1
|
Chi-Ho Ip J, T Y Leung P, K Y Ho K, Qiu JW, M Y Leung K. Transcriptomic analysis reveals the endocrine toxicity of tributyltin and triphenyltin on the whelk Reishia clavigera and mechanisms of imposex formation. ENVIRONMENT INTERNATIONAL 2024; 190:108867. [PMID: 38968833 DOI: 10.1016/j.envint.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Organotin compounds (OTs) are endocrine disruptors that induce imposex in hundreds of gastropods, but little is known about their underlying molecular mechanisms. This study aimed to investigate the endocrine toxicity and molecular responses to tributyltin (TBT) and triphenyltin (TPT) exposure in the whelk Reishia clavigera, which often serves as a biomonitor for OT contamination. Over a 120-day exposure to environmentally relevant concentrations of TBT (1000 ng L-1) and TPT (500 ng L-1), we observed a significant increase in penis length in both male and female whelks. Notably, TPT exhibited a stronger potency in inducing pseudo-penis development and female sterility, even at a half dose of TBT. Bioaccumulation analysis also revealed higher persistence and accumulation of TPT in whelk tissues compared to TBT. Differential expression analysis identified a substantial number of differentially expressed genes (DEGs), with TPT exposure eliciting more DEGs than TBT. Our results demonstrated that OTs induced xenobiotic metabolism and metabolic dysregulation in the digestive gland, impaired multiple cellular functions and triggered neurotoxicity in the nervous system, and disrupted lipid homeostasis and oxidative stress in the gonads. Furthermore, imposex was possibly associated with disturbances in retinoic acid metabolism, nuclear receptor signaling, and neuropeptide activity. When compared to TBT, TPT exhibited a more pronounced endocrine-disrupting effect, attributable to its higher bioaccumulation and substantial interruption of transcriptional regulation, OT detoxification, and biosynthesis of retinoic acids in R. clavigera. Our results, therefore, highlight the importance of considering the differences in bioaccumulation and molecular toxicity between TBT and TPT in future risk assessments of these contaminants. Overall, our study provided molecular insights into the toxicity and transcriptome profiles in R. clavigera exposed to TBT and TPT, shedding light on the endocrine-disrupting effects and reproductive impairment in female gastropods.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Science Unit, Lingnan University, Hong Kong SAR, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Carlos de Almeida A, Batista RM, Fillmann G. An alternative silicone-based passive sampling device to derive organotin concentrations in the aqueous phase. CHEMOSPHERE 2024; 361:142494. [PMID: 38823424 DOI: 10.1016/j.chemosphere.2024.142494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Organotin compounds (OTs) are well studied in various environmental compartments, with a critical focus on the water column as their primary entry point into aquatic ecosystems. In this context, a method for the analysis of organotin (OTs) in water using silicone rubber-based passive sampling was optimized, validated, and field-tested. Validation covered crucial parameters, including the limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, linearity, and matrix effect. The method was shown to be robust (R2 ≥ 0.99), with recoveries between 70.2 and 114.6%, and precise (CV < 12.8%) (N = 3). LODCw and LOQCw were ≤15 and ≤ 48 pg Sn L-1, respectively, for TBT and TPhT. The matrix effect showed to be low (>-20% ME < 20%) for all OTs but TPhT (69.4%). The silicone rubber-water partition coefficients (Log Ksr,w) were estimated at 3.37 for MBT, 3.77 for DBT, 4.17 for TBT, 3.49 for MPhT, 3.83 for DPhT, and 4.22 for TPhT. During the field study carried out between October 2021 and February 2022 at the entrance of the Port of Santos navigation channel (Southeastern Brazil), sampling rates ranged between 4.1 and 4.6 L d-1, and the equilibrium was achieved for MBT, DBT, MPhT, and DPhT after ∼45 days of deployment. The freely dissolved concentrations varied between 134 and 165 pg Sn L-1 for TBT, 388 and 610 pg Sn L-1 for DBT, and 1114 and 1509 pg Sn L-1 for MBT, while MPhT, DPhT, and TPhT were below the limit of detection. Results pointed out that J-FLEX® rubber-based passive sampling is a suitable and reliable alternative method for the continuous monitoring of OTs in the water column.
Collapse
Affiliation(s)
- Alan Carlos de Almeida
- Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Rodrigo Moço Batista
- Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Gilberto Fillmann
- Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Saha U, Kumari P, Ghosh A, Sinha A, Jena S, Kirti A, Gupta A, Choudhury A, Simnani FZ, Nandi A, Sahoo RN, Singh S, Mishra R, Kaushik NK, Singh D, Suar M, Verma SK. Detrimental consequences of micropolymers associated plasticizers on endocrinal disruption. Mater Today Bio 2024; 27:101139. [PMID: 39027679 PMCID: PMC11255117 DOI: 10.1016/j.mtbio.2024.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
The prevalence of polymer usage in everyday activities has emerged as a detriment to both human life and the environment. A large number of studies describe severe impacts of micropolymers (MP) and nanopolymers (NP) on various organ systems, including the endocrine system. Additionally, plasticizers utilized as additives have been identified as endocrine-disrupting chemicals (EDCs). MP/NP, along with associated plasticizers, affect principal signalling pathways of endocrine glands such as the pituitary, thyroid, adrenal, and gonads, thereby disrupting hormone function and metabolic processes crucial for maintaining homeostasis, fertility, neural development, and fetal growth. This review delves into the sources, distribution, and effects of micropolymers, nanopolymers, and associated plasticizers acting as EDCs. Furthermore, it provides a detailed review of the mechanisms underlying endocrine disruption in relation to different types of MP/NP.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Puja Kumari
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Snehashmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Rudra Narayan Sahoo
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Shalini Singh
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara, Gujarat, 391760, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
4
|
Ahmad N, Singh SP, Sahu S, Bhattacharyya R, Maurya AS, Kumar N, Rout RK, Tripathy GR. Isotopic evidence of autochthonous organic matter acting as a major sink of anthropogenic heavy metals in modern lacustrine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123964. [PMID: 38631445 DOI: 10.1016/j.envpol.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The knowledge of major sources, sinks, and the burial fate of various pollutants added to modern aquatic ecosystems under changing environmental conditions is limited but crucial for our sustainability. In this context, the spatial distributions and causative factors of organic matter (OM) and heavy metal accumulations have been explored in modern lacustrine sediments of a large urbanized and protected wetland (ULB: Upper Lake Bhopal) in Central India. For this purpose, geochemical properties, in particular, stable isotopes (δ13C and δ15N) were measured in the ULB surficial sediments (core depth ∼0-1 cm; n = 19), and additionally collected riverbed sediments (n = 2) and atmospheric free-fall dust samples (n = 3) from the lake periphery. The major and trace element data indicate widespread mafic sediment provenance and nearly dysoxic lacustrine conditions. The riverine supply of soil OM from cropped lands and the lake productivity (algae, largely sustained by nutrients from sewage and agricultural runoff) are the major OM sources to the western and eastern lake portions, respectively. The fractional contribution from autochthonous TOC (∼0.19-0.95, mean ∼0.62) predominates that of allochthonous TOC (∼0.05-0.81, mean ∼0.38). Whereas, atmospheric dust deposition is a primary anthropogenic source of heavy metals (Pb and Zn). The lake productivity rather than soil OM or any mineral sorbent is found responsible for the anthropogenic enrichments of Pb and Zn in the ULB surficial sediments, especially on the eastern ULB portion under high anthropogenic pressure. Therefore, the settled OM (primarily autochthonous) being oxidizable acts as a temporary but major sink of anthropogenic heavy metals in modern lacustrine sediments, which are vulnerable to heavy metal efflux to the water column by sediment diagenesis.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Satinder Pal Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| | - Shivam Sahu
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Rohan Bhattacharyya
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-Bypass-Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Abhayanand Singh Maurya
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nitish Kumar
- Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Rakesh Kumar Rout
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gyana Ranjan Tripathy
- Department of Earth and Climate Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
5
|
Wang P, Ji Z, Chen H, Chen S, Pan C, Fei Q, Ge RS, Duan P, Li L. Structure-activity relationship and mechanistic study of organotins as inhibitors of human, pig, and rat gonadal 3β-hydroxysteroid dehydrogenases. Toxicol Appl Pharmacol 2024; 486:116942. [PMID: 38692360 DOI: 10.1016/j.taap.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3β-hydroxysteroid dehydrogenases (3β-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3β-HSD2 with IC50 values of 114.79, 106.98, and 5.40 μM, respectively. For pig 3β-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 μM, respectively. Similarly, for rat 3β-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 μM, respectively. They were mixed inhibitors of pig and rat 3β-HSD, while triphenyltin was identified as a competitive inhibitor of human 3β-HSD2. The mechanism underlying the inhibition of organotins on 3β-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3β-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongyao Ji
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huiqian Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sailing Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengshuang Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Linxi Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
6
|
Ren X, Zhang Y, Gao X, Gong Q, Li J. Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida. PLANTS (BASEL, SWITZERLAND) 2024; 13:767. [PMID: 38592831 PMCID: PMC10975867 DOI: 10.3390/plants13060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Undaria pinnatifida can effectively deal with organotin pollution through its excellent accumulation and degradation capabilities found under laboratory conditions. However, nothing is known regarding its accumulation, degradation performance, and related impact factors in the wild farming area. In this study, we monitored triphenyltin chloride (TPTCL) contents and degradation products in different algal parts (blades, stipes, sporophylls, and holdfasts) of cultivated U. pinnatifida from December 2018 to May 2019. Our results showed that sporophytes had an accumulation and degradation capacity for TPTCL. The TPTCL contents and degradation products varied with the algal growth stages and algal parts. TPTCL accumulated in the blades at the growth stage and the blades, stipes, sporophylls, and holdfasts at the mature stage. The TPTCL content among algal parts was blades (74.92 ± 2.52 μg kg-1) > holdfasts (62.59 ± 1.42 μg kg-1) > sporophylls (47.24 ± 1.41 μg kg-1) > stipes (35.53 ± 0.55 μg kg-1). The primary degradation product DPTCL accumulated only in the blades at any stage, with a concentration of 69.30 ± 3.89 μg kg-1. The secondary degradation product MPTCL accumulated in the blades at the growth stage and in the blades, stipe, and sporophyll at the mature stage. The MPTCL content among algal parts was blades (52.80 ± 3.48 μg kg-1) > sporophylls (31.08 ± 1.53 μg kg-1) > stipes (20.44 ± 0.85 μg kg-1). The accumulation pattern of TPTCL and its degradation products seems closely related to nutrient allocation in U. pinnatifida. These results provide the basis for applying cultivated U. pinnatifida in the bioremediation of organotin pollution and the food safety evaluation of edible algae.
Collapse
Affiliation(s)
| | | | - Xu Gao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (X.R.); (Y.Z.); (Q.G.)
| | | | - Jingyu Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (X.R.); (Y.Z.); (Q.G.)
| |
Collapse
|
7
|
Li P, Chen CZ, Liu L, Li ZH. Whole-Transcriptome Analysis Reveals the RNA Profiles in Mouse Bone Marrow Mesenchymal Stem Cells or Zebrafish Embryos After Exposure to Environmental Level of Tributyltin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:34. [PMID: 38342962 DOI: 10.1007/s00128-024-03861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
To understand the underlying molecular mechanisms, mouse bone marrow mesenchymal stem cells (BMSCs) and zebrafish embryos were exposed to the control group and Tributyltin (TBT) group (10 ng/L, environmental concentration) for 48 h, respectively. The expression profiles of RNAs were investigated using whole-transcriptome analysis in mouse BMSCs or zebrafish embryos after TBT exposure. For mouse BMSCs, the results showed 2,449 differentially expressed (DE) mRNAs, 59 DE miRNAs, 317 DE lncRNAs, and 15 circRNAs. Similarly, for zebrafish embryos, the results showed 1,511 DE mRNAs, 4 DE miRNAs, 272 DE lncRNAs, and 28 circRNAs. According to KEGG pathway analysis showed that DE RNAs were mainly associated with immune responses, signaling, and cellular interactions. Competing endogenous RNA (ceRNA) network analysis revealed that the regulatory network of miRNA-circRNA constructed in zebrafish embryos was more complex compared to that of mouse BMSCs.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
8
|
Wiesinger H, Bleuler C, Christen V, Favreau P, Hellweg S, Langer M, Pasquettaz R, Schönborn A, Wang Z. Legacy and Emerging Plasticizers and Stabilizers in PVC Floorings and Implications for Recycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1894-1907. [PMID: 38241221 PMCID: PMC10832040 DOI: 10.1021/acs.est.3c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
Hazardous chemicals in building and construction plastics can lead to health risks due to indoor exposure and may contaminate recycled materials. We systematically sampled new polyvinyl chloride floorings on the Swiss market (n = 151). We performed elemental analysis by X-ray fluorescence, targeted and suspect gas chromatography-mass spectrometry analysis of ortho-phthalates and alternative plasticizers, and bioassay tests for cytotoxicity and oxidative stress, and endocrine, mutagenic, and genotoxic activities (for selected samples). Surprisingly, 16% of the samples contained regulated chemicals above 0.1 wt %, mainly lead and bis(2-ethylhexyl) phthalate (DEHP). Their presence is likely related to the use of recycled PVC in new flooring, highlighting that uncontrolled recycling can delay the phase-out of hazardous chemicals. Besides DEHP, 29% of the samples contained other ortho-phthalates (mainly diisononyl and diisodecyl phthalates, DiNP and DiDP) above 0.1 wt %, and 17% of the samples indicated a potential to cause biological effects. Considering some overlap between these groups, they together make up an additional 35% of the samples of potential concern. Moreover, both suspect screening and bioassay results indicate the presence of additional potentially hazardous substances. Overall, our study highlights the urgent need to accelerate the phase-out of hazardous substances, increase the transparency of chemical compositions in plastics to protect human and ecosystem health, and enable the transition to a safe and sustainable circular economy.
Collapse
Affiliation(s)
- Helene Wiesinger
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Christophe Bleuler
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Verena Christen
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
| | - Philippe Favreau
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Stefanie Hellweg
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Miriam Langer
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
- Eawag—Swiss
Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Roxane Pasquettaz
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Andreas Schönborn
- Institute
of Natural Resource Sciences, ZHAW Zurich
University of Applied Science, 8820 Wädenswil, Switzerland
| | - Zhanyun Wang
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
9
|
Zhang Y, Cai X, Hou Y, Chen W, Zhang J. Triphenyltin Influenced Carotenoid-Based Coloration in Coral Reef Fish, Amphiprion ocellaris, by Disrupting Carotenoid Metabolism. TOXICS 2023; 12:13. [PMID: 38250969 PMCID: PMC10820653 DOI: 10.3390/toxics12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Triphenyltin (TPT), a kind of persistent pollutant, is prevalent in the aquatic environment and could pose a threat to coral reef fish. However, little is known about the toxicity of TPT on coral reef fish, especially regarding the representative characteristics of body coloration. Therefore, this study chose the clownfish (Amphiprion ocellaris) in order to investigate the effects of TPT exposure on its carotenoid-based body coloration under the environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 60 d, the carotenoid contents were decreased and histological damage in the liver was found, shown as nuclear pyknosis and shift, lipid deposition and fibrotic tissue hyperplasia. Liver transcriptomic analysis showed that TPT exposure interfered with oxidative phosphorylation and fatty acid metabolism pathways, which related to carotenoids uptake and metabolism. Furthermore, TPT exposure led to oxidative damage in the liver, which is responsible for the changes in the antioxidant capacity of enzymes, including GSH, MDA, POD, CAT and T-SOD. TPT exposure also affected the genes (Scarb1, CD36, Stard3 and Stard5) related to carotenoid absorption and transport, as well as the genes (GstP1 and Bco2) related to carotenoid deposition and decomposition. Taken together, our results demonstrate that TPT influenced carotenoid-based coloration in coral reef fish by disrupting carotenoid metabolism, which complements the ecotoxicological effects and toxic mechanisms of TPT and provides data for the body color biology of coral reef fishes.
Collapse
Affiliation(s)
- Yan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Xingwei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570206, China;
| | - Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
- Hainan Provincial Key Laboratory of Ecological Civilization and Integrated Land-Sea Development, Haikou 571158, China
| |
Collapse
|
10
|
Cima F, Varello R. Immunotoxic effects of exposure to the antifouling copper(I) biocide on target and nontarget bivalve species: a comparative in vitro study between Mytilus galloprovincialis and Ruditapes philippinarum. Front Physiol 2023; 14:1230943. [PMID: 37654677 PMCID: PMC10466049 DOI: 10.3389/fphys.2023.1230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Edible bivalves constitute an important bioresource from an economic point of view, and studies on their immune responses to environmental pollutants are crucial for both the preservation of biodiversity and economic reasons. The worldwide diffusion of copper(I)-based antifouling paints has increased copper leaching into coastal environments and its potential impact on both target and nontarget organisms. In this study, immunotoxicity assays were carried out with short-term (60 min) cultures of hemocytes from the bivalves Mytilus galloprovincialis-a mussel dominant in the macrofouling community-and Ruditapes philippinarum-a clam dominant in the soft-sediment community-exposed to CuCl to compare the toxic effects on their immune responses. The LC50 values were similar, 40 μM (3.94 mg L-1) for the mussel and 44 μM (4.33 mg L-1) for the clam. In both species, apoptosis occurred after exposure to 1 µM (98.9 μg L-1) CuCl, the concentration able to significantly increase the intracellular Ca2+ content. Biomarkers of cell morphology and motility revealed microfilament disruption, a significant decrease in yeast phagocytosis and lysosome hydrolase (β-glucuronidase) inhibition beginning from 0.5 µM (49.5 μg L-1) CuCl in both the mussel and clam. The same concentration of CuCl affected biomarkers of oxidative stress, as a significant decrease in reduced glutathione content in the cytoplasm and inhibition of mitochondrial cytochrome-c oxidase (COX) were detected in both species. Comparison of the biomarkers showed that clam is more sensitive than the mussel regarding alterations to the lysosomal membrane and reactive oxygen species (ROS) production, which supports the potential harmful effects of antifouling biocides on the survival of nontarget pivotal species in the coastal community.
Collapse
Affiliation(s)
- Francesca Cima
- Laboratory of Biology of Ascidians, Department of Biology (DiBio), University of Padova, Padova, Italy
| | | |
Collapse
|
11
|
Kirchhecker S, Nguyen N, Reichert S, Lützow K, Eselem Bungu PS, Jacobi von Wangelin A, Sandl S, Neffe AT. Iron(ii) carboxylates and simple carboxamides: an inexpensive and modular catalyst system for the synthesis of PLLA and PLLA-PCL block copolymers. RSC Adv 2023; 13:17102-17113. [PMID: 37293470 PMCID: PMC10244980 DOI: 10.1039/d3ra03112h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
The combination of inexpensive Fe(ii) acetate with low molecular weight aliphatic carboxamides in situ generates an effective catalyst system for the ring opening polymerisation of lactones. PLLAs were produced in melt conditions with molar masses of up to 15 kg mol-1, narrow dispersity (Đ = 1.03), and without racemisation. The catalytic system was investigated in detail with regard to Fe(ii) source, and steric and electronic effects of the amide's substituents. Furthermore, the synthesis of PLLA-PCL block copolymers of very low randomness was achieved. This commercially available, inexpensive, modular, and user-friendly catalyst mixture may be suitable for polymers with biomedical applications.
Collapse
Affiliation(s)
- Sarah Kirchhecker
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
| | - Ngoc Nguyen
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 55 20146 Hamburg Germany
| | - Stefan Reichert
- Department of Chemistry, University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Karola Lützow
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
| | - Paul S Eselem Bungu
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
| | | | - Sebastian Sandl
- Department of Chemistry, University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Axel T Neffe
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstr. 55 14513 Teltow Germany
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 55 20146 Hamburg Germany
| |
Collapse
|
12
|
Hou Y, Cai XW, Liang ZF, Duan DD, Diao XP, Zhang JL. An integrative investigation of developmental toxicities induced by triphenyltin in a larval coral reef fish, Amphiprion ocellaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161487. [PMID: 36638977 DOI: 10.1016/j.scitotenv.2023.161487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triphenyltin (TPT) is widely distributed on coastlines, which makes coral reef fish a potential target of TPT pollution. However, the negative effects of TPT on coral reef fish remain poorly understood. Therefore, in the present study, the larval coral reef fish Amphiprion ocellaris was used to investigate the developmental toxicities of TPT at environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 14 d, the cumulative mortality increased, and growth was suppressed. In addition, TPT exposure inhibited the development of melanophores and xanthophores and delayed white strip formation, which might be responsible for the disruption of the genes (erbb3b, mitfa, kit, xdh, tyr, oca2, itk and trim33) related to pigmentation. TPT exposure also attenuated ossification of head skeletal elements and the vertebral column and inhibited the expression of genes (bmp2, bmp4 and sp7) related to skeletal development. The observed developmental toxicities on growth, pigmentation and skeleton development might be associated with the disruption of thyroid hormones and the genes related to thyroid hormone regulation (tshβ, thrα, thrβ, tg, tpo, dio2, and ttr). In addition, TPT exposure interfered with locomotor and shoaling behavior, and the related genes dbh, avp and avpr1aa. Taken together, our results suggest that TPT pollution might threaten the development of one of the most iconic coral reef fish, which might produce disastrous consequences on the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xing-Wei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Zhi-Fang Liang
- Lingshui Wildlife Conservation Association, Lingshui, Hainan, China
| | - Dan-Dan Duan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; Lingshui Wildlife Conservation Association, Lingshui, Hainan, China.
| |
Collapse
|
13
|
Merlo E, Zimerman J, Dos Santos FCF, Zanol JF, da Costa CS, Carneiro PH, Miranda-Alves L, Warner GR, Graceli JB. Subacute and low dose of tributyltin exposure leads to brown adipose abnormalities in male rats. Toxicol Lett 2023; 376:26-38. [PMID: 36638932 PMCID: PMC9928871 DOI: 10.1016/j.toxlet.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Tributyltin (TBT) is an obesogenic endocrine disrupting chemical (EDC) linked with several metabolic complications. Brown adipose tissue (BAT) is the principal site for thermogenesis, making it a potential target for obesity management and metabolic disease. However, few studies have evaluated TBT effect on BAT function. In this investigation, we assessed whether subacute (15 days) and low dose of TBT exposure (100 ng/kg/day) results in abnormal BAT morphophysiology in adult male rats. Body temperature, BAT morphology, inflammation, oxidative stress, collagen deposition and BAT metabolic gene expression markers were assessed in room temperature (Room, ∼24 ºC) and after cold tolerance test (Cold, ∼4 ºC) conditions. A reduction in body temperature was observed in both Room and Cold conditions in TBT rats, suggesting abnormal BAT thermogenic function. Changes in BAT morphology were observed in TBT rats, with an increase in BAT lipid accumulation, an increase in BAT unilocular adipocyte number and a decrease in BAT multilocular adipocyte number in Room condition. All these parameters were opposite in Cold condition TBT rats, leading to a borderline increase in BAT UCP1 protein expression. An increase in BAT mast cell number was observed in TBT rats in Room condition. An increase in ED1 protein expression (macrophage marker) was observed in TBT rats in Cold condition. Oxidative stress and collagen deposition increased in both Room and Cold conditions in TBT rats. TBT exposure caused a borderline increase in BAT COL1A1 protein expression in Cold condition. Further, strong negative correlations were observed between body temperature and BAT lipid accumulation, and BAT lipid accumulation and multilocular adipocyte number. Thus, these data suggest that TBT exposure impaired BAT morphophysiology through impacts on lipid accumulation, inflammation, fibrosis and oxidative stress in male rats.
Collapse
Affiliation(s)
- Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Pedro H Carneiro
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, USA
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
14
|
Kucharski D, Giebułtowicz J, Drobniewska A, Nałęcz-Jawecki G, Skowronek A, Strzelecka A, Mianowicz K, Drzewicz P. The study on contamination of bottom sediments from the Odra River estuary (SW Baltic Sea) by tributyltin using environmetric methods. CHEMOSPHERE 2022; 308:136133. [PMID: 36041528 DOI: 10.1016/j.chemosphere.2022.136133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
We present the first comprehensive study on the occurrence of tributyltin (TBT) in the Odra River estuary (SW Baltic Sea) that encompasses both densely populated and urbanized agglomeration Szczecin city, and sparsely populated biosphere reserves "Natura 2000". Relationship between TBT and physicochemical parameters of bottom sediments such as granulometry total organic carbon (TOC), total nitrogen (TN), acid volatile sulfide (AVS), As, and metals: Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Mn, Mo, Pb, Sn, and Zn was investigated in 120 samples collected in 2017 and 2018. The highest TBT concentrations were over 3000 ng g-1 (dry weight). They were observed in samples collected in the vicinity of the ship maintenance zones of the Szczecin city. Despite the EU ban on its use since 2003, TBT is still present in the environment. Environmetrics analyses such as correlation, cluster, and principal component analysis of obtained results revealed that the main source of sediments contamination by TBT, metalloids, and metals is likely related to the maritime industry: shipyards, ship maintenance as well as ports and marines. TBT is still present in the bottom sediments because of its emission to the environment with dust and paint chips formed during sandblasting cleaning of ship surfaces. The pollutant is further transported with water current to remote localization in the Szczecin Lagoon. Slow water exchange between the Szczecin Lagoon and the Baltic Sea favors accumulation of pollutants in the lagoon sediments. Therefore, it is necessary to implement environmentally friendly methods into ship maintenance and management of the materials from dredged waterways, harbors, and marinas.
Collapse
Affiliation(s)
- Dawid Kucharski
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Agata Drobniewska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warszawa, 02-097, Poland
| | - Artur Skowronek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, Szczecin, 70-383, Poland
| | - Agnieszka Strzelecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, Szczecin, 70-383, Poland
| | - Kamila Mianowicz
- Interoceanmetal Joint Organization, Cyryla I Metodego 9-9A, Szczecin, 71-541, Poland
| | - Przemysław Drzewicz
- Polish Geological Institute-Polish Research Institute, Rakowiecka 4, Warszawa, 00-975, Poland.
| |
Collapse
|
15
|
Hou Y, Wang LJ, Jin YH, Guo RY, Yang L, Li EC, Zhang JL. Triphenyltin exposure induced abnormal morphological colouration in adult male guppies (Poecilia reticulata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113912. [PMID: 35905627 DOI: 10.1016/j.ecoenv.2022.113912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Fish morphological colouration is essential for their survival and reproduction success; however, it is vulnerable to environmental factors, such as pollutants. Triphenyltin (TPT) is widespread in aquatic ecosystems, and its impacts on fish have been problematic. Therefore, the purpose of this study was to investigate the effects of TPT at environment-related concentrations (0, 1, 10 and 100 ng Sn/L) on morphological colouration in male guppies (Poecilia reticulata). The results showed that TPT exposure affected both orange/red and dark morphological colouration in guppies. The faded orange/red colouration might be related to the decrease of coloured pteridine and Pts (6-Pyruvoyltetrahydropterin Synthase) expression. In addition, TPT exposure induced melanogenesis, however, much melanin was distributed diffusely in the skin and did not seem to form a spot pattern, giving the fish a dull appearance. According to the skin transcriptional profiles, the changes of dark morphological colouration might be related to the changes in genes related to the functions of melanosome components (Gpnmb, Slc45a2 and Tyr), construction (Ap3d1, Fig4, Hps3, Hps5, Lyst, Rabggta, Txndc5 and Vps33a), and transport (Rab27a). Additionally, genes related to the regulation of melanogenesis (Atrn and Pomc) and system effects (Atox1, Atp6ap2, Atp6v1f, Atp6v1h, Rpl24, Rps19 and Rps20) might also be involved in the molecular mechanisms of abnormal morphological colouration induced by TPT. The present study provides crucial data on the molecular basis of abnormal morphological colouration in fish exposed to TPT and underscores the importance of toxicological studies of the effects of pollutants in aquatic environments on fish morphological colouration.
Collapse
Affiliation(s)
- Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li-Jun Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ying-Hong Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Er-Chao Li
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Simões LAR, Vogt ÉL, da Costa CS, de Amaral M, Hoff MLM, Graceli JB, Vinagre AS. Effects of tributyltin (TBT) on the intermediate metabolism of the crab Callinectes sapidus. MARINE POLLUTION BULLETIN 2022; 182:114004. [PMID: 35939934 DOI: 10.1016/j.marpolbul.2022.114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated if the exposure to tributyltin (TBT), a chemical used worldwide in boat antifouling paints, could result in metabolic disturbances in the blue crab Callinectes sapidus. After the exposure to TBT 100 or 1000 ng.L-1 for 48 and 96 h, hemolymph and tissues were collected to determine the concentration of metabolites and lipid peroxidation. The levels of glucose, lactate, cholesterol, and triglycerides in the hemolymph were not affected by TBT exposure. Hemolymph protein and heart glycogen increased in the crabs exposed to TBT 1000 for 96 h. Anterior gills protein and lipoperoxidation decreased after 96 h in all groups. These results suggest that C. sapidus can maintain energy homeostasis when challenged by the TBT exposure for 48 h and that metabolic alterations initiate after 96 h.
Collapse
Affiliation(s)
- Leonardo Airton Ressel Simões
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton Lopes Vogt
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Marjoriane de Amaral
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana Leivas Müller Hoff
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Anapaula Sommer Vinagre
- Comparative Metabolism and Endocrinology Laboratory (LAMEC), Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
New Complexes of organotin(IV) and organosilicon(IV) with 2-{(3,4-dimethoxybenzylidene)amino}-benzenethiol: Synthesis, spectral, theoretical, antibacterial, docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Beyer J, Song Y, Tollefsen KE, Berge JA, Tveiten L, Helland A, Øxnevad S, Schøyen M. The ecotoxicology of marine tributyltin (TBT) hotspots: A review. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105689. [PMID: 35777303 DOI: 10.1016/j.marenvres.2022.105689] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Tributyltin (TBT) was widely used as a highly efficient biocide in antifouling paints for ship and boat hulls. Eventually, TBT containing paints became globally banned when TBT was found to cause widespread contamination and non-target adverse effects in sensitive species, with induced pseudohermaphroditism in female neogastropods (imposex) being the best-known example. In this review, we address the history and the status of knowledge regarding TBT pollution and marine TBT hotspots, with a special emphasis on the Norwegian coastline. The review also presents a brief update on knowledge of TBT toxicity in various marine species and humans, highlighting the current understanding of toxicity mechanisms relevant for causing endocrine disruption in marine species. Despite observations of reduced TBT sediment concentrations in many marine sediments over the recent decades, contaminant hotspots are still prevalent worldwide. Consequently, efforts to monitor TBT levels and assessment of potential effects in sentinel species being potentially susceptible to TBT in these locations are still highly warranted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - John Arthur Berge
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Lise Tveiten
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | - Sigurd Øxnevad
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
19
|
Veríssimo de Oliveira R, Lima Bezerra L, Gomes Sousa N, Xavier Feitosa F, Batista de Sant'Ana H, Nunes Correia A, de Lima-Neto P, Monteiro NK. Analysis of the behavior of Sn2+ and In3+ ions in DES and in water: A theoretical approach. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Huang X, Ma T, Chen X. Tributyltin inhibits development of pubertal Leydig cells in rats. Reprod Toxicol 2022; 111:49-58. [DOI: 10.1016/j.reprotox.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
21
|
Warford L, Mason C, Lonsdale J, Bersuder P, Blake S, Evans N, Thomas B, James D. A reassessment of TBT action levels for determining the fate of dredged sediments in the United Kingdom. MARINE POLLUTION BULLETIN 2022; 176:113439. [PMID: 35183026 DOI: 10.1016/j.marpolbul.2022.113439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
As part of reviewing the United Kingdom (UK) action levels (ALs) of contaminants for managing the disposal of dredged marine sediment material, tributyl tin (TBT) has been reassessed. TBT is a banned biocide capable of causing severe harm to the marine environment. Its presence is routinely screened for prior to marine disposal of dredged sediment material. Dredged sediment TBT concentrations have been studied using UK monitoring data obtained between 2000 and 2018. The changes in these TBT concentrations have guided the reassessment of ALs. Recent toxicity studies have also guided the reassessment of TBT ALs. This study, which itself forms part of a larger review by the Department for Environment, Food and Rural Affairs, has concluded that current UK TBT ALs may no longer be fit for purpose. A more environmentally protective approach for controlling release of TBT into the marine environment is recommended.
Collapse
Affiliation(s)
- L Warford
- Cefas, Lowestoft, Suffolk NR33 0HT, UK.
| | - C Mason
- Cefas, Lowestoft, Suffolk NR33 0HT, UK
| | | | | | - S Blake
- Cefas, Lowestoft, Suffolk NR33 0HT, UK
| | - N Evans
- Nottingham Trent University, Nottingham NG11 8NS, UK
| | - B Thomas
- Cefas, Lowestoft, Suffolk NR33 0HT, UK
| | - D James
- Cefas, Lowestoft, Suffolk NR33 0HT, UK
| |
Collapse
|
22
|
Manna SK, Mondal S, Jana B, Samanta K. Recent advances in tin ion detection using fluorometric and colorimetric chemosensors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00383j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The innovation of chemosensors for tin ions (Sn4+/Sn2+) has evolved as a key research topic in recent decades, garnering a lot of attention due to their environmental, industrial and biological importance.
Collapse
Affiliation(s)
- Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur – 721657, West Bengal, India
| | - Sanchita Mondal
- Department of Chemistry, Sree Chaitanya College, Habra, North 24 Parganas, West Bengal-743268, India
| | - Barnali Jana
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur – 721657, West Bengal, India
| | - Khokan Samanta
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur – 721657, West Bengal, India
| |
Collapse
|
23
|
Barbosa KL, Dettogni RS, Costa CS, Gastal EL, Raetzman LT, Flaws JA, Graceli JB. Tributyltin and the female hypothalamic-pituitary-gonadal disruption. Toxicol Sci 2021; 186:179-189. [PMID: 34850235 DOI: 10.1093/toxsci/kfab141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components. Specifically, TBT reduced hypothalamic gonadotropin-releasing hormone (GnRH) expression and gonadotropin release, and impaired ovarian folliculogenesis, steroidogenesis, and ovulation, at least in part, by causing abnormal sensitivity to steroid feedback mechanisms and deleterious ovarian effects. This review covers studies using environmentally relevant doses of TBT in vitro (1 ng-20 ng/mL) and in vivo (10 ng-20 mg/Kg) in mammals. The review also includes discussion of important gaps in the literature and suggests new avenue of research to evaluate the possible mechanisms underlying TBT-induced toxicity in the HPG axis. Overall, the evidence indicates that TBT exposure is associated with toxicity to the components of the female reproductive axis. Further studies are needed to better elucidate the mechanisms through which TBT impairs the ability of the HPG axis to control reproduction.
Collapse
Affiliation(s)
- Kayke L Barbosa
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| | | | - Charles S Costa
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lori T Raetzman
- Dept of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Dept. of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| |
Collapse
|
24
|
Shi Y, Chen C, Li M, Liu L, Dong K, Chen K, Qiu X. Oral Exposure to Tributyltin Induced Behavioral Abnormality and Oxidative Stress in the Eyes and Brains of Juvenile Japanese Medaka ( Oryzias latipes). Antioxidants (Basel) 2021; 10:antiox10111647. [PMID: 34829518 PMCID: PMC8615197 DOI: 10.3390/antiox10111647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
The widely used compound tributyltin (TBT), which can be continuously detected in aquatic species and seafood, may induce diverse adverse effects on aquatic organisms. However, little is known regarding the mechanistic links between behavioral abnormality and oxidative stress in different fish tissues in response to oral TBT exposure. Herein, juvenile Japanese medaka (Oryzias latipes) were orally exposed to TBT at 1 and 10 ng/g-bw/d for four weeks. After exposure, the locomotor activity and social interaction of juvenile medaka were found to be significantly reduced in the 10 ng/g-bw/d TBT-exposed group. Furthermore, the antioxidant biomarkers in different tissues of juvenile medaka showed different levels of sensitivity to TBT exposure. The eye superoxide dismutase (SOD) activities markedly increased in both groups exposed to 1 and 10 ng/g-bw/d TBT, while the eye and brain malondialdehyde (MDA) levels increased in the higher dose group. Furthermore, the eye and brain ATPase activities markedly declined in the 1 ng/g-bw/d TBT-exposed group. A correlation analysis revealed that the decreased locomotor activity and social interaction in medaka were associated with the eye antioxidant enzyme (i.e., SOD and catalase (CAT)) activity and brain oxidative damage level. Thus, our findings suggested that there might be some mechanistic links between the behavioral abnormality induced by TBT exposure and oxidative stress in the eyes and brains of medaka. Thus, our findings indicate that the impacts of oral exposure to TBT should be considered to better assess its risk to the aquatic ecosystem and human health.
Collapse
Affiliation(s)
- Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Lei Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Kejun Dong
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (K.C.); (X.Q.)
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.S.); (C.C.); (M.L.); (L.L.); (K.D.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (K.C.); (X.Q.)
| |
Collapse
|
25
|
Ip JCH, Leung PTY, Qiu JW, Lam PKS, Wong CKC, Chan LL, Leung KMY. Transcriptomics reveal triphenyltin-induced molecular toxicity in the marine mussel Perna viridis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148040. [PMID: 34091345 DOI: 10.1016/j.scitotenv.2021.148040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Triphenyltin (TPT) is widely used as an active ingredient in antifouling paints and fungicides, and continuous release of this highly toxic endocrine disruptor has caused serious pollution to coastal marine ecosystems and organisms worldwide. Using bioassays and transcriptome sequencing, this study comprehensively investigated the molecular toxicity of TPT chloride (TPTCl) to the marine mussel Perna viridis which is a commercially important species and a common biomonitor for marine pollution in Southeast Asia. Our results indicated that TPTCl was highly toxic to adult P. viridis, with a 96-h LC10 and a 96-h EC10 at 18.7 μg/L and 2.7 μg/L, respectively. A 21-day chronic exposure to 2.7 μg/L TPTCl revealed a strong bioaccumulation of TPT in gills (up to 36.48 μg/g dry weight) and hepatopancreas (71.19 μg/g dry weight) of P. viridis. Transcriptome analysis indicated a time course dependent gene expression pattern in both gills and hepatopancreas. Higher numbers of differentially expressed genes were detected at Day 21 (gills: 1686 genes; hepatopancreas: 1450 genes) and at Day 28 (gills: 628 genes; hepatopancreas: 238 genes) when compared with that at Day 7 (gills: 104 genes, hepatopancreas: 112 genes). Exposure to TPT strongly impaired the endocrine system through targeting on nuclear receptors and putative steroid metabolic genes. Moreover, TPT widely disrupted cellular functions, including lipid metabolism, xenobiotic detoxification, immune response and endoplasmic-reticulum-associated degradation expression, which might have caused the bioaccumulation of TPT in the tissues and aggregation of peptides and proteins in cells that further activated the apoptosis process in P. viridis. Overall, this study has advanced our understanding on both ecotoxicity and molecular toxic mechanisms of TPT to marine mussels, and contributed empirical toxicity data for risk assessment and management of TPT contamination.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Chris K C Wong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
26
|
Vodopivez C, Curtosi A, Pelletier E, Saint-Louis R, Spairani LU, Hernández EA, Zakrajsek A, Genez A, Mac Cormack WP. Low levels of PAHs and organotin compounds in surface sediment samples from a broad marine area of 25 de Mayo (King George) Island, South Shetland Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147206. [PMID: 33957587 DOI: 10.1016/j.scitotenv.2021.147206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The Northern region of the Antarctic Peninsula constitutes the area with the highest human presence in West Antarctica. The human presence, with all the activities associated such as logistic, scientific and tourism operations, represents a potential risk of chemical pollution with both, organic and inorganic contaminants. Under these conditions knowledge about the presence and levels of the main persistent organic pollutants (POPs) is essential to evaluate the environmental status of this ecologically relevant and sensitive area. In this work, which complements our previous study regarding trace elements, we performed the first regional-scale monitoring of 24 PAHs (16 of them included in EPA list of primary pollutant), and organotin compounds (OTCs:TBT, DBT and MBT) in surface sediment from 68 sites comprising six different areas in Maxwell Bay, southeast coast of 25 de Mayo (King George) Island. POPs were quantified in surface sediment samples (20-30 m depth) obtained during two summer Antarctic expeditions by gas chromatography-mass spectrometry (GC-MS). The two most anthropized areas (South Fildes and Potter Cove) showed moderated evidence of pollution for PAHs and OTC. In some sampling sites the concentration of total PAHs was higher than 100 ng/g dw, while TBT was detected in only five samples, two of them located in Potter Cove (ranged between 14 and 18 ng/g dw), and three, located in South Fildes area (ranged between 118 and 416 ng/g dw). Although POPs contamination was evidenced in some samples close to scientific stations, a pollution pattern was not clearly identified.
Collapse
Affiliation(s)
- C Vodopivez
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - A Curtosi
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - E Pelletier
- Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski G5L 3A1, Canada
| | - R Saint-Louis
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski G5L 3A1, Canada
| | - L U Spairani
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - E A Hernández
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto NANOBIOTEC UBA-CONICET, Junín 956 6to piso, CABA, Argentina
| | - A Zakrajsek
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - A Genez
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina
| | - W P Mac Cormack
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín B1650HMK, Provincia de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto NANOBIOTEC UBA-CONICET, Junín 956 6to piso, CABA, Argentina..
| |
Collapse
|
27
|
Inhibitors of Lipoxygenase and Cyclooxygenase-2 Attenuate Trimethyltin-Induced Neurotoxicity through Regulating Oxidative Stress and Pro-Inflammatory Cytokines in Human Neuroblastoma SH-SY5Y Cells. Brain Sci 2021; 11:brainsci11091116. [PMID: 34573138 PMCID: PMC8468241 DOI: 10.3390/brainsci11091116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
Trimethyltin (TMT) is an environmental neurotoxin that mediates dopaminergic neuronal injury in the brain. In this study, we characterized the toxic mechanism and possible protective compounds against TMT-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. Antioxidants such as melatonin, N-acetylcysteine (NAC), α-tocopherol, and allopurinol alleviated TMT toxicity. Apoptosis induced by TMT was identified by altered expression of cleaved caspase-3, Bax, Bcl-2, and Bcl-xL through Western blot analysis. The iron chelator deferoxamine ameliorated the alteration of apoptosis-related proteins through TMT exposure. TMT also induced delayed ultrastructural necrotic features such as mitochondrial swelling and cytoplasmic membrane rupture; NAC reduced these necrotic injuries. Esculetin, meloxicam, celecoxib, and phenidone decreased TMT toxicity. Elevation of the pro-inflammatory cytokines IL-1β, TNF-α, and NF-ĸB and reduction of the antioxidant enzymes catalase and glutathione peroxidase-1 (GPx-1) were induced by TMT and ameliorated by inhibitors of LOX and COX-2 enzymes. Both NMDA and non-NMDA antagonists attenuated TMT toxicity. The free calcium ion modulators nimodipine and BAPTA/AM contributed to neuronal survival against TMT toxicity. Inhibitors of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway, an autophagy regulator, decreased TMT toxicity. These results imply that TMT neurotoxicity is the chief participant in LOX- and COX-2-mediated apoptosis, partly via necrosis and autophagy in SH-SY5Y cells.
Collapse
|
28
|
Quintas PY, Arias AH, Alvarez MB, Domini CE, Garrido M, Marcovecchio JE. Distribution of Butyltin Compounds in the Coastal Environment of the Bahía Blanca Estuary, Argentina. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:307-323. [PMID: 34268597 DOI: 10.1007/s00244-021-00871-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates for the first time the distribution and accumulation of butyltin compounds (BTs) in different compartments such as seawater, sediments, suspended particulate matter (SPM), and mussels (Brachidontes rodriguezii) in the Bahía Blanca estuary. The samples were collected from six sampling sites with different anthropogenic impacts. A better visualization and interpretation of data was achieved using chemometric tools (Tucker4 model), which made it possible to reveal the main relationships among the variables. This analysis showed the presence of BTs in all the estuarine environmental compartments, even in sites with low human intervention. The relationships found among BTs levels, seasons, and environmental matrices show the importance of biological processes such as phytoplankton blooms and remobilization of sediments (by tidal dynamics and/or periodic dredging) in BTs distribution and degradation. In addition, partition coefficients showed that mussels mainly bioaccumulate tributyltin from sediment, water and, to a lesser extent, SPM.
Collapse
Affiliation(s)
- Pamela Y Quintas
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Mónica B Alvarez
- Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Claudia E Domini
- Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Mariano Garrido
- Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina.
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
29
|
Sarmento IV, Merlo E, Meyrelles SS, Vasquez EC, Warner GR, Gonsioroski A, De La Torre K, Meling DD, Flaws JA, Graceli JB. Subchronic and Low Dose of Tributyltin Exposure Leads to Reduced Ovarian Reserve, Reduced Uterine Gland Number, and Other Reproductive Irregularities in Female Mice. Toxicol Sci 2021; 176:74-85. [PMID: 32239163 DOI: 10.1093/toxsci/kfaa045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tributyltin (TBT) chloride is an endocrine disrupting chemical associated with reproductive complications. Studies have shown that TBT targets the reproductive tract, impairing ovarian folliculogenesis, and uterine morphophysiology. In this investigation, we assessed whether subchronic and low dose of TBT exposure results in abnormal ovarian follicular reserve and other irregularities in female mice. TBT was administered to female mice (500 ng/kg/day for 12 days via gavage), and reproductive tract morphophysiology was assessed. We further assessed reproductive tract inflammation and oxidative stress. Improper functioning of the reproductive tract in TBT mice was observed. Specifically, irregular estrous cyclicity and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. In addition, improper follicular development and a reduction in antral follicles, corpora lutea, and total healthy ovarian follicles together with an increase in cystic follicles were apparent. Evidence of uterine atrophy, reduction in endometrial gland number, and inflammation and oxidative stress were seen in TBT mice. Further, strong negative correlations were observed between testosterone levels and primordial, primary, and total healthy ovarian follicles. Thus, these data suggest that the subchronic and low dose of TBT exposure impaired ovarian follicular reserve, uterine gland number, and other reproductive features in female mice.
Collapse
Affiliation(s)
| | | | - Silvana S Meyrelles
- Department of Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Elisardo C Vasquez
- Department of Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Genoa R Warner
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | | | - Kathy De La Torre
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | | |
Collapse
|
30
|
Zanol JF, Niño OMS, da Costa CS, Freitas-Lima LC, Miranda-Alves L, Graceli JB. Tributyltin and high-refined carbohydrate diet lead to metabolic and reproductive abnormalities, exacerbating premature ovary failure features in the female rats. Reprod Toxicol 2021; 103:108-123. [PMID: 34102259 DOI: 10.1016/j.reprotox.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Exposure to the obesogen tributyltin (TBT) alone or high carbohydrate diet (HCD) alone leads to obesity and reproductive complications, such as premature ovary failure (POF) features. However, little is known about interactions between TBT and nutrition and their combined impact on reproduction. In this study, we assessed whether acute TBT and HCD exposure results in reproductive and metabolic irregularities. Female rats were treated with TBT (100 ng/kg/day) and fed with HCD for 15 days and metabolic and reproductive outcomes were assessed. TBT and HCD rats displayed metabolic impairments, such as increased adiposity, abnormal lipid profile and triglyceride and glucose (TYG) index, worsening adipocyte hypertrophy in HCD-TBT rats. These metabolic consequences were linked with reproductive disorders. Specifically, HCD-TBT rats displayed irregular estrous cyclicity, high follicle-stimulating hormone (FSH) levels, low anti-Müllerian hormone (AMH) levels, reduction in ovarian reserve, and corpora lutea (CL) number, with increases in atretic follicles, suggesting that HCD-TBT exposure exacerbated POF features. Further, strong negative correlations were observed between adipocyte hypertrophy and ovarian reserve, CL number and AMH levels. HCD-TBT exposure resulted in reproductive tract inflammation and fibrosis. Collectively, these data suggest that TBT plus HCD exposure leads to metabolic and reproductive abnormalities, exacerbating POF features in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Oscar M S Niño
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil; Bachelor of Physical Education and Sports, Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia.
| | - Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro C Freitas-Lima
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| |
Collapse
|
31
|
Abreu FEL, Batista RM, Castro ÍB, Fillmann G. Legacy and emerging antifouling biocide residues in a tropical estuarine system (Espirito Santo state, SE, Brazil). MARINE POLLUTION BULLETIN 2021; 166:112255. [PMID: 33744804 DOI: 10.1016/j.marpolbul.2021.112255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The contamination by antifouling biocide residues (booster biocides - diuron, Irgarol, chlorothalonil, dichlofluanid and DCOIT; butyltin compounds-BTs (TBT, DBT and MBT); and antifouling paint particles-APPs) was appraised in sediments of Vitoria Estuarine System (VES). Even at its historical lower (ΣBTs ≤113 ng Sn g-1 dry wt), the current environmental levels of BTs in areas with a predominance of boatyards still pose a risk to the local biota and human population. DCOIT, among booster biocides, was the most frequently detected, especially in boatyards (≤40 ng g-1 dry wt) and Vitoria Port (64 ng g-1 dry wt), while APPs were also detected mainly in sediments of boatyards (≤5,969 μg g-1 dry wt). Since levels of diuron and DCOIT in APPs were as high as 1,670,000 and 899,000 ng g-1 dry wt, respectively, they are acting as secondary sources of these antifouling biocides. Therefore, VES is threatened by antifouling biocide residues due to the multiple diffuse sources of contamination, showing the need for more efforts on public policies (including temporal trend monitoring studies).
Collapse
Affiliation(s)
- Fiamma Eugenia Lemos Abreu
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO -FURG), Av. Itália s/n, Campus Carreiros, C.P. 474, 96203-900 Rio Grande, RS, Brazil; PPG em Oceanologia, Universidade Federal do Rio Grande (PPGO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Rodrigo Moço Batista
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO -FURG), Av. Itália s/n, Campus Carreiros, C.P. 474, 96203-900 Rio Grande, RS, Brazil; PPG em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande (PPGQTA-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Ítalo Braga Castro
- PPG em Oceanologia, Universidade Federal do Rio Grande (PPGO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Av. Almirante Saldanha da Gama, 11030-400 Santos, SP, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande (IO -FURG), Av. Itália s/n, Campus Carreiros, C.P. 474, 96203-900 Rio Grande, RS, Brazil; PPG em Oceanologia, Universidade Federal do Rio Grande (PPGO-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil; PPG em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande (PPGQTA-FURG), Av. Itália s/n, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
32
|
Norén A, Karlfeldt Fedje K, Strömvall AM, Rauch S, Andersson-Sköld Y. Low impact leaching agents as remediation media for organotin and metal contaminated sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111906. [PMID: 33472101 DOI: 10.1016/j.jenvman.2020.111906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
All over the world, elevated levels of metals and the toxic compound tributyltin (TBT) and its degradation products are found in sediments, especially close to areas associated with shipping and anthropogenic activities. Ports require regular removal of sediments. As a result, large volumes of often contaminated sediments must be managed. The aim of this study was to investigate enhanced leaching as a treatment method for organotin (TBT) and metal (Cu and Zn) contaminated marine sediments. Thus, enabling the possibility to reuse these cleaner masses e.g. in construction. In addition to using acid and alkaline leaching agents that extract the OTs and metals but reduce the management options post treatment, innovative alternatives such as EDDS, hydroxypropyl cellulose, humic acid, iron colloids, ultra-pure Milli-Q water, saponified tall oil ("soap"), and NaCl were tested. Organotin removal ranged from 36 to 75%, where the most efficient leaching agent was Milli-Q water, which was also the leaching agent achieving the highest removal rate for TBT (46%), followed by soap (34%). The TBT reduction accomplished by Milli-Q water and soap leaching enabled a change in Swedish sediment classification from the highest class to the second highest class. The highest reduction of Zn was in HPC leached samples (39% removal) and Cu in EDDS leached samples (33% removal). Although high metal and OT leaching were achieved, none of the investigated leaching agents are sufficiently effective for the removal of both metals and OTs. The results of this study indicate that leaching with ultra-clean water, such as Milli-Q water, may be sufficient to treat TBT contaminated sediments and potentially allow mass reuse.
Collapse
Affiliation(s)
- Anna Norén
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Karin Karlfeldt Fedje
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Recycling and Waste Management, Renova AB, Box 156, SE-401 22, Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sebastien Rauch
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute (VTI), Box 8072, SE-402 78, Gothenburg, Sweden; Department of Architecture and Civil Engineering, Geology and Geotechnics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
33
|
Yoon DS, Lee Y, Park JC, Lee MC, Lee JS. Alleviation of tributyltin-induced toxicity by diet and microplastics in the marine rotifer Brachionus koreanus. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123739. [PMID: 33254767 DOI: 10.1016/j.jhazmat.2020.123739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
To determine the effects of tributyltin (TBT) upon multiple exposures of diet and microplastic in rotifer, in vivo life parameters were measured. In 10 μg/L TBT-exposed rotifer, the 1 and 0.5 x diet groups resulted in reproduction reduction. However, 10 x diet treatment showed no significant changes in the total fecundity, despite a decrease in daily reproduction. Besides, differences in the lifespan were observed in response to different diet regimens. TBT and/or MP-exposed parental rotifer (F0) showed a significant delay in the pre-reproductive day under 0.5 x diet regimen. In all dietary regimens, exposure to TBT and MP induced an increase in reactive oxygen species, but antioxidant activities were perturbed. To further verify the carryover effect of TBT toxicity, progeny rotifer (F1) obtained from 24 h TBT and/or MP-exposed F0 was used. Interestingly, the faster hatching rate was observed only in F1 obtained from 1 x diet regimen-exposed F0. However, in the 0.5 x diet, the total fecundity was reduced and the pattern of the daily reproduction was collapsed. Thus, the toxicity of TBT can be alleviated by MP and nutrition status, but TBT-induced toxicity and its carryover effect are inevitable.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
34
|
Sham RCT, Ho KKY, Hui TTY, Zhou GJ, Chan JKY, Leung KMY. Tissue distribution of triphenyltin compounds in marine teleost fishes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123426. [PMID: 32763711 DOI: 10.1016/j.jhazmat.2020.123426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/14/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Continuous release of the highly toxic triphenyltin compounds (TPT) from antifouling paints and fungicides has caused serious pollution to urbanized coastal marine environments worldwide since the 1960s. Using gas-chromatography mass-spectrometry (GC-MS), this study investigated the distribution profile of TPT in 15 types of tissues of four marine teleost fish species collected from Hong Kong waters. Concentrations of TPT in various tissues had a significant positive correlation with protein contents in the tissues (r = 0.346, p < 0.001) and, to a lesser extent with lipid contents (r = 0.169, p = 0.020). Highest concentrations of TPT were consistently found in liver, ranging from 1074.9 to 3443.7 ng/g wet weight; whereas fish scales always contained the least concentration of TPT in all species, ranging from 10.4 to 48.5 ng/g wet weight. Through mass balance models and regression analyses, muscle tissues were found to contribute most to the total TPT body burden, and the average TPT concentration of both dorsal and ventral muscles was identified as the best predictor for estimating TPT burden in the entire fish. Hence, further investigations of bioaccumulation and biomagnification of TPT in fishes should adopt this modelling approach in estimating its total body burden in individual fish.
Collapse
Affiliation(s)
- Ronia Chung-Tin Sham
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tommy T Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Janet K Y Chan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
35
|
Škerlová J, Ismail A, Lindström H, Sjödin B, Mannervik B, Stenmark P. Structural and functional analysis of the inhibition of equine glutathione transferase A3-3 by organotin endocrine disrupting pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115960. [PMID: 33162212 DOI: 10.1016/j.envpol.2020.115960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Organotin compounds are highly toxic environmental pollutants with neurotoxic and endocrine-disrupting effects. They are potent inhibitors of glutathione transferases (GSTs), thus impeding their detoxication and antioxidant functions. Several GSTs, including equine GST A3-3 (EcaGST A3-3), exhibit steroid double-bond isomerase activity and are involved in the biosynthesis of testosterone and progesterone. We have performed enzyme kinetics analyses of the inhibition of EcaGST A3-3 by organotin compounds. We have also solved crystal structures of EcaGST A3-3 in complexes with glutathione, and with glutathione together with covalently bound triethyltin. Our structural data indicate that the tin atom forms strong bonds with a covalent character not only with the glutathione, but also with a tyrosyl residue of the enzyme itself, thereby preventing the release of the glutathione-organotin adduct and completely blocking the enzyme function. This work presents a structural basis for the general mechanism of GST inhibition by organotin compounds and contributes to the understanding of their neurotoxic and endocrine disrupting effects.
Collapse
Affiliation(s)
- Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Aram Ismail
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Helena Lindström
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Birgitta Sjödin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden; Department of Experimental Medical Science, Lund University, SE-22100, Lund, Sweden.
| |
Collapse
|
36
|
Sousa RPCL, Figueira RB, Costa SPG, M. Raposo MM. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens 2020; 5:3678-3709. [PMID: 33226221 DOI: 10.1021/acssensors.0c01615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antifouling biocides are toxic to the marine environment impacting negatively on the aquatic ecosystems. These biocides, namely, tributyltin (TBT) and Cu(I) compounds, are used to avoid biofouling; however, their toxicity turns TBT and Cu(I) monitoring an important health issue. Current monitoring methods are expensive and time-consuming. This review provides an overview of the actual state of the art of antifouling paints' biocides, including their impact and toxicity, as well as the reported methods for TBT and Cu(I) detection over the past decade. The principles of optical fiber sensors (OFS) applications, with focus on environmental applications, and the use of organic chemosensors in this type of sensors are debated. The multiplexing ability of OFS and their application on aquatic environments are also discussed.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rita B. Figueira
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana P. G. Costa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Manuela M. Raposo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Graceli JB, Dettogni RS, Merlo E, Niño O, da Costa CS, Zanol JF, Ríos Morris EA, Miranda-Alves L, Denicol AC. The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis. Mol Cell Endocrinol 2020; 518:110997. [PMID: 32841708 DOI: 10.1016/j.mce.2020.110997] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
The hypothalamic-pituitary axis (HP axis) plays a critical and integrative role in the endocrine system control to maintain homeostasis. The HP axis is responsible for the hormonal events necessary to regulate the thyroid, adrenal glands, gonads, somatic growth, among other functions. Endocrine-disrupting chemicals (EDCs) are a worldwide public health concern. There is growing evidence that exposure to EDCs such as bisphenol A (BPA), some phthalates, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and biphenyls (PBBs), dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and atrazine (ATR), is associated with HP axis abnormalities. EDCs act on hormone receptors and their downstream signaling pathways and can interfere with hormone synthesis, metabolism, and actions. Because the HP axis function is particularly sensitive to endogenous hormonal changes, disruptions by EDCs can alter HP axis proper function, leading to important endocrine irregularities. Here, we review the evidence that EDCs could directly affect the mammalian HP axis function.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Raquel S Dettogni
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Eduardo Merlo
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Oscar Niño
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Jordana F Zanol
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Eduardo A Ríos Morris
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil. Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil.
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil. Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil. Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| | - Anna C Denicol
- Department of Animal Science, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA.
| |
Collapse
|
38
|
Nolte TM, De Cooman W, Vink JPM, Elst R, Ryken E, Ragas AMJ, Hendriks AJ. Bioconcentration of Organotin Cations during Molting Inhibits Heterocypris incongruens Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14288-14301. [PMID: 33135409 PMCID: PMC7685533 DOI: 10.1021/acs.est.0c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
The densely populated North Sea region encompasses catchments of rivers such as Scheldt and Meuse. Herein, agricultural, industrial, and household chemicals are emitted, transported by water, and deposited in sediments, posing ecological risks. Though sediment monitoring is often costly and time-intensive, modeling its toxicity to biota has received little attention. Due to high complexity of interacting variables that induce overall toxicity, monitoring data only sporadically validates current models. Via a range of concepts, we related bio-physicochemical constituents of sediment in Flanders to results from toxicity bioassays performed on the ostracod Heterocypris incongruens. Depending on the water body, we explain up to 90% of the variance in H. incongruens growth. Though variable across Flanders' main water bodies, organotin cations and ammonia dominate the observed toxicity according to toxic unit (TU) assessments. Approximately 10% relates to testing conditions/setups, species variabilities, incoherently documented pollutant concentrations, and/or bio-physicochemical sediment properties. We elucidated the influence of organotin cations and ammonia relative to other metal(oxides) and biocides. Surprisingly, the tributylin cation appeared ∼1000 times more toxic to H. incongruens as compared to "single-substance" bioassays for similar species. We inferred indirect mixture effects between organotin, ammonia, and phosphate. Via chemical speciation calculations, we observed strong physicochemical and biological interactions between phosphate and organotin cations. These interactions enhance bioconcentration and explain the elevated toxicity of organotin cations. Our study aids water managers and policy makers to interpret monitoring data on a mechanistic basis. As sampled sediments differ, future modeling requires more emphasis on characterizing and parametrizing the interactions between bioassay constituents. We envision that this will aid in bridging the gap between testing in the laboratory and field observations.
Collapse
Affiliation(s)
- Tom M. Nolte
- Department of Environmental Science, Institute for Water and Wetland
Research, Radboud University Nijmegen, 6500 GL Nijmegen, the Netherlands
| | - Ward De Cooman
- Flanders Environment Agency (VMM), Dr. De Moorstraat 24-26, B-9300 Aalst, Belgium
| | - Jos P. M. Vink
- Unit Soil and Subsurface Systems, Deltares, P. O. Box 85467, 3508 AL Utrecht, the Netherlands
| | - Raf Elst
- Flanders Environment Agency (VMM), Dr. De Moorstraat 24-26, B-9300 Aalst, Belgium
| | - Els Ryken
- Flanders Environment Agency (VMM), Dr. De Moorstraat 24-26, B-9300 Aalst, Belgium
| | - Ad M. J. Ragas
- Department of Environmental Science, Institute for Water and Wetland
Research, Radboud University Nijmegen, 6500 GL Nijmegen, the Netherlands
| | - A. Jan. Hendriks
- Department of Environmental Science, Institute for Water and Wetland
Research, Radboud University Nijmegen, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
39
|
Will JM, Erbacher C, Sperling M, Karst U. A mass spectrometry-based approach gives new insight into organotin-protein interactions. Metallomics 2020; 12:1702-1712. [PMID: 32930317 DOI: 10.1039/d0mt00171f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, the combination of speciation analysis and native mass spectrometry is presented as a powerful tool to gain new insight into the diverse interactions of environmentally relevant organotin compounds (OTCs) with proteins. Analytical standards of model proteins, such as β-lactoglobulin A (LGA), were thereby incubated with different phenyl- and butyltins. For adduct identification and characterization, the incubated samples were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and electrospray ionization-mass spectrometry (ESI-MS) in combination with size exclusion chromatography (SEC). It allowed for a mild separation, which was most crucial to preserve the acid-labile organotin-protein adducts during their analyses. The binding of triorganotin compounds, such as triphenyltin, was shown to be sulfhydryl-directed by using cysteine-specific protein labeling. However, the sole availability of reduced cysteine residues in proteins did not automatically enable adduct formation. This observation complements previous studies and indicates the necessity of a highly specific binding pocket, which was identified for the model protein LGA via enzymatic digestion experiments. In contrast to triorganotins, their natural di- and mono-substituted degradation products, such as dibutyltin, revealed to be less specific regarding their binding to several proteins. Further, it also did not depend on reduced cysteine residues within the protein. In this context, they can probably act as linker molecules, interconnecting proteins, and leading to dimers and probably to higher oligomers. Furthermore, dibutyltin was observed to induce hydrolysis of the protein's peptide backbone at a specific site. Concerning unknown long-term toxic effects, our studies emphasize the importance of future studies on di- and mono-substituted OTCs.
Collapse
Affiliation(s)
- Jonas M Will
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany.
| | | | | | | |
Collapse
|
40
|
Environmental pollutants and the immune response. Nat Immunol 2020; 21:1486-1495. [PMID: 33046888 DOI: 10.1038/s41590-020-0802-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1-NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor-response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
Collapse
|
41
|
Tin(IV) compounds of tridentate thiosemicarbazone Schiff bases: Synthesis, characterization, in-silico analysis and in vitro cytotoxicity. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wu L, Chen H, Ru H, Li Y, Yao F, Ni Z, Zhong L. Sex-specific effects of triphenyltin chloride (TPT) on thyroid disruption and metabolizing enzymes in adult zebrafish (Danio rerio). Toxicol Lett 2020; 331:143-151. [DOI: 10.1016/j.toxlet.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022]
|
43
|
Dorneles PR, Schilithz PF, Paiva TDC, Flach L, Barbosa LA, Domit C, Cremer MJ, Azevedo-Silva CE, Azevedo AF, Malm O, Lepoint G, Bisi TL, Das K, Lailson-Brito J. Total tin (TSn) biomagnification: Evaluating organotin trophic flow and dispersion using hepatic TSn concentrations and stable isotope (C, N) data of nektonic organisms from Brazil. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105063. [PMID: 32738555 DOI: 10.1016/j.marenvres.2020.105063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
A previous investigation of our research team has demonstrated the suitability of using hepatic total tin (ΣSn) concentrations for evaluating dolphin exposure to organotins (OTs). The present study develops the previous technique into three different approaches that comprise data: (1) on hepatic ΣSn concentrations of 121 Guiana dolphins (Sotalia guianensis) from five different coastal areas (CAs): (2) on ΣSn, δ13C and δ15N for 40 dolphins from Rio de Janeiro state (RJ), including ten different delphinid species; as well as (3) on hepatic ΣSn concentrations and δ15N values on 31 individuals from five different fish species from Sepetiba Bay (SB, Rio de Janeiro-RJ, Brazil). Hepatic ΣSn concentrations of Guiana dolphins from Guanabara Bay (GB, RJ) were significantly higher than those found in other four CAs from S and SE Brazilian regions. Significant positive correlations were found between ΣSn concentrations and δ13C data in delphinid species, demonstrating a coast-ocean gradient in dolphin exposure to OTs in RJ state. Significant and positive correlations were observed between ΣSn concentrations and both δ15N and Trophic Position (TP) values of fish, as well as high values were found for Trophic Magnification Factor (TMF = 3.03) and Trophic Magnification Slope (TMS = 0.14), demonstrating OT biomagnification in SB ichthyofauna.
Collapse
Affiliation(s)
- Paulo R Dorneles
- Radioisotope Laboratory (LREPF), Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
| | - Priscila F Schilithz
- Aquatic Mammal and Bioindicator Laboratory (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rio de Janeiro (RJ), Brazil
| | - Thais de C Paiva
- Radioisotope Laboratory (LREPF), Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Leonardo Flach
- Boto-cinza Institute, Mangaratiba, Rio de Janeiro (RJ), Brazil
| | | | - Camila Domit
- Laboratory of Ecology and Conservation, Centre of Marine Studies (CEM), Federal University of Parana (UFPR), Curitiba, Parana (PR), Brazil
| | - Marta J Cremer
- Laboratory of Ecology and Conservation of Coastal and Marine Tetrapods, University of Joinville Region (UNIVILLE), São Francisco do Sul, Santa Catarina (SC), Brazil
| | - Claudio E Azevedo-Silva
- Radioisotope Laboratory (LREPF), Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Alexandre F Azevedo
- Aquatic Mammal and Bioindicator Laboratory (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rio de Janeiro (RJ), Brazil
| | - Olaf Malm
- Radioisotope Laboratory (LREPF), Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Gilles Lepoint
- Laboratory of Oceanology, FOCUS Research Unit, University of Liege, Liege, Belgium
| | - Tatiana L Bisi
- Aquatic Mammal and Bioindicator Laboratory (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rio de Janeiro (RJ), Brazil
| | - Krishna Das
- Laboratory of Oceanology, FOCUS Research Unit, University of Liege, Liege, Belgium
| | - José Lailson-Brito
- Aquatic Mammal and Bioindicator Laboratory (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rio de Janeiro (RJ), Brazil
| |
Collapse
|
44
|
Liñán-Cabello MA, Liñán-Rico V, Ortega-Ortíz C, Verduzco-Zapata M. Pathological evidence in Plicopurpura pansa associated with the stranding of a bulk carrier ship during Hurricane "Patricia" in the Mexican Central Pacific. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38370-38380. [PMID: 32803581 DOI: 10.1007/s11356-020-10006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Due to the effects of Hurricane Patricia (2015), the bulk freighter "El Llanitos" ran aground in the rocky intertidal zone of Colima, Mexico. We assessed the impact of this ship's stranding on a population of the gastropod Plicopurpura pansa. Toxic elements, hydrocarbons, shell deformities, presence of tumors, imposex, and morphological relationships were analyzed. Two years after the stranding occurred, high cyanide concentrations (0.0363 mg/l) and Ni concentrations above permissible limits (3.35 mg/l) were found in surface seawater. Hydrocarbon concentrations were high in the aft zone of the ship and decreased towards the bow area of the freighter. The P. pansa specimens collected closest to the ship structure presented a high prevalence of tumorations in the structure of the foot and morphological anomalies in the shell structure; imposex was 32% and there was evidence of effects on the growth indicator. The evidence presented here supports the existence of a significant impact from the grounding of the ship on a protected gastropod species associated with the rocky intertidal zone on the coast of Colima. The potential of P. pansa as a bioindicator species of pollution caused by toxic elements and hydrocarbons associated with stranding events in the tropical Pacific is documented.
Collapse
Affiliation(s)
- Marco A Liñán-Cabello
- Facultad de Ciencias Marinas, Universidad de Colima, Km 19.5 Carretera Manzanillo-Barra de Navidad, C.P 28860, Manzanillo, Colima, Mexico.
| | - Viridiana Liñán-Rico
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras Centro Universitario de la Costa Sur, Universidad de Guadalajara, Gómez Farías 82, CP 48980, San Patricio-Melaque, Mexico
| | - Christian Ortega-Ortíz
- Facultad de Ciencias Marinas, Universidad de Colima, Km 19.5 Carretera Manzanillo-Barra de Navidad, C.P 28860, Manzanillo, Colima, Mexico
| | - Manuel Verduzco-Zapata
- Facultad de Ciencias Marinas, Universidad de Colima, Km 19.5 Carretera Manzanillo-Barra de Navidad, C.P 28860, Manzanillo, Colima, Mexico
| |
Collapse
|
45
|
|
46
|
Chiari JB, Laperche JM, Patel R, March N, Calvitto G, Pylypiw HM, McGinnis CL. Sex-Specific Differences of Steroid Receptors Following Exposure to Environmentally Relevant Concentrations of Phenothiazine in Fundulus heteroclitus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:258-269. [PMID: 32666217 DOI: 10.1007/s00244-020-00750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Phenothiazine (PTZ) is a heterocyclic thiazine compound used for industrial and medical purposes. Through environmental surveillance studies, PTZ was found being discharged into a local river in Connecticut. Phenothiazine has been shown to act similarly to endocrine disrupting chemicals. This study sought to identify sex specific hormone receptor changes in Fundulus heteroclitus in response to PTZ exposure. Fundulus heteroclitus, also known as mummichog, are small fish native to the Atlantic coast of the United States and Canada. They reside in brackish waters and can survive harsh toxic environments. This model organism is native to the polluted waters found in Connecticut. In this study, fish were exposed to PTZ concentrations of 0.5 ppm, 1.0 ppm, and 2.0 ppm for 1 week. Following exposure, brain, liver, and gonad tissues were harvested; cDNA was synthesized; and mRNA expression was assessed for 6 different hormone receptors. Compared with vehicle control (ethanol) differences in mRNA expression, levels of hormone receptors were observed in various tissues from male and female fish. Many of the tissues assessed showed changes in expression level, while only female liver and testis showed no change. These results implicate PTZ as a potential endocrine disrupting compound to mummichog at environmentally relevant concentrations.
Collapse
Affiliation(s)
- John B Chiari
- Department of Biomedical Sciences, School of Health Sciences, Quinnipiac University, Hamden, CT, 06518, USA
- Department of Medical Sciences, Frank Netter School of Medicine, Quinnipiac University, North Haven, CT, 06473, USA
| | - Jacob M Laperche
- Department of Biological Sciences, College of Arts and Sciences, Quinnipiac University, Hamden, CT, 06518, USA
- Department of Medical Sciences, Frank Netter School of Medicine, Quinnipiac University, North Haven, CT, 06473, USA
| | - Roshni Patel
- Department of Medical Sciences, Frank Netter School of Medicine, Quinnipiac University, North Haven, CT, 06473, USA
| | - Nicole March
- Department of Biomedical Sciences, School of Health Sciences, Quinnipiac University, Hamden, CT, 06518, USA
| | - Gabriella Calvitto
- Department of Biomedical Sciences, School of Health Sciences, Quinnipiac University, Hamden, CT, 06518, USA
| | - Harry M Pylypiw
- Department of Chemistry and Physical Sciences, College of Arts and Sciences, Quinnipiac University, Hamden, CT, 06518, USA
| | - Courtney L McGinnis
- Department of Biological Sciences, College of Arts and Sciences, Quinnipiac University, Hamden, CT, 06518, USA.
- Department of Medical Sciences, Frank Netter School of Medicine, Quinnipiac University, North Haven, CT, 06473, USA.
| |
Collapse
|
47
|
Podratz PL, Merlo E, de Araújo JFP, Ayub JGM, Pereira AFZ, Freitas-Lima LC, da Costa MB, Miranda-Alves L, Cassa SGS, Carneiro MTWD, Fillmann G, Graceli JB. Disruption of fertility, placenta, pregnancy outcome, and multigenerational inheritance of hepatic steatosis by organotin exposure from contaminated seafood in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138000. [PMID: 32213410 DOI: 10.1016/j.scitotenv.2020.138000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Early life exposure to endocrine-disrupting chemicals (EDCs) is an emerging risk factor for development of complications later in life and in subsequent generations. We previously demonstrated that exposure to the EDC organotin (OT), which is present in contaminated seafood, resulted in reproductive abnormalities in female rats. However, few studies have explored the effect of OT accumulation in seafood on pregnancy outcomes. This led us to consider the potential effects of the OT present in seafood on fertility, pregnancy, the placenta, and the offspring. In this investigation, we assessed whether exposure to the OT in contaminated seafood resulted in abnormal fertility and pregnancy features and offspring complications. OT in contaminated seafood (LNI) was administered to female rats, and their fertility, pregnancy outcomes, and fetal liver morphology were assessed. LNI caused abnormal fertility, a reduction in the total number of pups, and an increase in serum testosterone levels compared to controls. Furthermore, LNI exposure caused irregular uterine morphology with inflammation and fibrosis and led to a reduction in embryonic implantation. In pregnant rats, LNI caused abnormal lipid profiles and livers with steatosis features. LNI exposure also causes placental morpho-physiology disruption, a high presence of glycogen and inflammatory cells, and irregular lipid profiles. In addition, LNI exposure caused an increase in large amounts of carbohydrate and lipid delivery to the fetus via an increase in placental nutrient sensor protein expressions (GLUT1, IRβ/mTOR and Akt). In both genders of offspring, LNI exposure led to an increase in body weights, liver megakaryocytes, lipid accumulation, and oxidative stress (OS) levels. Collectively, these data suggest that OT exposure from contaminated seafood in female rats leads to reduced fertility, uterine implantation failure, pregnancy and placental metabolic outcome irregularities, offspring adiposity, liver steatosis, and an increase in OS. Furthermore, some of the effects of OT may be the result of obesogenic and multigenerational effects of OT in adult female rats.
Collapse
Affiliation(s)
- Priscila L Podratz
- Department of Morphology, Endocrinology and Cell Toxicology Laboratory, Federal University of Espirito Santo, Brazil
| | - Eduardo Merlo
- Department of Morphology, Endocrinology and Cell Toxicology Laboratory, Federal University of Espirito Santo, Brazil
| | - Julia F P de Araújo
- Department of Morphology, Endocrinology and Cell Toxicology Laboratory, Federal University of Espirito Santo, Brazil
| | - Julia G M Ayub
- Department of Morphology, Endocrinology and Cell Toxicology Laboratory, Federal University of Espirito Santo, Brazil
| | - Amanda F Z Pereira
- Department of Morphology, Endocrinology and Cell Toxicology Laboratory, Federal University of Espirito Santo, Brazil
| | - Leandro C Freitas-Lima
- Department of Morphology, Endocrinology and Cell Toxicology Laboratory, Federal University of Espirito Santo, Brazil
| | - Mércia B da Costa
- Department of Biological Sciences, Federal University of Espirito Santo, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Sonara G S Cassa
- Department of Chemistry, Federal University of Espirito Santo, Brazil
| | | | | | - Jones B Graceli
- Department of Morphology, Endocrinology and Cell Toxicology Laboratory, Federal University of Espirito Santo, Brazil.
| |
Collapse
|
48
|
The triphenyltin carboxylate derivative triphenylstannyl 2-(benzylcarbamoyl)benzoate impedes prostate cancer progression via modulation of Akt/FOXO3a signaling. Toxicol Appl Pharmacol 2020; 401:115091. [PMID: 32525019 DOI: 10.1016/j.taap.2020.115091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa) incidence is surging in United States and other parts of the world. Synthetic and natural compounds have been explored as potential modulators of PI3K/Akt signaling that is known to drive PCa growth. Here, we evaluated the efficacy of a series of triphenyltin (IV) carboxylate derivatives against PCa. From this library, triphenylstannyl 2-(benzylcarbamoyl)benzoate (Ch-319) resulted in reduced viability and induction of cell cycle arrest in PTEN-/- PC3M and PTEN+/- DU145 cells. In parallel, downregulation of PI3K p85/p110 subunits, dephosphorylation of Akt-1 and increase in FOXO3a expression were observed. In silico studies indicated binding interactions of Ch-319 within the ATP binding site of Akt-1 at Met281, Phe442 and Glu234 residues. Elevated po-pulation of apoptotic cells, activation of Bax and reduced Bcl2 expression indicated apoptosis by Ch-319. Pre-sensitization of PCa cells with Ch-319 augmented the effect of cabazitaxel, a commonly used taxane in patients with castration-resistant PCa. Next, in a prostate-specific PTENp-/- mice, Ch-319 showed reduced weights of genitourinary apparatus as compared to DMSO treated controls. Histological studies indicated absence of neoplastic foci in Ch-319 treated prostates. Consistently, dephosphorylation of Akt-1, reduced expression of PRAS40 and androgen receptor and increase in FOXO3a were observed in treated group. Notably, no overt organ toxicity was noted in Ch-319 treated animals. Our studies identify Akt/FOXO3a signaling as a target of triphenyltin (IV) carboxylate Ch-319 and provide a molecular basis of its growth inhibitory effect in PCa cells. We propose that Ch-319 has the potential to be developed as an anticancer agent against PCa.
Collapse
|
49
|
Autophagy in trimethyltin-induced neurodegeneration. J Neural Transm (Vienna) 2020; 127:987-998. [PMID: 32451631 DOI: 10.1007/s00702-020-02210-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is a degradative process playing an important role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria and endoplasmic reticulum, as well as eliminating intracellular pathogens. The autophagic process is important for balancing sources of energy at critical developmental stages and in response to nutrient stress. Recently, autophagy has been involved in the pathophysiology of neurodegenerative diseases although its beneficial (pro-survival) or detrimental (pro-death) role remains controversial. In the present review, we discuss the role of autophagy following intoxication with trimethyltin (TMT), an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. TMT is considered a useful tool to study the molecular mechanisms occurring in human neurodegenerative diseases such as Alzheimer's disease and temporal lobe epilepsy. This is also relevant in the field of environmental safety, since organotin compounds are used as heat stabilizers in polyvinyl chloride polymers, industrial and agricultural biocides, and as industrial chemical catalysts.
Collapse
|
50
|
Sham RCT, Ho KKY, Zhou GJ, Li Y, Wang X, Leung KMY. Occurrence, ecological and human health risks of phenyltin compounds in the marine environment of Hong Kong. MARINE POLLUTION BULLETIN 2020; 154:111093. [PMID: 32319922 DOI: 10.1016/j.marpolbul.2020.111093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) has been known as one of the most toxic compounds being released into the marine environment by anthropogenic means. This study assessed the contamination statuses of TPT and its two major degradants, i.e., monophenyltin and diphenyltin, in seawater, sediment and biota samples from marine environments of Hong Kong, a highly urbanized and densely populated city, and evaluated their ecological and human health risks. The results showed that the Hong Kong's marine environments were heavily contaminated with these chemicals, especially for TPT. Concentration ranges of TPT in seawater, sediment and biota samples were 3.8-11.7 ng/L, 71.8-91.7 ng/g d.w., and 9.6-1079.9 ng/g w.w., respectively. As reflected by high hazard quotients (1.7-5.3 for seawaters; 46.1-59.0 for sediments), TPT exhibited high ecological and human health risks. Our results are essential for the future management and control of anthropogenic TPT use in antifouling paints and as biocides in agriculture.
Collapse
Affiliation(s)
- Ronia Chung-Tin Sham
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kevin King Yan Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kenneth Mei Yee Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|