1
|
Abdelaziz AM, Rasheed NOA, Zaki HF, Salem HA, El-Sayed RM. Canagliflozin attenuates neurodegeneration and ameliorates dyskinesia through targeting the NLRP3/Nurr1/GSK-3β/SIRT3 pathway and autophagy modulation in rotenone-lesioned rats. Int Immunopharmacol 2024; 146:113839. [PMID: 39700958 DOI: 10.1016/j.intimp.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD. AIMS This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID. Also, correlating NLRP3 expression with all evaluated parameters. MAIN METHODS The PD rat model was induced via eleven rotenone (1.5 mg/kg) subcutaneous injections day after day. Canagliflozin (20 mg/kg) and/or L-dopa/carbidopa (100/25 mg/kg) were orally administered daily from the beginning until the end of the experiment. KEY FINDINGS Canagliflozin significantly improved neurobehavioral and histological assessments, whereas dyskinesia scores declined. The improvement was confirmed through tyrosine hydroxylase and β-catenin upregulation in contrast to NLRP3 and caspase-1 in substantia nigra pars compacta, as revealed immunohistochemically. In addition, canagliflozin induced a prominent elevation in dopamine, Nurr1, PGC-1α, SIRT3, and beclin-1, whereas mTOR and GSK-3β expressions were downregulated. SIGNIFICANCE Our results revealed the aspiring canagliflozin neuroprotective properties against PD and LID in rotenone-lesioned rats via the assumed anti-inflammatory activity and implication of NLRP3/caspase-1, Nurr1/GSK-3β/β-catenin, PGC-1α/SIRT3, and beclin-1/mTOR pathways.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt
| |
Collapse
|
2
|
Carvajal-Oliveros A, Román-Martínez C, Reynaud E, Martínez-Martínez E. The BE (2)-M17 neuroblastoma cell line: revealing its potential as a cellular model for Parkinson's disease. Front Cell Neurosci 2024; 18:1485414. [PMID: 39659447 PMCID: PMC11628309 DOI: 10.3389/fncel.2024.1485414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Parkinson's disease is a pathology with a wide range of in vivo and in vitro models available. Among these, the SH-SY5Y neuroblastoma cell line is one of the most employed. This model expresses catecholaminergic markers and can differentiate and acquire various neuronal phenotypes. However, challenges persist, primarily concerning the variability of growth media, expression of dopaminergic markers, and a wide variety of differentiation protocols have been reported in the literature without direct comparison between them. This lack of standardized differentiation conditions impacts result reproducibility and it makes it very difficult to compare the results obtained from different research groups. An alternative cellular model is the neuroblastoma BE (2)-M17 which exhibits a high basal expression of numerous dopaminergic markers such as tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT). The BE (2)-M17 cells show neuronal properties, grows rapidly in conventional media, and can easily be differentiated to increase their dopaminergic phenotype. In this review, we will thoroughly explore the properties of the BE (2)-M17 cell line and discuss its potential as an excellent model for studying Parkinson's disease.
Collapse
Affiliation(s)
- Angel Carvajal-Oliveros
- Laboratory of Cell Communication and Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Camila Román-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
3
|
Ellis D, Watanabe K, Wilmanski T, Lustgarten MS, Korat AVA, Glusman G, Hadlock JJ, Fiehn O, Sebastiani P, Price ND, Hood L, Magis AT, Evans SJ, Pflieger L, Lovejoy JC, Gibbons SM, Funk CC, Baloni P, Rappaport N. APOE Genotype and Biological Age Impact Inter-Omic Associations Related to Bioenergetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618322. [PMID: 39605362 PMCID: PMC11601402 DOI: 10.1101/2024.10.17.618322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Apolipoprotein E ( APOE ) modifies human aging; specifically, the ε2 and ε4 alleles are among the strongest genetic predictors of longevity and Alzheimer's disease (AD) risk, respectively. However, detailed mechanisms for their influence on aging remain unclear. Herein, we analyzed inter-omic, context-dependent association patterns across APOE genotypes, sex, and health axes in 2,229 community-dwelling individuals to test APOE genotypes for variation in metabolites and metabolite-associations tied to a previously-validated metric of biological aging (BA) based on blood biomarkers. Our analysis, supported by validation in an independent cohort, identified top APOE -associated plasma metabolites as diacylglycerols, which were increased in ε2-carriers and trended higher in ε4-carriers compared to ε3-homozygotes, despite the known opposing aging effects of the allele variants. 'Omics association patterns of ε2-carriers and increased biological age were also counter-intuitively similar, displaying increased associations between insulin resistance markers and energy-generating pathway metabolites. These results provide an atlas of APOE -related 'omic associations and support the involvement of bioenergetic pathways in mediating the impact of APOE on aging.
Collapse
|
4
|
Sun F, Dong B, Zhang H, Tian M. Permeability-Controlled Probe for Ratiometric Detection of Plasma Membrane Integrity and Late Apoptosis. ACS Sens 2024. [PMID: 39460734 DOI: 10.1021/acssensors.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The destruction of plasma membrane integrity is closely related to immune response, neuronal injury, cell apoptosis, and other pathological events. However, the construction of ratiometric fluorescent probes capable of detecting plasma membrane integrity remains a significant challenge, hindering in-depth studies on related biomedical areas. Herein, a polarity-responsive fluorescent probe was constructed for the ratiometric detection of cell membrane integrity for the first time. The probe targeted intact plasma membranes in healthy cells and relocated into the cytoplasm to give significantly red-shifted fluorescence after plasma membrane damage. Molecular simulations revealed that the high transmembrane barrier and amphipathic nature of the probe were responsible for its targeting ability. With the probe, the ratiometric detection of late apoptosis stage was realized for the first time, and the membrane damage of tumor cells induced by UV irradiation, toxins, and antitumor drugs was visualized. The effect of formaldehyde on membrane integrity was evaluated using a probe, and cysteine was proved to be a potential detoxifier to counteract the toxicity of formaldehyde.
Collapse
Affiliation(s)
- Fengkai Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China
- Shandong Chambroad Holding Co., Ltd. Binzhou, Shandong 256500, PR China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|
5
|
Jao YN, Chao YJ, Chan JF, Hsu YHH. Mass Spectrometry Analysis of Neurotransmitter Shifting during Neurogenesis and Neurodegeneration of PC12 Cells. Int J Mol Sci 2024; 25:10399. [PMID: 39408728 PMCID: PMC11477332 DOI: 10.3390/ijms251910399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Parkinson's disease (PD) affects movement; however, most patients with PD also develop nonmotor symptoms, such as hyposmia, sleep disorder, and depression. Dopamine levels in the brain have a critical influence on movement control, but other neurotransmitters are also involved in the progression of PD. This study analyzed the fluctuation of neurotransmitters in PC12 cells during neurogenesis and neurodegeneration by performing mass spectrometry. We found that the dopaminergic metabolism pathway of PC12 cells developed vigorously during the neuron differentiation process and that the neurotransmitters were metabolized into 3-methoxytyramine, which was released from the cells. The regulation of the intracellular and extracellular concentrations of adenosine indicated that adenine nucleotides were actively utilized in neural differentiation. Moreover, we exposed the differentiated PC12 cells to rotenone, which is a suitable material for modeling PD. The cells exposed to rotenone in the early stage of differentiation exhibited stimulated serotoninergic metabolism, and the contents of the serotoninergic neurotransmitters returned to their normal levels in the late stage of differentiation. Interestingly, the nondifferentiated cells can resist the toxicant rotenone and produce normal dopaminergic metabolites. However, when differentiated neuron cells were exposed to rotenone, they were seriously damaged, leading to a failure to produce dopaminergic neurotransmitters. In the low-dosage damage process, the amino acids that functioned as dopaminergic pathway precursors could not be absorbed by the cells, and dopamine and L-dopa were secreted and unable to be reuptaken to trigger the cell damage.
Collapse
Affiliation(s)
| | | | | | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan; (Y.-N.J.); (Y.-J.C.); (J.-F.C.)
| |
Collapse
|
6
|
Ibarra-Gutiérrez MT, Serrano-García N, Alcaraz-Zubeldia M, Pedraza-Chaverri J, Orozco-Ibarra M. An exploratory study on the ability of manganese to supplement rotenone neurotoxicity in rats. Brain Res 2024; 1839:149017. [PMID: 38768935 DOI: 10.1016/j.brainres.2024.149017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is a complex disorder, primarily of idiopathic origin, with environmental stressors like rotenone and manganese linked to its development. This study explores their potential interaction and resulting neurotoxicity, aiming to understand how environmental factors contribute to PD. In an eight-day experiment, male Wistar rats weighing 280-300 g were subjected to rotenone, manganese, or a combination of both. Various parameters were assessed, including body weight, behavior, serum markers, tissue damage, protein levels (tyrosine hydroxylase, Dopamine- and cAMP-regulated neuronal phosphoprotein -DARPP-32-, and α-synuclein), and mitochondrial function. Manganese heightened rotenone's impact on reducing food intake without causing kidney or liver dysfunction. However, the combined exposure intensified neurotoxicity, which was evident in augmented broken nuclei and decreased tyrosine hydroxylase and DARPP-32 levels in the striatum. While overall mitochondrial function was preserved, co-administration reduced complex IV activity in the midbrain and liver. In conclusion, our findings revealed a parallel toxic effect induced by rotenone and manganese. Notably, while these substances do not target the same dopaminergic regions, a notable escalation in toxicity is evident in the striatum, the brain region where their toxic effects converge. This study highlights the need for further exploration regarding the interaction of environmental factors and their possible impact on the etiology of PD.
Collapse
Affiliation(s)
- María Teresa Ibarra-Gutiérrez
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Tlalpan, C.P. 14269 Ciudad de México, Mexico
| | - Norma Serrano-García
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Tlalpan, C.P. 14269 Ciudad de México, Mexico.
| | - Mireya Alcaraz-Zubeldia
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Tlalpan, C.P. 14269 Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Copilco Universidad, Coyoacán, C.P. 04510 Ciudad de México, Mexico.
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Tlalpan, C.P. 14269 Ciudad de México, Mexico; Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez - Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico.
| |
Collapse
|
7
|
Techaniyom P, Korsirikoon C, Rungruang T, Pakaprot N, Prombutara P, Mukda S, Kettawan AK, Kettawan A. Cold-pressed perilla seed oil: Investigating its protective influence on the gut-brain axis in mice with rotenone-induced Parkinson's disease. Food Sci Nutr 2024; 12:6259-6283. [PMID: 39554352 PMCID: PMC11561828 DOI: 10.1002/fsn3.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Perilla seed oil, derived from a regional plant native to northern Thailand, undergoes cold-pressing to analyze its bioactive components, notably alpha-linolenic acid (ALA). ALA, constituting approximately 61% of the oil, serves as a precursor for therapeutic omega-3 fatty acids, EPA and DHA, with neurodegenerative disease benefits and anti-inflammatory responses. This study administered different concentrations of perilla seed oil to male C57BL/6 mice, categorized as low dose (LP 5% w/w), middle dose (MP 10% w/w), and high dose (HP 20% w/w), along with a fish oil (FP 10% w/w) diet. An experimental group received soybean oil (5% w/w). Over 42 days, these diets were administered while inducing Parkinson's disease (PD) with rotenone injections. Mice on a high perilla seed oil dose exhibited decreased Cox-2 expression in the colon, suppressed Iba-1 microglia activation, reduced alpha-synuclein accumulation in the colon and hippocampus, prevented dopaminergic cell death in the substantia nigra, and improved motor and non-motor symptoms. Mice on a middle dose showed maintenance of diverse gut microbiota, with an increased abundance of short-chain fatty acid (SCFA)-producing bacteria (Bifidobacteria, Lactobacillus, and Faecalibacteria). A reduction in bacteria correlated with PD (Turicibacter, Ruminococcus, and Akkermansia) was observed. Results suggest the potential therapeutic efficacy of high perilla seed oil doses in mitigating both intestinal and neurological aspects linked to the gut-brain axis in PD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Mod Gut Co., Ltd.BangkokThailand
| | - Sujira Mukda
- Research Center for NeuroscienceInstitute of Molecular Biosciences, Mahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
8
|
Li C, Li M, Jin Y, An Q, Dang H, Gong W. Investigating the therapeutic effects of a Japanese sake yeast supplement on a zebrafish model of Parkinson's disease: Antioxidant and inflammatory responses. Exp Gerontol 2024; 194:112509. [PMID: 38964429 DOI: 10.1016/j.exger.2024.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S). After 28 days of treatment, behavioral responses and the activities of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as the expressions of TNF-α, IL-1β, and COX-2, were evaluated. The results indicated that rotenone administration significantly reduced crossing number (P = 0.001), entries in the top area (P = 0.001), and time spent in the top area (P = 0.001). It also markedly increased levels of TBARS and SH compared to the control group (P = 0.001). Rotenone significantly decreased CAT, SOD, and GSH activities while increasing GST levels. Furthermore, it upregulated the expressions of TNF-α (P = 0.001), IL-1β (P = 0.001), and COX-2 (P = 0.001). Supplementation with sake, particularly at higher doses, reversed the adverse effects of rotenone on behavioral, oxidative, and inflammatory responses. In conclusion, sake shows promise for preventing Parkinson's disease pending further clinical studies.
Collapse
Affiliation(s)
- Chang Li
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China; Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meihe Li
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Jin
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qing An
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wei Gong
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Liu Z, Shan S, Kang K, Wang S, Yong H, Sun Y, Bai Y, Song F. Mitochondrial transfer of α-synuclein mediates carbon disulfide-induced mitochondrial dysfunction and neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116613. [PMID: 38908057 DOI: 10.1016/j.ecoenv.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Exposure to carbon disulfide (CS2) is a recognized risk factor in the pathogenesis of Parkinson's disease, yet the underlying mechanisms of deleterious effects on mitochondrial integrity have remained elusive. Here, through establishing CS2 exposure models in rat and SH-SY5Y cells, we demonstrated that highly expressed α-synuclein (α-Syn) is transferred to mitochondria via membrane proteins such as Tom20 and leads to mitochondrial dysfunction and mitochondrial oxidative stress, which ultimately causes neuronal injury. We first found significant mitochondrial damage and oxidative stress in CS2-exposed rat midbrain and SH-SY5Y cells and showed that mitochondrial oxidative stress was the main factor of mitochondrial damage by Mitoquinone intervention. Further experiments revealed that CS2 exposure led to the accumulation of α-Syn in mitochondria and that α-Syn co-immunoprecipitated with mitochondrial membrane proteins. Finally, the use of an α-Syn inhibitor (ELN484228) and small interfering RNA (siRNA) effectively mitigated the accumulation of α-Syn in neurons, as well as the inhibition of mitochondrial membrane potential, caused by CS2 exposure. In conclusion, our study identifies the translocation of α-Syn to mitochondria and the impairment of mitochondrial function, which has important implications for the broader understanding and treatment of neurodegenerative diseases associated with environmental toxins.
Collapse
Affiliation(s)
- Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Kang
- Qingdao Municipal Center For Disease Control&Prevention, Qingdao, Shandong 266033, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Yong
- Qingdao Municipal Center For Disease Control&Prevention, Qingdao, Shandong 266033, China
| | - Yanan Sun
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
10
|
Petkowski JJ, Seager S, Bains W. Reasons why life on Earth rarely makes fluorine-containing compounds and their implications for the search for life beyond Earth. Sci Rep 2024; 14:15575. [PMID: 38971876 PMCID: PMC11227584 DOI: 10.1038/s41598-024-66265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Life on Earth is known to rarely make fluorinated carbon compounds, as compared to other halocarbons. We quantify this rarity, based on our exhaustive natural products database curated from available literature. We build on explanations for the scarcity of fluorine chemistry in life on Earth, namely that the exclusion of the C-F bond stems from the unique physico-chemical properties of fluorine, predominantly its extreme electronegativity and strong hydration shell. We further show that the C-F bond is very hard to synthesize and when it is made by life its potential biological functions can be readily provided by alternative functional groups that are much less costly to incorporate into existing biochemistry. As a result, the overall evolutionary cost-to-benefit balance of incorporation of the C-F bond into the chemical repertoire of life is not favorable. We argue that the limitations of organofluorine chemistry are likely universal in that they do not exclusively apply to specifics of Earth's biochemistry. C-F bonds, therefore, will be rare in life beyond Earth no matter its chemical makeup.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.
- JJ Scientific, Warsaw, Mazowieckie, Poland.
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff, CF24 3AA, UK
- Rufus Scientific, Melbourn, Royston, Herts, UK
| |
Collapse
|
11
|
Afsheen S, Rehman AS, Jamal A, Khan N, Parvez S. Understanding role of pesticides in development of Parkinson's disease: Insights from Drosophila and rodent models. Ageing Res Rev 2024; 98:102340. [PMID: 38759892 DOI: 10.1016/j.arr.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.
Collapse
Affiliation(s)
- Saba Afsheen
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Shaney Rehman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Farid HA, Sayed RH, El-Shamarka MES, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson's disease in rats. Inflammopharmacology 2024; 32:1421-1437. [PMID: 37541971 PMCID: PMC11006765 DOI: 10.1007/s10787-023-01305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evidence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive avenue in curing PD via PI3K/AKT signaling activation.
Collapse
Affiliation(s)
- Heba A Farid
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | | | - Omar M E Abdel-Salam
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
13
|
Subhan I, Siddique YH. Effect of Rotenone on the Neurodegeneration among Different Models. Curr Drug Targets 2024; 25:530-542. [PMID: 38698744 DOI: 10.2174/0113894501281496231226070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 05/05/2024]
Abstract
Rotenone is a naturally occurring plant product used as an insecticide, pesticide and piscicide. It is lipophilic in nature and can cross the blood-brain barrier and induce the degeneration of neurons. It inhibits the mitochondrial respiratory chain complex I and stops the transfer of electrons. It induces ROS generation, which impairs mitochondrial activity. Rotenone is a toxic agent which causes the death of neurons. The present review describes the effect of rotenone on neurodegeneration with an emphasis on behavioral, pathological and neuropathological components carried out on various experimental models such as cell lines, Drosophila melanogaster, mice and rats.
Collapse
Affiliation(s)
- Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
14
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
15
|
Tan X, Yan Y, Zhang G, Li P, Ling F, Liu T, Wang G. Target epidermal damage of Gyrodactylus kobayashii to obtain the effective anthelmintic compound glacial acetic acid. AQUACULTURE 2023; 577:739993. [DOI: 10.1016/j.aquaculture.2023.739993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
García-Aguilar R, Ortega A, López-Bayghen E, Ramírez-Martínez L, Rodriguez-Campuzano A, Murillo-González F, Elizondo G, Vega L. Kynurenine attenuates mitochondrial depolarization and neuronal cell death induced by rotenone exposure independently of AhR-mediated parkin induction in SH-SY5Y differentiated cells. Neurotoxicology 2023; 99:282-291. [PMID: 37979659 DOI: 10.1016/j.neuro.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Rotenone is a pesticide commonly used in agriculture that is associated with the risk of developing Parkinson's disease (PD) by inducing mitochondrial damage. As a protective cell response to different challenges, they activate mitophagy, which involves parkin activity. Parkin is an E3 ubiquitin ligase necessary in the initial steps of mitophagy, and its overexpression protects against parkinsonian effects in different models. Recent studies have reported that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, induces parkin expression. Kynurenine, an endogenous AHR ligand, promotes neuroprotection in chronic neurodegenerative disorders, such as PD, although its neuroprotective mechanism needs to be fully understood. Therefore, we evaluated whether the overexpression of parkin by AHR activation with kynurenine promotes autophagy and reduces the neurotoxicity induced by rotenone in SH-SY5Y cells differentiated to dopaminergic neurons. SH-SY5Y neurons were treated with rotenone or pretreated with kynurenine or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and parkin levels, apoptosis, mitochondrial potential membrane, and autophagy were determined. The results showed that kynurenine and TCDD treatments induced parkin expression in an AHR-dependent manner. Kynurenine pretreatment inhibited rotenone-induced neuronal apoptosis in 17%, and the loss of mitochondrial membrane potential in 30% when compare to rotenone alone, together with a decrease in autophagy. By contrast, although TCDD treatment increased parkin levels, non-neuroprotective effects were observed. The kynurenine protective activity was AHR independent, suggesting that parkin induction might not be related to this effect. On the other hand, kynurenine treatment inhibited alpha amine-3-hydroxy-5-methyl-4-isoxazol propionic acid and N-methyl-D-aspartate receptors, which are well-known excitotoxicity mediators activated by rotenone exposure.
Collapse
Affiliation(s)
- Rosario García-Aguilar
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Arturo Ortega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Esther López-Bayghen
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Leticia Ramírez-Martínez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Ada Rodriguez-Campuzano
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Fátima Murillo-González
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Guillermo Elizondo
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| | - Libia Vega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
17
|
Moradi Vastegani S, Khoshnam SE, Ghafouri S, Bakhtiari N, Farbood Y, Sarkaki A. Anethole attenuates motor dysfunctions, striatal neuronal activity deficiency and blood brain barrier permeability by decreasing striatal α-synuclein and oxidative stress in rotenone-induced Parkinson's disease of male rats. PLoS One 2023; 18:e0294612. [PMID: 37972114 PMCID: PMC10653401 DOI: 10.1371/journal.pone.0294612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Anethole is the main compound of the essential oil of anise and several other plants, which has antioxidant, anti-inflammatory, and neuroprotective properties. Oxidative stress is considered as an important factor in the pathogenesis of PD. In the present study, we aimed to investigate the effects of anethole against rotenone-induced PD. METHODS Male Wistar rats were randomly divided into six groups. Control group received DMSO + sunflower oil, model group received rotenone (2 mg/kg, s.c, daily for 35 days), positive control group received L-Dopa, and test groups received anethole (62.5, 125, and 250 mg/kg, i.g, daily for 35 days) 1 hour before each rotenone injection. Body weight changes, rotarod test, stride length test, and extracellular single unit recording were performed after treatment. After behavioral test, Brain water content and blood brain barrier (BBB) permeability were evaluated, and the levels of malondialdehyde (MDA), superoxide dismutases (SOD), alpha-synuclein and MAO-B were measured in the striatum. RESULTS Chronic administration of rotenone induced body weight loss and caused significant dysfunction in locomotor activity, neuronl firing rate, and BBB. Rotenone also decreased SOD activity, increased MDA level, and elevated the expression of alpha-synuclein and MAO-B in the striatum. However, treatment with anethole attenuated body weight loss, motor function, neuronal activity, and BBB function. Furthermore, Anethole treatment attenuated oxidative stress and decreased the expression of alpha-synuclein and MAO-B compared to the rotenone group. CONCLUSION Our results show that through its antioxidant properties, aethole can improve the cellular, molecular and behavioral characteristics of rotenone-induced Parkinson's disease.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Medeiros TB, Cosendey P, Gerin DR, de Sousa GF, Portal TM, Monteiro-de-Barros C. The effect of the sulfation patterns of dermatan and chondroitin sulfate from vertebrates and ascidians on their neuritogenic and neuroprotective properties. Int J Biol Macromol 2023; 247:125830. [PMID: 37454999 DOI: 10.1016/j.ijbiomac.2023.125830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Neurodegeneration is caused by the progressive loss of the structure and function of neurons, leading to cell death, and it is the main cause of many neurodegenerative diseases. Many molecules, such as glycosaminoglycans (GAGs), have been studied for their potential to prevent or treat these diseases. They are widespread in nature and perform an important role in neuritogenesis and neuroprotection. Here we investigated the neuritogenic and neuroprotective role of Phallusia nigra dermatan sulfate (PnD2,6S) and compared it with two distinct structures of chondroitin sulfate (C6S) and dermatan sulfate (D4S). For this study, a neuro 2A murine neuroblastoma cell line was used, and a chemical lesion was induced by the pesticide rotenone (ROT). We observed that PnD2,6S + ROT had a better neuritogenic effect than either C6S + ROT or D4S + ROT at a lower concentration (0.05 μg/mL). When evaluating the mitochondrial membrane potential, PnD2,6S showed a neuroprotective effect at a concentration of 0.4 μg/mL. These data indicate different mechanisms underlying this neuronal potential, in which the sulfation pattern is important for neuritogenic activity, while for neuroprotection all DS/CS structures had similar effects. This finding leads to a better understanding the chemical structures of PnD2,6S, C6S, and D4S and their therapeutic potential.
Collapse
Affiliation(s)
- Taiane Barreto Medeiros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil
| | - Paloma Cosendey
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil
| | - Diovana Ramos Gerin
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes CEP: 28013-602, RJ, Brazil
| | - Graziele Fonseca de Sousa
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil
| | - Taynan Motta Portal
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes CEP: 28013-602, RJ, Brazil
| | - Cintia Monteiro-de-Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes CEP: 28013-602, RJ, Brazil.
| |
Collapse
|
19
|
Liufu T, Yu H, Yu J, Yu M, Tian Y, Ou Y, Deng J, Xing G, Wang Z. Complex I deficiency in m.3243A>G fibroblasts is alleviated by reducing NADH accumulation. Front Physiol 2023; 14:1164287. [PMID: 37650111 PMCID: PMC10464909 DOI: 10.3389/fphys.2023.1164287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Mitochondrial disease is a spectrum of debilitating disorders caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA that compromises the respiratory chain. Mitochondrial 3243A>G (m.3243 A>G) is the most common mutation showing great heterogeneity in phenotype. Previous studies have indicated that NADH: ubiquinone oxidoreductase (complex I) deficiency accompanied by a decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio may play a pivotal role in the pathogenesis of m.3243A>G mutation. Methods: To evaluate the potential effects of strategies targeting the imbalanced NAD+/NADH ratio in m.3243A>G mutation, we treated fibroblasts derived from patients with the m.3243 A>G mutation using nicotinamide riboside (NR) or mitochondria-targeted H2O-forming NADH oxidase (mitoLbNOX). Results: M.3243 A>G fibroblasts showed a significant reduction in complex I core subunit 6, complex I enzymatic activity, complex I-dependent oxygen consumption rate (OCR), and adenosine triphosphate (ATP) production compared to the controls. The NAD+/NADH ratio was also significantly reduced in m.3243 A>G fibroblasts, and, using fluorescence lifetime imaging microscopy, we also found that the NADH level was elevated in m.3243 A>G fibroblasts. After NR treatment, the NAD+/NADH ratio, complex I-dependent OCR, and ATP levels increased, whereas NADH levels remained unchanged. More excitingly, after treatment with mitoLbNOX, the NAD+/NADH ratio, complex I-independent OCR, and ATP levels increased more pronouncedly compared with the NR treatment group, accompanied by significantly reduced NADH levels. Discussion: The present study suggests that compared with repletion of NAD+ alone, the combination of this therapeutic modality with alleviation of NADH overload may amplify the treatment effect of restoring NAD+/NADH balance in m.3243A>G fibroblasts.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiyan Yu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yichun Ou
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
20
|
Jennings P, Carta G, Singh P, da Costa Pereira D, Feher A, Dinnyes A, Exner TE, Wilmes A. Capturing time-dependent activation of genes and stress-response pathways using transcriptomics in iPSC-derived renal proximal tubule cells. Cell Biol Toxicol 2023; 39:1773-1793. [PMID: 36586010 PMCID: PMC10425493 DOI: 10.1007/s10565-022-09783-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/06/2022] [Indexed: 01/01/2023]
Abstract
Transcriptomic analysis is a powerful method in the utilization of New Approach Methods (NAMs) for identifying mechanisms of toxicity and application to hazard characterization. With this regard, mapping toxicological events to time of exposure would be helpful to characterize early events. Here, we investigated time-dependent changes in gene expression levels in iPSC-derived renal proximal tubular-like cells (PTL) treated with five diverse compounds using TempO-Seq transcriptomics with the aims to evaluate the application of PTL for toxicity prediction and to report on temporal effects for the activation of cellular stress response pathways. PTL were treated with either 50 μM amiodarone, 10 μM sodium arsenate, 5 nM rotenone, or 300 nM tunicamycin over a temporal time course between 1 and 24 h. The TGFβ-type I receptor kinase inhibitor GW788388 (1 μM) was used as a negative control. Pathway analysis revealed the induction of key stress-response pathways, including Nrf2 oxidative stress response, unfolding protein response, and metal stress response. Early response genes per pathway were identified much earlier than 24 h and included HMOX1, ATF3, DDIT3, and several MT1 isotypes. GW788388 did not induce any genes within the stress response pathways above, but showed deregulation of genes involved in TGFβ inhibition, including downregulation of CYP24A1 and SERPINE1 and upregulation of WT1. This study highlights the application of iPSC-derived renal cells for prediction of cellular toxicity and sheds new light on the temporal and early effects of key genes that are involved in cellular stress response pathways.
Collapse
Affiliation(s)
- Paul Jennings
- Division of Molecular and Computational Toxicology, Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Giada Carta
- Division of Molecular and Computational Toxicology, Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057, Basel, Switzerland
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniel da Costa Pereira
- Division of Molecular and Computational Toxicology, Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anita Feher
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Andras Dinnyes
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, 6723, Hungary
| | - Thomas E Exner
- Seven Past Nine d.o.o., Hribljane 10, 1380, Cerknica, Slovenia
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Khot M, Sood A, Pushpa Tryphena K, Pinjala P, Srivastava S, Bala Singh S, Kumar Khatri D. Dimethyl fumarate ameliorates Parkinsonian pathology by modulating autophagy and apoptosis via Nrf2-TIGAR-LAMP2/Cathepsin D axis. Brain Res 2023; 1815:148462. [PMID: 37315723 DOI: 10.1016/j.brainres.2023.148462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Mounting evidence suggests a role for oxidative stress and accumulation of dysfunctional organelle and misfolded proteins in PD. Autophagosomes mediate the clearance of these cytoplasmic proteins via delivery to lysosomes to form autophagolysosomes, followed by degradation of the protein by lysosomal enzymes. In PD, autophagolysosome accumulation occurs initiating a plethora of events resulting in neuronal death by apoptosis. This study evaluated the effect of Dimethylfumarate (DMF), an Nrf2 activator in the rotenone-induced mouse PD model. In PD mice, there was decreased expression of LAMP2 and LC3, which resulted in inhibition of autophagic flux and increased expression of cathepsin D, which mediated apoptosis. The role of Nrf2 activation in alleviating oxidative stress is well known. Our study elucidated the novel mechanism underlying the neuroprotective effect of DMF. The loss of dopaminergic neurons induced by rotenone was lessened to a significant extent by pre-treatment with DMF. DMF promoted autophagosome formation and inhibited apoptosis by removing the inhibitory effect of p53 on TIGAR. TIGAR expression upregulated LAMP2 expression and downregulated Cathepsin D, promoting autophagy and inhibiting apoptosis. Thus, it was proved that DMF confers neuroprotection against rotenone-induced dopaminergic neurodegeneration and could be used as a potential therapeutic agent for PD and its progression.
Collapse
Affiliation(s)
- Mayuri Khot
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Poojitha Pinjala
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India.
| |
Collapse
|
22
|
Alghamdi AM, Al-Abbasi FA, AlGhamdi SA, Fatima F, Alzarea SI, Kazmi I. Rosinidin inhibits NF-κB/ Nrf2/caspase-3 expression and restores neurotransmitter levels in rotenone-activated Parkinson's disease. Saudi J Biol Sci 2023; 30:103656. [PMID: 37187936 PMCID: PMC10176079 DOI: 10.1016/j.sjbs.2023.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Objectives The examination was sighted to study the preventive effects of rosinidin against rotenone-activated Parkinson's disease in rats. Methods Animals were randamoized into five groups: I-saline, II-rotenone (0.5 mg/kg/b.wt.), III- IV-10 and 20 mg/kg rosinidin after rotenone and V-20 mg/kg rosinidin per se for 28 days and were assigned for behavioral analysis., Biochemical parameters i.e. lipid peroxidation, endogenous antioxidants, nitrite level, neurotransmitter levels, proinflammatory biomarkers such as interleukin- 6 (IL-6), tumor necrosis factor-α, IL-1β, nuclear factor kappa B, nuclear factor erythroid 2-related factor 2, and caspase-3 were assessed on the 29th day of the research. Results Rosinidin augmented the effectiveness of rotenone on akinesia, catalepsy, forced-swim test, rotarod, and open-field test. Biochemical findings indicated that treatment of rosinidin showed restoring neuroinflammatory cytokines, antioxidants, and neurotransmitter levels in rotenone-injected rats. Conclusion As a result of rosinidin treatment, the brain was protected from oxidative stress-induced neuronal damage and inhibited neuroinflammatory cytokines.
Collapse
Affiliation(s)
- Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding author.
| |
Collapse
|
23
|
Shi G, Scott H, Azhar NIFM, Gialeli A, Clennell B, Lee KS, Hurcombe J, Whitcomb D, Coward R, Wong LF, Cordero-Llana O, Uney JB. AZD5438 a GSK-3a/b and CDK inhibitor is antiapoptotic modulates mitochondrial activity and protects human neurons from mitochondrial toxins. Sci Rep 2023; 13:8334. [PMID: 37221196 PMCID: PMC10205901 DOI: 10.1038/s41598-023-35480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
We previously reported that kenpaullone, which inhibits GSK-3a/b and CDKs inhibited CCCP mediated mitochondrial depolarisation and augments the mitochondrial network. To investigate the actions of this class of drug further, we compared the ability of kenpaullone, alsterpaullone, 1-azakenapaullone, AZD5438, AT7519 (CDK and GSK-3a/b inhibitors) and dexpramipexole and olesoxime (mitochondrial permeability transition pore inhibitors) to prevent CCCP mediated mitochondrial depolarisation and found that AZD5438 and AT7519, were the most effective. Furthermore, treatment with AZD5438 alone increased the complexity of the mitochondrial network. We also found that AZD5438 prevented the rotenone induced decrease in PGC-1alpha and TOM20 levels and that it mediated powerful anti-apoptotic effects and promoted glycolytic respiration. Importantly, experiments in human iPSC derived cortical and midbrain neurons showed AZD5438 mediated significant protective effects, preventing the neuronal cell death, and collapse in the neurite and mitochondrial network associated with rotenone treatment. These results suggest drugs that target GSK-3a/b and CDKs should be developed and assessed further as they may have significant therapeutic potential.
Collapse
Affiliation(s)
- Gongyu Shi
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Helen Scott
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | | | - Andriana Gialeli
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Benjamin Clennell
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Keng Siang Lee
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Jenny Hurcombe
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Daniel Whitcomb
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Richard Coward
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Liang-Fong Wong
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Oscar Cordero-Llana
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - James B Uney
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK.
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
| |
Collapse
|
24
|
Pinjala P, Tryphena KP, Prasad R, Khatri DK, Sun W, Singh SB, Gugulothu D, Srivastava S, Vora L. CRISPR/Cas9 assisted stem cell therapy in Parkinson's disease. Biomater Res 2023; 27:46. [PMID: 37194005 DOI: 10.1186/s40824-023-00381-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/16/2023] [Indexed: 05/18/2023] Open
Abstract
Since its discovery in 2012, CRISPR Cas9 has been tried as a direct treatment approach to correct the causative gene mutation and establish animal models in neurodegenerative disorders. Since no strategy developed until now could completely cure Parkinson's disease (PD), neuroscientists aspire to use gene editing technology, especially CRISPR/Cas9, to induce a permanent correction in genetic PD patients expressing mutated genes. Over the years, our understanding of stem cell biology has improved. Scientists have developed personalized cell therapy using CRISPR/Cas9 to edit embryonic and patient-derived stem cells ex-vivo. This review details the importance of CRISPR/Cas9-based stem cell therapy in Parkinson's disease in developing PD disease models and developing therapeutic strategies after elucidating the possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Poojitha Pinjala
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 73 Inchon-Ro, Seongbuk-Gu, Seoul, 12841, Republic of Korea
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India.
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 73 Inchon-Ro, Seongbuk-Gu, Seoul, 12841, Republic of Korea
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
25
|
Xu L, Hao LP, Yu J, Cheng SY, Li F, Ding SM, Zhang R. Curcumin protects against rotenone-induced Parkinson's disease in mice by inhibiting microglial NLRP3 inflammasome activation and alleviating mitochondrial dysfunction. Heliyon 2023; 9:e16195. [PMID: 37234646 PMCID: PMC10208821 DOI: 10.1016/j.heliyon.2023.e16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder worldwide. Currently, treatment options can only relieve symptoms but cannot prevent, slow, or halt the neurodegenerative process of PD. Much evidence has suggested that microglia-mediated neuroinflammation is involved in the pathophysiology of PD. As an anti-inflammatory agent, curcumin may exert a neuroprotective effect on PD. However, its mechanism has yet to be demonstrated clearly. Our results indicated that curcumin alleviated rotenone-induced behavioral defects, dopamine neuron loss, and microglial activation. Besides, the NF-κB signaling pathway, the NLRP3 inflammasome, and pro-inflammatory cytokines, including IL-18 and IL-1β, contributed to the microglia-mediated neuroinflammation in PD. Furthermore, Drp1-mediated mitochondrial fission causing mitochondrial dysfunction also had an etiological role in the process. This study suggests that curcumin protects against rotenone-induced PD by inhibiting microglial NLRP3 inflammasome activation and alleviating mitochondrial dysfunction in mice. Thus, curcumin may be a neuroprotective drug with promising prospects in PD.
Collapse
|
26
|
Linciano P, Sorbi C, Rossino G, Rossi D, Marsala A, Denora N, Bedeschi M, Marino N, Miserocchi G, Dondio G, Peviani M, Tesei A, Collina S, Franchini S. Novel S1R agonists counteracting NMDA excitotoxicity and oxidative stress: A step forward in the discovery of neuroprotective agents. Eur J Med Chem 2023; 249:115163. [PMID: 36716640 DOI: 10.1016/j.ejmech.2023.115163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Sigma-1 receptor (S1R) has been considered a promising therapeutic target for several neurodegenerative diseases and S1R agonists have shown neuroprotective activity against glutamate excitotoxicity and oxidative stress. Starting from a previously identified low nanomolar S1R agonist, in this work we prepared and tested novel benzylpiperidine/benzylpiperazine-based compounds designed by applying a ring opening strategy. Among them, 4-benzyl-1-(2-phenoxyethyl)piperidine 6b (S1R Ki = 0.93 nM) and 4-benzyl-1-(3-phenoxypropyl)piperidine 8b (S1R Ki = 1.1 nM) emerged as high affinity S1R ligands and showed selectivity over S2R and N-methyl-d-aspartate receptor (NMDAR). Candidate compounds behaved as potent S1R agonists being able to enhance the neurite outgrowth induced by nerve growth factor (NGF) in PC12 cell lines. In SH-SY5Y neuroblastoma cell lines they exhibited a neuroprotective effect against rotenone- and NMDA-mediated toxic insults. The neuroprotective activity of 6b and 8b was reverted by co-treatment with an S1R antagonist, PB212. Compounds 6b and 8b were tested for cytotoxicity in-vitro against three human cancer cell lines (A549, LoVo and Panc-1) and in-vivo zebrafish model, resulting in a good efficacy/safety profile, comparable or superior to the reference drug memantine. Overall, these results encourage further preclinical investigations of 6b and 8b on in-vivo models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Andrea Marsala
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia - Scienze del Farmaco, Università, degli Studi di Bari Aldo Moro, 70126, Bari, Italy
| | - Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giacomo Miserocchi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, Buccinasco, 20090, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
27
|
Rasheed MZ, Khatoon R, Talat F, Alam MM, Tabassum H, Parvez S. Melatonin Mitigates Rotenone-Induced Oxidative Stress and Mitochondrial Dysfunction in the Drosophila melanogaster Model of Parkinson's Disease-like Symptoms. ACS OMEGA 2023; 8:7279-7288. [PMID: 36872990 PMCID: PMC9979363 DOI: 10.1021/acsomega.2c03992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder; however, its etiology remains elusive. Antioxidants are considered to be a promising approach for decelerating neurodegenerative disease progression owing to extensive examination of the relationship between oxidative stress and neurodegenerative diseases. In this study, we investigated the therapeutic effect of melatonin against rotenone-induced toxicity in the Drosophila model of PD. The 3-5 day old flies were divided into four groups: control, melatonin alone, melatonin and rotenone, and rotenone alone groups. According to their respective groups, flies were exposed to a diet containing rotenone and melatonin for 7 days. We found that melatonin significantly reduced the mortality and climbing ability of Drosophila because of its antioxidative potency. It alleviated the expression of Bcl 2, tyrosine hydroxylase (TH), NADH dehydrogenase, mitochondrial membrane potential, and mitochondrial bioenergetics and decreased caspase 3 expression in the Drosophila model of rotenone-induced PD-like symptoms. These results indicate the neuromodulatory effect of melatonin, and that it is likely modulated against rotenone-induced neurotoxicity by suppressing oxidative stress and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Md. Zeeshan Rasheed
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehana Khatoon
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Faizia Talat
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug
Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry,
School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division
of Basic Medical Sciences, Indian Council
of Medical Research, Ministry of Health and Family Welfare, Govt.
of India, V. Ramalingaswami Bhawan, P.O. Box No. 4911, New Delhi 110029, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
28
|
ATP and NAD + Deficiency in Parkinson's Disease. Nutrients 2023; 15:nu15040943. [PMID: 36839301 PMCID: PMC9961646 DOI: 10.3390/nu15040943] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The goal of this study is to identify a signature of bioenergetic and functional markers in the muscles of individuals with Parkinson's disease (PD). Quantitative physiological properties of in vivo hand muscle (FDI, first dorsal interosseus) and leg muscle (TA, Tibialis Anterior) of older individuals with PD were compared to historical age/gender-matched controls (N = 30). Magnetic resonance spectroscopy and imaging (MRS) were used to assess in vivo mitochondrial and cell energetic dysfunction, including maximum mitochondrial ATP production (ATPmax), NAD concentrations linked to energy/stress pathways, and muscle size. Muscle function was measured via a single muscle fatigue test. TA ATPmax and NAD levels were significantly lower in the PD cohort compared to controls (ATPmax: 0.66 mM/s ± 0.03 vs. 0.76 ± 0.02; NAD: 0.75 mM ± 0.05 vs. 0.91 ± 0.04). Muscle endurance and specific force were also lower in both hand and leg muscles in the PD subjects. Exploratory analyses of mitochondrial markers and individual symptoms suggested that higher ATPmax was associated with a greater sense of motivation and engagement and less REM sleep behavior disorder (RBD). ATPmax was not associated with clinical severity or individual symptom(s), years since diagnosis, or quality of life. Results from this pilot study contribute to a growing body of evidence that PD is not a brain disease, but a systemic metabolic syndrome with disrupted cellular energetics and function in peripheral tissues. The significant impairment of both mitochondrial ATP production and resting metabolite levels in the TA muscles of the PD patients suggests that skeletal muscle mitochondrial function may be an important tool for mechanistic understanding and clinical application in PD patients. This study looked at individuals with mid-stage PD; future research should evaluate whether the observed metabolic perturbations in muscle dysfunction occur in the early stages of the disease and whether they have value as theragnostic biomarkers.
Collapse
|
29
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
30
|
Mousa HH, Sharawy MH, Nader MA. Empagliflozin enhances neuroplasticity in rotenone-induced parkinsonism: Role of BDNF, CREB and Npas4. Life Sci 2022; 312:121258. [PMID: 36462721 DOI: 10.1016/j.lfs.2022.121258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
AIMS Parkinsonism is characterized by degeneration of dopaminergic neurons and impairment in neuroplasticity. Empagliflozin (EMPA) is an anti-diabetic drug that has been shown to improve cognitive dysfunctions and exerted antioxidant and anti-inflammatory effects in different models. This study aimed to determine the neuroprotective effects of EMPA against rotenone (ROT)-induced parkinsonism. MAIN METHODS ROT (1.5 mg/kg) was injected subcutaneously three times per week for two successive weeks. Mice were treated with EMPA (3 and 10 mg/kg, orally) for one week prior ROT administration and for another two weeks along with ROT. After that, motor functions and histopathological changes were assessed, and brains were isolated for biochemical analyses and immunohistochemical investigation. KEY FINDINGS Results indicated that, in a dose dependent manner, EMPA improved motor functions and histopathological changes induced by ROT, increased brain content of reduced glutathione (GSH), dopamine (DA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (Nrf2), inositol trisphosphate (IP3), calcium (Ca2+), calcium/calmodulin-dependent protein kinase type IV (CaMKIV) and phospho-Protein kinase B (p-Akt) levels compared to ROT group. Additionally, EMPA decreased the levels of malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α), and inactivated glycogen synthase kinase-3 beta (GSK-3β). Improvement in neuroplasticity was also observed indicated by elevation in brain derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and neuronal PAS domain Protein 4 (Npas4). SIGNIFICANCE EMPA improved motor functions possibly through improving neuroplasticity markers and antioxidant, anti-inflammatory, and neuroprotective effects in a dose dependent manner.
Collapse
Affiliation(s)
- Hager H Mousa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
31
|
Song J, Liu L, Li Z, Mao T, Zhang J, Zhou L, Chen X, Shang Y, Sun T, Luo Y, Jiang Y, Tan D, Tong X, Dai F. Lycium barbarum polysaccharide improves dopamine metabolism and symptoms in an MPTP-induced model of Parkinson's disease. BMC Med 2022; 20:412. [PMID: 36303171 PMCID: PMC9615188 DOI: 10.1186/s12916-022-02621-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in middle-aged and elderly populations, whereas there is no cure for PD so far. Novel animal models and medications await development to elucidate the aetiology of PD and attenuate the symptoms, respectively. METHODS A neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), was used in the current study to establish a PD pathologic model in silkworms. The time required to complete specific behaviours was recorded. Dopamine content was detected by ultra-performance liquid chromatography (UPLC). The activity of insect tyrosine hydroxylase (TH) was determined using a double-antibody sandwich method. Oxidative stress was assessed by changes in antioxidant enzyme activity and the content of oxidative products. RESULTS MPTP-treated silkworms were characterized by impaired motor ability, reduced dopamine content, and elevated oxidative stress level. The expression of TH, a dopamine biosynthetic enzyme within dopaminergic neurons in the brain, was significantly reduced, indicating that dopaminergic neurons were damaged. Moreover, MPTP-induced motility impairment and reduced dopamine level in the silkworm PD model could be rescued after feeding a combination of levodopa (L-dopa [LD]) and carbidopa (CD). MPTP-induced oxidative damage was also alleviated, in ways consistent with other PD animal models. Interestingly, administration of Lycium barbarum polysaccharide (LBP) improved the motor ability, dopamine level, and TH activity, and the oxidative damage was concomitantly reduced in the silkworm PD model. CONCLUSIONS This study provides a promising animal model for elucidating the pathogenesis of PD, as well as a relevant preliminary drug screening (e.g., LBP) and evaluation.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Lian Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ting Mao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Lei Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yunzhu Shang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Tao Sun
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Kan HL, Tung CW, Chang SE, Lin YC. In silico prediction of parkinsonian motor deficits-related neurotoxicants based on the adverse outcome pathway concept. Arch Toxicol 2022; 96:3305-3314. [PMID: 36175685 DOI: 10.1007/s00204-022-03376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Exposure to neurotoxicants has been associated with Parkinson's disease (PD). Limited by the clinical variation in the signs and symptoms as well as the slow disease progression, the identification of parkinsonian neurotoxicants relies on animal models. Here, we propose an innovative in silico model for the prediction of parkinsonian neurotoxicants. The model was designed based on a validated adverse outcome pathway (AOP) for parkinsonian motor deficits initiated from the inhibition of mitochondrial complex I. The model consists of a molecular docking model for mitochondrial complex I protein to predict the molecular initiating event and a neuronal cytotoxicity Quantitative Structure-Activity Relationships (QSAR) model to predict the cellular outcome of the AOP. Four known PD-related complex I inhibitors and four non-neurotoxic chemicals were utilized to develop the threshold of the models and to validate the model, respectively. The integrated model showed 100% specificity in ruling out the non-neurotoxic chemicals. The screening of 41 neurotoxicants and complex I inhibitors with the model resulted in 16 chemicals predicted to induce parkinsonian disorder through the molecular initiating event of mitochondrial complex I inhibition. Five of them, namely cyhalothrin, deguelin, deltamethrin, diazepam, and permethrin, are cases with direct evidence linking them to parkinsonian motor deficit-related signs and symptoms. The neurotoxicant prediction model for parkinsonian motor deficits based on the AOP concept may be useful in prioritizing chemicals for further evaluations on PD potential.
Collapse
Affiliation(s)
- Hung-Lin Kan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan.
| | - Shao-En Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Ying-Chi Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
33
|
Shi W, Tan C, Liu C, Chen D. Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases. Rev Neurosci 2022; 34:275-294. [PMID: 36059131 DOI: 10.1515/revneuro-2022-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
In recent years, the role of mitochondrial dynamics in neurodegenerative diseases has becoming increasingly important. More and more evidences have shown that in pathological conditions, abnormal mitochondrial divisions, especially Drp1-Fis1-mediated divisions, play an important role in the occurrence and development of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, glaucoma, and other neurodegenerative diseases. This review highlights several new mechanisms of physiological fission of mitochondria and the difference/connection of physiological/pathological mitochondrial fission. In addition, we described the relationship between abnormal mitochondrial dynamics and neurodegenerative diseases in detail and emphatically summarized its detection indicators in basic experiments, trying to provide references for further mechanism exploration and therapeutic targets.
Collapse
Affiliation(s)
- Wenjia Shi
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Cheng Tan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Can Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
34
|
Henrique Mastella M, Roggia I, Osmarin Turra B, Ferreira Teixeira C, Elias Assmann C, de Morais-Pinto L, Vidal T, Melazzo C, Emílio da Cruz Jung I, Barbisan F, Beatrice Mânica da Cruz I. Superoxide-imbalance pharmacologically induced by rotenone triggers behavioral, neural, and inflammatory alterations in the Eisenia fetida earthworm. Neuroscience 2022; 502:25-40. [PMID: 36058342 DOI: 10.1016/j.neuroscience.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Some studies have suggested that mitochondrial dysfunction and a superoxide imbalance could increase susceptibility to chronic stressful events, contributing to the establishment of chronic inflammation and the development of mood disorders. The mitochondrial superoxide imbalance induced by some molecules, such as rotenone, could be evolutionarily conserved, causing behavioral, immune, and neurological alterations in animals with a primitive central nervous system. OBJECTIVE Behavioral, immune, and histological markers were analyzed in Eisenia fetida earthworms chronically exposed to rotenone for 14 days. METHODS Earthworms were placed in artificial soil containing 30 nM of rotenone distributed into a plastic cup that allowed the earthworms to leave and return freely into the ground. Since these organisms prefer to be buried, the model predicted that the earthworms would necessarily have to return to the rotenone-contaminated medium, creating a stressful condition. The effect on survival behavior in the immune and histological body wall and ventral nervous ganglia (VNG) structures, as well as gene expression related to inflammation and mitochondrial and neuromuscular changes. RESULTS Rotenone-induced loss of earthworm escape behavior and immune alterations indicated a chronic inflammatory state. Some histological changes in the body wall and VNG indicated a possible earthworm reaction aimed at protecting against rotenone. Overexpression of the nicotinic acetylcholine receptor gene (nAChR α5) in neural tissues could also help earthworms reduce the degenerative effects of rotenone on dopaminergic neurons. CONCLUSION These data suggest that mitochondrial dysfunction could be an evolutionarily conserved element that induces inflammatory and behavioral changes related to chronic stress.
Collapse
Affiliation(s)
- Moisés Henrique Mastella
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Isabel Roggia
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bárbara Osmarin Turra
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cibele Ferreira Teixeira
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Charles Elias Assmann
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luciano de Morais-Pinto
- Anatomical Design Laboratory, Morphology Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Taís Vidal
- Graduate Program of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cinthia Melazzo
- Graduate Program of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ivo Emílio da Cruz Jung
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernanda Barbisan
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program of Gerontology, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
35
|
Wu X, Nagasawa S, Muto K, Ueda M, Suzuki C, Abe T, Higashitani A. Mitochonic Acid 5 Improves Duchenne Muscular Dystrophy and Parkinson's Disease Model of Caenorhabditis elegans. Int J Mol Sci 2022; 23:9572. [PMID: 36076995 PMCID: PMC9455831 DOI: 10.3390/ijms23179572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochonic Acid 5 (MA-5) enhances mitochondrial ATP production, restores fibroblasts from mitochondrial disease patients and extends the lifespan of the disease model "Mitomouse". Additionally, MA-5 interacts with mitofilin and modulates the mitochondrial inner membrane organizing system (MINOS) in mammalian cultured cells. Here, we used the nematode Caenorhabditis elegans to investigate whether MA-5 improves the Duchenne muscular dystrophy (DMD) model. Firstly, we confirmed the efficient penetration of MA-5 in the mitochondria of C. elegans. MA-5 also alleviated symptoms such as movement decline, muscular tone, mitochondrial fragmentation and Ca2+ accumulation of the DMD model. To assess the effect of MA-5 on mitochondria perturbation, we employed a low concentration of rotenone with or without MA-5. MA-5 significantly suppressed rotenone-induced mitochondria reactive oxygen species (ROS) increase, mitochondrial network fragmentation and nuclear destruction in body wall muscles as well as endogenous ATP levels decline. In addition, MA-5 suppressed rotenone-induced degeneration of dopaminergic cephalic (CEP) neurons seen in the Parkinson's disease (PD) model. Furthermore, the application of MA-5 reduced mitochondrial swelling due to the immt-1 null mutation. These results indicate that MA-5 has broad mitochondrial homing and MINOS stabilizing activity in metazoans and may be a therapeutic agent for these by ameliorating mitochondrial dysfunction in DMD and PD.
Collapse
Affiliation(s)
- Xintong Wu
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Satoi Nagasawa
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kasumi Muto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Maiko Ueda
- Biomedical Research Core, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan
| | - Chitose Suzuki
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan
| | | |
Collapse
|
36
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
37
|
Fanarioti E, Tsarouchi M, Vasilakopoulou PB, Chiou A, Karvelas M, Karathanos VT, Dermon CR. Brain polar phenol content, behavioural and neurochemical effects of Corinthian currant in a rotenone rat model of Parkinson's disease. Nutr Neurosci 2022; 26:652-666. [PMID: 35656969 DOI: 10.1080/1028415x.2022.2080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of nigral dopaminergic neurons, leading to reduced motor control. A contributing factor for the nigrostriatal degeneration is known to be oxidative stress, while antioxidant/anti-inflammatory properties of natural polyphenols have been suggested to show beneficial effects. The present study questioned the potential neuroprotective effects of supplementary diet with Corinthian currant, using a rat rotenone PD model. METHODS The alterations in motor activity, brain Corinthian currant polar phenols' accumulation, expression patterns of tyrosine hydroxylase (TH), dopamine transporter (DAT) and brain-derived neurotrophic factor (BDNF) in the nigrostriatal dopaminergic system were determined in rotenone-treated, currant-diet rats and matching controls. RESULTS Rotenone treatment resulted in motor deficits and TH expression decreases in the nigrostriatal pathway, exhibiting PD-like behavioural motor and neurochemical phenotypes. Interestingly, 38 days Corinthian currant consumption resulted in differential accumulation of polar phenols in mesencephalon and striatum and had a significant effect on attenuating motor deficits and dopaminergic cell loss in substantia nigra pars compacta. In addition, it induced up-regulation of BDNF expression in the nigrostriatal dopaminergic system. DISCUSSION Taken all together, evidence is provided for the potential neuroprotective influences of Corinthian currant consumption, involving the neurotrophic factor BDNF, in rescuing aspects of PD-like phenotype.
Collapse
Affiliation(s)
- Eleni Fanarioti
- Department of Biology, University of Patras - Patras Campus Rion: Panepistemio Patron, Patras, Greece
| | - Martha Tsarouchi
- Department of Biology, University of Patras - Patras Campus Rion: Panepistemio Patron, Patras, Greece
| | | | - Antonia Chiou
- Department of Dietetics and Nutrition, Harokopio University, Athens, Greece
| | | | - Vaios T Karathanos
- Department of Dietetics and Nutrition, Harokopio University, Athens, Greece.,Agricultural Cooperatives' Union of Aeghion, Aigio, Greece
| | - Catherine R Dermon
- Department of Biology, University of Patras - Patras Campus Rion: Panepistemio Patron, Patras, Greece
| |
Collapse
|
38
|
Longitudinal metabolomics profiling of serum amino acids in rotenone-induced Parkinson's mouse model. Amino Acids 2022; 54:111-121. [PMID: 35028704 DOI: 10.1007/s00726-021-03117-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Recently, the detailed etiology and pathogenesis of Parkinson's disease (PD) have not been fully clarified yet. Increasing evidences suggested that the disturbance of peripheral branched-chain amino acids (BCAAs) metabolism can promote the occurrence and progression of neurodegenerative diseases through neuroinflammatory signaling. Although there are several studies on the metabolomics of PD, longitudinal study of metabolic pathways is still lacking. Therefore, the purpose of the present study was to determine the longitudinal alterations in serum amino acid profiles in PD mouse model. Gas chromatography-mass spectrometry (GC-MS) was applied to detect serum amino acid concentrations in C57BL/6 mice after 0, 3 and 4 weeks of oral administration with rotenone. Then the data were analysed by principal component analysis (PCA) and orthogonal projection to latent structures (OPLS) analysis. Finally, the correlations between different kinds of serum amino acids and behaviors in rotenone-treated mice were also explored. Compared with 0-week mice, the levels of L-isoleucine and L-leucine were down-regulated in 3-week and 4-week mice, especially in 4-week mice. Moreover, the comprehensive analysis showed that L-isoleucine and L-leucine were negatively correlated with pole-climbing time and positively correlated with fecal weight and water content of PD mice. These results not only suggested that L-isoleucine and L-leucine may be potential biomarkers, but also pointed out the possibility of treating PD by intervening in the circulating amino acids metabolism.
Collapse
|
39
|
Hada B, Karmacharya MB, Park SR, Choi BH. Low-intensity ultrasound (LIUS) differentially modulates mitochondrial reactive oxygen species (mtROS) generation by three different chemicals in PC12 cells. Free Radic Res 2021; 55:1037-1047. [PMID: 34814783 DOI: 10.1080/10715762.2021.2010730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have previously shown that low-intensity ultrasound (LIUS) can modulate mitochondrial complex I activity and the generation of mitochondrial reactive oxygen species (mtROS) in PC12 cells. This study investigated the mechanism of LIUS by comparing its effect on mitochondrial dysfunction by three different pathways. LIUS was shown to reverse the effects of rotenone, a Q-site blocker, on the complex I inhibition, mtROS generation, and drop of mitochondrial membrane potential (Δψm). In contrast, common antioxidants, N-acetyl cysteine (NAC), and uric acid (UA) blocked rotenone-induced mtROS generation and Δψm drop without recovering the complex I activity, which suggested that Δψm drop is correlated with mtROS generation rather than complex I inhibition itself. Ionomycin, an ionophore for Ca2+, and L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathione (GSH) biosynthesis, induced mtROS generation and Δψm drop without inhibiting complex I activity via different mechanisms. LIUS showed no effect on ionomycin-induced Δψm drop but showed partial inhibition on the other effects of ionomycin and BSO. These results suggest that LIUS might have redundant mechanisms but acted mainly on the complex I activity thereby modulating mtROS and Δψm levels. LIUS appeared to act on the Q-module of complex I because it showed no inhibitory effect on Zn2+, an inhibitor of the proton transporting P-module of complex I. Interestingly, pretreatment of LIUS for up to an hour in advance blocked the rotenone effect as efficiently as the co-treatment. Further studies are needed to reveal the exact mechanism of LIUS to inhibit complex I activity.
Collapse
Affiliation(s)
- Binika Hada
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | | | - So Ra Park
- Department of Physiology and Biophysics, Inha University College of Medicine, Incheon, Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
40
|
Yuan X, Tian Y, Liu C, Zhang Z. Environmental factors in Parkinson's disease: New insights into the molecular mechanisms. Toxicol Lett 2021; 356:1-10. [PMID: 34864130 DOI: 10.1016/j.toxlet.2021.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a chronic, progressive neurodegenerative disorder affecting 2-3% of the population ≥65 years. It has long been characterized by motor impairment, autonomic dysfunction, and psychological and cognitive changes. The pathological hallmarks are intracellular inclusions containing α-synuclein aggregates and the loss of dopaminergic neurons in the substantia nigra. Parkinson's disease is thought to be caused by a combination of various pathogenic factors, including genetic factors, environmental factors, and lifestyles. Although much research has focused on the genetic causes of PD, environmental risk factors also play a crucial role in the development of the disease. Here, we summarize the environmental risk factors that may increase the occurrence of PD, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
41
|
Behl T, Madaan P, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Chigurupati S, Alrashdi I, Bungau SG. Elucidating the Neuroprotective Role of PPARs in Parkinson's Disease: A Neoteric and Prospective Target. Int J Mol Sci 2021; 22:10161. [PMID: 34576325 PMCID: PMC8467926 DOI: 10.3390/ijms221810161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
One of the utmost frequently emerging neurodegenerative diseases, Parkinson's disease (PD) must be comprehended through the forfeit of dopamine (DA)-generating nerve cells in the substantia nigra pars compacta (SN-PC). The etiology and pathogenesis underlying the emergence of PD is still obscure. However, expanding corroboration encourages the involvement of genetic and environmental factors in the etiology of PD. The destruction of numerous cellular components, namely oxidative stress, ubiquitin-proteasome system (UPS) dysfunction, autophagy-lysosome system dysfunction, neuroinflammation and programmed cell death, and mitochondrial dysfunction partake in the pathogenesis of PD. Present-day pharmacotherapy can alleviate the manifestations, but no therapy has been demonstrated to cease disease progression. Peroxisome proliferator-activated receptors (PPARs) are ligand-directed transcription factors pertaining to the class of nuclear hormone receptors (NHR), and are implicated in the modulation of mitochondrial operation, inflammation, wound healing, redox equilibrium, and metabolism of blood sugar and lipids. Numerous PPAR agonists have been recognized to safeguard nerve cells from oxidative destruction, inflammation, and programmed cell death in PD and other neurodegenerative diseases. Additionally, various investigations suggest that regular administration of PPAR-activating non-steroidal anti-inflammatory drugs (NSAIDs) (ibuprofen, indomethacin), and leukotriene receptor antagonists (montelukast) were related to the de-escalated evolution of neurodegenerative diseases. The present review elucidates the emerging evidence enlightening the neuroprotective outcomes of PPAR agonists in in vivo and in vitro models experiencing PD. Existing articles up to the present were procured through PubMed, MEDLINE, etc., utilizing specific keywords spotlighted in this review. Furthermore, the authors aim to provide insight into the neuroprotective actions of PPAR agonists by outlining the pharmacological mechanism. As a conclusion, PPAR agonists exhibit neuroprotection through modulating the expression of a group of genes implicated in cellular survival pathways, and may be a propitious target in the therapy of incapacitating neurodegenerative diseases like PD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz 616, Nizwa P.O. Box 33, Oman; (S.B.); (A.A.-H.)
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz 616, Nizwa P.O. Box 33, Oman; (S.B.); (A.A.-H.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ibrahim Alrashdi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
42
|
Trudler D, Ghatak S, Lipton SA. Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:8196. [PMID: 34360966 PMCID: PMC8347370 DOI: 10.3390/ijms22158196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery.
Collapse
Affiliation(s)
- Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Swagata Ghatak
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
Cifuentes J, Salazar VA, Cuellar M, Castellanos MC, Rodríguez J, Cruz JC, Muñoz-Camargo C. Antioxidant and Neuroprotective Properties of Non-Centrifugal Cane Sugar and Other Sugarcane Derivatives in an In Vitro Induced Parkinson's Model. Antioxidants (Basel) 2021; 10:1040. [PMID: 34209483 PMCID: PMC8300827 DOI: 10.3390/antiox10071040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023] Open
Abstract
Non-centrifugal cane sugar (NCS) is a traditional sweetener in most sugarcane regions of the world. In Colombia, this product has a socio-economic importance due to the extensive cultivation area and the high consumption rate per capita. NCS traditional processing involves consecutive stages of thermal processing that begin with juice extraction, clarification, evaporation, and finish with syrup crystallization into a solid commercial product, identified as NCS. Sugarcane is known to have a natural content of polyphenols, amino acids, vitamins, minerals, and complex sugars, some of which are reported as antioxidant and antiproliferative agents thought to be responsible for the product's bioactive profile. There is evidence to suggest that traditional thermal processing to obtain NCS leads to a considerable decrease in the contents of these bioactive compounds, mainly due to uncontrolled process variables such as temperature. Accordingly, the aim of this study was to assess and compare the bioactivity of sugarcane (SC) derivatives produced under controlled thermal conditions versus the traditional method. To achieve this goal, we evaluated the cytotoxic, antioxidant, and neuroprotective effects of varying concentrations of SC derivatives in an in vitro induced Parkinson's model. Results demonstrate non-cytotoxic activity on the cellular model by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and LDH assays, even at the highest tested concentration of 8 mg/mL, for all SC derivatives. The effect of SC derivatives on the induced oxidative stress model showed a biological reversion and recovering effect of the mitochondrial membrane potential and a halting of the progress into the early apoptosis phase. In conclusion, we demonstrated that the bioactive compounds present in SC derivatives obtained by a process under controlled temperature conditions are largely preserved, and even their biological activities are enhanced compared with SC derivatives obtained by the traditional thermal evaporation of SC-juice.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (J.C.); (M.C.); (M.C.C.)
| | - Vivian A. Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Department of Electrical and Electronics Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Mónica Cuellar
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (J.C.); (M.C.); (M.C.C.)
| | - María Claudia Castellanos
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (J.C.); (M.C.); (M.C.C.)
| | - Jader Rodríguez
- Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA, Centro de Investigación Tibaitatá, km 14 vía Mosquera Bogotá, 250047 Mosquera, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (J.C.); (M.C.); (M.C.C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (J.C.); (M.C.); (M.C.C.)
| |
Collapse
|
44
|
Chen L, Huang Y, Yu X, Lu J, Jia W, Song J, Liu L, Wang Y, Huang Y, Xie J, Li M. Corynoxine Protects Dopaminergic Neurons Through Inducing Autophagy and Diminishing Neuroinflammation in Rotenone-Induced Animal Models of Parkinson's Disease. Front Pharmacol 2021; 12:642900. [PMID: 33927622 PMCID: PMC8078868 DOI: 10.3389/fphar.2021.642900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that impairment of autophagy is related to the pathogenesis of Parkinson's disease (PD), and small molecular autophagy enhancers are suggested to be potential drug candidates against PD. Previous studies identified corynoxine (Cory), an oxindole alkaloid isolated from the Chinese herbal medicine Uncaria rhynchophylla (Miq.) Jacks, as a new autophagy enhancer that promoted the degradation of α-synuclein in a PD cell model. In this study, two different rotenone-induced animal models of PD, one involving the systemic administration of rotenone at a low dosage in mice and the other involving the infusion of rotenone stereotaxically into the substantia nigra pars compacta (SNpc) of rats, were employed to evaluate the neuroprotective effects of Cory. Cory was shown to exhibit neuroprotective effects in the two rotenone-induced models of PD by improving motor dysfunction, preventing tyrosine hydroxylase (TH)-positive neuronal loss, decreasing α-synuclein aggregates through the mechanistic target of the rapamycin (mTOR) pathway, and diminishing neuroinflammation. These results provide preclinical experimental evidence supporting the development of Cory into a potential delivery system for the treatment of PD.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yujv Huang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xing Yu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wenting Jia
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juxian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Macau, China
| | - Liangfeng Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Youcui Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yingyu Huang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
45
|
Zhang Z, Sun X, Wang K, Yu Y, Zhang L, Zhang K, Gu J, Yuan X, Song G. Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats. Brain Res Bull 2021; 172:1-13. [PMID: 33838212 DOI: 10.1016/j.brainresbull.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/20/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Some cardiovascular symptoms in the early stage of Parkinson's disease (PD) were related to degeneration of the rostral ventrolateral medulla (RVLM) catecholaminergic neurons. To date, little is known about the effects of hydrogen water on early stage of PD. Here, protective actions of hydrogen-saturated saline (HS) on rotenone-induced PD rats, as well as its underlying mechanisms were investigated. HS was used to treat PD rats at three general stages; early, medium and late, which were represented by rotenone induced rats for 0, 7 and 14 days. HS treatment significantly alleviated the cardiovascular and motor symptoms in rotenone-induced PD rats, improved the survival number of RVLM catecholaminergic neurons and nigral dopamine neurons only in early and medium stages of PD rats. Decreased levels of reactive oxygen species (ROS) and alpha-synuclein (α-Syn), transformation of microtubule associated protein 1 light chain 3 (LC3)-I/II and degradation of sequestosome 1 (p62) were detected, as well as increased expression level of autophagy related protein 5 (ATG5) and B-cell lymphoma-2 interacting protein 1 (Beclin-1) in the RVLM and substantia nigra (SN) after HS treatment in early and medium stages of PD rats. In addition, phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and mammalian rapamycin target protein (mTOR) decreased after HS treatment in early and medium stages of PD rats. The results suggested that HS treatment exerted beneficial effects in early and medium stages before motor impairments emerged but not in the late stage of rotenone-induced PD rats. It exerted neuroprotection with RVLM catecholaminergic neurons and nigral dopamine neurons, mediated in part by decreasing levels of ROS and α-Syn through increasing autophagy machinery which were partly via inhibiting PI3K-Akt-mTOR pathway.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xiao Sun
- Department of Nephrology, Taian City Central Hospital, Taian, 271000, China
| | - Kun Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, 271000, China
| | - Yang Yu
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Li Zhang
- Department of Electrocardiogram, Taian Traditional Chinese Medicine Hospital, Taian, 271000, China
| | - Keping Zhang
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Jinglongfei Gu
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xiaofan Yuan
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Guohua Song
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| |
Collapse
|
46
|
Kobayashi Y, Oguro A, Yagi E, Mitani A, Kudoh SN, Imaoka S. Bisphenol A and rotenone induce S-nitrosylation of protein disulfide isomerase (PDI) and inhibit neurite outgrowth of primary cultured cells of the rat hippocampus and PC12 cells. J Toxicol Sci 2021; 45:783-794. [PMID: 33268678 DOI: 10.2131/jts.45.783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA) interferes the function and development of the central nervous system (CNS), resulting in behavioral abnormalities and memory loss. S-nitrosylation of protein disulfide isomerase (PDI) is increased in brains with sporadic Alzheimer's disease and Parkinson's disease. The aim of the present study was to clarify the role of nitric oxide (NO) in BPA-induced neurotoxicity. Since rotenone induces NO-mediated neurodegeneration through S-nitrosylation of PDI, it was used as a positive control. First, rats were treated with BPA and rotenone, and S-nitrosylation of PDI was detected in rat brain microsomes. BPA and rotenone decreased RNase oxidation activity of PDI concomitant with S-nitrosylation of PDI. Next, to clarify S-nitrosylation of PDI by BPA and rotenone in rat brains, we treated the rat pheochromocytoma cell line PC12 and primary cultured neuron cells from the rat hippocampus with BPA (5 and 10 μM) and rotenone (100 or 200 nM). BPA induced S-nitrosylation of PDI, while NG-monomethyl-L-arginine (L-NMMA), a NOS inhibitor, exerted the opposite effects. Finally, to evaluate the toxicity of BPA in the CNS, we investigated its effects on neurite outgrowth of PC12 and primary cultured neuron cells. BPA inhibited neurite outgrowth of these cells, while L-NMMA reversed this inhibition. The involvement of PDI activity in neurite outgrowth was also examined, and bacitracin, a PDI inhibitor, is shown to decrease neurite outgrowth. Furthermore, the overexpression of PDI, but not a catalytically inactive PDI mutant, enhanced neurite outgrowth. These results suggested that S-nitrosylation of PDI induced by excessive NO caused BPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Erina Yagi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Akira Mitani
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Suguru N Kudoh
- Department of Human-System Interaction, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
47
|
Vos M, Klein C. The Importance of Drosophila melanogaster Research to UnCover Cellular Pathways Underlying Parkinson's Disease. Cells 2021; 10:579. [PMID: 33800736 PMCID: PMC7998316 DOI: 10.3390/cells10030579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder that is currently incurable. As a consequence of an incomplete understanding of the etiology of the disease, therapeutic strategies mainly focus on symptomatic treatment. Even though the majority of PD cases remain idiopathic (~90%), several genes have been identified to be causative for PD, facilitating the generation of animal models that are a good alternative to study disease pathways and to increase our understanding of the underlying mechanisms of PD. Drosophila melanogaster has proven to be an excellent model in these studies. In this review, we will discuss the different PD models in flies and key findings identified in flies in different affected pathways in PD. Several molecular changes have been identified, of which mitochondrial dysfunction and a defective endo-lysosomal pathway emerge to be the most relevant for PD pathogenesis. Studies in flies have significantly contributed to our knowledge of how disease genes affect and interact in these pathways enabling a better understanding of the disease etiology and providing possible therapeutic targets for the treatment of PD, some of which have already resulted in clinical trials.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| |
Collapse
|
48
|
Jerber J, Seaton DD, Cuomo ASE, Kumasaka N, Haldane J, Steer J, Patel M, Pearce D, Andersson M, Bonder MJ, Mountjoy E, Ghoussaini M, Lancaster MA, Marioni JC, Merkle FT, Gaffney DJ, Stegle O. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nat Genet 2021; 53:304-312. [PMID: 33664506 PMCID: PMC7610897 DOI: 10.1038/s41588-021-00801-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Studying the function of common genetic variants in primary human tissues and during development is challenging. To address this, we use an efficient multiplexing strategy to differentiate 215 human induced pluripotent stem cell (iPSC) lines toward a midbrain neural fate, including dopaminergic neurons, and use single-cell RNA sequencing (scRNA-seq) to profile over 1 million cells across three differentiation time points. The proportion of neurons produced by each cell line is highly reproducible and is predictable by robust molecular markers expressed in pluripotent cells. Expression quantitative trait loci (eQTL) were characterized at different stages of neuronal development and in response to rotenone-induced oxidative stress. Of these, 1,284 eQTL colocalize with known neurological trait risk loci, and 46% are not found in the Genotype-Tissue Expression (GTEx) catalog. Our study illustrates how coupling scRNA-seq with long-term iPSC differentiation enables mechanistic studies of human trait-associated genetic variants in otherwise inaccessible cell states.
Collapse
Affiliation(s)
- Julie Jerber
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel D Seaton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Anna S E Cuomo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Natsuhiko Kumasaka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Haldane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Juliette Steer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel Pearce
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Malin Andersson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ed Mountjoy
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Maya Ghoussaini
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Florian T Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Oliver Stegle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
49
|
Xiao Z, Lei T, Liu Y, Yang Y, Bi W, Du H. The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2021; 12:5. [PMID: 33407864 PMCID: PMC7789713 DOI: 10.1186/s13287-020-01957-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, is caused by the loss of dopaminergic (DAergic) neurons in the substantia nigra resulting in a series of motor or non-motor disorders. Current treatment methods are unable to stop the progression of PD and may bring certain side effects. Cell replacement therapy has brought new hope for the treatment of PD. Recently, human dental tissue-derived mesenchymal stem cells have received extensive attention. Currently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are considered to have strong potential for the treatment of these neurodegenerative diseases. These cells are considered to be ideal cell sources for the treatment of PD on account of their unique characteristics, such as neural crest origin, immune rejection, and lack of ethical issues. In this review, we briefly describe the research investigating cell therapy for PD and discuss the application and progress of DPSCs and SHED in the treatment of PD. This review offers significant and comprehensive guidance for further clinical research on PD.
Collapse
Affiliation(s)
- Zhuangzhuang Xiao
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Tong Lei
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Yanyan Liu
- Kangyanbao (Beijing) Stem Cell Technology Co., Ltd, Beijing, 102600, China
| | - Yanjie Yang
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Wangyu Bi
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Hongwu Du
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 XueYuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
50
|
Currim F, Singh J, Shinde A, Gohel D, Roy M, Singh K, Shukla S, Mane M, Vasiyani H, Singh R. Exosome Release Is Modulated by the Mitochondrial-Lysosomal Crosstalk in Parkinson's Disease Stress Conditions. Mol Neurobiol 2021; 58:1819-1833. [PMID: 33404982 DOI: 10.1007/s12035-020-02243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta region of the brain. The main pathological hallmark involves cytoplasmic inclusions of α-synuclein and mitochondrial dysfunction, which is observed in other part of the central nervous system other than SN suggesting the spread of pathogenesis to bystander neurons. The inter-neuronal communication through exosomes may play an important role in the spread of the disease; however, the mechanisms are not well elucidated. Mitochondria and its role in inter-organellar crosstalk with multivesicular body (MVB) and lysosome and its role in modulation of exosome release in PD is not well understood. In the current study, we investigated the mitochondria-lysosome crosstalk modulating the exosome release in neuronal and glial cells. We observed that PD stress showed enhanced release of exosomes in dopaminergic neurons and glial cells. The PD stress condition in these cells showed fragmented network and mitochondrial dysfunction which further leads to functional deficit of lysosomes and hence inhibition of autophagy flux. Neuronal and glial cells treated with rapamycin showed enhanced autophagy and inhibited the exosomal release. The results here suggest that maintenance of mitochondrial function is important for the lysosomal function and hence exosomal release which is important for the pathogenesis of PD.
Collapse
Affiliation(s)
- Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|