only three sites were the same. The sites of hydrolysis of H3 (and H4) with abzymes against these histones and against MBP were different, but several expended protein clusters containing hydrolysis sites are partially overlapped. The existence of enzymatic cross-reactivity of abzymes against H3 and H4 and MBP represents a great menace to humans since due to cell apoptosis, histones constantly occur in human blood. They can hydrolyze MBP of the myelin sheath of axons and play a negative role in the pathogenesis of HIV-infected patients.
Collapse
Affiliation(s)
- Svetlana V. Baranova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (S.V.B.); (V.N.B.); (S.E.S.)
| | - Pavel S. Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Brunch of the Russian Academy of Sciences, 159 Pr. 100 let Vladivostoku, 690022 Vladivostok, Russia;
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (S.V.B.); (V.N.B.); (S.E.S.)
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (S.V.B.); (V.N.B.); (S.E.S.)
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (S.V.B.); (V.N.B.); (S.E.S.)
| |
Collapse
|
32
|
Li W. Prospective Application of Aptamer-based Assays and Therapeutics in Bloodstream Infections. Mini Rev Med Chem 2020; 20:831-840. [PMID: 32048971 DOI: 10.2174/1389557520666200212105813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.
Collapse
Affiliation(s)
- Weibin Li
- Institute for Laboratory Medicine, 900th Hospital of Joint Service Corps, PLA, China.,Laboratory Department of Fujian Medical University, No. 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, Fuzhou 350025, China
| |
Collapse
|
33
|
Florea AA, Sirbu CA, Ghinescu MC, Plesa CF, Sirbu AM, Mitrica M, Ionita-Radu F. SARS-CoV-2, multiple sclerosis, and focal deficit in a postpartum woman: A case report. Exp Ther Med 2020; 21:92. [PMID: 33363603 DOI: 10.3892/etm.2020.9524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infections raise many practical concerns in a woman with multiple sclerosis (MS) during the perinatal period. On the other hand, the impact of COVID-19 on patients with MS and disease-modifying therapies (DMTs) is unknown. We report on a female patient who was treated with interferon beta 1a (IFNB-1a) for many years for relapsing-remitting multiple sclerosis (RRMS) until December 2018. She developed COVID 19 infection in April 2020, after giving birth to a healthy baby girl, five weeks before. She developed a mild right hemiparesis 2 weeks later, without cold symptoms. On admission, PCR for SARS-CoV-2 was positive, and she received antivirals and corticotherapy. One month later, specific IgG and IgM antibodies were negative. The patient did not develop immunity to COVID-19 infection. This report raises several problems. The focal deficit could be a real relapse or a pseudo-relapse due to SARS-CoV-2 and postpartum patient vulnerability. The treatment options in this particular case raise many challenges. The absence of antibodies after a SARS-CoV-2 infection raises a big question over the acquired immunity, the increased risk of reinfection, and the subsequent evolution of MS. The standard of care for a woman with MS and COVID-19 infection during the postpartum period must be explored and more precise recommendations must be established in the future.
Collapse
Affiliation(s)
- Anca Alexandra Florea
- Department of Neurology, 'Dr Carol Davila' Central Military Emergency University Hospital, Bucharest 010242, Romania
| | - Carmen Adella Sirbu
- Department of Neurology, 'Dr Carol Davila' Central Military Emergency University Hospital, Bucharest 010242, Romania.,Department of Medical-Surgical and Prophylactic Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Minerva Claudia Ghinescu
- Department of Medical-Surgical and Prophylactic Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Cristina Florentina Plesa
- Department of Neurology, 'Dr Carol Davila' Central Military Emergency University Hospital, Bucharest 010242, Romania.,Department of Medical-Surgical and Prophylactic Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Anca Maria Sirbu
- Department of Endocrinology, National Institute of Endocrinology, CI Parhon, 011863 Bucharest, Romania
| | - Marian Mitrica
- Department of Neurosurgery, 'Dr Carol Davila' Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Florentina Ionita-Radu
- Department of Medical-Surgical and Prophylactic Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania.,Department of Gastroenterology, 'Dr Carol Davila' Central Military Emergency University Hospital, 010242 Bucharest, Romania
| |
Collapse
|
34
|
Baranova SV, Dmitrienok PS, Buneva VN, Nevinsky GA. HIV-Infected Patients: Cross Site-Specific Hydrolysis of H2a and H2b Histones and Myelin Basic Protein with Antibodies against These Three Proteins. Biomolecules 2020; 10:E1501. [PMID: 33143355 PMCID: PMC7693679 DOI: 10.3390/biom10111501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 01/28/2023] Open
Abstract
Anti-DNA antibodies are usually produced against histone-DNA complexes appearing during cell apoptosis, while histones are known as damage-associated molecules. A myelin sheath of axons contains myelin basic protein (MBP) playing an important role in the pathogenesis of autoimmune diseases. Antibodies with enzymatic activities (abzymes) are distinctive features of some autoimmune and viral diseases. Abzymes against different proteins can usually only hydrolyze these specific proteins. Using sequential chromatographies of homogeneous IgG preparations from sera of HIV-infected patients on columns with immobilized MBP, H2a, and H2b histones, the anti-MBP, anti-H2a, and anti-H2b antibodies were obtained. It was first shown that IgGs against H2a and H2b effectively hydrolyze these histones and MBP, while anti-MBP split MBP, H2a, and H2b, but no other control proteins. Using the MALDI mass spectrometry, the cleavage sites of H2a, H2b, and MBP by abzymes against these three proteins were found. Among 14 sites of hydrolysis of H2a by IgGs against H2a and 10 sites by anti-MBP IgGs, only one site of hydrolysis was the same for these abzymes. Eleven cleavage sites of H2b with IgGs against H2b and 10 sites of its hydrolysis with antibodies against MBP were different. Anti-H2a, anti-H2b, and anti-MBP abzymes are unpredictable examples of IgGs possessing not only cross-complexation but also catalytic cross-reactivity, which may be a common phenomenon for such abzymes in patients with different autoimmune diseases. The existence of cross-reactivity of abzymes against H2a and H2b histones and MBP represent a great danger to humans since, in contrast with MBP, histones due to cell apoptosis constantly occur in human blood. Anti-H2a, anti-H2b, and anti-MBP can attack and hydrolyze myelin basic protein of the myelin sheath of axons and plays a negative role in the pathogenesis of several pathologies.
Collapse
Affiliation(s)
- Svetlana V. Baranova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Lavrentiev, Russia; (S.V.B.); (V.N.B.)
| | - Pavel S. Dmitrienok
- Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Lavrentiev, Russia; (S.V.B.); (V.N.B.)
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Lavrentiev, Russia; (S.V.B.); (V.N.B.)
| |
Collapse
|
35
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
36
|
Morphological Description of the Early Events during the Invasion of Acanthamoeba castellanii Trophozoites in a Murine Model of Skin Irradiated under UV-B Light. Pathogens 2020; 9:pathogens9100794. [PMID: 32992452 PMCID: PMC7600863 DOI: 10.3390/pathogens9100794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
Skin infections have been associated with Acanthamoeba, nevertheless the events during skin invasion and UV-B light effects on it are unknown. The early morphological events of Acanthamoeba castellanii skin invasion are shown in SKH-1 mice that were chronically UV-B light irradiated. Mice that developed skin lesions (group 1) were topical and intradermally inoculated with A. castellanii trophozoites and sacrificed 48 h or 18 days later. Mice that showed no skin lesions (group 2) were intradermally inoculated and sacrificed 24, 48 or 72 h later. Mice ventral areas were considered controls with and without trophozoites intradermally inoculated. Skin samples were processed by histological and immunohistochemistry techniques. In group 1, trophozoites were immunolocalized in dermal areas, hair cysts, sebaceous glands, and blood vessels, and collagen degradation was observed. One of these mice shown trophozoites in the spleen, liver, and brain. In group 2, few trophozoites nearby collagenolytic activity zones were observed. In control samples, nor histological damage and no trophozoites were observed. Adherence and collagenolytic activity by A. castellanii were corroborated in vitro. We can infer that UV-B light irradiated skin could favor A. castellanii invasiveness causing damage in sites as far away as the brain, confirming the invasive capacity and pathogenic potential of these amphizoic amoebae.
Collapse
|
37
|
Bello-Morales R, Andreu S, López-Guerrero JA. The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21145026. [PMID: 32708697 PMCID: PMC7404202 DOI: 10.3390/ijms21145026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Carrasco L, Pisa D, Alonso R. Polymicrobial Infections and Neurodegenerative Diseases. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Kostrikina IA, Buneva VN, Granieri E, Nevinsky GA. Extreme Diversity of IgGs Against Histones, DNA, and Myelin Basic Protein in the Cerebrospinal Fluid and Blood of Patients with Multiple Sclerosis. Biomolecules 2020; 10:biom10040630. [PMID: 32325782 PMCID: PMC7226582 DOI: 10.3390/biom10040630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 01/23/2023] Open
Abstract
It was recently shown that IgGs from sera of multiple sclerosis (MS) patients are active in the hydrolysis of DNA and myelin basic protein (MBP). We first analyzed the relative concentration of antibodies against five histones (H1, H2a, H2b, H3, and H4) in the cerebrospinal fluid (CSF) and serum of patients with MS. The relative concentrations of blood and CSF IgGs against histones and their activity in the hydrolysis of five histones varied greatly from patient to patient. However, all 28 IgG preparations were hydrolyzed from one to five histones. Relative activities and correlation coefficients among the activities of IgGs from serum and CSF in the hydrolysis of five histones (H1, H2a, H2b, H3, and H4), DNA, and MBP were calculated. It was shown that auto-IgGs from CSF and sera of MS patients are extremely heterogeneous in their affinity to histones, MBP, and DNA. The heterogeneity of IgG-abzymes hydrolyzing DNA, MBP, and histones from CSF and sera was also demonstrated using their isoelectrofocusing. The isofocusing profiles DNase, MBP-, and histone-hydrolyzing activities of IgGs may be very different for various individuals, but the total IgG subfractions with all their activities are distributed from pH 3 to 10.
Collapse
Affiliation(s)
- Irina A. Kostrikina
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Division, 630090 Novosibirsk, Russia; (I.A.K.); (V.N.B.)
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Division, 630090 Novosibirsk, Russia; (I.A.K.); (V.N.B.)
| | - Enrico Granieri
- Multiple Sclerosis Center, Department of Neurology, Ferrara University, 44121 Ferrara, Italy;
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Division, 630090 Novosibirsk, Russia; (I.A.K.); (V.N.B.)
- Correspondence: ; Tel.: +7-383-363-51-26
| |
Collapse
|
40
|
The roles played by TLR4 in the pathogenesis of multiple sclerosis; A systematic review article. Immunol Lett 2020; 220:63-70. [PMID: 32032617 DOI: 10.1016/j.imlet.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a world-wide pro-inflammatory based disease, which is prevalent among young individuals. The etiology of the disease and its related complications are yet to be clarified. It has been hypothesized that environmental factors, including pathogen-associated molecular patterns (PAMPs) and the internal factors such as damage-associated molecular patterns (DAMPs), may be the most important inducers/stimulators of the disorder and its related complications. Previous investigations proved that pathogen recognition receptors (PRRs) are the main sensors for the PAMPs and DAMPs. Therefore, it seems that the PRRs have been considered to be the plausible molecules participating in the etiology of MS. Toll-like receptors (TLRs) have been the widely studied PRRs and their roles have been documented in human-related diseases. TLR4 is the main PRR expressed on the cell surface of several immune cells including macrophages and dendritic cells. Several investigations reported that TLR4 to be the main molecule involved in the pathogenesis of pro-inflammatory based diseases. Thus, it has been hypothesized that TLR4 may be a part of the MS puzzle. This review article discusses the role of TLR4 in the MS pathogenesis using recent in vitro and in vivo investigations.
Collapse
|
41
|
Haupeltshofer S, Leichsenring T, Berg S, Pedreiturria X, Joachim SC, Tischoff I, Otte JM, Bopp T, Fantini MC, Esser C, Willbold D, Gold R, Faissner S, Kleiter I. Smad7 in intestinal CD4 + T cells determines autoimmunity in a spontaneous model of multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:25860-25869. [PMID: 31796589 PMCID: PMC6926056 DOI: 10.1073/pnas.1905955116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Environmental triggers acting at the intestinal barrier are thought to contribute to the initiation of autoimmune disorders. The transforming growth factor beta inhibitor Smad7 determines the phenotype of CD4+ T cells. We hypothesized that Smad7 in intestinal CD4+ T cells controls initiation of opticospinal encephalomyelitis (OSE), a murine model of multiple sclerosis (MS), depending on the presence of gut microbiota. Smad7 was overexpressed or deleted in OSE CD4+ T cells to determine the effect on clinical progression, T cell differentiation, and T cell migration from the intestine to the central nervous system (CNS). Smad7 overexpression worsened the clinical course of OSE and increased CNS inflammation and demyelination. It favored expansion of intestinal CD4+ T cells toward an inflammatory phenotype and migration of intestinal CD4+ T cells to the CNS. Intestinal biopsies from MS patients revealed decreased transforming growth factor beta signaling with a shift toward inflammatory T cell subtypes. Smad7 in intestinal T cells might represent a valuable therapeutic target for MS to achieve immunologic tolerance in the intestine and suppress CNS inflammation.
Collapse
Affiliation(s)
- Steffen Haupeltshofer
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Teresa Leichsenring
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Sarah Berg
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Xiomara Pedreiturria
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Stephanie C Joachim
- University Eye Clinic, Experimental Eye Research Institute, Ruhr-University Bochum, 44892 Bochum, Germany
| | - Iris Tischoff
- Institut für Pathologie, Bergmannsheil, 44789 Bochum, Germany
| | - Jan-Michel Otte
- Department of Internal Medicine I, Klinikum Links der Weser, 28277 Bremen, Germany
| | - Tobias Bopp
- Institute for Immunology, Universitätsmedizin Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Universitätsmedizin Mainz, 55131 Mainz, Germany
| | - Massimo C Fantini
- Department of Systems Medicine, University of Rome "Tor Vergata," 00133 Roma RM, Italy
| | - Charlotte Esser
- Leibniz-Institut für Umweltmedizinische Forschung, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ralf Gold
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Simon Faissner
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ingo Kleiter
- St. Josef-Hospital, Department of Neurology, Ruhr-University Bochum, 44791 Bochum, Germany;
- Marianne-Strauss-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, 82335 Berg, Germany
| |
Collapse
|
42
|
Planas R, Santos R, Tomas-Ojer P, Cruciani C, Lutterotti A, Faigle W, Schaeren-Wiemers N, Espejo C, Eixarch H, Pinilla C, Martin R, Sospedra M. GDP-l-fucose synthase is a CD4 + T cell-specific autoantigen in DRB3*02:02 patients with multiple sclerosis. Sci Transl Med 2019; 10:10/462/eaat4301. [PMID: 30305453 DOI: 10.1126/scitranslmed.aat4301] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system that develops in genetically susceptible individuals and likely requires environmental triggers. The autoantigens and molecular mimics triggering the autoimmune response in multiple sclerosis remain incompletely understood. By using a brain-infiltrating CD4+ T cell clone that is clonally expanded in multiple sclerosis brain lesions and a systematic approach for the identification of its target antigens, positional scanning peptide libraries in combination with biometrical analysis, we have identified guanosine diphosphate (GDP)-l-fucose synthase as an autoantigen that is recognized by cerebrospinal fluid-infiltrating CD4+ T cells from HLA-DRB3*-positive patients. Significant associations were found between reactivity to GDP-l-fucose synthase peptides and DRB3*02:02 expression, along with reactivity against an immunodominant myelin basic protein peptide. These results, coupled with the cross-recognition of homologous peptides from gut microbiota, suggest a possible role of this antigen as an inducer or driver of pathogenic autoimmune responses in multiple sclerosis.
Collapse
Affiliation(s)
- Raquel Planas
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway Port St. Lucie, FL 34987, USA
| | - Paula Tomas-Ojer
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Carolina Cruciani
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Andreas Lutterotti
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Nicole Schaeren-Wiemers
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway Port St. Lucie, FL 34987, USA
| | - Roland Martin
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland.
| |
Collapse
|
43
|
Helbi S, Ravanbakhsh B, Karimi M, Kooti W, Jivad N. Aligned Expression of IFI16 and STING Genes in RRMS Patients' Blood. Endocr Metab Immune Disord Drug Targets 2019; 20:878-886. [PMID: 31362682 DOI: 10.2174/1871530319666190729112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic neurodegenerative disease of the central nervous system. The most common disease phenotype is Relapsing-Remitting MS (RRMS). Beta interferons are the first line of RRMS patients' treatment. Interferon-inducible protein 16 (IFI16) as a DNA sensing molecule and its downstream complex stimulator of interferon genes (STING) play a critical role in the activation of type I interferons. Hence we aimed to evaluate the expression rate of IFI16 and STING in RRMS patients' blood under a different type of IFNβ treatment. METHODS In the present study, 99 individuals participated. The participants were divided into 4 groups: 28 control subjects, 25 new cases of RRMS patients, 25 RRMS patients treated with IFNβ-1a (B1a), 21 RRMS patients treated with IFNβ-1b (B1b). The EDTA-treated blood samples were taken and transferred at standard conditions to the Cellular and Molecular Research Center of Shahrekord University of Medical Sciences, RNA was extracted and converted into cDNA. To evaluate the expression of IFI16 and STING, the Real-Time PCR method using SYBR Green/ROX qPCR master mix was performed done. The level of genes expression was measured using 2-ΔΔCt method. The obtained data were analyzed using SPSS v22 software. RESULTS Comparison of the IFI and STING mRNA expression in blood samples in association with gender and age showed no significant differences (p>0.05). Also, the evaluation of IFI16 mRNA level revealed that the IFI16 genes' expressions were remarkably higher in the new case group compared to the control group, however, STING expression did not show any significant difference. The mRNA levels of IFI16 and STING in IFNβ-treated groups were significantly lower than the new case group (p<0.001). Also, the genes' expressions in both the IFNβ-treated groups were significantly lower compared to the control group (p<0.001). In the assessment of the correlation of IFI16 and STING expressions with age and sex in different research groups, no statistically significant differences were seen (p>0.05). CONCLUSION Perhaps the IFNβ therapy decreases the IFI16 and STING expression in a STINGdependent pathway as a negative feedback mechanism for regulation of the immune system and suppression of pro-inflammatory cytokines production. The important role of DNA sensing molecules and STING-dependent pathway in MS gives a new insight into future treatment based on STING-direct therapies.
Collapse
Affiliation(s)
- Sobhan Helbi
- Department of Medical Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Behnam Ravanbakhsh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Karimi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nahid Jivad
- Department of Neurology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
44
|
López-Valencia D, Medina-Ortega Á, Hoyos-Samboní DF, Saavedra-Torres JS, Salguero C. Epstein-Barr virus infection as a predisposing factor for multiple sclerosis. An update from molecular biology, immunology and epidemiology. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n3.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Epstein-Barr virus is an infectious agent used to immortalize and induce polyclonal activation of B cells. It has been widely described that this virus produces changes in the cells it infects and in the immune response, and stimulates the development of autoimmune diseases.Objective: To characterize the association between Epstein-Barr virus and multiple sclerosis described in current scientific literature.Materials and methods: A 59-years range literature search was conducted in the PubMed, ScienceDirect, Redalyc and SciELO databases using the following MeSH terms: “Epstein-Barr virus, multiple sclerosis autoimmune diseases, autoimmune diseases of the nervous system”.Results: Many studies describe the association between Epstein-Barr virus and multiple sclerosis. It is believed that acute infection and viral reactivation promote the development of multiple sclerosis.Conclusions: It is necessary to conduct further research on the pathogenesis and morphophysiological and neuroimmunological changes –at the ecological, molecular, cellular, tissue, organic and systemic level– induced by the immune response and that favor the development of multiple sclerosis.
Collapse
|
45
|
Evaluation of Epstein-Barr virus-specific antibodies in Cypriot multiple sclerosis patients. Mol Immunol 2019; 105:270-275. [DOI: 10.1016/j.molimm.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 02/02/2023]
|
46
|
Sadeghi J, Alizadeh N, Ahangar Oskouei M, Laghusi D, Savadi Oskouei D, Nikanfar M, Seyyed Mousavi MN. Frequency of superantigen encoding genes of Staphylococcus aureus isolates collected from multiple sclerosis (MS) patients and nasal carriers. Microb Pathog 2018; 127:316-319. [PMID: 30553909 DOI: 10.1016/j.micpath.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bacterial superantigens are potent T cell activators that can have acute or chronic effects on the central nervous system. OBJECTIVES In this study, the role of enterotoxins, exfoliative toxins and toxic shock syndrome toxin of Staphylococcus aureus was investigated in MS patients and healthy nasal carriers. METHODS Three-hundred fifty nasal swabs were collected from healthy nasal carriers (n = 210) and MS (n = 140) patients. Staphylococcus aureus superantigens were detected by multiplex PCR. Antimicrobial susceptibility pattern was performed using disk diffusion method. RESULTS The highest rates of nasal colonization were seen in MS patients (46.42%). The rates of nasal colonization in the healthcare workers were 30.95%. The most commonly detected superantigens were SEA (31.5%), SEB (17.7%) and ETA (16.9%). The Staphylococcus aureus isolates had the highest levels of resistance against erythromycin (57.7%), clindamycin (55.4%) and co-trimoxazole (43.1%). All isolates were susceptible to vancomycin, linezolid, and mupirocin. CONCLUSION Our results revealed that the frequency of superantigen producing Staphylococcus aureus isolates is high in the MS patients. As well as these isolates are sensitive to mupirocin. Thus it is better to use of mupirocin for nasal decolonization of Staphylococcus aureus in the MS patients.
Collapse
Affiliation(s)
- Javid Sadeghi
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Naser Alizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahin Ahangar Oskouei
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Delara Laghusi
- Department of Social Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Daryush Savadi Oskouei
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Nikanfar
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mir Naser Seyyed Mousavi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Lewis A. Chronic cerebrospinal venous insufficiency, chlamydia and multiple sclerosis. Phlebology 2018; 33:695. [DOI: 10.1177/0268355518800130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Thibault P. Response to "Chronic cerebrospinal venous insufficiency, chlamydia and multiple sclerosis": CCSVI, Chlamydia pneumoniae and multiple sclerosis clarification. Phlebology 2018; 33:696-698. [DOI: 10.1177/0268355518800104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paul Thibault
- CCSVI Diagnostic Clinic, Broadmeadow, New South Wales, Australia
| |
Collapse
|
49
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
50
|
Matteucci C, Balestrieri E, Argaw-Denboba A, Sinibaldi-Vallebona P. Human endogenous retroviruses role in cancer cell stemness. Semin Cancer Biol 2018; 53:17-30. [PMID: 30317035 DOI: 10.1016/j.semcancer.2018.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Cancer incidence and mortality, metastasis, drug resistance and recurrence are still the critical issues of oncological diseases. In this scenario, increasing scientific evidences demonstrate that the activation of human endogenous retroviruses (HERVs) is involved in the aggressiveness of tumors such as melanoma, breast, germ cell, renal, ovarian, liver and haematological cancers. In their dynamic regulation, HERVs have also proved to be important determinants of pluripotency in human embryonic stem cells (ESC) and of the reprogramming process of induced pluripotent stem cells (iPSCs). In many types of tumors, essential characteristics of aggressiveness have been associated with the achievement of stemness features, often accompanied with the identification of defined subpopulations, termed cancer stem cells (CSCs), which possess stem cell-like properties and sustain tumorigenesis. Indeed, CSCs show high self-renewal capacity with a peculiar potential in tumor initiation, progression, metastasis, heterogeneity, recurrence, radiotherapy and drug resistance. However, HERVs role in CSCs biology is still not fully elucidated. In this regard, CD133 is a widely recognized marker of CSCs, and our group demonstrated, for the first time, the requirement of HERV-K activation to expand and maintain a CD133+ melanoma cell subpopulation with stemness features in response to microenvironmental modifications. The review will discuss HERVs expression as cancer hallmark, with particular focus on their role in the regulation of cancer stemness features and the potential involvement as targets for therapy.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy.
| | - Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| |
Collapse
|