1
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Ukaegbu K, Foyle D, Luan X, Schneiderman E, Allen EP, Plemons J, Svoboda KKH. The effect of an antioxidant gel compared to chlorhexidine during the soft tissue healing process: An animal study. J Periodontol 2024; 95:1086-1096. [PMID: 38830780 PMCID: PMC11609495 DOI: 10.1002/jper.23-0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Prolonged inflammation and oxidative stress can impede healing. To enhance healing efficiency, many solutions have been employed. This is an in vivo study comparing chlorhexidine (CHX) to a commercial antioxidant gel (AO). METHODS Envelope flaps were created in the lower incisor gingival region of 60 Sprague-Dawley rats, and acellular dermal matrix (ADM) was inserted. Animals were randomly assigned to postsurgical treatment application of AO gel or 0.12% CHX twice daily. A control group received no postsurgical treatment. Data collected (before surgery, 24 h, and 72 h) included surgical images, tissue samples, and weights. Blinded scorers assessed images using a wound healing scale. Real-time polymerase chain reaction (RT-PCR) was used for gene expression of tumor necrosis factor-alpha (TNFα), interleukin-1 (IL-1), myeloperoxidase (MPO), and superoxide dismutase (SOD). RESULTS The AO group scored higher than the CHX and control groups in clinical evaluation (p < 0.05). At 24 h, TNFα expression was upregulated in the AO group compared to CHX (p = 0.027) and controls (p = 0.018). The AO group had significantly higher expression of antioxidant enzyme (SOD) at 24 h compared to CHX (p = 0.021). All animals lost weight in the first 24 h. Animals treated with AO or CHX regained more weight at 72 h than control animals (p = 0.034 and 0.003, respectively). CONCLUSION Animals treated with AO healed faster. AO led to earlier upregulation of TNFα and antioxidant enzyme SOD. We hypothesized that AO promoted an earlier inflammatory process while counteracting oxidative stress by increasing antioxidant responses via SOD.
Collapse
Affiliation(s)
- Kelechi Ukaegbu
- Department of PeriodontologyTexas A&M School of DentistryDallasTexasUSA
| | - Deborah Foyle
- Department of PeriodontologyTexas A&M School of DentistryDallasTexasUSA
| | - Xianghong Luan
- Department of Biomedical SciencesTexas A&M School of DentistryDallasTexasUSA
- Department of Oral and Craniofacial SciencesUniversity of RochesterRochesterNew YorkUSA
| | - Emet Schneiderman
- Department of Biomedical SciencesTexas A&M School of DentistryDallasTexasUSA
| | - Edward P. Allen
- Department of PeriodontologyTexas A&M School of DentistryDallasTexasUSA
| | | | - Kathy K. H. Svoboda
- Department of Biomedical SciencesTexas A&M School of DentistryDallasTexasUSA
| |
Collapse
|
3
|
da Silva AD, Fracasso M, Bottari NB, Palma TV, Engelmann AM, Castro MFV, Assmann CE, Mostardeiro V, Reichert KP, Nauderer J, da Veiga ML, da Rocha MIUM, Milleti LC, das Neves GB, Gundel S, Ourique AF, Monteiro SG, Morsch VM, Chitolina MR, Da Silva AS. Effects of Free and Nanoencapsulated Benznidazole in Acute Trypanosoma cruzi Infection: Role of Cholinergic Pathway and Redox Status. Pharmaceuticals (Basel) 2024; 17:1397. [PMID: 39459036 PMCID: PMC11510717 DOI: 10.3390/ph17101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The Trypanosoma cruzi infection promotes an intense inflammatory process that affects several tissues. The cholinergic system may exert a regulatory immune response and control the inflammatory process. This study aimed to evaluate the comparative effect of free and nanoencapsulated benznidazole in acute T. cruzi infection to assess hematological, biochemical, and oxidative status triggered by the cholinergic system. Methods: For this, fifty female Swiss mice were distributed in eight groups, i.e., uninfected and infected animals under four treatment protocols: untreated (control-CT); vehicle treatment (Eudragit L 100-EL-100); benznidazole treatment (BNZ); and nanoencapsulated benznidazole treatment (NBNZ). After eight treatment days, the animals were euthanized for sample collection. Results: The peak of parasitemia was at day 7 p.i., and the BNZ and NBNZ controlled and reduced the parasite rate but showed no efficacy in terms of total elimination of parasites analyzed by RT-PCR in both infected groups. The infection promotes significant anemia, leukopenia, and thrombocytopenia, which the BNZ improves. There was an increase in AChE activity during infection, leading to a pro-inflammatory response and an increase in M1 and M2 mACh receptors in the BNZ group, showing that the treatment interacted with the cholinergic pathway. In addition, a pro-oxidative response was characterized in the infection and mainly in the infected BNZ and NBNZ groups. The histopathological analysis showed significative splenomegaly and inflammatory infiltrate in the heart, liver, and spleen. Conclusions: The administration of the BNZ or NBNZ reverses hematological, hepatic, and renal alterations through cholinergic signaling and stimulates a pro-inflammatory response during acute T. cruzi infection.
Collapse
Affiliation(s)
- Aniélen D. da Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Mateus Fracasso
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Nathieli B. Bottari
- Department of Microbiology and Parasitology, Universidade Federal de Pelotas, Pelotas 96015-560, Brazil;
| | - Taís V. Palma
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Ana M. Engelmann
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Milagros F. V. Castro
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Charles E. Assmann
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Vitor Mostardeiro
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Karine P. Reichert
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Jelson Nauderer
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Marcelo L. da Veiga
- Department of Pathology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.L.d.V.); (M.I.U.M.d.R.)
| | - Maria Izabel U. M. da Rocha
- Department of Pathology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.L.d.V.); (M.I.U.M.d.R.)
| | - Luiz Claudio Milleti
- Department of Animal Production, Universidade do Estado de Santa Catarina, Lages 88520-000, SC, Brazil; (L.C.M.); (G.B.d.N.)
| | - Gabriella B. das Neves
- Department of Animal Production, Universidade do Estado de Santa Catarina, Lages 88520-000, SC, Brazil; (L.C.M.); (G.B.d.N.)
| | - Samanta Gundel
- Center Science Heath, Universidade Franciscana, Santa Maria 97010-491, RS, Brazil; (S.G.); (A.F.O.)
| | - Aline F. Ourique
- Center Science Heath, Universidade Franciscana, Santa Maria 97010-491, RS, Brazil; (S.G.); (A.F.O.)
| | - Silvia G. Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Vera M. Morsch
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Maria Rosa Chitolina
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Aleksandro S. Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, SC, Brazil
| |
Collapse
|
4
|
Brinholi FF, Vasupanrajit A, Semeão LDO, Michelin AP, Matsumoto AK, Almulla AF, Tunvirachaisakul C, Barbosa DS, Maes M. Increased malondialdehyde and nitric oxide formation, lowered total radical trapping capacity coupled with psychological stressors are strongly associated with the phenome of first-episode mild depression in undergraduate students. Neuroscience 2024; 554:52-62. [PMID: 38992564 DOI: 10.1016/j.neuroscience.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Undergraduate students are frequently afflicted by major depressive disorder (MDD). Oxidative and nitrosative stress (O&NS) has been implicated in the pathophysiology of MDD. There is no information regarding whether mild outpatient MDD (SDMD) and first episode SDMD (FE-SDMD) are accompanied by O&NS. The current study compared lipid hydroperoxides (LOOH), malondialdehyde (MDA), advanced protein oxidation products, nitric oxide metabolites (NOx), thiol groups, plasma total antioxidant potential (TRAP), and paraoxonase 1 activities among SDMD and FE-SDMD patients versus healthy controls. We found that SDMD and FE-SDMD exhibit elevated MDA and NOx, and decreased TRAP and LOOH as compared with controls. There was a significant and positive correlation between O&NS biomarkers and adverse childhood experiences (ACEs), and negative life events (NLEs). O&NS pathways, NLEs and ACEs accounted for 51.7 % of the variance in the phenome of depression, and O&NS and NLS explained 42.9 % of the variance in brooding. Overall, these results indicate that SDMD and FE-SDMD are characterized by reduced total antioxidant defenses and increased aldehyde and NOx production. The combined effects of oxidative and psychological stressors are substantially associated with the manifestation of SDMD.
Collapse
Affiliation(s)
- Francis F Brinholi
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Laura de O Semeão
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ana Paula Michelin
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Andressa K Matsumoto
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Décio S Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Research and Innovation Program for the Development of MU - PLOVDIV- (SRIPD-MUP), Creation of a network of research higher schools, National plan for recovery and sustainability, European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
5
|
Bekdeşer B, Apak R. Colorimetric Sensing of Antioxidant Capacity via Auric Acid Reduction Coupled to ABTS Oxidation. ACS OMEGA 2024; 9:11738-11746. [PMID: 38497014 PMCID: PMC10938435 DOI: 10.1021/acsomega.3c09134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In this study, a simple and sensitive colorimetric assay has been developed for total antioxidant capacity measurement. The assay is based on the absorption measurement of the bluish-green oxidized product (ABTS·+) formed as a result of the oxidation reaction of the chromogenic reagent ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) with gold(III). However, in the presence of antioxidants, the ABTS oxidation process is effectively suppressed due to the reduction of gold(III) ions to the zerovalent state forming gold nanoparticles (AuNPs). Relatively lighter colors and a significant decrease in absorbance are observed depending on the total antioxidant capacity. Taking advantage of this situation, qualitative and quantitative total antioxidant capacity (TAC) measurements, with the naked eye and UV-vis spectroscopy, respectively, could be successfully performed. The assay is named "auric reducing antioxidant capacity" (AuRAC) because the gold(III) ion-reducing ability of antioxidants is measured. The AuRAC assay was applied to dietary polyphenols, vitamin C, thiol-type antioxidants, and their synthetic mixtures. Trolox equivalent antioxidant capacity (TEAC) values obtained with the AuRAC assay were found to be compatible with those of the reference CUPRAC (cupric reducing antioxidant capacity) assay. The AuRAC assay was validated through linearity, additivity, precision, and recovery, demonstrating that the assay is reliable and robust. Compared to the simple TAC assays in the literature based on AuNP formation with subsequent surface plasmon resonance (SPR) absorbance measurement, this indirect assay has a smoother linear range starting from lower antioxidant concentrations. This method displays much higher molar absorption coefficients for antioxidant compounds than other conventional single electron transfer (SET) assays because 3-e- reduction of trivalent gold (i.e., Au(III) → Au(0)) produces three chromophore cation radicals (ABTS·+) of the assay reagent. The sensor has been successfully applied to complex matrices, such as tea infusions and pharmaceutical samples. The AuRAC assay stands out with its high molar absorptivity connected to enhanced sensitivity as well as its potential to convert into a paper-based colorimetric sensor.
Collapse
Affiliation(s)
- Burcu Bekdeşer
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
| | - Reşat Apak
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, 34320 Istanbul, Turkey
- Turkish
Academy of Sciences (TUBA), Çankaya, 06690 Ankara, Turkey
| |
Collapse
|
6
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
7
|
Elbalola AA, Abbas ZK. Chemotaxonomy, antibacterial and antioxidant activities of selected aromatic plants from Tabuk region-KSA. Heliyon 2024; 10:e23641. [PMID: 38192876 PMCID: PMC10772130 DOI: 10.1016/j.heliyon.2023.e23641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Chemotaxonomy is a valuable tool for obtaining taxonomic insights, which are most effectively employed in combination with other forms of data to establish a system of classification that closely reflects natural connections. The utilization of plant secondary metabolites possessing diverse therapeutic qualities signifies the growing exploitation of natural products in the medical discipline. The objectives of the current study encompassed the identification of phytochemicals in the extracts of nine species of medicinal plants, the examination of their chemotaxonomic properties, and the assessment of the antibacterial and antioxidant capabilities exhibited by the extracts. GC-MS technology was employed for the identification of phytochemical compounds. The study utilized ClassyFire, an automated chemical classification system that incorporates an extensive and computable classification, to categorize chemicals. The chemical classification of plants was examined by the application of principal component analysis (PCA) and cluster analysis (CA). The bactericidal properties of plants were assessed against four harmful bacterial species using the disc diffusion technique. The antioxidant properties of plant extracts were assessed employing the DPPH free radical scavenging methodology, and the half maximal effective concentration (EC50) was determined using dose response models. The calculator being referred to is the Quest Graph™ EC50 Calculator. In the plant extracts, the analysis disclosed the occurrence of 160 phytochemicals, classified into 36 phytochemical classes. The results of CA and PCA demonstrated the proximity and associations among Asteraceae species, while indicating the divergence of the two Lamiaceae species. Achillea fragrantissima and Ducrosia flabellifolia demonstrated the most diversity in phytochemical classes, while Thymus vulgaris displayed the highest level of dominance. Pulicaria undulata and T. vulgaris had the most notable antibacterial activity. D. flabellifolia and P. incisa demonstrated the highest levels of antioxidant activity. Ethanol exhibited superior antibacterial efficacy compared to other solvents. The remarkable biological activities exhibited by these plant extracts can be ascribed to the copious presence of certain chemicals, predominantly sesquiterpenoids, monoterpenoids, benzene and its derivatives, naphthalenes, fatty acyls, and phenols. The susceptibility of Gram-positive bacterial species to plant extracts was shown to be higher in comparison to Gram-negative bacterial species.
Collapse
|
8
|
Cankurtaran-Kömürcü T, Bilgiçli N. Improvement of nutritional properties of regular and gluten-free cakes with composite flour. FOOD SCI TECHNOL INT 2023:10820132231211929. [PMID: 37926981 DOI: 10.1177/10820132231211929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
This study was carried out to develop regular and gluten-free cakes with the high nutritional and functional value from composite flours. Composite flour was prepared by blending of equal amounts of chestnut, lupine and pumpkin flour. Wheat flour (for regular cake) and corn starch: rice flour blend (for gluten-free cake) used in cake formulation were replaced with composite flour in ratios of 9, 18, 27 and 36%, respectively. Composite flour had a significant (p < 0.05) effect on all color parameters of the crust and crumb of regular and gluten-free cake samples. Cake weight and hardness values increased with the use of composite flour in regular and gluten-free cake samples, and higher weight and hardness values were determined in gluten-free cakes. High composite flour ratios (27-36%) resulted in the lowest cake volume in both cakes. The gluten-free cake had lower ash, protein, antioxidant activity and total phenolic content (TPC) compared to the regular cake. The composite flour usage increased the ash, protein, antioxidant activity, TPC, and mineral contents of both cake samples. When the nutritional, functional, technological and sensory properties of cakes were evaluated together, it was concluded that the use of 9% composite flour was the most appropriate ratio for both cake types.
Collapse
Affiliation(s)
| | - Nermin Bilgiçli
- Department of Food Engineering, Engineering Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
9
|
Coronel PMV, Pereira IC, Basilio DCLS, Espinoça IT, de Souza KFS, Ota RSN, de Almeida EB, Paredes-Gamero EJ, Wilhelm Filho D, Perdomo RT, Parisotto EB. Biomarkers of oxidative stress and inflammation in subjects with COVID-19: Characterization and prognosis of the disease. Microb Pathog 2023; 184:106339. [PMID: 37690769 DOI: 10.1016/j.micpath.2023.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Coronavirus disease (COVID-19) is an acute respiratory disease caused by the new coronavirus (SARS-CoV-2) that has spread throughout the world causing millions of deaths. COVID-19 promotes excessive release of pro-inflammatory cytokines leading to acute lung injury and death. Reactive oxygen species (ROS) and oxidative stress (OS) may also play a role in the pathophysiology of COVID-19. The present study investigated levels of inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12) and OS biomarkers (MPO, SOD, CAT, GST enzymes and contents of GSH, TBARS and PC) in patients with SARS-CoV-2 infection, which were correlated with disease severity. Patients with SARS significantly increased IL-1β levels, while IL-6 levels were elevated in both groups of SARS-CoV-2 positive patients. The most severe patients showed increased levels of IL-8 and IL-10, while subjects without SARS showed lower values. MPO activity were higher in both groups of SARS-CoV-2 positive patients, while SOD and CAT activity were decreased in both groups. Compared to controls, GGT was elevated only in the SARS patient group, while GST values were increased in the group of positive patients in SARS-CoV-2 without SARS and were decreased in patients with SARS. GSH and UA contents decreased in SARS-CoV-2 positive subjects, whereas TBARS and PC contents increased in both groups of SARS-CoV-2 positive patients, particularly in the SARS patient group. In addition, several important correlations were found between cytokines and the different OS parameters suggesting some inter-relationship in the complex antioxidant system of the patients. In general, patients with SARS-CoV-2 infection showed higher levels of OS biomarkers, and also elevated contents of IL-6 and IL-10, probably worsening the damage caused by SARS-CoV-2 infection. This damage may contribute to the severity of the disease and its complications, as well as a prognosis for SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Paola Mayara Valente Coronel
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Indiara Correia Pereira
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Denise Caroline Luiz Soares Basilio
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Isabelly Teixeira Espinoça
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Rafael Seiji Nakano Ota
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danilo Wilhelm Filho
- Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas (CCB), Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Renata Trentin Perdomo
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
10
|
Li X, Li A, Zhang M, Gao T. Cytotoxicity and genotoxicity evaluation of chloroform using Vicia faba roots. Toxicol Ind Health 2023; 39:603-612. [PMID: 37518894 DOI: 10.1177/07482337231191573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Chloroform is a widely used industrial chemical that can also pollute the environment. The aims of this study were to examine the potential cytotoxicity and genotoxicity of chloroform on plant cells, using the Vicia faba bioassay. Chloroform was evaluated at concentrations of 0.1, 0.5, 1, 2, and 5 mg·L-1. The following parameters were analyzed: the mitotic index (MI), micronucleus (MN) frequency, chromosomal aberration (CA) frequency, and malondialdehyde (MDA) content. The results showed that exposure to increasing concentrations of chloroform caused a decrease in MI and an increase in the frequency of MN in Vicia faba root tip cells, relative to their controls. Moreover, various types of CA, including C-mitosis, fragments, bridges, laggard chromosomes, and multipolar mitosis, were observed in the treated cells. The frequency of MN was positively correlated with the frequency of CA in exposure to 0.1-1 mg·L-1 chloroform. Furthermore, chloroform exposure induced membrane lipid peroxidation damage in the Vicia faba radicle, and a linear correlation was observed between the MDA content and the frequency of MN or CA. These findings indicated that chloroform exposure can result in oxidative stress, cytotoxicity, and genotoxicity in plant cells.
Collapse
Affiliation(s)
- Xue Li
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Ang Li
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Ming Zhang
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Tianpeng Gao
- College of Urban Environment, Lanzhou City University, Lanzhou, China
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| |
Collapse
|
11
|
Ahmed Khan D, Shahid A, Sherif AE, Aati HY, Abdullah M, Mehmood K, Hussain M, Basit A, Ahmad Ghalloo B, ur Rehman Khan K. A detailed biochemical characterization, toxicological assessment and molecular docking studies of Launaea fragilis: An important medicinal xero-halophyte. Saudi Pharm J 2023; 31:1047-1060. [PMID: 37250362 PMCID: PMC10212792 DOI: 10.1016/j.jsps.2023.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Launaea fragilis (Asso) Pau (Family: Asteraceae) is a wild medicinal plant that has been used in the folklore as a potential treatment for numerous ailments such as skin diseases, diarrhea, infected wounds, inflammation, child fever and hepatic pain. This study explored the chemical constitution, in-vivo toxicity, antimicrobial, antioxidant, and enzyme inhibition potential of ethanolic extract of L. fragilis (EELF). Additionally, in-silico docking studies of predominant compounds were performed against in-vitro tested enzymes. Similarly, in-silico ADMET properties of the compounds were performed to determine their pharmacokinetics, physicochemical properties, and toxicity profiles. The EELF was found rich in TFC (73.45 ± 0.25 mg QE/g) and TPC (109.02 ± 0.23 mg GAE/g). GC-MS profiling of EELF indicated the presence of a total of 47 compounds mainly fatty acids and essential oil. EELF showed no toxicity or growth retardation in chicks up to 300 mg/kg with no effect on the biochemistry and hematology of the chicks. EELF gave promising antioxidant activity through the CUPRAC method with an IC50 value of 13.14 ± 0.18 µg/ml. The highest inhibition activity against tyrosinase followed by acetylcholinesterase and α-Glucosidase was detected. Similarly, the antimicrobial study revealed the extract with good antibacterial and antiviral activity. A good docking score was observed in the in silico computational study of the predominant compounds. The findings revealed L. fragilis as a biocompatible, potent therapeutic alternative and suggest isolation and further in vivo pharmacological studies.
Collapse
Affiliation(s)
- Duraiz Ahmed Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Afia Shahid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota 55454, MN, USA
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
12
|
Akram W, Tagde P, Ahmed S, Arora S, Emran TB, Babalghith AO, Sweilam SH, Simal-Gandara J. Guaiazulene and related compounds: A review of current perspective on biomedical applications. Life Sci 2023; 316:121389. [PMID: 36646376 DOI: 10.1016/j.lfs.2023.121389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Thousands of people worldwide pass away yearly due to neurological disorders, cardiovascular illnesses, cancer, metabolic disorders, and microbial infections. Additionally, a sizable population has also been impacted by hepatotoxicity, ulcers, gastroesophageal reflux disease, and breast fissure. These ailments are likewise steadily increasing along with the increase in life expectancy. Finding innovative therapies to cure and consequently lessen the impact of these ailments is, therefore, a global concern. METHODS AND MATERIALS All provided literature on Guaiazulene (GA) and its related compounds were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, CNKI, and books via the keywords Guaiazulene, Matricaria chamomilla, GA-related compounds, and Guaiazulene analogous. RESULTS The FDA has approved the bicyclic sesquiterpene GA, commonly referred to as azulon or 1,4-dimethyl-7-isopropylazulene, as a component in cosmetic colorants. The pleiotropic health advantages of GA and related substances, especially their antioxidant and anti-inflammatory effects, attracted a lot of research. Numerous studies have found that GA can help to manage various conditions, including bacterial infections, tumors, immunomodulation, expectorants, diuretics, diaphoresis, ulcers, dermatitis, proliferation, and gastritis. These conditions all involve lipid peroxidation and inflammatory response. In this review, we have covered the biomedical applications of GA. Moreover, we also emphasize the therapeutic potential of guaiazulene derivatives in pre-clinical and clinical settings, along with their underlying mechanism(s). CONCLUSION GA and its related compounds exhibit therapeutic potential in several diseases. Still, it is necessary to investigate their potential in animal models for various other ailments and establish their safety profile. They might be a good candidate to advance to clinical trials.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University Campus, Sector 125, Noida 201313, UP, India; PRISAL Foundation (Pharmaceutical Royal International Society), India.
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Swamita Arora
- Amity Institute of Pharmacy, Amity University Campus, Sector 125, Noida 201313, UP, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
13
|
Christodoulou MC, Orellana Palacios JC, Hesami G, Jafarzadeh S, Lorenzo JM, Domínguez R, Moreno A, Hadidi M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants (Basel) 2022; 11:2213. [PMID: 36358583 PMCID: PMC9686769 DOI: 10.3390/antiox11112213] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a growing interest in the application of antioxidants in food and pharmaceuticals due to their association with beneficial health effects against numerous oxidative-related human diseases. The antioxidant potential can be measured by various assays with specific mechanisms of action, including hydrogen atom transfer, single electron transfer, and targeted scavenging activities. Understanding the chemistry of mechanisms, advantages, and limitations of the methods is critical for the proper selection of techniques for the valid assessment of antioxidant activity in specific samples or conditions. There are various analytical techniques available for determining the antioxidant activity of biological samples, including food and plant extracts. The different methods are categorized into three main groups, such as spectrometry, chromatography, and electrochemistry techniques. Among these assays, spectrophotometric methods are considered the most common analytical technique for the determination of the antioxidant potential due to their sensitivity, rapidness, low cost, and reproducibility. This review covers the mechanism of actions and color changes that occur in each method. Furthermore, the advantages and limitations of spectrophotometric methods are described and discussed in this review.
Collapse
Affiliation(s)
| | - Jose C. Orellana Palacios
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Golnaz Hesami
- Department of Food Science and Technology, Sanandaj Branch, Islamic Azad University, Pasdaran St., Sanandaj P.O. Box 618, Iran
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
14
|
Kim B, Kim Y, Lee Y, Oh J, Jung Y, Koh WG, Chung JJ. Reactive Oxygen Species Suppressive Kraft Lignin-Gelatin Antioxidant Hydrogels for Chronic Wound Repair. Macromol Biosci 2022; 22:e2200234. [PMID: 36067493 DOI: 10.1002/mabi.202200234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Indexed: 12/25/2022]
Abstract
Chronic wound is difficult to repair because the normal wound healing mechanism is inhibited by the continuous inflammatory response. The delayed inflammatory responses generate high level of reactive oxygen species (ROS) at the wound sites, which leads to a longer inflammatory phase and induces a vicious cycle that interferes with the normal wound healing process. Therefore, ROS scavenging is an important factor for chronic wound healing. In this study, antioxidant hydrogel is developed by cross-linking kraft lignin, an antioxidant agent, and gelatin (Klig-Gel). Klig-Gel hydrogel is fabricated via ring opening reaction with epichlorohydrin as a cross-linker. High ROS scavenging activities are confirmed by various antioxidant evaluations, and in vitro natural antioxidant expression tests show reduction of oxidative stress. Mechanical properties of Klig-Gel hydrogel are tailorable by introducing different amount of kraft lignin to the hydrogel system. Biocompatibility is confirmed regardless of the kraft lignin content. Klig-Gel hydrogel is a promising ROS scavenging material that can be applied in various chronic wound healing applications.
Collapse
Affiliation(s)
- Byulhana Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonho Lee
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Joomin Oh
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,School of Electrical and Electronic Engineering, YU-KIST, Yonsei University, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
15
|
Suzuki S, Sakiragaoglu O, Chirila TV. Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 2022; 27:4635. [PMID: 35889503 PMCID: PMC9315601 DOI: 10.3390/molecules27144635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of natural substances able to fulfill the role of antioxidants in a physiologic environment is important for the development of therapies against diseases associated with excessive production of reactive oxygen species and ensuing oxidative stress. Antioxidant properties have been reported episodically for sericin, a proteinaceous constituent of the silk thread in the cocoons generated by the larvae of the Lepidoptera order. We investigated the sericin fractions isolated from the cocoons spun by the domesticated (Bombyx mori) silkworm. Three fractions were isolated and evaluated, including two peptidoid fractions, the crude sericin and the purified (dialyzed) sericin, and the non-peptidoid methanolic extract of the crude fraction. When subjected to Trolox equivalent antioxidant capacity (TEAC) assay, the extract showed much higher antioxidant capacity as compared to the crude or purified sericin fractions. The three fractions were also evaluated in cultures of murine retinal photoreceptor cells (661 W), a cell line that is highly susceptible to oxidants and is crucially involved in the retinopathies primarily caused by oxidative stress. The extract displayed a significant dose-dependent protective effect on the cultured cells exposed to hydrogen peroxide. In identical conditions, the crude sericin showed a certain level of antioxidative activity at a higher concentration, while the purified sericin did not show any activity. We concluded that the non-peptidoid components accompanying sericin were chiefly responsible for the previously reported antioxidant capacity associated with sericin fractions, a conclusion supported by the qualitative detection of flavonoids in the extract but not in the purified sericin fraction.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Onur Sakiragaoglu
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Traian V. Chirila
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
- School of Chemistry & Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering & Nanotechnology (AIBN), University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Medicine, George E. Palade University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mures, Romania
| |
Collapse
|
16
|
Sajapin J, Kulas A, Hellwig M. Methionine-associated peptide α-amidation is directed both to the N- and the C-terminal amino acids. J Pept Sci 2022; 28:e3429. [PMID: 35694817 DOI: 10.1002/psc.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/08/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Peptide-bound methionine may transfer oxidative damage from the thioether side chain to the peptide backbone, catalyzing decomposition in general and α-amidation in particular. In the present study, we focused on the reactivity and reaction pathways of peptides. We synthesized model peptides comprising methionine or not and investigated their overall tendency towards decomposition and formation of specific products under conditions mimicking the cooking process at 100°C in buffered solution (pH 6.0) in the presence of redox-active substances such as transition metal ions and reductones. Peptides containing methionine were more susceptible to α-amidation under all oxidative conditions, and the products of N-terminus-directed α-amidation were quantified. Exemplarily, after incubation in the presence of cupric sulfate, about 2.0 mol-% of the overall decomposition of Z-glycylmethionylglycine accounted for the formation of Z-glycinamide, whereas it was below 0.1 mol-% for Z-glycylalanylglycine. Surprisingly and different from previous observations, C-terminus-directed α-amidation was observed for the first time. From Z-glycylmethionylglycine, the respective products were formed in higher amounts than the N-terminus-directed α-amidation product Z-glycinamide under all applied oxidation conditions. The preference of electron transfer from the amino nitrogen bound in the peptide bond directed to the C-terminus may be ascribed to a sterically less demanding hexagonal 3-electron-2-center intermediate during methionine-catalyzed α-amidation.
Collapse
Affiliation(s)
- Johann Sajapin
- Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Annemarie Kulas
- Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany.,Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Al-Ani MTH, Ulaiwi WS, Abd-Alhameed WM. Nаtural Antioxidants and their Effect on Human Health. EARTHLINE JOURNAL OF CHEMICAL SCIENCES 2022:115-129. [DOI: 10.34198/ejcs.8122.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Fruit, vegetables and spice antioxidants are recognized for their important role in human health against some diseases for instance cancer and cardiovascular diseases. Phenolic antioxidants, vitamins (C and E), flavonoids, and cаtеchins are among the major nаturally bioavailable antioxidants. Nаtural antioxidants positive impact on human health can be summarized on their potential to act against inflammation, bacteria, aging, oxidаtive stress and cаncer. The evaluation of antioxidants bioavailability in food and medicinal plants are essential to understand the best antioxidant sources and to elevate their use in food, pharmaceuticals and food additives.
Collapse
|
18
|
Upadhyaya C, Upadhyaya T, Patel I. Attributes of non-ionizing radiation of 1800 MHz frequency on plant health and antioxidant content of Tomato (Solanum Lycopersicum) plants. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA. Effects of bacterial organic selenium, selenium yeast and sodium selenite on antioxidant enzymes activity, serum biochemical parameters, and selenium concentration in Lohman brown-classic hens. Vet Res Commun 2021; 46:431-445. [PMID: 34845583 DOI: 10.1007/s11259-021-09867-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/21/2021] [Indexed: 02/05/2023]
Abstract
This study compares the effects of sodium selenite, selenium yeast, and enriched bacterial organic selenium protein on antioxidant enzyme activity, serum biochemical profiles, and egg yolk, serum, and tissue selenium concentration in laying hens. In a 112-d experiment, 144 Lohman Brown Classic hens, 23-wks old were divided into four equal groups, each has six replicates. They were assigned to 4 treatments: 1) a basal diet (Con), 2) Con plus 0.3 mg/kg feed sodium selenite (SS); 3) Con plus 0.3 mg/kg feed Se-yeast (SY): 4) Con plus 0.3 mg/kg feed bacterial enriched organic Se protein (ADS18) from Stenotrophomonas maltophilia bacteria. On d 116, hens were euthanized (slaughtered) to obtain blood (serum), liver organ, and breast tissue to measure antioxidant enzyme activity, biochemical profiles, and selenium concentration. The results show that antioxidant enzyme activity of hens was increased when fed bacterial organic Se (ADS18), resulting in a significant (P < 0.05) increase in serum GSH-Px, SOD, and CAT activity compared to other treatment groups. However, ADS18 and SY supplementation increase (P < 0.05) hepatic TAC, GSH-Px, and CAT activity, unlike the SS and Con group. Similarly, dietary Se treatment reduced total cholesterol and serum triglycerides concentrations significantly (P < 0.05) compared to the Con group. At 16 and 18 weeks, selenium concentration in hen egg yolks supplemented with dietary Se was higher (P < 0.05) than in Con, with similar patterns in breast tissue and serum. Supplementation with bacterial organic Se (ADS18) improved antioxidant enzyme activity, decreased total serum cholesterol and serum lipids, and increased Se deposition in egg yolk, tissue, and serum. Hence, organic Se may be considered a viable source of Se in laying hens.
Collapse
Affiliation(s)
- A I Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - A M Dalia
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - H Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Anjas A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
20
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
21
|
High-Pressure Processing of Kale: Effects on the Extractability, In Vitro Bioaccessibility of Carotenoids & Vitamin E and the Lipophilic Antioxidant Capacity. Antioxidants (Basel) 2021; 10:antiox10111688. [PMID: 34829561 PMCID: PMC8615047 DOI: 10.3390/antiox10111688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
High pressure processing (HPP) represents a non-thermal preservation technique for the gentle treatment of food products. Information about the impact of HPP on lipophilic food ingredients (e.g., carotenoids, vitamin E) is still limited in more complex matrices such as kale. Both the variation of pressure levels (200–600 MPa) and different holding times (5–40 min) served as HPP parameters. Whereas a slightly decreasing solvent extractability mostly correlated with increasing pressure regimes; the extension of holding times resulted in elevated extract concentrations, particularly at high-pressures up to 600 MPa. Surprisingly, slightly increasing bioaccessibility correlated with both elevated pressures and extended holding times, indicating matrix-dependent processes during in vitro digestion, compared to results of extractability. Moreover, the verification of syringe filters for digest filtration resulted in the highest relative recoveries using cellulose acetate and polyvinylidene difluoride membranes. The α-tocopherol equivalent antioxidant capacity (αTEAC) and oxygen radical antioxidant capacity (ORAC) assays of treated kale samples, chopped larger in size, showed increased antioxidant capacities, regarding elevated pressures and extended holding times. Consequently, one may conclude that HPP was confirmed as a gentle treatment technique for lipophilic micronutrients in kale. Nevertheless, it was indicated that sample pre-treatments could affect HP-related processes in food matrices prior to and possibly after HPP.
Collapse
|
22
|
Density functional theory studies of the antioxidants-a review. J Mol Model 2021; 27:271. [PMID: 34463834 DOI: 10.1007/s00894-021-04891-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
The following review article attempts to compare the antioxidant activity of the compounds. For this purpose, density functional theory/Becke three-parameter Lee-Yang-Parr (DFT/B3LYP) methodology was carried out instead of using pharmacological methodologies because of economic benefits and high accuracy. This methodology filtrates the compounds with the lowest antioxidant activity. At first, the Koopmans' theorem was carried out to calculate some descriptors to compare antioxidants. The energy of the highest occupied molecular orbitals (HOMO) was accepted as the best indicator, and then some studies confirmed that the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO-LUMO) energy gap is the more precise descriptor. Although it would be better to compare spin density distribution (SDD) on the oxygen of the corresponding radical in the polarizable continuum model (PCM) to evaluate their capability to chain reaction inhibition. Next, it was mentioned that in the multi-target directed ligands (MTDLs), the antioxidant is connected to other moieties in para positions to create better antioxidants or novel hybrid compounds. Indeed, SDD was introduced as a descriptor for MTDL antioxidant effectiveness. Then, the relation between antioxidants and aromaticity was investigated. The more the aromaticity of an antioxidant, the more stable the corresponding radical is. Subsequently, in preferred antioxidant activity, it was defined that the hydrogen atom transfer (HAT) mechanism is more favored in metabolism phase I. It has been seen that the solvent model can change the antioxidant mechanism. Therefore, the solvent model is more important than the chemical structure of antioxidants, and an ideal antioxidant should be evaluated in PCM for pharmacological evaluations.
Collapse
|
23
|
Grover P, Khanna K, Bhatnagar A, Purkayastha J. In vivo-wound healing studies of sodium thiosulfate gel in rats. Biomed Pharmacother 2021; 140:111797. [PMID: 34098193 DOI: 10.1016/j.biopha.2021.111797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/06/2023] Open
Abstract
Sodium Thiosulfate (STS) is already reported as an antioxidant, anti-inflammatory agent with antiseptic, antifungal properties. The search for an ideal antiseptic still continues, which is lethal to all types of bacteria and their spores and sustain the activity for a longer time without any harm to the host tissue. The aim of the present study is to evaluate the effect of STS on curing of wounds in rats when compared to Betadine. We developed topical gels having 6% and 12% STS. The effects of STS on wound healing rate of Rats were evaluated against Betadine as positive control. Wounds of control group, selected as Group 1 was treated with normal saline (0.2 ml), twice a day. Reference standard control, designated as Group 2 rats were given with 0.2 ml Betadine twice a day. Rats in Groups 3 and 4 were treated with 0.2 ml of STS gel (6% or 12% respectively) twice a day. In our study, STS formulation has proved to be a safe and efficient wound healing product. It has a neutral pH and longer half life (>12 months). Higher STS dose of 12% proved to have a wound curing rate equivalent to that of Betadine. On 11th Day, 97 ± 0.79% healing was achieved with Betadine and 98 ± 0.67% with 12% STS Gel (∗P < 0.05). Microscopic images of H&E stained skin tissue from animals treated with Betadine and 12% STS formulation showed a reduction in scar size, lesser amount of inflammatory cells, higher fibroblasts and blood vessels, with considerable collagen accumulation. Furthermore, a significant enhancement in the levels of GPx, CAT and SOD was observed in the tissue at the wound site of the treated group. The IL 10 levels in both groups of STS-treated rats was increased, whereas, TNF-α levels were reduced significantly in tissue homogenate compared with control. Thus, this study shows the wound-healing performance of STS formulation. Further studies are necessary to understand the real mechanism of how STS formulation heals wounds.
Collapse
Affiliation(s)
- Priyanka Grover
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Brig. S.K. Majumdar Marg, Delhi 110054, India
| | - Kushagra Khanna
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Brig. S.K. Majumdar Marg, Delhi 110054, India
| | - Aseem Bhatnagar
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Brig. S.K. Majumdar Marg, Delhi 110054, India
| | - Jubilee Purkayastha
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Brig. S.K. Majumdar Marg, Delhi 110054, India.
| |
Collapse
|
24
|
Saleem H, Khurshid U, Sarfraz M, Tousif MI, Alamri A, Anwar S, Alamri A, Ahmad I, Abdallah HH, Mahomoodally FM, Ahemad N. A comprehensive phytochemical, biological, toxicological and molecular docking evaluation of Suaeda fruticosa (L.) Forssk.: An edible halophyte medicinal plant. Food Chem Toxicol 2021; 154:112348. [PMID: 34144099 DOI: 10.1016/j.fct.2021.112348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 01/20/2023]
Abstract
Suaeda fruticosa is an edible medicinal halophyte known for its traditional uses. In this study, methanol and dichloromethane extracts of S. fruticosa were explored for phytochemical, biological and toxicological parameters. Total phenolic and flavonoid constituents were determined by using standard aluminum chloride and Folin-Ciocalteu methods, and UHPLC-MS analysis of methanol extract was performed for tentative identification of secondary metabolites. Different standard methods like DPPH, ABTS, FRAP, CUPRAC, total antioxidant capacity (TAC), and metal chelation assays were utilized to find out the antioxidant potential of extracts. Enzyme inhibition studies of extracts against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase and, α-glucosidase enzymes were also studied. Likewise, the cytotoxicity was also assessed against MCF-7, MDA-MB-231, and DU-145 cell lines. The higher phenolic and flavonoids contents were observed in methanol extracts which can be correlated to its higher radical scavenging potential. Similarly, 11 different secondary metabolites were tentatively identified by UHPLC profiling. Both the extract showed significant inhibition against all the enzymes except for α-glucosidase. Moreover, docking studies were also performed against the tested enzymes. In the case of cytotoxicity, both the samples were found moderately toxic against the tested cell lines. This plant can be explored further for its potential therapeutic and edible uses.
Collapse
Affiliation(s)
- Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan; School of Pharmacy, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor Darul Ehsan, Malaysia.
| | - Umair Khurshid
- Bahawalpur College of Pharmacy, Bahawalpur Medical and Dental College, Bahawalpur, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Abdulwahab Alamri
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Saudi Arabia
| | - Abdulhakeem Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Irshad Ahmad
- Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Hassan H Abdallah
- Chemistry Department, College of Education, Salahaddin University, Erbil, Iraq
| | - Fawzi M Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Mauritius
| | - Nafees Ahemad
- School of Pharmacy, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor Darul Ehsan, Malaysia
| |
Collapse
|
25
|
Sini H, Devi K, Anusha C, Nevin K. Edible Solanum trilobatum chloroform extract modulates CCL4 induced toxic changes in rat liver by enhancing the antioxidant activity. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Liver diseases are one of the major causes of morbidity and mortality all over world. Environmental chemicals and pesticides are one of the most common causative factors for liver injury. Since there are no reliable hepatoprotective drugs available, many plant extracts are frequently utilized to treat liver disease. Therefore, searching for effective and safe plant based drugs for liver disorders is a matter of interest. In this study, hepatoprotective and antioxidant activity of the polyphenol rich chloroform extract of Solanum trilobatum (CST) was evaluated on CCl4 induced acute hepatotoxicity in Sprague Dawley rats. METHODS: Cytotoxic effect of CST on cancer cells as well as primary rat hepatocytes and proliferative effect on human peripheral blood lymphocyte (PBL) were evaluated in vitro. Animals were divided into 4 groups control group (received only normal saline), CCl4 group (received only CCl4 (2.0g/kg body weight), CST group (received 50 mg/kg and CCl4 (2.0g/kg body weight), CST group (received 100mg/kg and CCl4 (2.0g/kg body weight). After 14 consecutive days of treatment, the levels of hepatic biochemical markers, malondialdehyde (MDA) content, peroxidase and catalase activities were measured. The histopathological study of control and treated animals were also performed. RESULTS: Administration of CST prior to CCl4 was found to significantly inhibit the hepatotoxicity produced by CCl4 since CST restored the elevated activities of serum and liver marker enzymes and also enhanced the antioxidant enzyme levels. Histological changes caused by CCl4 were found to be significantly reversed by CST, which further confirms the dual effect of CST on CCl4-induced acute liver injury as a hepatoprotectant and antioxidant. CONCLUSIONS: The present study clearly demonstrates that CST contains therapeutic components which in combination/alone possess hepatoprotective and in vivo antioxidant effect.
Collapse
Affiliation(s)
- H. Sini
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biochemistry, Government College, Thiruvananthapuram, Kerala, India
| | - K.S. Devi
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - C.S. Anusha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - K.G. Nevin
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
26
|
Zivarpour P, Nikkhah E, Maleki Dana P, Asemi Z, Hallajzadeh J. Molecular and biological functions of gingerol as a natural effective therapeutic drug for cervical cancer. J Ovarian Res 2021; 14:43. [PMID: 33706784 PMCID: PMC7953815 DOI: 10.1186/s13048-021-00789-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is one of the most common and important gynecological cancers, which has a global concern with an increasing number of patients and mortality rates. Today, most women in the world who suffer from cervical cancer are developing advanced stages of the disease. Smoking and even exposure to secondhand smoke, infections caused by the human papillomavirus, immune system dysfunction and high-risk individual-social behaviors are among the most important predisposing factors for this type of cancer. In addition, papilloma virus infection plays a more prominent role in cervical cancer. Surgery, chemotherapy or radical hysterectomy, and radiotherapy are effective treatments for this condition, the side effects of these methods endanger a person's quality of life and cause other problems in other parts of the body. Studies show that herbal medicines, including taxol, camptothecin and combretastatins, have been shown to be effective in treating cervical cancer. Ginger (Zingiber officinale, Zingiberaceae) is one of the plants with valuable compounds such as gingerols, paradols and shogoals, which is a rich source of antioxidants, anti-cancer and anti-inflammatory agents. Numerous studies have reported the therapeutic effects of this plant through various pathways in cervical cancer. In this article, we look at the signaling mechanisms and pathways in which ginger is used to treat cervical cancer.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Elhameh Nikkhah
- Medicinal Plants Research Cent Maragheh University of Medical Sciences, Maragheh, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
27
|
Ensminger DC, Salvador-Pascual A, Arango BG, Allen KN, Vázquez-Medina JP. Fasting ameliorates oxidative stress: A review of physiological strategies across life history events in wild vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110929. [PMID: 33647461 DOI: 10.1016/j.cbpa.2021.110929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Fasting is a component of many species' life history due to environmental factors or behavioral patterns that limit access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting-adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals undergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox balance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well as potential translation into therapeutic interventions in non-fasting-adapted species including humans.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - B Gabriela Arango
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
28
|
Awogbindin IO, Maduako IC, Adedara IA, Owumi SE, Ajeleti AO, Owoeye O, Patlolla AK, Tchounwou PB, Farombi EO. Kolaviron ameliorates hepatic and renal dysfunction associated with multiwalled carbon nanotubes in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:67-76. [PMID: 32856799 DOI: 10.1002/tox.23011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The increase in the exposure to carbon nanotubes (CNTs) and their incorporation into industrial, electronic, and biomedical products have required several scientific investigations into the toxicity associated with CNTs. Studies have shown that the metabolism and clearance of multiwalled CNTs (MWCNTs) from the body involve biotransformation in the liver and its excretion via the kidney. Since oxidative stress and inflammation underlines the toxicity of MWCNT, we investigated the ameliorative effect of kolaviron (KV), a natural antioxidant and anti-inflammatory agent, on hepatorenal damage in rats. Exposure to MWCNTs for 15 days significantly increased serum activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase thereby suggesting hepatic dysfunction. Kidney function, which was monitored by urea and creatinine levels, was also impaired by MWCNTs. Additionally, MWCNTs markedly increased myeloperoxidase activity, nitric oxide level, reactive oxygen and nitrogen species, and tumor necrosis factor level in both tissues. However, KV in a dose-dependent manner markedly attenuated MWCNT-induced markers of hepatorenal function in the serum and MWCNT-associated inflammation in the liver and kidney. Also, MWCNTs elicited significant inhibition of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities. There was a significant diminution in glutathione level (GSH) and enhanced production of malondialdehyde (MDA) in MWCNTs-exposed rats. KV treatment was able to significantly increase the antioxidant enzymes and enhance the GSH level with a subsequent reduction in the MDA level. Taken together, KV elicited ameliorative effects against hepatorenal damage via its anti-inflammatory and antioxidant properties. Thus, KV could be an important intervention strategy for the hepatorenal damage associated with MWCNTs exposure.
Collapse
Affiliation(s)
- Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikenna C Maduako
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola O Ajeleti
- Department of Anatomy, College of Medicine, Bowen University, Iwo, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| | - Paul B Tchounwou
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
29
|
Rafique R, Arshia, Kanwal, Khan KM, Chigurupati S, Salar U, Taha M, Perveen S. Discovery of New N-hydrazinecarbothioamide Indazole Hybrids: As Potential Radical (ABTS and DPPH) Scavengers. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200424074455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Free radicals are the main cause of numerous diseases. Their overproduction
needs to be controlled in order to combat several ailments. The current study deals with the discovery
of new free radical scavengers.
Methods:
Substituted N-hydrazinecarbothioamide indazoles 1-18 were evaluated for DPPH and
ABTS radical scavenging activities.
Results:
All synthetic compounds possess good radical DPPH and ABTS scavenging
potential in the ranges of IC50 = 2.11 ± 0.17 - 5.3 ± 0.11 μM and IC50 = 2.31 ± 0.06 - 5.5 ± 0.07
μM, respectively, as compared to standard ascorbic acid having IC50 = 2.02 ± 0.11 μM for DPPH
and IC50 = 2.1 ± 0.07 μM for ABTS.
Conclusion:
These compounds could serve as leads for antioxidant activity that have the ability to
control free radical generation and ward off free radical-induced disorders.
Collapse
Affiliation(s)
- Rafaila Rafique
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Arshia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 31441, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
30
|
Abstract
AbstractThis paper presents the effect of polyphenols on microorganisms inhabiting the human gastrointestinal tract (mainly bacteria belonging to the Lactobacillus genus) and pathogenic microorganisms classified as the most common food contaminants. Plant secondary metabolites have the ability to modulate the growth of many microorganisms. Due to the metabolic changes induced by their presence in the environment, many pathogenic microorganisms are unable to grow, which in turn cause a significant reduction in their pathogenic potential. These processes include primarily the induction of ruptures in the cell membrane and disturbance of cell respiration. Often, the lack of integrity of cell membranes also leads to the disturbance of intracellular homeostasis and leakage of cellular components, such as proteins, ATP molecules or intracellular ions. Autoxidizing polyphenols also act as pro-oxidative substances. Hydrogen peroxide formed in the process of oxidation of polyphenolic compounds acts as a bactericidal substance (by induction of DNA breaks). With regard to intestinal microbiota, polyphenols are considered prebiotic substances that increase the number of commensal bacteria. They can positively influence the growth of Lactobacillus bacteria, which have the ability to metabolize undigested antioxidants in the digestive tract of humans and animals. Depending on the pH of the environment and the presence of ions, plant polyphenols in the human digestive tract can act as substances with antioxidant potential or become pro-oxidants. Thus, combining functional food with polyphenols and Lactobacillus bacteria not only protects food products against the development of undesirable and pathogenic microbiota, but also has a positive effect on human health. The paper also describes the possibility of changes in the genome of Lactobacillus bacteria (under the influence of polyphenols) and the influence of Lactobacillus spp. bacteria on the antimicrobial properties of polyphenols. The enzymatic abilities of bacteria of the genus Lactobacillus, which influence the transformation of polyphenolic compounds, were also described.
Collapse
|
31
|
The Versatility of Antioxidant Assays in Food Science and Safety-Chemistry, Applications, Strengths, and Limitations. Antioxidants (Basel) 2020; 9:antiox9080709. [PMID: 32764410 PMCID: PMC7464350 DOI: 10.3390/antiox9080709] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Currently, there is a growing interest in screening and quantifying antioxidants from biological samples in the quest for natural and effective antioxidants to combat free radical-related pathological complications. Antioxidant assays play a crucial role in high-throughput and cost-effective assessment of antioxidant capacities of natural products such as medicinal plants and food samples. However, several investigators have expressed concerns about the reliability of existing in vitro assays. Such concerns arise mainly from the poor correlation between in vitro and in vivo results. In addition, in vitro assays have the problem of reproducibility. To date, antioxidant capacities are measured using a panel of assays whereby each assay has its own advantages and limitations. This unparalleled review hotly disputes on in vitro antioxidant assays and elaborates on the chemistry behind each assay with the aim to point out respective principles/concepts. The following critical questions are also addressed: (1) What make antioxidant assays coloured? (2) What is the reason for working at a particular wavelength? (3) What are the advantages and limitations of each assay? and (4) Why is a particular colour observed in antioxidant–oxidant chemical reactions? Furthermore, this review details the chemical mechanism of reactions that occur in each assay together with a colour ribbon to illustrate changes in colour. The review ends with a critical conclusion on existing assays and suggests constructive improvements on how to develop an adequate and universal antioxidant assay.
Collapse
|
32
|
Pervaiz I, Saleem H, Sarfraz M, Imran Tousif M, Khurshid U, Ahmad S, Zengin G, Ibrahime Sinan K, Locatelli M, Mahomoodally FM, Asnawi Zainal Abidin S, Ahemad N. Multidirectional insights into the phytochemical, biological, and multivariate analysis of the famine food plant (Calligonum polygonoides L).: A novel source of bioactive phytocompounds. Food Res Int 2020; 137:109606. [PMID: 33233202 DOI: 10.1016/j.foodres.2020.109606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Calligonum polygonoides L. also known as famine food plant, is normally consumed in times of food scarcity in India and Pakistan and also used traditionally in the management of common diseases. The present design aims to provide an insight into the medicinal potential of four solvent extracts of C. polygonoides via an assessment of its phytochemical profile, antioxidant and enzyme inhibitory potential. Phytochemical composition was estimated by deducing total bioactive constituents, UHPLC-MS secondary metabolites profile, and HPLC phenolic quantification. Antioxidant potential was determined via six methods (radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum total antioxidant capacity and metal chelation activity). Enzyme inhibitory potential was assessed against clinical enzymes (acetylcholinesterase -AChE, butyrylcholinesterase -BChE, tyrosinase, and α-amylase). The highest amounts of phenolic contents were found in chloroform extract (76.59 mg GAE/g extract) which may be attributed to its higher radical scavenging, reducing power and tyrosinase inhibition potential. The n-butanol extract containing the maximum amount of flavonoids (55.84 mg RE/g extract) exhibited highest metal chelating capacity. Similarly, the n-hexane extract was found to be most active against AChE (4.65 mg GALAE/g extract), BChE (6.59 mg GALAE/g extract), and α-amylase (0.70 mmol ACAE/g extract) enzymes. Secondary metabolite assessment of the crude methanol extract as determined by UHPLC-MS analysis revealed the presence of 24 (negative ionization mode) and 15 (positive ionization mode) secondary metabolites, with most of them belonging to phenolic, flavonoids, terpene, and alkaloid groups. Moreover, gallic acid and naringenin were the main phenolics quantified by HPLC-PDA analysis in all the tested extracts (except n-butanol extract). PCA statistical analysis was also conducted to establish any possible relationship amongst bioactive contents and biological activities. Overall, the C. polygonoides extracts could be further considered to isolate bioactive enzyme inhibitory and antioxidant natural phytocompounds.
Collapse
Affiliation(s)
- Irfan Pervaiz
- Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan; Department of Pharmacy, University of Lahore, Gujrat Campus, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan; School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Umair Khurshid
- Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Saeed Ahmad
- Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus/Konya, Turkey
| | | | - Marcello Locatelli
- Department of Pharmacy, University 'G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Fawzi M Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Syafiq Asnawi Zainal Abidin
- Liquid Chromatography Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Global Asia in The 21st Century (GA21) Multidisciplinary Research Platform, Monash University, Malaysia.
| |
Collapse
|
33
|
Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 2020; 44:e13394. [PMID: 32691460 DOI: 10.1111/jfbc.13394] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
In this review, the concept of phenolic antioxidants, mechanisms of action, and applications have been reviewed. Phenolic compounds (PCs) acts as an antioxidant by reacting with a variety of free radicals. The mechanism of antioxidant actions involved either by hydrogen atom transfer, transfer of a single electron, sequential proton loss electron transfer, and chelation of transition metals. In foods, the PCs act as antioxidants which are measured with several in vitro spectroscopic methods. The PCs have been found in milk and a wide range of dairy products with sole purposes of color, taste, storage stability, and quality enhancement. The role of PCs in three types of food additives, that is, antimicrobial, antioxidant, and flavoring agents have been critically reviewed. The literature revealed that PCs present in a variety of foods possess several health benefits such as antibacterial, antihyperlipidemic, anticancer, antioxidants, cardioprotective, neuroprotective, and antidiabetic properties. PRACTICAL APPLICATIONS: Phenolic compounds are strong antioxidants and are safer than synthetic antioxidants. The wide occurrence in plant foods warranted continuous review applications. This review, therefore, presented an updated comprehensive overview of the concept, mechanism, and applications of phenolic antioxidants in foods.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
34
|
Influence of variety and growing location on carotenoid and vitamin E contents of 184 different durum wheat varieties (Triticum turgidum ssp. durum) in Germany. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03557-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe influence of variety and growing location on the carotenoid and vitamin E content of 184 different varieties of durum wheat of each of the German locations Hohenheim and Seligenstadt was analyzed by HPLC. In addition, the yellow pigment content was measured as b value using a chroma meter. The results showed that the measured parameters vary both between sites and varieties, with higher variance between varieties. Finally, we elaborated a high genetic variance and heritability for lutein and total carotenoids and no negative correlations to important agronomic and quality traits in durum wheat. Thus, future durum breeding could produce varieties with improved agronomy, quality, and increased contents of lutein and total carotenoids. Vitamin E has only a minor importance due to the low contents in durum wheat. Due to the high correlation between the b value and the total carotenoid content, the b value could be used as a cheap and rapid method to initially screen high numbers of breeding lines before testing individual promising breeding lines with HPLC, warranting efficient and accurate selection of durum lines with increased carotenoid content.
Collapse
|
35
|
Pérez-Gálvez A, Viera I, Roca M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants (Basel) 2020; 9:E505. [PMID: 32526968 PMCID: PMC7346216 DOI: 10.3390/antiox9060505] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 01/06/2023] Open
Abstract
Chlorophylls and carotenoids are natural pigments that are present in our daily diet, especially with the increasing tendency towards more natural and healthy behaviors among consumers. As disturbed antioxidant homeostasis capacities seem to be implicated in the progress of different pathologies, the antioxidant properties of both groups of lipophilic compounds have been studied. The objective of this review was to analyze the state-of-the-art advances in this field. We conducted a systematic bibliographic search (Web of Science™ and Scopus®), followed by a comprehensive and critical description of the results, with special emphasis on highly cited and more recently published research. In addition to an evaluative description of the methodologies, this review discussed different approaches used to obtain a physiological perspective, from in vitro studies to in vivo assays using oxidative biomarkers. From a chemical viewpoint, many studies have demonstrated how a pigment's structure influences its antioxidant response and the underlying mechanisms. The major outcome is that this knowledge is essential for interpreting new data in a metabolic networks context in the search for more direct applications to health. A promising era is coming where the term "antioxidant" is understood in terms of its broadest significance.
Collapse
Affiliation(s)
| | | | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain; (A.P.-G.); (I.V.)
| |
Collapse
|
36
|
An Environmentally Friendly Practice Used in Olive Cultivation Capable of Increasing Commercial Interest in Waste Products from Oil Processing. Antioxidants (Basel) 2020; 9:antiox9060466. [PMID: 32492835 PMCID: PMC7346186 DOI: 10.3390/antiox9060466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
In the Rural Development Plan (2014–2020), the European Commission encouraged the conversion and supported the maintenance of organic farming. Organic olive oil (bioEVOO) production involves the use of environmentally sustainable fertilizers and the recycling of olive pomace (Pom) and olive vegetation waters (VW) to reduce the environmental impact of these wastes. An ecofriendly way to recycle olive wastes is to reuse them to extract bioactive compounds. In this study, the total phenolic compounds content, their profile and dosage, the antioxidant action in oil, pomace, and vegetation water was evaluated when the Trichoderma harzianum M10 was used as a biostimulant in agriculture. Two spectrophotometric tests (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) acid (ABTS)) evaluated the antioxidant potential of samples, a spectrophotometric method estimated total phenolic content, and an Ultra-High-Performance Liquid Chromatography (UHPLC)–Orbitrap method evaluated the phenolics profile. Our results showed that the biostimulation improved the antioxidant potential and the total concentration of phenolics in the bioEVOO and bio-pomace (bioPom) samples and mainly enhanced, among all classes of phenolic compounds, the production of the flavonoids and the secoiridoids. Moreover, they demonstrated the Trichoderma action in the mevalonate pathway to produce phenols for the first time. The decisive action of the Thricoderma on the production of phenolic compounds increases the economic value of the waste materials as a source of bioactive compounds useful for the pharmaceutical, cosmetic, and food industries.
Collapse
|
37
|
Chmelová D, Škulcová D, Legerská B, Horník M, Ondrejovič M. Ultrasonic-assisted extraction of polyphenols and antioxidants from Picea abies bark. J Biotechnol 2020; 314-315:25-33. [PMID: 32294516 DOI: 10.1016/j.jbiotec.2020.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/20/2023]
Abstract
Spruce bark represents a reservoir of bioactive compounds. The aim of this study was to investigate the effect of independent variables (temperature, liquid to solid ratio, time and methanol content) and their interaction within the extraction process by the response surface methodology (RSM). The effect of conventional (solvent extraction; SE) and modern (ultrasound-assisted extraction; UAE) methods for the extraction of antioxidants (antioxidant capacity; AC) and polyphenols (total polyphenol content; TPC) was compared. Maximum yields of AC and TPC by SE and UAE were obtained at modified optimal conditions of 63 °C, methanol content of 53 % (v/v) and 38 mL of extraction solvent per gram of dry material. Two-step extraction process consisting of the fast washing and slow diffusion steps was suitable described by Peleg and Patricelli mathematic models. The HPLC fingerprints of both extracts did not show significant differences while the content of phenolic compounds extracted by UAE was 1.1- to 7.1-times higher than that obtained by SE, quantified by HPLC.
Collapse
Affiliation(s)
- Daniela Chmelová
- University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnology, Nam J. Herdu 2, SK-91701, Trnava, Slovak Republic.
| | - Dominika Škulcová
- University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnology, Nam J. Herdu 2, SK-91701, Trnava, Slovak Republic
| | - Barbora Legerská
- University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnology, Nam J. Herdu 2, SK-91701, Trnava, Slovak Republic
| | - Miroslav Horník
- University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Ecochemistry and Radioecology, Nám. J. Herdu 2, SK-917 01, Trnava, Slovak Republic
| | - Miroslav Ondrejovič
- University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnology, Nam J. Herdu 2, SK-91701, Trnava, Slovak Republic
| |
Collapse
|
38
|
Bacchetti T, Morresi C, Bellachioma L, Ferretti G. Antioxidant and Pro-Oxidant Properties of Carthamus Tinctorius, Hydroxy Safflor Yellow A, and Safflor Yellow A. Antioxidants (Basel) 2020; 9:antiox9020119. [PMID: 32013224 PMCID: PMC7070856 DOI: 10.3390/antiox9020119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Carthamus Tinctorius L. (safflower) is extensively used in traditional herbal medicine. (2) The aim of this study was to investigate the bioactive properties of polyphenol extracts from flowers of Carthamus Tinctorius (CT) cultivated in Italy. We also evaluated the properties of two bioactive water-soluble flavonoid compounds, hydroxy safflor yellow A (HSYA) and safflor yellow A (SYA), contained in Carthamus Tinctorius petals. (3) The total polyphenol content was 3.5 ± 0.2 g gallic acid equivalent (GAE)/100 g, flavonoids content was 330 ± 23 mg catechin equivalent (CE)/100 g in the flowers. The extract showed a high antioxidant activity evaluated by oxygen radical absorbance capacity (ORAC) and 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assays. In addition, flower extract, SYA, and HSYA were able to reduce the susceptibility of low-density lipoprotein to copper-induced lipid peroxidation. In order to investigate the bioactive properties of flower extract, SYA, and HSYA we also studied their modulatory effect of oxidative stress on human dermal fibroblasts (HuDe) oxidized by tert-butyl hydroperoxide (t-BOOH). The CT extract at concentrations ranging from 0.01–20 μg GAE/mL of polyphenols, exerted a protective effect against t-BOOH triggered oxidative stress. At higher concentration the extract exerted a pro-oxidant effect. Similar results have been obtained using HSYA and SYA. (4) These results demonstrate a biphasic effect exerted by HSYA, SYA, and flower extracts on oxidative stress.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (T.B.); (C.M.); (L.B.)
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (T.B.); (C.M.); (L.B.)
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (T.B.); (C.M.); (L.B.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-4968
| |
Collapse
|
39
|
Balbino KP, Juvanhol LL, Epifânio ADPS, Marota LD, Bressan J, Hermsdorff HHM. Dietary intake as a predictor for all-cause mortality in hemodialysis subjects (NUGE-HD study). PLoS One 2019; 14:e0226568. [PMID: 31846484 PMCID: PMC6917285 DOI: 10.1371/journal.pone.0226568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
This study aimed to identify the factors capable of mortality prediction in patients on hemodialysis, using a prospective cohort with three years of follow-up. We hypothesized that lack of clinical-metabolic control, impairment of nutritional status, and inadequate food consumption are risk factors for mortality in this population. This is a longitudinal study on a non-probabilistic sample of 85 adults and elderly patients undergoing hemodialysis, aged ≥ 18 years (66.0% male, 61.6±13.7 years). Data on anthropometric, biomarkers, body composition and food intake were obtained. Predictors of mortality were evaluated using Cox regression analysis. During the three years follow-up, 16 patients (18.8%) died. We observed that age (HR = 1.319, CI 95% = 1.131-1.538), calcium-phosphorus product (HR = 1.114, CI 95% = 1.031-1.205), ferritin (HR = 1.001, CI 95% = 1.001-1.002), nitric oxide (HR = 1.082, CI 95% = 1.006-1.164), and vitamin C intake (HR = 1.005, CI 95% = 1.001-1.009) were positively associated with mortality. Serum iron (HR = 0.717, CI 95% = 0.567-0.907), triceps skinfold thickness (HR = 0.704, CI 95% = 0.519-0.954), lean mass (HR = 0.863, CI 95% = 0.787-0.945), and the ratio of dietary monounsaturated/polyunsaturated fat (HR = 0.022, CI 95% = 0.001-0.549) were independent negative predictors of mortality. Our results suggest that dietary intake is also a predictor of mortality in patients on hemodialysis, besides nutritional status, body composition, oxidative stress, inflammation, and bone metabolism, indicating the importance of evaluation of these factors altogether for better prognosis.
Collapse
Affiliation(s)
- Karla Pereira Balbino
- Department of Nutrition and Health. Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leidjaira Lopes Juvanhol
- Department of Nutrition and Health. Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Josefina Bressan
- Department of Nutrition and Health. Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
40
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
41
|
Gluvić A, Ulrih NP. Peptides derived from food sources: Antioxidative activities and interactions with model lipid membranes. Food Chem 2019; 287:324-332. [DOI: 10.1016/j.foodchem.2019.02.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/16/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022]
|
42
|
Pedra SRFF, Zielinsky P, Binotto CN, Martins CN, Fonseca ESVBD, Guimarães ICB, Corrêa IVDS, Pedrosa KLM, Lopes LM, Nicoloso LHS, Barberato MFA, Zamith MM. Brazilian Fetal Cardiology Guidelines - 2019. Arq Bras Cardiol 2019; 112:600-648. [PMID: 31188968 PMCID: PMC6555576 DOI: 10.5935/abc.20190075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simone R F Fontes Pedra
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil.,Hospital do Coração (HCor), São Paulo, SP - Brazil
| | - Paulo Zielinsky
- Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre, RS - Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Durazzo A, Lucarini M, Novellino E, Daliu P, Santini A. Fruit-based juices: Focus on antioxidant properties-Study approach and update. Phytother Res 2019; 33:1754-1769. [PMID: 31155809 DOI: 10.1002/ptr.6380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
This paper proposes a perspective literature review of the antioxidant properties in fruit-based juices. The total antioxidant properties due to compounds such as carotenoids, polyphenolic compounds, flavonoids, and tannins as well as the assessment of interactions between natural active compounds and other food matrix components can be seen as the first step in the study of potential health benefits of fruit-based juices. A brief summary is given on the significance of antioxidant properties of fruit juices, the conventional methods for antioxidant activity evaluation, and on the newly emerged sample analysis and data interpretation strategies, that is, chemometric analysis based on spectroscopic data. The effect of fruit processing techniques and the addition of ingredients on the antioxidant properties of fruit-based juices are also discussed.
Collapse
Affiliation(s)
| | | | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Patricia Daliu
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
44
|
Essack M, Salhi A, Stanimirovic J, Tifratene F, Bin Raies A, Hungler A, Uludag M, Van Neste C, Trpkovic A, Bajic VP, Bajic VB, Isenovic ER. Literature-Based Enrichment Insights into Redox Control of Vascular Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1769437. [PMID: 31223421 PMCID: PMC6542245 DOI: 10.1155/2019/1769437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.
Collapse
Affiliation(s)
- Magbubah Essack
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Adil Salhi
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Julijana Stanimirovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Faroug Tifratene
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Arwa Bin Raies
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Arnaud Hungler
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Mahmut Uludag
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Christophe Van Neste
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Andreja Trpkovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Vladan P. Bajic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| |
Collapse
|
45
|
Novel Potentiometric 2,6-Dichlorophenolindo-phenolate (DCPIP) Membrane-Based Sensors: Assessment of Their Input in the Determination of Total Phenolics and Ascorbic Acid in Beverages. SENSORS 2019; 19:s19092058. [PMID: 31052582 PMCID: PMC6540085 DOI: 10.3390/s19092058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
Abstract
In this work, we demonstrated proof-of-concept for the use of ion-selective electrodes (ISEs) as a promising tool for the assessment of total antioxidant capacity (TAC). Novel membrane sensors for 2,6-dichlorophenolindophenolate (DCPIP) ions were prepared and characterized. The sensors membranes were based on the use of either CuII-neocuproin/2,6-dichlorophenolindo-phenolate ([Cu(Neocup)2][DCPIP]2) (sensor I), or methylene blue/2,6-dichlorophenolindophenolate (MB/DCPIP) (sensor II) ion association complexes in a plasticized PVC matrix. The sensors revealed significantly enhanced response towards DCPIP ions over the concentration range 5.13 × 10−5–1.0 × 10−2 and 5.15 × 10−5–1.0 × 10−2 M at pH 7 with detection limits of 6.3 and 9.2 µg/mL with near-Nernstian slope of −56.2 ± 1.7 and −51.6 ± 2 mV/decade for sensors I and II, respectively. The effects of plasticizers and various foreign common ions were also tested. The sensors showed enhanced selectivity towards DCPIP over many other phenolic and inorganic ions. Long life span, high potential stability, high reproducibility, and fast response were also observed. Method validation was also verified by measuring the detection limit, linearity range, accuracy, precision, repeatability and between-day-variability. The sensors were introduced for direct determination of TAC in fresh and canned juice samples collected from local markets. The obtained results agreed fairly well with the data obtained by the standard method.
Collapse
|
46
|
Gualtieri AF. Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers. Toxicol Appl Pharmacol 2018; 361:89-98. [DOI: 10.1016/j.taap.2018.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022]
|
47
|
Dietary antioxidants as a source of hydrogen peroxide. Food Chem 2018; 278:692-699. [PMID: 30583431 DOI: 10.1016/j.foodchem.2018.11.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 11/20/2022]
Abstract
Studies of 54 antioxidants revealed that 27 of them, mainly polyphenols, generated hydrogen peroxide (H2O2) when added to Dulbecco's modified Eagle's medium (DMEM), other media used for culture of mammalian and yeast cells and phosphate-buffered saline. The most active antioxidants were: propyl gallate (PG), (-)-epigallocatechin gallate (EGCG) and quercetin (Q). Chelex treatment and iron chelators decreased H2O2 generation suggesting that transition metal ions catalyze antioxidant autoxidation and H2O2 production. Green tea also generated H2O2; tea prepared on tap water generated significantly more H2O2 than tea prepared on deionized water. Ascorbic acid decreased H2O2 production although it generated H2O2 itself, in the absence of other additives. Lemon added to the tea significantly reduced generation of H2O2. Hydrogen peroxide generated in the medium contributed to the cytotoxicity of PG, EGCG and Q to human prostate carcinoma DU-145 cells, since catalase increased the survival of the cells subjected to these compounds in vitro.
Collapse
Key Words
- (+)-Catechin, CID: 9064
- (−)-Epicatechin gallate, CID: 107905
- (−)-Epicatechin, CID: 72276
- (−)-Epigallocatechin gallate, CID: 65064
- (−)-Epigallocatechin, CID: 72277
- 2,6-di-tert-Butyl-4-methylphenol, CID: 66609
- Aminoguanidine hydrochloride, CID: 2734687
- Antioxidant
- Apigenin, CID: 5280443
- Ascorbic acid
- Autoxidation
- Betanin, CID: 54600918
- Buthylhydroxyanizole, CID: 24667
- Caffeic acid, CID: 689043
- Chlorogenic acid, CID: 1794427
- Citric acid, CID: 311
- Curcumin, CID: 969516
- Daidzein, CID: 5281708
- Ethoxyquin, CID: 3293
- Gallic acid, CID: 370
- Genistein, CID: 5280961
- Gentisic acid, CID: 3469
- Glycitein, CID: 5317750
- Hesperetin, CID: 72281
- Hesperidin, CID: 10621
- Hydrocinnamic acid (3-Phenylpropionic acid), CID: 107
- Hydrogen peroxide
- Mangiferin, CID: 5281647
- Melatonin, CID: 896
- Metformin hydrochloride, CID: 14219
- Morin, CID: 5281670
- N-Acetylcysteine, CID: 12035
- Naringenin, CID: 932
- Naringin, CID: 442428
- Oxaloacetic acid, CID: 970
- Polyphenols
- Propyl gallate, CID: 4947
- Pyrogallol, CID: 1057
- Pyruvic acid, CID: 1060
- Quercetin, CID: 5280343
- Rutin, CID: 5280805
- Sinapic acid, CID: 637775
- Sodium ascorbate, CID: 23667548
- Sodium succinate, CID: 9020
- Tea
- Trolox, CID: 40634
- Vanillic acid, CID: 8468
- d-Isoascorbic acid, CID: 54675810
- d-pantothenic acid hemicalcium, CID: 11306073
- l-Ascorbic acid, CID: 54670067
- l-Glutathione, CID: 124886
- l-cysteine, CID: 5862
- l-methionine, CID: 6137
- p-Coumaric acid, CID: 637542
- tert-Buthylhydroquinone, CID: 16043
- trans-Ferulic acid, CID: 445858
- trans-Resveratrol, CID: 445154
- β-Carotene, CID: 5280489
Collapse
|
48
|
Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease. Pharmaceuticals (Basel) 2018; 11:ph11040111. [PMID: 30347874 PMCID: PMC6315830 DOI: 10.3390/ph11040111] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anemia is a major health condition associated with chronic kidney disease (CKD). A key underlying cause of this disorder is iron deficiency. Although intravenous iron treatment can be beneficial in correcting CKD-associated anemia, surplus iron can be detrimental and cause complications. Excessive generation of reactive oxygen species (ROS), particularly by mitochondria, leads to tissue oxidation and damage to DNA, proteins, and lipids. Oxidative stress increase in CKD has been further implicated in the pathogenesis of vascular calcification. Iron supplementation leads to the availability of excess free iron that is toxic and generates ROS that is linked, in turn, to inflammation, endothelial dysfunction, and cardiovascular disease. Histidine is indispensable to uremic patients because of the tendency toward negative plasma histidine levels. Histidine-deficient diets predispose healthy subjects to anemia and accentuate anemia in chronic uremic patients. Histidine is essential in globin synthesis and erythropoiesis and has also been implicated in the enhancement of iron absorption from human diets. Studies have found that L-histidine exhibits antioxidant capabilities, such as scavenging free radicals and chelating divalent metal ions, hence the advocacy for its use in improving oxidative stress in CKD. The current review advances and discusses evidence for iron-induced toxicity in CKD and the mechanisms by which histidine exerts cytoprotective functions.
Collapse
|
49
|
Singh UB, Malviya D, Khan W, Singh S, Karthikeyan N, Imran M, Rai JP, Sarma BK, Manna MC, Chaurasia R, Sharma AK, Paul D, Oh JW. Earthworm Grazed- Trichoderma harzianum Biofortified Spent Mushroom Substrates Modulate Accumulation of Natural Antioxidants and Bio-Fortification of Mineral Nutrients in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1017. [PMID: 30065737 PMCID: PMC6056767 DOI: 10.3389/fpls.2018.01017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/22/2018] [Indexed: 05/14/2023]
Abstract
The present investigation was aimed at evaluating the impact of earthworm grazed and Trichoderma harzianum biofortified spent mushroom substrate (SMS) on natural antioxidant and nutritional properties of tomato. Results of the investigation reveal that earthworm grazing and T. harzianum bio-fortification led to significant improvement in the physico-chemical properties of fresh SMS and its application increased the accumulation of natural antioxidants and mineral content in tomato as compared to either T. harzianum biofortified SMS or fresh SMS. In particular, the earthworm grazed, T. harzianum biofortified SMS (EGTHB-SMS) was found to inhibit lipid peroxidation and protein oxidation with significant increase in total polyphenol and flavonoid content in tomato. Further, it increased Fe2+/Fe3+ chelating activity, superoxide anion radical scavenging activity compared to other treatments. The results thus suggest an augmented elicitation of natural antioxidant properties in tomato treated with EGTHB-SMS, resulting in a higher radical scavenging activity, that is highly desirable for human health. In addition, the use of SMS to enhance the nutritional value of tomato fruits becomes an environment friendly approach in sustainable crop production.
Collapse
Affiliation(s)
- Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Wasiullah Khan
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - N. Karthikeyan
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Mohd. Imran
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Jai P. Rai
- Department of Mycology and Plant Pathology (Krishi Vigyan Kendra), Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - B. K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - M. C. Manna
- Division of Soil Biology, ICAR-Indian Institute of Soil Science, Bhopal, India
| | - Rajan Chaurasia
- Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Arun K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Diby Paul
- Pilgram Marpeck School of STEM, Truett McConnel University, Cleveland, GA, United States
| | - Jae-Wook Oh
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
50
|
Moretti S, Mrakic-Sposta S, Roncoroni L, Vezzoli A, Dellanoce C, Monguzzi E, Branchi F, Ferretti F, Lombardo V, Doneda L, Scricciolo A, Elli L. Oxidative stress as a biomarker for monitoring treated celiac disease. Clin Transl Gastroenterol 2018; 9:157. [PMID: 29880904 PMCID: PMC5992147 DOI: 10.1038/s41424-018-0031-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION High levels of reactive oxygen species (ROS) and impaired antioxidant defense systems lead to oxidative stress (OxS) and tissue injury in different intestinal and extra intestinal conditions, including celiac disease (CD). The aim of the present study was to investigate the role and potential use of ROS and other biomarkers of OxS in the clinical management of CD. METHODS We collected duodenal specimens and blood samples from naïve patients (N-CD), patients on a gluten free diet (GFD) including responders (CD-GFD) and non-responders (NRCD). We measured plasmatic ROS production (electron paramagnetic resonance, EPR), lipid peroxidation (thiobarbituric acid-reactive substances, TBARS), protein oxidation (protein carbonyl, PC), total antioxidant capacity (TAC), nitric oxides and glutathione (GSH) in erythrocytes. RESULTS Fifty-four patients affected by CD were enrolled (17 N-CD, 18 CD-GFD and 19 NRCD; 44 F; age 44 ± 13 years). A significant increase of plasmatic OxS biomarkers (ROS, peroxidated lipids, oxidized proteins, and nitrate concentrations) and decrease of antioxidant species (TAC and GSH levels) were found in NRCD and N-CD compared to CD-GFD. Comparably, a significant direct relationship between the severity of duodenal atrophy, ROS production rates and TBARS was found; conversely, TAC and GSH presented an inverse correlation. DISCUSSION OxS is involved in CD tissue damage and correlates with the degree of duodenal atrophy. These findings suggest the possible role of OxS biomarkers as indicators of CD activity during the clinical follow-up.
Collapse
Affiliation(s)
- Sarah Moretti
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Simona Mrakic-Sposta
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Leda Roncoroni
- Center for Prevention and Diagnosis of Celiac Disease- Div. of Gastroenterology and Endoscopy, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Festa del Perdono, 20122, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Festa del Perdono, 20122, Milano, Italy
| | - Alessandra Vezzoli
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (CNR), Niguarda Ca' Granda Hospital, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Erika Monguzzi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Festa del Perdono, 20122, Milano, Italy
| | - Federica Branchi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Festa del Perdono, 20122, Milano, Italy
| | - Francesca Ferretti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Festa del Perdono, 20122, Milano, Italy
| | - Vincenza Lombardo
- Center for Prevention and Diagnosis of Celiac Disease- Div. of Gastroenterology and Endoscopy, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy
| | - Luisa Doneda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Festa del Perdono, 20122, Milano, Italy
| | - Alice Scricciolo
- Center for Prevention and Diagnosis of Celiac Disease- Div. of Gastroenterology and Endoscopy, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy
| | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease- Div. of Gastroenterology and Endoscopy, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy.
| |
Collapse
|