1
|
Achini-Gutzwiller FR, Schilham MW, von Asmuth EGJ, Jansen-Hoogendijk AM, Jol-van der Zijde CM, van Tol MJD, Bredius RGM, Güngör T, Lankester AC, Moes DJAR. Exposure-response analysis of alemtuzumab in pediatric allogeneic HSCT for nonmalignant diseases: the ARTIC study. Blood Adv 2023; 7:4462-4474. [PMID: 37285798 PMCID: PMC10440472 DOI: 10.1182/bloodadvances.2022009051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Alemtuzumab (anti-CD52 antibody) is frequently prescribed to children with nonmalignant diseases undergoing allogeneic hematopoietic stem cell transplantation (HSCT) to prevent graft failure (GF) and acute graft-versus-host disease (aGVHD). The aim of this multicenter study was the characterization of alemtuzumab population pharmacokinetics to perform a novel model-based exposure-response analysis in 53 children with nonmalignant immunological or hematological disease and a median age of 4.4 years (interquartile range [IQR], 0.8-8.7). The median cumulative alemtuzumab dose was 0.6 mg/kg (IQR, 0.6-1) administered over 2 to 7 days. A 2-compartment population pharmacokinetics model with parallel linear and nonlinear elimination including allometrically scaled bodyweight (median, 17.50 kg; IQR, 8.76-33.00) and lymphocyte count at baseline (mean, 2.24 × 109/L; standard deviation ± 1.87) as significant pharmacokinetic predictors was developed using nonlinear mixed effects modeling. Based on the model-estimated median concentration at day of HSCT (0.77 μg/mL; IQR, 0.33-1.82), patients were grouped into a low- (≤0.77 μg/mL) or high- (>0.77 μg/mL) exposure groups. High alemtuzumab exposure at day of HSCT correlated with delayed CD4+ and CD8+ T-cell reconstitution (P value < .0001) and increased risk of GF (P value = .043). In contrast, alemtuzumab exposure did not significantly influence the incidence of aGVHD grade ≥2, mortality, chimerism at 1 year, viral reactivations, and autoimmunity at a median follow-up of 3.3 years (IQR, 2.5-8.0). In conclusion, this novel population pharmacokinetics model is suitable for individualized intravenous precision dosing to predict alemtuzumab exposure in pediatric allogeneic HSCT for nonmalignant diseases, aiming at the achievement of early T-cell reconstitution and prevention of GF in future prospective studies.
Collapse
Affiliation(s)
- Federica R. Achini-Gutzwiller
- Department of Pediatric Stem Cell Transplantation and Hematology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatric Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco W. Schilham
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik G. J. von Asmuth
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja M. Jansen-Hoogendijk
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelia M. Jol-van der Zijde
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten J. D. van Tol
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G. M. Bredius
- Department of Pediatric Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Tayfun Güngör
- Department of Pediatric Stem Cell Transplantation and Hematology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arjan C. Lankester
- Department of Pediatric Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Advances in antibody-based therapy in oncology. NATURE CANCER 2023; 4:165-180. [PMID: 36806801 DOI: 10.1038/s43018-023-00516-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/10/2023] [Indexed: 02/22/2023]
Abstract
Monoclonal antibodies are a growing class of targeted cancer therapeutics, characterized by exquisite specificity, long serum half-life, high affinity and immune effector functions. In this review, we outline key advances in the field with a particular focus on recent and emerging classes of engineered antibody therapeutic candidates, discuss molecular structure and mechanisms of action and provide updates on clinical development and practice.
Collapse
|
4
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
5
|
Behrens LM, van den Berg TK, van Egmond M. Targeting the CD47-SIRPα Innate Immune Checkpoint to Potentiate Antibody Therapy in Cancer by Neutrophils. Cancers (Basel) 2022; 14:cancers14143366. [PMID: 35884427 PMCID: PMC9319280 DOI: 10.3390/cancers14143366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immunotherapy aims to engage various immune cells in the elimination of cancer cells. Neutrophils are the most abundant leukocytes in the circulation and have unique mechanisms by which they can kill cancer cells opsonized by antibodies. However, neutrophil effector functions are limited by the inhibitory receptor SIRPα, when it interacts with CD47. The CD47 protein is expressed on all cells in the body and acts as a ‘don’t eat me’ signal to prevent tissue damage. Cancer cells can express high levels of CD47 to circumvent tumor elimination. Thus, blocking the interaction between CD47 and SIRPα may enhance anti-tumor effects by neutrophils in the presence of tumor-targeting monoclonal antibodies. In this review, we discuss CD47-SIRPα as an innate immune checkpoint on neutrophils and explore the preliminary results of clinical trials using CD47-SIRPα blocking agents. Abstract In the past 25 years, a considerable number of therapeutic monoclonal antibodies (mAb) against a variety of tumor-associated antigens (TAA) have become available for the targeted treatment of hematologic and solid cancers. Such antibodies opsonize cancer cells and can trigger cytotoxic responses mediated by Fc-receptor expressing immune cells in the tumor microenvironment (TME). Although frequently ignored, neutrophils, which are abundantly present in the circulation and many cancers, have demonstrated to constitute bona fide effector cells for antibody-mediated tumor elimination in vivo. It has now also been established that neutrophils exert a unique mechanism of cytotoxicity towards antibody-opsonized tumor cells, known as trogoptosis, which involves Fc-receptor (FcR)-mediated trogocytosis of cancer cell plasma membrane leading to a lytic/necrotic type of cell death. However, neutrophils prominently express the myeloid inhibitory receptor SIRPα, which upon interaction with the ‘don’t eat me’ signal CD47 on cancer cells, limits cytotoxicity, forming a mechanism of resistance towards anti-cancer antibody therapeutics. In fact, tumor cells often overexpress CD47, thereby even more strongly restricting neutrophil-mediated tumor killing. Blocking the CD47-SIRPα interaction may therefore potentiate neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) towards cancer cells, and various inhibitors of the CD47-SIRPα axis are now in clinical studies. Here, we review the role of neutrophils in antibody therapy in cancer and their regulation by the CD47-SIRPα innate immune checkpoint. Moreover, initial results of CD47-SIRPα blockade in clinical trials are discussed.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology Program, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Timo K. van den Berg
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Byondis B.V., 6545 CM Nijmegen, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology Program, 1081 HV Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021; 57:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Celine A N Sewnath
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Siwicki M, Pittet MJ. Versatile neutrophil functions in cancer. Semin Immunol 2021; 57:101538. [PMID: 34876331 DOI: 10.1016/j.smim.2021.101538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
Neutrophils have historically been considered a singular, terminally-differentiated cell population, replete with pre-formed granules, poised to react quickly, aggressively, and somewhat non-specifically in the face of a microbial challenge or tissue injury. However, in recent years, neutrophil biologists have started revisiting this simplistic conception. Many studies have identified complexities in neutrophil biology, and these findings have led the field to redefine neutrophil heterogeneity from multiple angles including their development and maturation, their tissue location, and their ability to respond to various (pathological) stimuli. In this review, we discuss the importance of this reassessment within the context of cancer. Experimental evidence supports that neutrophil behavior is diverse, context-dependent, and manipulable; cutting-edge technologies have enabled the identification of neutrophil heterogeneity with high resolution and in an unbiased manner, revealing what may be critical underpinnings of these diverse behaviors, and enabling sophisticated computational assessments of specific programs and interactions. We are coming ever closer to delineating a holistic picture of neutrophil heterogeneity and how it may interplay with cancer stage, tumor microenvironment, and therapy. All of this together paints a promising picture when considering how clinical practice may harness the heterogeneity of these cells, for biomarkers or therapeutic approaches, leveraging what we are learning about these powerful and plentiful immune effectors.
Collapse
Affiliation(s)
- Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard, USA.
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne and Geneva, Switzerland; Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Center for Translational Research in Onco-Hematology, University of Geneva, Switzerland.
| |
Collapse
|
8
|
Wang Y, Zheng C, Zhuang C, Fu Q, Qin J, Zhang B, Bian Y, Qi N, Zhu J. Preclinical pharmacology and toxicology evaluation of an anti-CD52 monoclonal antibody produced by perfusion fermentation process. J Ind Microbiol Biotechnol 2021; 48:6406489. [PMID: 34669957 PMCID: PMC8788881 DOI: 10.1093/jimb/kuab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/10/2021] [Indexed: 12/02/2022]
Abstract
Anti-cluster of differentiation 52 (CD52) monoclonal antibody (mAb) has been employed in the treatment of chronic lymphoblastic leukemia and multiple sclerosis. Previously we developed a perfusion process to produce the biosimilar mAb named “Mab-TH.” A series of quality assessments was conducted in the fields of structural identification, purity analysis, and activity measurement. After these quality researches, this report laid emphasis on preclinical pharmacology and toxicology evaluation. Mab-TH was characterized in biological, pharmacological, and toxicological properties in comparison with the original drug, alemtuzumab. Binding activity and immune-dependent toxicity as in vitro activity were evaluated. Severe immunodeficient mice transplanted with a human leukemia cell line were also used as an in vivo pharmacological model and a 4-week repeated dosing study in cynomolgus monkeys was conducted to evaluate the safety differences. Our results demonstrated that Mab-TH, the anti-CD52 antibody generated by a perfusion process, had high similarity in in vitro and in vivo activities compared with alemtuzumab in relevant preclinical models. The results supported it as a biosimilar candidate for clinical evaluation.
Collapse
Affiliation(s)
- Yanchao Wang
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Zheng
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Chao Zhuang
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Qiang Fu
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Jinyan Qin
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanling Bian
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nianmin Qi
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Ito S, Miwa K, Hattori C, Aida T, Tsuchiya Y, Mori K. Highly sensitive in vitro cytokine release assay incorporating high-density preculture. J Immunotoxicol 2021; 18:136-143. [PMID: 34644231 DOI: 10.1080/1547691x.2021.1984617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Immunostimulatory effects of monoclonal antibodies (mAb) through binding to Fcγ receptors (FcγR) on immune cells are a likely cause of cytokine release syndrome. However, it is difficult to detect the potential risk of FcγR-dependent cytokine release associated with mAb in the current standard cytokine release assays (CRA), including the air-drying solid-phase method using human peripheral blood mononuclear cells (PBMC). To increase the sensitivity to detect FcγR-dependent cytokine release due to mAb, a high-density preculture (HDC) method was incorporated into the air-drying solid-phase CRA. Here, PBMC were exposed to panitumumab, trastuzumab, rituximab, or alemtuzumab at 0.1, 0.3, 1, and 3 μg/well for 24 or 48 hr under both non-HDC and HDC conditions. T-cell agonists (anti-CD3 mAb, anti-CD28 super-agonist [SA] mAb) were used as reference mAb. Panitumumab, trastuzumab, rituximab, or alemtuzumab induced cytokine release under both non-HDC and HDC conditions, and cytokine release caused by alemtuzumab was more pronounced under HDC conditions. To investigate FcγR involvement in cytokine release associated with panitumumab, trastuzumab, rituximab, and alemtuzumab, CRA of these four mAb were conducted with anti-FcγRI, -FcγRII, or -FcγRIII F(ab')2 fragments. The results showed cytokine release caused by trastuzumab, rituximab, and alemtuzumab was significantly suppressed by anti-FcγRIII F(ab')2 pretreatment, and slightly reduced by anti-FcγRI or anti-FcγRII pretreatment, indicating these mAb induced FcγR (especially FcγRIII)-dependent cytokine release from PBMC. Cytokine release caused by panitumumab was slightly suppressed by anti-FcγRIII F(ab')2 pretreatment. Anti-CD3 mAb and anti-CD28 SA mAb also induced significant release of cytokines under HDC conditions compared with that under non-HDC conditions. In conclusion, CRA incorporating HDC into the air-drying solid-phase method using human PBMC could sensitively capture the FcγR-dependent cytokine release potential of mAb.
Collapse
Affiliation(s)
- Shiho Ito
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Edogawa-ku, Tokyo, Japan
| | - Kyoko Miwa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Edogawa-ku, Tokyo, Japan
| | - Chiharu Hattori
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd, Shinagawa-ku, Tokyo, Japan
| | - Tetsuo Aida
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Edogawa-ku, Tokyo, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Edogawa-ku, Tokyo, Japan
| | - Kazuhiko Mori
- Transrational Research, Daiichi Sankyo RD Novare Co, Ltd, Edogawa-ku, Tokyo, Japan
| |
Collapse
|
10
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F, Sui J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther 2021; 29:1572-1584. [PMID: 33429083 DOI: 10.1016/j.ymthe.2021.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/23/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen, yet anti-GPC3 therapies have achieved only minimal clinical progress. CD47 is a ubiquitously expressed innate immune checkpoint that promotes evasion of tumors from immune surveillance. Given both the specific expression of GPC3 in HCC and the known phagocytosis inhibitory effect of CD47 in liver cancer, we hypothesized that a bispecific antibody (BsAb) that co-engages with GPC3 and CD47 may offer excellent antitumor efficacy with minimal toxicity. Here, we generated a novel BsAb: GPC3/CD47 biAb. With the use of both in vitro and in vivo assays, we found that GPC3/CD47 biAb exerts strong antitumor activity preferentially against dual antigen-expressing tumor cells. In hCD47/human signal regulatory protein alpha (hCD47/hSIRPα) humanized mice, GPC3/CD47 biAb had an extended serum half-life without causing systemic toxicity. Importantly, GPC3/CD47 biAb induced enhanced Fc-mediated effector functions to dual antigen-expressing HCC cells in vitro, and both macrophages and neutrophils are required for its strong efficacy against xenograft HCC tumors. Notably, GPC3/CD47 biAb outperformed monotherapies and a combination therapy with anti-CD47 and anti-GPC3 monoclonal antibodies (mAbs) in a xenograft HCC model. Our study illustrates a strategy for improving HCC treatment by boosting innate immune responses and presents new insights to inform antibody design for the future development of innovative immune therapies.
Collapse
Affiliation(s)
- Kaixin Du
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Juan Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Wei Chen
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huisi Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yonghe Qi
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
11
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
12
|
Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol 2020; 11:2100. [PMID: 32983165 PMCID: PMC7492657 DOI: 10.3389/fimmu.2020.02100] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.
Collapse
Affiliation(s)
- Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paula Martinez-Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Haile Y, Adegoke A, Laribi B, Lin J, Anderson CC. Anti-CD52 blocks EAE independent of PD-1 signals and promotes repopulation dominated by double-negative T cells and newly generated T and B cells. Eur J Immunol 2020; 50:1362-1373. [PMID: 32388861 DOI: 10.1002/eji.201948288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/02/2020] [Accepted: 05/06/2020] [Indexed: 01/23/2023]
Abstract
Lymphocyte depletion using anti-CD52 antibody effectively reduces relapses of multiple sclerosis (MS). To begin to understand what mechanisms might control this outcome, we examined the effect of a murine-CD52-specific mAb on the depletion and repopulation of immune cells in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We tested whether the tolerance-promoting receptor programmed cell death protein-1 (PD-1) is required for disease remission post anti-CD52, and found that PD-1-deficient mice with a more severe EAE were nevertheless effectively treated with anti-CD52. Anti-CD52 increased the proportions of newly generated T cells and double-negative (DN) T cells while reducing newly generated B cells; the latter effect being associated with a higher expression of CD52 by these cells. In the longer term, anti-CD52 caused substantial increases in the proportion of newly generated lymphocytes and DN T cells in mice with EAE. Thus, the rapid repopulation of lymphocytes from central lymphoid organs post anti-CD52 may limit further disease. Furthermore, these data identify DN T cells, a subset with immunoregulatory potential, as a significant hyperrepopulating subset following CD52-mediated depletion.
Collapse
Affiliation(s)
- Yohannes Haile
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Adeolu Adegoke
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Bahareh Laribi
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Jiaxin Lin
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Solans BP, Chiesa R, Doncheva B, Prunty H, Veys P, Trocóniz IF, Standing JF. Modelling of neutrophil dynamics in children receiving busulfan or treosulfan for haematopoietic stem cell transplant conditioning. Br J Clin Pharmacol 2020; 86:1537-1549. [PMID: 32077123 DOI: 10.1111/bcp.14260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Busulfan and treosulfan are cytotoxic agents used in the conditioning regime prior to paediatric haematopoietic stem cell transplantation (HSCT). These agents cause suppression of myeloid cells leaving patients severely immunocompromised in the early post-HSCT period. The main objectives were: (i) to establish a mechanistic pharmacokinetic-pharmacodynamic (PKPD) model for the treatment and engraftment effects on neutrophil counts comparing busulfan and treosulfan-based conditioning, and (ii) to explore current dosing schedules with respect to time to HSCT. METHODS Data on 126 patients, 72 receiving busulfan (7 months-18 years, 5.1-47.0 kg) and 54 treosulfan (4 months-17 years, 3.8-35.8 kg), were collected. In total, 8935 neutrophil count observations were recorded during the study period in addition to drug concentrations to develop a mechanistic PKPD model. Absolute neutrophil count profiles were modelled semimechanistically, accounting for transplant effects and differing set points pre- and post-transplant. RESULTS PK were best described by 2-compartment models for both drugs. The Friberg semimechanistic neutropenia model was applied with a linear model for busulfan and a maximum efficacy model for treosulfan describing drug effects at various stages of neutrophil maturation. System parameters were consistent across both drugs. The HSCT was represented by an amount of progenitor cells enhancing the neutrophils' proliferation and maturation compartments. Alemtuzumab was found to enhance the proliferative rate under which the absolute neutrophil count begin to grow after HSCT. CONCLUSION A semimechanistic PKPD model linking exposure to either busulfan or treosulfan to the neutrophil reconstitution dynamics was successfully built. Alemtuzumab coadministration enhanced the neutrophil proliferative rate after HSCT. Treosulfan administration was suggested to be delayed with respect to time to HSCT, leaving less time between the end of the administration and stem cell infusion.
Collapse
Affiliation(s)
- Belén P Solans
- Pharmacometrics and Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Robert Chiesa
- Bone Marrow Transplantation Department, Great Ormond Street Hospital for Children, London, UK
| | - Bilyana Doncheva
- Department of Pharmacy, Great Ormond Street Hospital for Children, London, UK
| | - Helen Prunty
- Department of Chemical Pathology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Veys
- Bone Marrow Transplantation Department, Great Ormond Street Hospital for Children, London, UK
| | - Iñaki F Trocóniz
- Pharmacometrics and Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Joseph F Standing
- Department of Pharmacy, Great Ormond Street Hospital for Children, London, UK.,Infection, Immunity, Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,Paediatric Infectious Diseases Group, St George's, University of London, UK
| |
Collapse
|
15
|
Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ, Franke K, Schornagel K, Verkuijlen P, Janssen H, Halonen P, Lieftink C, Beijersbergen RL, Leusen JHW, Boelens JJ, Kuhnle I, van der Werff Ten Bosch J, Seeger K, Rutella S, Pagliara D, Matozaki T, Suzuki E, Menke-van der Houven van Oordt CW, van Bruggen R, Roos D, van Lier RAW, Kuijpers TW, Kubes P, van den Berg TK. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep 2019; 23:3946-3959.e6. [PMID: 29949776 DOI: 10.1016/j.celrep.2018.05.082] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.
Collapse
Affiliation(s)
- Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Liane Babes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieke J van Rees
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Janssen
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pasi Halonen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap J Boelens
- U-DANCE, Laboratory for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands; Department of Pediatrics, Blood and Marrow Transplantation Program, UMC Utrecht, Utrecht, the Netherlands
| | - Ingrid Kuhnle
- Department of Pediatrics, University Medicine Göttingen, Göttingen, Germany
| | | | - Karl Seeger
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sergio Rutella
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Takashi Matozaki
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | | | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rene A W van Lier
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Kubes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, Kahle S, Schornagel K, Verkuijlen PJJH, Prins JM, Franke K, Kuijpers TW, van den Berg TK, Valerius T, Leusen JHW, Matlung HL. IgA-Mediated Killing of Tumor Cells by Neutrophils Is Enhanced by CD47-SIRPα Checkpoint Inhibition. Cancer Immunol Res 2019; 8:120-130. [PMID: 31690649 DOI: 10.1158/2326-6066.cir-19-0144] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Therapeutic monoclonal antibodies (mAb), directed toward either tumor antigens or inhibitory checkpoints on immune cells, are effective in cancer therapy. Increasing evidence suggests that the therapeutic efficacy of these tumor antigen-targeting mAbs is mediated-at least partially-by myeloid effector cells, which are controlled by the innate immune-checkpoint interaction between CD47 and SIRPα. We and others have previously demonstrated that inhibiting CD47-SIRPα interactions can substantially potentiate antibody-dependent cellular phagocytosis and cytotoxicity of tumor cells by IgG antibodies both in vivo and in vitro IgA antibodies are superior in killing cancer cells by neutrophils compared with IgG antibodies with the same variable regions, but the impact of CD47-SIRPα on IgA-mediated killing has not been investigated. Here, we show that checkpoint inhibition of CD47-SIRPα interactions further enhances destruction of IgA antibody-opsonized cancer cells by human neutrophils. This was shown for multiple tumor types and IgA antibodies against different antigens, i.e., HER2/neu and EGFR. Consequently, combining IgA antibodies against HER2/neu or EGFR with SIRPα inhibition proved to be effective in eradicating cancer cells in vivo In a syngeneic in vivo model, the eradication of cancer cells was predominantly mediated by granulocytes, which were actively recruited to the tumor site by SIRPα blockade. We conclude that IgA-mediated tumor cell destruction can be further enhanced by CD47-SIRPα checkpoint inhibition. These findings provide a basis for targeting CD47-SIRPα interactions in combination with IgA therapeutic antibodies to improve their potential clinical efficacy in tumor patients.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Toine Ten Broeke
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - J H Marco Jansen
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Steffen Kahle
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan M Prins
- Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. Application of PD-1 Blockade in Cancer Immunotherapy. Comput Struct Biotechnol J 2019; 17:661-674. [PMID: 31205619 PMCID: PMC6558092 DOI: 10.1016/j.csbj.2019.03.006] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023] Open
Abstract
The programmed cell death protein 1 (PD-1) pathway has received considerable attention due to its role in eliciting the immune checkpoint response of T cells, resulting in tumor cells capable of evading immune surveillance and being highly refractory to conventional chemotherapy. Application of anti-PD-1/PD-L1 antibodies as checkpoint inhibitors is rapidly becoming a promising therapeutic approach in treating tumors, and some of them have successfully been commercialized in the past few years. However, not all patients show complete responses and adverse events have been noted, suggesting a better understanding of PD-1 pathway mediated immunosuppression is needed to predict patient response and improve treatment efficacy. Here, we review the progresses on the studies of the mechanistic role of PD-1 pathway in the tumor immune evasion, recent clinical development and commercialization of PD-1 pathway inhibitors, the toxicities associated with PD-1 blockade observed in clinical trials as well as how to improve therapeutic efficacy and safety of cancer immunotherapy.
Collapse
Key Words
- 5-AZA-dC, 5-aza-2′-deoxycytidine
- ADCC, Antibody-dependent cellular cytotoxicity
- AEs, Adverse events
- AP1, Activator protein 1
- APCs, Antigen presenting cells
- ASCT, Autologous stem cell transplantation
- B2M, β2 microglobulin
- BATF, Basic leucine zipper transcriptional factor ATF-like
- BICR, Blinded Independent Central Review
- BV, Brentuximab vedotin
- CC, Cervical cancer
- CRC, Colorectal cancer
- CTLA-4, Cytotoxic T-lymphocyte–associated antigen 4
- CXCL9, C-X-C motif chemokine ligand 9
- Checkpoint blockade
- DCM, Dilated cardiomyopathy
- DCs, Dendritic cells
- DNMT, DNA methyltransferase
- DOR, Duration overall response
- DZNep, 3-Deazaneplanocin A
- ERK, Extracellular signal–regulated kinase
- EZH2, Enhancer of zeste homolog 2
- GC, Gastric cancer
- GEJ, GASTRIC or gastroesophageal junction
- HCC, Hepatocellular carcinoma
- HNSCC, Head and neck squamous cell carcinoma
- HR, Hazard ratio
- ICC, Investigator-choice chemotherapy
- ICOS, Inducible T-cell co-stimulator
- IFN, Interferon
- IHC, Immunohistochemistry
- ITIM, Immune-receptortyrosine-based inhibitory motif
- ITSM, Immune-receptortyrosine-based switch motif
- ITT, Intention-to-treat
- Immune surveillance
- Immunotherapy
- IrAEs, Immune related adverse events
- JMJD3, Jumonji Domain-Containing Protein 3
- LAG3, Lymphocyte-activation gene 3
- LCK, Tyrosine-protein kinase Lck
- MAP, Mitogen-activated protein
- MCC, Merkel cell carcinoma
- MHC, Major histocompatibility
- MSI-H, Microsatellite instability-high
- NF-κB, Nuclear factor-κB
- NFAT, Nuclear factor of activated T cells
- NSCLC, Non-small cell lung cancer
- ORR, Overall response rate
- OS, Overall survival
- PD-1
- PD-1, Programmed cell death 1
- PD-L1
- PD-L1, Programmed death-ligand 1
- PFS, Progression-free survival
- PI3K, Phosphoinositide 3-kinase
- PKC, Protein kinase C
- PMBCL, Primary mediastinal large B-cell lymphoma
- PRC2, Polycomb repressive complex 2
- PTEN, Phosphatase and tensin homolog
- PTPs, Protein tyrosine phosphatases
- RCC, Renal cell carcinoma
- SCLC, Small cell lung cancer
- SHP2, Src homology 2 domain-containing phosphatase 2
- SIRPα, Signal-regulatory protein alpha
- TCR, T-cell receptor
- TGF, Transforming growth factor
- TIICs, Tumor infiltrating immune cells
- TILs, Tumor-infiltrating lymphocytes
- TIM3, T-cell immunoglobulin and mucin-domain containing-3
- TMB, Tumor mutation burden
- TME, Tumor microenvironment
- UC, Urothelial carcinoma
- VEGF, Vascular endothelial growth factor
- ZAP70, Zeta-chain-associated protein kinase 70
- cHL, Classical Hodgkin lymphoma
- cTnI, Cardiac troponin I
- dMMR, DNA mismatch repair deficiency
Collapse
Affiliation(s)
- Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
- Department of Biomedicine, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Mingdao Building, Dongan Road 131, Shanghai 200032, PR China
| | - Yang Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Borui Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Wei Chen
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou 350005, PR China
| | - Liqiang Weng
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou 350025, PR China
| |
Collapse
|
18
|
Brú A, Bosch R, Céspedes MV, Carmona-Güedes S, Pascual E, Brú I, Souto JC. Antitumoral effect of maintained neutrophilia induced by rhG-CSF in a murine model of pancreatic cancer. Sci Rep 2019; 9:2879. [PMID: 30814617 PMCID: PMC6393423 DOI: 10.1038/s41598-019-39805-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/24/2019] [Indexed: 11/09/2022] Open
Abstract
Although the protumoral functions of polymorphonuclear neutrophils are well known, some now-forgotten studies report antitumoral roles for these cells. The present work examines the antitumoral effect of maintained neutrophilia induced via the injection of recombinant human granulocyte colony stimulating factor (rhG-CSF, 100 μg/kg/day) in a Panc-1 subcutaneous xenograft murine model of pancreatic cancer. This treatment was compared with gemcitabine administration (120 mg/kg every two days) and a saline control (n = 6–7 mice per group). Compared to the controls, both the rhG-CSF- and gemcitabine-treated mice showed significantly suppressed tumor growth by day 4 (p < 0.001 and p = 0.013 respectively). From a mean starting volume of 106.9 ± 3.1 mm3 for all treatment groups, the final mean tumor volumes reached were 282.0 ± 30.7 mm3 for the rhG-CSF-treated mice, 202.6 ± 18.1 mm3 for the gemcitabine-treated mice and 519.4 ± 62.9 mm3 for the control mice (p < 0.004 and p < 0.01, respectively, vs. control). The rhG-CSF-treated tumors showed higher percentage necrosis than those treated with gemcitabine (37.4 ± 4.6 vs. 7.5 ± 3.0; p < 0.001). This is the first report of a clear anti-tumoral effect of rhG-CSF when used in monotherapy against pancreatic cancer. Since rhG-CSF administration is known to be associated with very few adverse events, it may offer an attractive alternative in the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- A Brú
- Faculty of Mathematics, Universidad Complutense de Madrid, Madrid, Spain.
| | - R Bosch
- Laboratory of Oncology/Hematology and Transplantation, Institute of Biomedical Research, IIB Sant Pau, Barcelona, Spain.,Department of Hematology, Hospital de la Sant Creu i Sant Pau, Institute of Biomedical Research, IIB-Sant Pau, Barcelona, Spain
| | - M V Céspedes
- Institut d'Investigacions Biomédiques Sant Pau, Hospital de Santa Creu I Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - S Carmona-Güedes
- Institut d'Investigacions Biomédiques Sant Pau, Hospital de Santa Creu I Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - E Pascual
- Department of Hematology, Hospital de la Sant Creu i Sant Pau, Institute of Biomedical Research, IIB-Sant Pau, Barcelona, Spain
| | - I Brú
- Centro de Salud La Estación, Talavera de la Reina, Spain
| | - J C Souto
- Department of Hematology, Hospital de la Sant Creu i Sant Pau, Institute of Biomedical Research, IIB-Sant Pau, Barcelona, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| |
Collapse
|
19
|
Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, Nagelkerke SQ, Verkuijlen PJJH, Geissler J, Lissenberg-Thunnissen S, Valerius T, Peipp M, Franke K, van Bruggen R, Kuijpers TW, van Egmond M, Vidarsson G, Matlung HL, van den Berg TK. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Front Immunol 2019; 9:3124. [PMID: 30761158 PMCID: PMC6363688 DOI: 10.3389/fimmu.2018.03124] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The function of the low-affinity IgG-receptor FcγRIIIb (CD16b), which is uniquely and abundantly expressed on human granulocytes, is not clear. Unlike the other Fcγ receptors (FcγR), it is a glycophosphatidyl inositol (GPI) -anchored molecule and does not have intracellular signaling motifs. Nevertheless, FcγRIIIb can cooperate with other FcγR to promote phagocytosis of antibody-opsonized microbes by human neutrophils. Here we have investigated the role of FcγRIIIb during antibody-dependent cellular cytotoxicity (ADCC) by neutrophils toward solid cancer cells coated with either trastuzumab (anti-HER2) or cetuximab (anti-EGFR). Inhibiting FcγRIIIb using CD16-F(ab')2 blocking antibodies resulted in substantially enhanced ADCC. ADCC was completely dependent on FcγRIIa (CD32a) and the enhanced ADCC seen after FcγRIIIb blockade therefore suggested that FcγRIIIb was competing with FcγRIIa for IgG on the opsonized target cells. Interestingly, the function of neutrophil FcγRIIIb as a decoy receptor was further supported by using neutrophils from individuals with different gene copy numbers of FCGR3B causing different levels of surface FcγRIIIb expression. Individuals with one copy of FCGR3B showed higher levels of ADCC compared to those with two or more copies. Finally, we show that therapeutic antibodies intended to improve FcγRIIIa (CD16a)-dependent natural killer (NK) cell ADCC due to the lack of fucosylation on the N-linked glycan at position N297 of the IgG1 heavy chain Fc-region, show decreased ADCC as compared to regularly fucosylated antibodies. Together, these data confirm FcγRIIIb as a negative regulator of neutrophil ADCC toward tumor cells and a potential target for enhancing tumor cell destruction by neutrophils.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine W Bruggeman
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke H Heineke
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris van der Heijden
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sietse Q Nagelkerke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Study of tumor growth indicates the existence of an "immunological threshold" separating states of pro- and antitumoral peritumoral inflammation. PLoS One 2018; 13:e0202823. [PMID: 30388111 PMCID: PMC6214501 DOI: 10.1371/journal.pone.0202823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022] Open
Abstract
Background Peritumoral inflammation—a response mainly involving polimorphonuclear neutrophils—has traditionally been thought protumoral in its effects. In recent years, however, a number of studies have indicated that it may play an important antitumoral role. This discrepancy has been difficult to explain. Methods and findings This work describes a tool for simulating tumor growth that obeys the universal model of tumor growth dynamics, and shows through its use that low intensity peritumoral inflammation exerts a protumoral effect, while high intensity inflammation exerts a potent antitumoral effect. Indeed, the simulation results obtained indicate that a sufficiently strong antitumoral effect can reverse tumor growth, as has been suggested several times in the clinical literature. Conclusions The present result indicate that an ‘immunological threshold’ must exist, marking the boundary between states in which peritumoral inflammation is either harmful or beneficial. These findings lend support to the idea that stimulating intense peritumoral inflammation could be used as a treatment against solid tumors.
Collapse
|
21
|
Heemskerk N, van Egmond M. Monoclonal antibody-mediated killing of tumour cells by neutrophils. Eur J Clin Invest 2018; 48 Suppl 2:e12962. [PMID: 29855035 PMCID: PMC6282585 DOI: 10.1111/eci.12962] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Neutrophils represent the most abundant population of circulating cytotoxic effector cells. Moreover, their number can be easily increased by treatment with granulocyte-colony stimulating factor or granulocyte macrophage-colony stimulating factor, without the need for ex vivo expansion. Because neutrophils express Fc receptors, they have the potential to act as effector cells during monoclonal antibody therapy of cancer. Additionally, as neutrophils play a role in the regulation of adaptive immune responses, exploiting neutrophils in mAb therapy may result in long-term antitumour immunity. There is limited evidence that neutrophils play a prominent role in current immunoglobulin G-based immunotherapy. However, as IgA induces neutrophil recruitment, novel therapeutic strategies that aim to target the IgA Fc receptor FcαRI may fully unleash the potential of enlisting neutrophils as cytotoxic effector cells in antibody therapy of cancer.
Collapse
Affiliation(s)
- Niels Heemskerk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Alakhras NS, Qiu J, Rocha GV, Witcher DR, Koester A, You J, Schaer DA, Holmgaard RB, Driscoll K, Willy JA, Malherbe LP. FcγRIIIa-dependent IFN-γ release in whole blood assay is predictive of therapeutic IgG1 antibodies safety. MAbs 2018; 10:913-921. [PMID: 29953319 DOI: 10.1080/19420862.2018.1474996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunomodulatory monoclonal IgG1 antibodies developed for cancer and autoimmune disease have an inherent risk of systemic release of pro-inflammatory cytokines. In vitro cytokine release assays are currently used to predict cytokine release syndrome (CRS) risk, but the validation of these preclinical tools suffers from the limited number of characterized CRS-inducing IgG1 antibodies and the poor understanding of the mechanisms regulating cytokine release. Here, we incubated human whole blood from naïve healthy volunteers with four monoclonal IgG1 antibodies with different proven or predicted capacity to elicit CRS in clinic and measured cytokine release using a multiplex assay. We found that, in contrast to anti-CD52 antibodies (Campath-1H homolog) that elicited high level of multiple inflammatory cytokines from human blood cells in vitro, other IgG1 antibodies with CRS-inducing potential consistently induced release of a single tested cytokine, interferon (IFN)-γ, with a smaller magnitude than Campath. IFN-γ expression was observed as early as 2-4 h after incubation, mediated by natural killer cells, and dependent upon tumor necrosis factor and FcγRIII. Importantly, the magnitude of the IFN-γ response elicited by IgG1 antibodies with CRS-inducing potential was determined by donor FcγRIIIa-V158F polymorphism. Overall, our results highlight the importance of FcγRIIIa-dependent IFN-γ release in preclinical cytokine release assay for the prediction of CRS risk associated with therapeutic IgG1 antibodies.
Collapse
Affiliation(s)
- Nada S Alakhras
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Jiabin Qiu
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Guilherme V Rocha
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Derrick R Witcher
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Anja Koester
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Jinsam You
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - David A Schaer
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Rikke B Holmgaard
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Kyla Driscoll
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Jeffrey A Willy
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| | - Laurent P Malherbe
- a Lilly Research Laboratories , A Division of Eli Lilly and Company , Indianapolis , IN , USA
| |
Collapse
|
23
|
Bilgin E, Erden A, Dizdar Ö. Familial Mediterranean Fever: New Insights Into Cancer Immunoprevention? Comment on the Article by Brenner et al. Arthritis Rheumatol 2018; 70:1167. [DOI: 10.1002/art.40497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emre Bilgin
- Hacettepe University School of Medicine; Ankara Turkey
| | | | - Ömer Dizdar
- Hacettepe University School of Medicine; Ankara Turkey
| |
Collapse
|
24
|
Li D, He W, Liu X, Zheng S, Qi Y, Li H, Mao F, Liu J, Sun Y, Pan L, Du K, Ye K, Li W, Sui J. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. eLife 2017; 6. [PMID: 28949917 PMCID: PMC5614562 DOI: 10.7554/elife.26738] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem. Currently-available therapies are ineffective in curing chronic HBV infection. HBV and its satellite hepatitis D virus (HDV) infect hepatocytes via binding of the preS1 domain of its large envelope protein to sodium taurocholate cotransporting polypeptide (NTCP). Here, we developed novel human monoclonal antibodies that block the engagement of preS1 with NTCP and neutralize HBV and HDV with high potency. One antibody, 2H5-A14, functions at picomolar level and exhibited neutralization-activity-mediated prophylactic effects. It also acts therapeutically by eliciting antibody-Fc-dependent immunological effector functions that impose durable suppression of viral infection in HBV-infected mice, resulting in reductions in the levels of the small envelope antigen and viral DNA, with no emergence of escape mutants. Our results illustrate a novel antibody-Fc-dependent approach for HBV treatment and suggest 2H5-A14 as a novel clinical candidate for HBV prevention and treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Dan Li
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Ximing Liu
- National Institute of Biological Sciences, Beijing, China.,PTN Joint Graduate Program, College of Life Sciences, Peking University, Beijing, China
| | - Sanduo Zheng
- National Institute of Biological Sciences, Beijing, China
| | - Yonghe Qi
- National Institute of Biological Sciences, Beijing, China
| | - Huiyu Li
- National Institute of Biological Sciences, Beijing, China
| | - Fengfeng Mao
- National Institute of Biological Sciences, Beijing, China.,Graduate Program in College of Life Sciences, Beijing Normal University, Beijing, China
| | - Juan Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Lijing Pan
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Kaixin Du
- National Institute of Biological Sciences, Beijing, China.,Graduate Program in College of Life Sciences, Beijing Normal University, Beijing, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
25
|
Moynihan KD, Irvine DJ. Roles for Innate Immunity in Combination Immunotherapies. Cancer Res 2017; 77:5215-5221. [PMID: 28928130 DOI: 10.1158/0008-5472.can-17-1340] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Immunity to infectious agents involves a coordinated response of innate and adaptive immune cells working in concert, with many feed-forward and regulatory interactions between both arms of the immune system. In contrast, many therapeutic strategies to augment immunity against tumors have focused predominantly on stimulation of adaptive immunity. However, a growing appreciation of the potential contributions of innate immune effectors to antitumor immunity, especially in the context of combination immunotherapy, is leading to novel strategies to elicit a more integrated immune response against cancer. Here we review antitumor activities of innate immune cells, mechanisms of their synergy with adaptive immune responses against tumors, and discuss recent studies highlighting the potential of combination therapies recruiting both innate and adaptive immune effectors to eradicate established tumors. Cancer Res; 77(19); 5215-21. ©2017 AACR.
Collapse
Affiliation(s)
- Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
26
|
Impact of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy with Sezary syndrome. AIDS 2017; 31:1839-1845. [PMID: 28514279 DOI: 10.1097/qad.0000000000001540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the effects of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy (ART) with Sezary syndrome, a rare malignancy of CD4 T cells. DESIGN Case report. METHODS Blood was collected 30 and 18 months prior to presentation with Sezary syndrome, at the time of presentation and during alemtuzumab. T-cell subsets in malignant (CD7-CD26-TCR-VBeta2+) and nonmalignant cells were quantified by flow cytometry. HIV-DNA in total CD4 T cells, in sorted malignant and nonmalignant CD4 T cells, was quantified by PCR and clonal expansion of HIV-DNA assessed by full-length next-generation sequencing. RESULTS HIV-hepatitis B virus coinfection was diagnosed and antiretroviral therapy initiated 4 years prior to presentation with Sezary syndrome and primary cutaneous anaplastic large cell lymphoma. The patient received alemtuzumab 10 mg three times per week for 4 weeks but died 6 weeks post alemtuzumab. HIV-DNA was detected in nonmalignant but not in malignant CD4 T cells, consistent with expansion of a noninfected CD4 T-cell clone. Full-length HIV-DNA sequencing demonstrated multiple defective viruses but no identical or expanded sequences. Alemtuzumab extensively depleted T cells, including more than 1 log reduction in total T cells and more than 3 log reduction in CD4 T cells. Finally, alemtuzumab decreased HIV-DNA in CD4 T cells by 57% but HIV-DNA remained detectable at low levels even after depletion of nearly all CD4 T cells. CONCLUSION Alemtuzumab extensively depleted multiple T-cell subsets and decreased the frequency of but did not eliminate HIV-infected CD4 T cells. Studying the effects on HIV persistence following immune recovery in HIV-infected individuals who require alemtuzumab for malignancy or in animal studies may provide further insights into novel cure strategies.
Collapse
|
27
|
Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017; 276:145-164. [PMID: 28258703 DOI: 10.1111/imr.12527] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field.
Collapse
Affiliation(s)
- Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neil A Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cell Biology and Immunology, VU medical Center, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Zhao Y, Su H, Shen X, Du J, Zhang X, Zhao Y. The immunological function of CD52 and its targeting in organ transplantation. Inflamm Res 2017; 66:571-578. [PMID: 28283679 DOI: 10.1007/s00011-017-1032-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION CD52 (Campath-1 antigen), a glycoprotein of 12 amino acids anchored to glycosylphosphatidylinositol, is widely expressed on the cell surface of immune cells, such as mature lymphocytes, natural killer cells (NK), eosinophils, neutrophils, monocytes/macrophages, and dendritic cells (DCs). The anti-CD52 mAb, alemtuzumab, was used widely in clinics for the treatment of patients such as organ transplantation. In the present manuscript, we will briefly summarize the immunological function of CD52 and discuss the application of anti-CD52 mAb in transplantation settings. FINDINGS We reviewed studies published until July 2016 to explore the role of CD52 in immune cell function and its implication in organ transplantation. We showed that ligation of cell surface CD52 molecules may offer costimulatory signals for T-cell activation and proliferation. However, soluble CD52 molecules will interact with the inhibitory sialic acid-binding immunoglobulin-like lectin 10 (Siglec10) to significantly inhibit T cell proliferation and activation. Although the physiological and pathological significances of CD52 molecules are still poorly understood, the anti-CD52 mAb, alemtuzumab, was used widely for the treatment of patients with chronic lymphocytic leukemia, autoimmune diseases as well as cell and organ transplantation in clinics. CONCLUSION Studies clearly showed that CD52 can modulate T-cell activation either by its intracellular signal pathways or by the interaction of soluble CD52 and Siglec-10 expressing on T cells. However, the regulatory functions of CD52 on other immune cell subpopulations in organ transplantation require to be studied in the near future.
Collapse
Affiliation(s)
- Yang Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Su
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Shen
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Junfeng Du
- Department of General Surgery, PLA Army General Hospital, Dongsishitiao Namencang 5, Dongcheng District, Beijing, 100007, China.
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China.
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Casserly CS, Nantes JC, Whittaker Hawkins RF, Vallières L. Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmun Rev 2017; 16:294-307. [PMID: 28161558 DOI: 10.1016/j.autrev.2017.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
|
30
|
Stasiłojć G, Österborg A, Blom AM, Okrój M. New perspectives on complement mediated immunotherapy. Cancer Treat Rev 2016; 45:68-75. [DOI: 10.1016/j.ctrv.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
|
31
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, Elco CP, Huang V, Matos TR, Kupper TS, Clark RA. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 2015; 7:279ra39. [PMID: 25787765 DOI: 10.1126/scitranslmed.3010302] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities.
Collapse
Affiliation(s)
- Rei Watanabe
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed Gehad
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chao Yang
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura L Scott
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Christopher P Elco
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Huang
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago R Matos
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Dana-Farber/Brigham and Women's Cancer Center, Boston, MA 02115, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Dana-Farber/Brigham and Women's Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
33
|
|
34
|
Vessillier S, Eastwood D, Fox B, Sathish J, Sethu S, Dougall T, Thorpe SJ, Thorpe R, Stebbings R. Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials--Whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm. J Immunol Methods 2015; 424:43-52. [PMID: 25960173 PMCID: PMC4768082 DOI: 10.1016/j.jim.2015.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/29/2022]
Abstract
The therapeutic monoclonal antibody (mAb) TGN1412 (anti-CD28 superagonist) caused near-fatal cytokine release syndrome (CRS) in all six volunteers during a phase-I clinical trial. Several cytokine release assays (CRAs) with reported predictivity for TGN1412-induced CRS have since been developed for the preclinical safety testing of new therapeutic mAbs. The whole blood (WB) CRA is the most widely used, but its sensitivity for TGN1412-like cytokine release was recently criticized. In a comparative study, using group size required for 90% power with 5% significance as a measure of sensitivity, we found that WB and 10% (v/v) WB CRAs were the least sensitive for TGN1412 as these required the largest group sizes (n = 52 and 79, respectively). In contrast, the peripheral blood mononuclear cell (PBMC) solid phase (SP) CRA was the most sensitive for TGN1412 as it required the smallest group size (n = 4). Similarly, the PBMC SP CRA was more sensitive than the WB CRA for muromonab-CD3 (anti-CD3) which stimulates TGN1412-like cytokine release (n = 4 and 4519, respectively). Conversely, the WB CRA was far more sensitive than the PBMC SP CRA for alemtuzumab (anti-CD52) which stimulates FcγRI-mediated cytokine release (n = 8 and 180, respectively). Investigation of potential factors contributing to the different sensitivities revealed that removal of red blood cells (RBCs) from WB permitted PBMC-like TGN1412 responses in a SP CRA, which in turn could be inhibited by the addition of the RBC membrane protein glycophorin A (GYPA); this observation likely underlies, at least in part, the poor sensitivity of WB CRA for TGN1412. The use of PBMC SP CRA for the detection of TGN1412-like cytokine release is recommended in conjunction with adequately powered group sizes for dependable preclinical safety testing of new therapeutic mAbs.
Collapse
Affiliation(s)
- S Vessillier
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - D Eastwood
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - B Fox
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - J Sathish
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - S Sethu
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - T Dougall
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - S J Thorpe
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - R Thorpe
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - R Stebbings
- National Institute for Biological Standards and Control, Biotherapeutics Group, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom; Medimmune, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, United Kingdom.
| |
Collapse
|
35
|
Zhu EF, Gai SA, Opel CF, Kwan BH, Surana R, Mihm MC, Kauke MJ, Moynihan KD, Angelini A, Williams RT, Stephan MT, Kim JS, Yaffe MB, Irvine DJ, Weiner LM, Dranoff G, Wittrup KD. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell 2015; 27:489-501. [PMID: 25873172 PMCID: PMC4398916 DOI: 10.1016/j.ccell.2015.03.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 10/19/2014] [Accepted: 03/09/2015] [Indexed: 01/02/2023]
Abstract
Cancer immunotherapies under development have generally focused on either stimulating T cell immunity or driving antibody-directed effector functions of the innate immune system such as antibody-dependent cell-mediated cytotoxicity (ADCC). We find that a combination of an anti-tumor antigen antibody and an untargeted IL-2 fusion protein with delayed systemic clearance induces significant tumor control in aggressive isogenic tumor models via a concerted innate and adaptive response involving neutrophils, NK cells, macrophages, and CD8(+) T cells. This combination therapy induces an intratumoral "cytokine storm" and extensive lymphocyte infiltration. Adoptive transfer of anti-tumor T cells together with this combination therapy leads to robust cures of established tumors and development of immunological memory.
Collapse
Affiliation(s)
- Eric F Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuning A Gai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cary F Opel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Byron H Kwan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rishi Surana
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Martin C Mihm
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02214, USA
| | - Monique J Kauke
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelly D Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alessandro Angelini
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Williams
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthias T Stephan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacob S Kim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02129, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Cannon AC, Loberiza FR. Review of Antibody-Based Immunotherapy in the Treatment of Non-Hodgkin Lymphoma and Patterns of Use. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:129-38. [DOI: 10.1016/j.clml.2014.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 01/22/2023]
|
37
|
Hoermann G, Blatt K, Greiner G, Putz EM, Berger A, Herrmann H, Cerny-Reiterer S, Gleixner KV, Walz C, Hoetzenecker K, Müllauer L, Reiter A, Sotlar K, Sexl V, Valent P, Mayerhofer M. CD52 is a molecular target in advanced systemic mastocytosis. FASEB J 2014; 28:3540-51. [PMID: 24760752 DOI: 10.1096/fj.14-250894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advanced systemic mastocytosis (SM) is an aggressive hematopoietic neoplasm with poor prognosis and short survival times. So far, no curative therapy is available for affected patients. We have identified the cell surface antigen CD52 (CAMPATH-1) as a molecular target expressed abundantly on the surface of primary neoplastic mast cells (MCs) in patients with advanced SM. In contrast, neoplastic MCs of patients with indolent SM and normal MCs expressed only low levels or did not express CD52. To study the mechanisms of CD52 expression and the value of this antigen as a potential therapeutic target, we generated a human MC cell line, designated MCPV-1, by lentiviral immortalization of cord blood-derived MC progenitor cells. Functional studies revealed that activated RAS profoundly promotes surface expression of CD52. The CD52-targeting antibody alemtuzumab induced cell death in CD52(+) primary neoplastic MCs obtained from patients with SM as well as in MCPV-1 cells. NSG mice xenotransplanted with MCPV-1 cells survived significantly longer after treatment with alemtuzumab (median survival: 31 d untreated vs. 46 d treated; P=0.0012). We conclude that CD52 is a novel marker and potential therapeutic target in neoplastic MCs in patients with advanced SM.
Collapse
Affiliation(s)
| | - Katharina Blatt
- Department of Internal Medicine I, Division of Hematology and Hemostaseology
| | | | - Eva Maria Putz
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angelika Berger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology and Hemostaseology
| | - Christoph Walz
- Institute of Pathology, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Medizinische Universitätsklinik, Universitätsmedizin Mannheim, Mannheim, Germany; and
| | - Karl Sotlar
- Institute of Pathology, Ludwig Maximilians University Munich, Munich, Germany
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| | | |
Collapse
|
38
|
Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions. J Am Acad Dermatol 2014; 70:223.e1-17; quiz 240-2. [PMID: 24438970 DOI: 10.1016/j.jaad.2013.08.033] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022]
Abstract
Both mycosis fungoides (MF) and Sézary syndrome (SS) have a chronic, relapsing course, with patients frequently undergoing multiple, consecutive therapies. Treatment is aimed at the clearance of skin disease, the minimization of recurrence, the prevention of disease progression, and the preservation of quality of life. Other important considerations are symptom severity, including pruritus and patient age/comorbidities. In general, for limited patch and plaque disease, patients have excellent prognosis on ≥1 topical formulations, including topical corticosteroids and nitrogen mustard, with widespread patch/plaque disease often requiring phototherapy. In refractory early stage MF, transformed MF, and folliculotropic MF, a combination of skin-directed therapy plus low-dose immunomodulators (eg, interferon or bexarotene) may be effective. Patients with advanced and erythrodermic MF/SS can have profound immunosuppression, with treatments targeting tumor cells aimed for immune reconstitution. Biologic agents or targeted therapies either alone or in combination--including immunomodulators and histone-deacetylase inhibitors--are tried first, with more immunosuppressive therapies, such as alemtuzumab or chemotherapy, being generally reserved for refractory or rapidly progressive disease or extensive lymph node and metastatic involvement. Recently, an increased understanding of the pathogenesis of MF and SS with identification of important molecular markers has led to the development of new targeted therapies that are currently being explored in clinical trials in advanced MF and SS.
Collapse
Affiliation(s)
- Sarah I Jawed
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Patricia L Myskowski
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Steven Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Alison Moskowitz
- Lymphoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Christiane Querfeld
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| |
Collapse
|
39
|
Derer S, Glorius P, Schlaeth M, Lohse S, Klausz K, Muchhal U, Desjarlais JR, Humpe A, Valerius T, Peipp M. Increasing FcγRIIa affinity of an FcγRIII-optimized anti-EGFR antibody restores neutrophil-mediated cytotoxicity. MAbs 2014; 6:409-21. [PMID: 24492248 PMCID: PMC3984330 DOI: 10.4161/mabs.27457] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/07/2013] [Accepted: 12/07/2013] [Indexed: 01/27/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibody Affinity/genetics
- Antibody-Dependent Cell Cytotoxicity/genetics
- Cells, Cultured
- Cetuximab
- Cytotoxicity, Immunologic/genetics
- Eosinophils/immunology
- ErbB Receptors/immunology
- Glycosylation
- Hemoglobinuria, Paroxysmal/immunology
- Hemoglobinuria, Paroxysmal/therapy
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Immunotherapy/trends
- Neutrophils/immunology
- Polymorphism, Genetic
- Protein Engineering
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Pia Glorius
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Martin Schlaeth
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | | | | | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| |
Collapse
|
40
|
Braster R, O’Toole T, van Egmond M. Myeloid cells as effector cells for monoclonal antibody therapy of cancer. Methods 2014; 65:28-37. [DOI: 10.1016/j.ymeth.2013.06.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/06/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023] Open
|
41
|
Bakema JE, van Egmond M. Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. Curr Top Microbiol Immunol 2014; 382:373-92. [PMID: 25116109 DOI: 10.1007/978-3-319-07911-0_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Targeted therapies like treatment with monoclonal antibodies (mAbs) have entered the arsenal of modern anticancer drugs. mAbs combine specificity with multiple effector functions that can lead to reduction of tumour burden. Direct mechanisms of action, including induction of apoptosis or growth inhibition, depend on the biology of the target antigen. Fc tails of mAbs have furthermore the potential to initiate complement-dependent lysis as well as immune effector cell-mediated tumour cell killing via binding to Fc receptors. Natural killer cells can induce apoptosis via antibody-dependent cellular cytotoxicity (ADCC), whereas macrophages are able to phagocytose mAb-opsonized tumour cells (antibody-dependent cellular phagocytosis; ADCP). Finally, neutrophils can induce non-apoptotic tumour cell death, especially in the presence of immunoglobulin A (IgA) antitumour mAbs. In spite of promising clinical successes in some malignancies, improvement of mAb immunotherapy is required to achieve overall complete remission in cancer patients. New strategies to enhance Fc receptor-mediated mechanisms of action or to overcome the immunosuppressive microenvironment of the tumour in mAb therapy of cancer are therefore currently being explored and will be addressed in this chapter.
Collapse
Affiliation(s)
- Jantine E Bakema
- Tumor Biology Section, Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Gorin NC, Isnard F, Garderet L, Ikhlef S, Corm S, Quesnel B, Legrand O, Cachanado M, Rousseau A, Laporte JP. Administration of alemtuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: results of a phase II study. Eur J Haematol 2013; 91:315-21. [DOI: 10.1111/ejh.12154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Norbert-Claude Gorin
- Department of Hematology and Cell Therapy; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris, and University UPMC; Paris; France
| | - Françoise Isnard
- Department of Hematology and Cell Therapy; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris, and University UPMC; Paris; France
| | - Laurent Garderet
- Department of Hematology and Cell Therapy; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris, and University UPMC; Paris; France
| | - Souhila Ikhlef
- Department of Hematology and Cell Therapy; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris, and University UPMC; Paris; France
| | - Selim Corm
- Department of Hematology; Hopital Claude Huriez and Lille CHRU; Lille; France
| | - Bruno Quesnel
- Department of Hematology; Hopital Claude Huriez and Lille CHRU; Lille; France
| | - Ollivier Legrand
- Department of Hematology and Cell Therapy; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris, and University UPMC; Paris; France
| | - Marine Cachanado
- Unite de Recherche Clinique Paris Est (URC-Est); GH HUEP; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris; Paris; France
| | - Alexandra Rousseau
- Unite de Recherche Clinique Paris Est (URC-Est); GH HUEP; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris; Paris; France
| | - Jean-Philippe Laporte
- Department of Hematology and Cell Therapy; Hopital Saint-Antoine; Assistance Publique-Hopitaux de Paris, and University UPMC; Paris; France
| |
Collapse
|
43
|
van Egmond M, Bakema JE. Neutrophils as effector cells for antibody-based immunotherapy of cancer. Semin Cancer Biol 2013; 23:190-9. [DOI: 10.1016/j.semcancer.2012.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/21/2012] [Indexed: 12/24/2022]
|
44
|
Terunuma H, Deng X, Nishino N, Watanabe K. NK cell-based autologous immune enhancement therapy (AIET) for cancer. J Stem Cells Regen Med 2013. [PMID: 24693203 PMCID: PMC3908307 DOI: 10.46582/jsrm.0901003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells have been known to enhance the host immune responses against cancer. NK cell number and cytotoxicity in patients with cancer is often low. Therefore, we developed a large-scale ex vivo NK cell expansion method without feeder layers and introduced NK cell-based autologous immune enhancement therapy (AIET). In this paper, we discuss the epidemiological data that show the relationship between NK activity and cancer incidence, monitoring of NK cell number and activity, anti-cancer activities of NK cells in vitro and in vivo and the effects of the combination of expanded NK cells with monoclonal antibody drugs on cancers through antibody-dependent cellular cytotoxicity. Finally, we also present the clinical cases of NK cell-based AIET and the effect of AIET on advanced stage of pancreatic cancer and on various advanced cancers refractory to conventional therapies. NK cell-based AIET might be a useful strategy in the multidisciplinary approach to cancer.
Collapse
Affiliation(s)
- H Terunuma
- Tokyo Clinic ; Southern Tohoku General Hospital ; Biotherapy Institute of Japan
| | - X Deng
- Biotherapy Institute of Japan
| | | | - K Watanabe
- Tokyo Clinic ; Southern Tohoku General Hospital
| |
Collapse
|
45
|
Zhang H, Verkman AS. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest 2013; 123:2306-16. [PMID: 23563310 DOI: 10.1172/jci67554] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/12/2013] [Indexed: 01/07/2023] Open
Abstract
Eosinophils are abundant in inflammatory demyelinating lesions in neuromyelitis optica (NMO). We used cell culture, ex vivo spinal cord slices, and in vivo mouse models of NMO to investigate the role of eosinophils in NMO pathogenesis and the therapeutic potential of eosinophil inhibitors. Eosinophils cultured from mouse bone marrow produced antibody-dependent cell-mediated cytotoxicity (ADCC) in cell cultures expressing aquaporin-4 in the presence of NMO autoantibody (NMO-IgG). In the presence of complement, eosinophils greatly increased cell killing by a complement-dependent cell-mediated cytotoxicity (CDCC) mechanism. NMO pathology was produced in NMO-IgG-treated spinal cord slice cultures by inclusion of eosinophils or their granule toxins. The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-stabilizing actions, greatly reduced NMO-IgG/eosinophil-dependent cytotoxicity and NMO pathology. In live mice, demyelinating NMO lesions produced by continuous intracerebral injection of NMO-IgG and complement showed marked eosinophil infiltration. Lesion severity was increased in transgenic hypereosinophilic mice. Lesion severity was reduced in mice made hypoeosinophilic by anti-IL-5 antibody or by gene deletion, and in normal mice receiving cetirizine orally. Our results implicate the involvement of eosinophils in NMO pathogenesis by ADCC and CDCC mechanisms and suggest the therapeutic utility of approved eosinophil-stabilizing drugs.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medicine, UCSF, San Francisco, California 94143-0521, USA
| | | |
Collapse
|
46
|
Seidel UJE, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol 2013; 4:76. [PMID: 23543707 PMCID: PMC3608903 DOI: 10.3389/fimmu.2013.00076] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/08/2013] [Indexed: 12/11/2022] Open
Abstract
In the last decade several therapeutic antibodies have been Federal Drug Administration (FDA) and European Medicines Agency (EMEA) approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumor models. However, a direct in vivo effect of ADCC in tumor reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic hematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of Killer-cell Immunoglobuline-like Receptor (KIR) receptor ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function.
Collapse
Affiliation(s)
- Ursula J E Seidel
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen Tübingen, Germany
| | | | | |
Collapse
|
47
|
Abstract
The feasibility of stem cell transplantation across the major histocompatibility barrier-as in haploidentical stem cell transplantation-has been proved for some time in several studies. The main limitations include a higher graft failure rate, delayed immune reconstitution after transplantation with high rates of life-threatening infections, a higher incidence of post-transplant lymphoproliferative disease, and severe acute and chronic graft-versus-host disease. In an attempt to reduce the transplant-related morbidity/mortality, several techniques had been evaluated involving conditioning regimen intensity, graft engineering, post-transplant cellular therapy and immunosuppression. This review will describe the current situation. It will also discuss initiatives and strategies to overcome the limitations associated with transplant across the MHC barrier.
Collapse
Affiliation(s)
- Amr Ahmed Nassar
- King Abdullah Medical City, Mecca, Western Province, Saudi Arabia.
| |
Collapse
|
48
|
Deng X, Terunuma H, Nieda M, Xiao W, Nicol A. Synergistic cytotoxicity of ex vivo expanded natural killer cells in combination with monoclonal antibody drugs against cancer cells. Int Immunopharmacol 2012; 14:593-605. [PMID: 23063974 DOI: 10.1016/j.intimp.2012.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Abstract
The adoptive transfer of highly cytotoxic natural killer (NK) cells is an emerging tool for cancer immunotherapy. Antibody-dependent cellular cytotoxicity (ADCC) has recently been identified as one of the critical factors for the clinical efficacy of anticancer antibodies, in which NK cells are the major effectors of ADCC. NK cells were expanded from PBMC by a feeder-cell-free expansion method. NK cell expansion efficiency was evaluated within a period of 21 days. The kinetics of NK cell expansion and the expression of activating and inhibitory receptors on NK cells were monitored. NK cells producing IFN-γ and TNF-α were detected by intracellular cytokine staining. The cytotoxicity of expanded NK cells against various cancer cells was compared with that of freshly isolated NK cells. The ADCC functions of expanded NK cells in combination with rituximab against CD20+ lymphoma cell lines were evaluated. Our method efficiently expanded NK cells ex vivo, which showed a much higher activity to induce the expression of activating receptors and to produce IFN-γ and TNF-α as well as cytotoxicity against various cancer cell lines including CD133+ primary cancer cells than freshly isolated NK cells. We observed a synergistic cytotoxicity of our expanded NK cells against CD20+ B lymphoma cell lines as well as higher IFN-γ and TNF-α production when combined with rituximab. Our results suggest that the adoptive transfer of a large number of ex vivo expanded NK cells, particularly in combination with monoclonal antibody drugs, is a useful tool for cancer immunotherapy.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan, Tokyo 135-0051, Japan.
| | | | | | | | | |
Collapse
|
49
|
Han T, Abdel-Motal UM, Chang DK, Sui J, Muvaffak A, Campbell J, Zhu Q, Kupper TS, Marasco WA. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous T-cell lymphoma. PLoS One 2012; 7:e44455. [PMID: 22973452 PMCID: PMC3433438 DOI: 10.1371/journal.pone.0044455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/03/2012] [Indexed: 01/23/2023] Open
Abstract
Background Although several therapeutic options have become available for patients with Cutaneous T-cell Lymphoma (CTCL), no therapy has been curative. Recent studies have demonstrated that CTCL cells overexpress the CC chemokine receptor 4 (CCR4). Methodology/Principal Findings In this study, a xenograft model of CTCL was established and a recombinant adeno-associated viral serotype 8 (AAV8) vector expressing a humanized single-chain variable fragment (scFv)-Fc fusion (scFvFc or “minibody”) of anti-CCR4 monoclonal antibody (mAb) h1567 was evaluated for curative treatment. Human CCR4+ tumor-bearing mice treated once with intravenous infusion of AAV8 virions encoding the h1567 (AAV8-h1567) minibody showed anti-tumor activity in vivo and increased survival. The AAV8-h1567 minibody notably increased the number of tumor-infiltrating Ly-6G+ FcγRIIIa(CD16A)+ murine neutrophils in the tumor xenografts over that of AAV8-control minibody treated mice. Furthermore, in CCR4+ tumor-bearing mice co-treated with AAV8-h1567 minibody and infused with human peripheral blood mononuclear cells (PBMCs), marked tumor infiltration of human CD16A+ CD56+ NK cells was observed. The h1567 minibody also induced in vitro ADCC activity through both mouse neutrophils and human NK cells. Conclusions/Significance Overall, our data demonstrate that the in vivo anti-tumor activity of h1567 minibody is mediated, at least in part, through CD16A+ immune effector cell ADCC mechanisms. These data further demonstrate the utility of the AAV-minibody gene transfer system in the rapid evaluation of candidate anti-tumor mAbs and the potency of h1567 as a potential novel therapy for CTCL.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Blotting, Western
- DNA Primers/genetics
- Dependovirus/genetics
- Flow Cytometry
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Humans
- Image Processing, Computer-Assisted
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunohistochemistry
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/therapy
- Mice
- Mice, SCID
- Real-Time Polymerase Chain Reaction
- Receptors, CCR4/metabolism
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Thomas Han
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ussama M. Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - De-Kuan Chang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianhua Sui
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asli Muvaffak
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James Campbell
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Zhu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas S. Kupper
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| | - Wayne A. Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| |
Collapse
|
50
|
Zent CS, Wu W, Bowen DA, Hanson CA, Pettinger AM, Shanafelt TD, Kay NE, Leis JF, Call TG. Addition of granulocyte macrophage colony stimulating factor does not improve response to early treatment of high-risk chronic lymphocytic leukemia with alemtuzumab and rituximab. Leuk Lymphoma 2012; 54:476-82. [PMID: 22853816 DOI: 10.3109/10428194.2012.717276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thirty-three previously untreated patients with high-risk chronic lymphocytic leukemia (CLL) were treated before meeting standard criteria with alemtuzumab and rituximab. Granulocyte macrophage colony stimulating factor (GM-CSF) was added to the regimen to determine whether it would improve treatment efficacy without increasing toxicity. High risk was defined as at least one of the following: 17p13-; 11q22.3-; unmutated IGHV (or use of VH3-21) together with elevated expression of ZAP-70 and/or CD38. Treatment was subcutaneous GM-CSF 250 μg Monday-Wednesday-Friday for 6 weeks from day 1, subcutaneous alemtuzumab 3 mg-10 mg-30 mg from day 3 and then 30 mg Monday-Wednesday-Friday for 4 weeks, and intravenous rituximab (375 mg/m(2)/week) for 4 weeks from day 8. Patients received standard supportive care and were monitored weekly for cytomegalovirus (CMV) reactivation. Using standard criteria, 31 (94%) patients responded to treatment, with nine (27%) complete responses (one with persistent cytopenia) and nine (27%) nodular partial responses. Median progression-free survival was 13.0 months and time to next treatment was 33.5 months. No patient died during treatment, seven (21%) had grade 3-4 toxicities attributable to treatment, and 10 (30%) had CMV viremia. Addition of GM-CSF to therapy with alemtuzumab and rituximab decreased treatment efficacy and increased the rate of CMV reactivation compared to a historical control.
Collapse
Affiliation(s)
- Clive S Zent
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|