1
|
Uner B, Baranauskaite Ortasoz J, Tas C. Development of thermosensitive liposome-containing in-situ gel systems for intranasal administration of thiocolchicoside and in vivo evaluation in a rabbit model. Pharm Dev Technol 2024; 29:582-595. [PMID: 38841795 DOI: 10.1080/10837450.2024.2364707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
AIM Thiocolchicoside (THC) is a drug under the category of BCS III. Due to its high molecular weight, it has poor oral bioavailability and low skin permeability. This study aims to find an alternative delivery method for THC that enhances its bioavailability through nasal application approach. In situ gels containing plain or liposomal THC with different combinations of Pluronic® F127 and PEG 400 were prepared. METHOD Liposome formulations were prepared using the thin film hydration method and tested for their characterization such as for drug content, particle size, and zeta potential. In vivo pharmacokinetic parameters of formulations such as Cmax, Tmax, and AUC were tested on the rabbit model. The formulations were also scrutinized for their cell viability properties. RESULT Formulation composition with 2% soybean phosphatidylcholine and 10 mg THC exhibited ∼94% entrapment efficiency, minimum particle size 101.32 nm, low polydispersity index 0.225 and +0.355 zeta potential. In situ liposomal dispersion containing 15% Pluronic® F127 turned into gel at nasal temperature. Cell lines were unharmed for 48 h. İn situ liposomal gels showed 1.5x higher blood concentration than the control formula. CONCLUSION In situ gels of liposomal THC formulations offer advantages over traditional nasal solutions, demonstrating comparable bioavailability to parenteral medication while also preserving the health of nasal mucosa cells.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
- Department of Pharmaceutical and Administrative Science, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Istanbul, Turkey
| | | | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
2
|
Wang Y, Yue Y, Jia R, Liu X, Cheng Z, Cheng Y, Xu Y, Xie Z, Xia H. Design and Evaluation of Paeonol-Loaded Liposomes in Thermoreversible Gels for Atopic Dermatitis. Gels 2023; 9:gels9030198. [PMID: 36975647 PMCID: PMC10047988 DOI: 10.3390/gels9030198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Paeonol (PAE) is a hydrophobic drug. In this study, we encapsulated paeonol in a lipid bilayer of liposomes (PAE-L), which delayed drug release and increased drug solubility. When PAE-L was dispersed in gels (PAE-L-G) based on a poloxamer matrix material for local transdermal delivery, we observed amphiphilicity, reversible thermal responsiveness, and micellar self-assembly behavior. These gels can be used for atopic dermatitis (AD), an inflammatory skin disease, to change the surface temperature of the skin. In this study, we prepared PAE-L-G at an appropriate temperature for the treatment of AD. We then assessed the gel’s relevant physicochemical properties, in vitro cumulative drug release, and antioxidant properties. We found that PAE-loaded liposomes could be designed to increase the drug effect of thermoreversible gels. At 32 °C, PAE-L-G could change from solution state to gelatinous state at 31.70 ± 0.42 s, while the viscosity was 136.98 ± 0.78 MPa.S and the free radical scavenging rates on DPPH and H2O2 were 92.24 ± 5.57% and 92.12 ± 2.71%, respectively. Drug release across the extracorporeal dialysis membrane reached 41.76 ± 3.78%. In AD-like mice, PAE-L-G could also relieve skin damage by the 12th day. In summary, PAE-L-G could play an antioxidant role and relieve inflammation caused by oxidative stress in AD.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiqing Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co., Ltd., Hefei 230088, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| |
Collapse
|
3
|
Kanugo A, Deshpande A, Sharma R. Formulation Optimization and Evaluation of Nanocochleate Gel of Famciclovir for the Treatment of Herpes Zoster. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:259-269. [PMID: 35733311 DOI: 10.2174/1872210516666220622115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Herpes zoster is a viral infection triggered due to the reactivation of the varicella- zoster virus in the posterior dorsal root ganglion. Herpes zoster infections occur mostly in the facial, cervical and thoracic regions of the body, beginning with pain and resulting in the vesicular eruption. Recently, this infection was observed during the COVID-19 pandemic and also after the induction of mRNA-based vaccine for coronavirus at an extended level. Nanocochleates are cylindrical (cigarshape) microstructure lipid-based versatile carriers for drug delivery systems. Famciclovir is an antiviral agent employed for the treatment of Herpes zoster infections. OBJECTIVE The current research patent aims to develop a novel nanocochleate gel of Famciclovir for the treatment of herpes zoster infections with higher efficacy. METHODS The interaction studies using FTIR were carried out and indicated no such interactions between the drug and lipids. The nanocochleates were developed using hydrogel, trapping, liposome before cochleate dialysis, direct calcium dialysis and binary aqueous-aqueous emulsion methods, respectively. The 32 Box-Behnken design was applied by considering the concentration of lipids (phosphatidylcholine and cholesterol) and speed of rotation as independent factors, whereas particle size and entrapment efficiency as dependable factors. RESULTS The developed nanocochleates were estimated for the particle size (276.3 nm), zeta potential (-16.7 mV), polydispersity index (0.241), entrapment efficiency (73.87±0.19%) and in vitro diffusion release (>98.8% in 10 h). The optimized batch was further converted into the topical gel using carbopol 940 as a gelling agent. The prepared gel was smooth, rapidly spreadable with a viscosity (5998.72 cp), drug content (95.3%) and remained stable during stability studies. CONCLUSION A novel nanocochleate gel of Famciclovir was successfully developed for the treatment of infections associated with Herpes Zoster with sustained release action.
Collapse
Affiliation(s)
- Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule 425405, India
| | - Ashwini Deshpande
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Jadcherla, Mahabubnagar 509301, India
| | - Rahul Sharma
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule 425405, India
| |
Collapse
|
4
|
Tan MSA, Pandey P, Lohman RJ, Falconer JR, Siskind DJ, Parekh HS. Fabrication and Characterization of Clozapine Nanoemulsion Sol-Gel for Intranasal Administration. Mol Pharm 2022; 19:4055-4066. [PMID: 36149013 DOI: 10.1021/acs.molpharmaceut.2c00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia. However, it causes many adverse drug reactions (ADRs), which lead to poor treatment outcomes. Nose-to-brain (N2B) drug delivery offers a promising approach to reduce peripheral ADRs by minimizing systemic drug exposure. The aim of the present study was to develop and characterize clozapine-loaded nanoemulsion sol-gel (CLZ-NESG) for intranasal administration using high energy sonication method. A range of oils, surfactants, and cosurfactants were screened with the highest clozapine solubility selected for the development of nanoemulsion. Pseudoternary phase diagrams were constructed using a low-energy (spontaneous) method to identify the microemulsion regions (i.e., where mixtures were transparent). The final formulation, CLZ-NESG (pH 5.5 ± 0.2), comprising 1% w/w clozapine, 1% w/w oleic acid, 10% w/w polysorbate 80/propylene glycol (3:1), and 20% w/w poloxamer 407 (P407) solution, had an average globule size of ≤30 nm with PDI 0.2 and zeta potential of -39.7 ± 1.5 mV. The in vitro cumulative drug release of clozapine from the nanoemulsion gel at 34 °C (temperature of nasal cavity) after 72 h was 38.9 ± 4.6% compared to 84.2 ± 3.9% with the control solution. The permeation study using sheep nasal mucosa as diffusion barriers confirmed a sustained release of clozapine with 56.2 ± 2.3% cumulative drug permeated after 8 h. Additionally, the histopathological examination found no severe nasal ciliotoxicity on the mucosal tissues. The thermodynamic stability studies showed that the gel strength and viscosity of CLZ-NESG decreased after temperature cycling but was still seen to be in "gel" form at nasal temperature. However, the accelerated storage stability study showed a decrease in drug concentration after 3 months, which can be expected at elevated stress conditions. The formulation developed in this study showed desirable physicochemical properties for intranasal administration, highlighting the potential value of a nanoemulsion gel for improving drug bioavailability of clozapine for N2B delivery.
Collapse
Affiliation(s)
- Madeleine S A Tan
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.,Medicines Management Unit, Department of Health, Northern Territory Government, Royal Darwin Hospital, 105 Rocklands Drive, Tiwi, Northern Territory 0810, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Rink-Jan Lohman
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - James R Falconer
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Dan J Siskind
- Faculty of Medicine, The University of Queensland, 20 Weightman Street, Herston, Queensland 4006, Australia.,Metro South Addiction and Mental Health Service, Level 2 Mental Health, Woolloongabba Community Health Centre, 228 Logan Road, Woolloongabba, Queensland 4102, Australia
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
5
|
Thermodynamics and In-Plane Viscoelasticity of Anionic Phospholipid Membranes Modulated by an Ionic Liquid. Pharm Res 2022; 39:2447-2458. [PMID: 35902532 DOI: 10.1007/s11095-022-03348-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
This article presents the effects of an imidazolium-based ionic liquid (IL) on the thermodynamics and in-plane viscoelastic properties of model membranes of anionic phospholipids. The negative Zeta potential of multilamellar vesicles of 14 carbon lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) is observed to reduce due to the presence of few mole % of an IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The effect was found to be stronger on enhancing the chain length of the lipid. The surface pressure-area isotherms of lipid monolayer formed at air-water interface are modified by the IL reducing the effective area per molecule. Further, the equilibrium elasticity of the film is altered depending upon the thermodynamic phase of the lipids. While the presence of the IL in the DMPG lipid makes it ordered in the gel phase by reducing the entropy, the effect is opposite in the fluid phase. The in-plane viscoelastic parameters of the lipid film is quantified by dilation rheology using the oscillatory barriers of a Langmuir trough. Even though the low chain lipid DMPG does not show any effect of IL on its storage and loss moduli, the longer chain lipids exhibit a prominent effect in the liquid extended (LE) phase. Further, the dynamic response of the lipid film is found to be distinctly different in the liquid condensed (LC) phase from that of the LE phase.
Collapse
|
6
|
Karimi Z, Taymouri S, Minaiyan M, Mirian M. Evaluation of thermosensitive chitosan hydrogel containing gefitinib loaded cellulose acetate butyrate nanoparticles in a subcutaneous breast cancer model. Int J Pharm 2022; 624:122036. [PMID: 35868480 DOI: 10.1016/j.ijpharm.2022.122036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
In the present study, gefitinib loaded cellulose acetate butyrate nanoparticles (Gnb-NPs) were prepared and then incorporated into thermo-sensitive chitosan/β-glycerophosphate hydrogels for intratumoral administration in mice bearing breast cancer. Accordingly, Gnb-NPs were prepared using the solvent evaporation process and optimized by applying a two-level fractional factorial design. Properties of NPs, including particle size, zeta potential (ZP), polydispersity index (PdI), encapsulation efficiency (EE) % and drug loading (DL) %, were investigated; the optimized Gnb-NPs were then loaded in chitosan hydrogels (Gnb-NPs-Hydrogel). The formulated Gnb-NPs-Hydrogel was assessed in terms of gelling time, release behavior, injectability, swelling and degradation behavior. The anti-cancer efficacy of Gnb-NPs-Hydrogel was evaluated in vitro against the 4 T1 breast cancer cell line and in vivo in breast tumor bearing mice. The optimized formulation showed spherical particles with the size of 156.50 ± 2.40 nm, PdI of 0.20 ± 0.002, ZP of -4.90 ± 0.04 mV, EE of 99.77 ± 0.09 % and DL of 20.59 ± 0.05 %. Incorporating Gnb-NPs into the hydrogel led to the decrease of the drug release rate. Gnb-NPs-Hydrogel displayed a greater cytotoxic effect in comparison to the free Gnb and Gnb-Hydrogel in 4 T1 cancer cells. Furthermore,intratumorallyinjectedGnb-NPs-Hydrogel showed the strongest antitumor efficacy in vivo. The superior performance of Gnb-NPs-Hydrogel, thus, demonstrated its potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zahra Karimi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of Microemulsion-based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-nociceptive Efficacy Study. Int J Pharm 2022; 622:121830. [PMID: 35589005 DOI: 10.1016/j.ijpharm.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent the foundation of pain management caused by inflammatory disorders. Nevertheless, their oral administration induces several side effects exemplified by gastric ulceration, thus, delivering NSAIDs via the skin has become an attractive alternative. Herein, microemulsion-based hydrogel (MBH), proliposomal, and cubosomal gels were fabricated, loaded with diclofenac, and physicochemically characterized. The sizes, charges, surface morphologies, and the state of diclofenac within the reconstituted gels were also addressed. The release pattern and ex-vivo permeation studies using Franz cells were performed via the rat abdominal skin. The formulations were assessed in-vivo on mice skin for their irritation effect and their anti-nociceptive efficacy through the tail-flick test. Biosafety study of the optimal gel was also pointed out. The gels and their dispersion forms displayed accepted physicochemical properties. Diclofenac released in a prolonged manner from the prepared gels. MBH revealed a significantly higher skin permeation and the foremost results regarding in-vivo assessment where no skin irritation or altered histopathological features were observed. MBH further induced a significant anti-nociceptive effect during the tail-flick test with a lower tendency to evoke systemic toxicity. Therefore, limonene-containing microemulsion hydrogel is a promising lipid-based vehicle to treat pain with superior safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Kawthar K Abla
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hoda Elmaradny
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
10
|
Asgari S, Pourjavadi A, Setayeshmehr M, Boisen A, Ajalloueian F. Encapsulation of Drug‐Loaded Graphene Oxide‐Based Nanocarrier into Electrospun Pullulan Nanofibers for Potential Local Chemotherapy of Breast Cancer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shadi Asgari
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials Tissue Engineering and Nanotechnology School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan 8174673461 Iran
| | - Anja Boisen
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| |
Collapse
|
11
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
12
|
Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: a review. Colloids Surf B Biointerfaces 2021; 197:111389. [PMID: 33075659 DOI: 10.1016/j.colsurfb.2020.111389] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
In recent times, phytochemicals encapsulated or conjugated with nanocarriers for delivery to the specific sites have gained considerable research interest. Phytochemicals are mostly plant secondary metabolites which reported to be beneficial for human health and in disease theraphy. However, these compound are large size and polar nature of these compounds, make it difficult to cross the blood-brain barrier (BBB), endothelial lining of blood vessels, gastrointestinal tract and mucosa. Moreover, they are enzymatically degraded in the gastrointestinal tract. Therefore, encapsulation or conjugation of these compounds with nanocrriers could be an alternate way to enhance their bioefficacy by influencing their gastrointestinal stability, rate of absorption and dispersion. This review presents an overview of nanocarriers alternatives which improves therapeutic value and avoid toxicity, by releasing bioactive compounds specifically at target tissues with enhanced stability and bioavailability. Future investigations may emphasize on deciphering the structural changes in nanocarriers during digestion and absorption, the difference between in-vitro and in-vivo digestion simulations, and impact of nanocarriers on the metabolism of phytochemicals.
Collapse
Affiliation(s)
- Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
13
|
Wei W, Li H, Yin C, Tang F. Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv 2020; 27:460-468. [PMID: 32166987 PMCID: PMC7144265 DOI: 10.1080/10717544.2020.1739171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 01/30/2023] Open
Abstract
The in situ hydrogel drug delivery system is a hot research topic in recent years. Combining both properties of hydrogel and solution, in situ hydrogels can provide many advantages for drug delivery application, including easy application, high local drug concentration, prolonged drug retention time, reduced drug dose in vivo, good biocompatibility and improved patient compliance, thus has potential in tumor treatment. In this paper, the related literature reports in recent years were reviewed to summarize and discuss the research progress and development prospects in the application of in situ hydrogels in tumor treatment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hongfang Li
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Chengchen Yin
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fushan Tang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Dang HP, Shafiee A, Lahr CA, Dargaville TR, Tran PA. Local Doxorubicin Delivery via 3D‐Printed Porous Scaffolds Reduces Systemic Cytotoxicity and Breast Cancer Recurrence in Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hoang Phuc Dang
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- ARC Centre in Additive Biomanufacturing Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane Queensland 4059 Australia
| | - Abbas Shafiee
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- UQ Diamantina Institute Translational Research Institute The University of Queensland Brisbane Queensland 4102 Australia
- Royal Brisbane and Women's Hospital Metro North Hospital and Health Service Brisbane 4029 Australia
- Herston Biofabrication Institute Metro North Hospital and Health Service Brisbane 4029 Australia
| | - Christoph A. Lahr
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
| | - Tim R. Dargaville
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- ARC Centre in Additive Biomanufacturing Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane Queensland 4059 Australia
| | - Phong A. Tran
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- ARC Centre in Additive Biomanufacturing Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane Queensland 4059 Australia
- Interface Science and Materials Engineering Group School of Chemistry Physics and Mechanical Engineering Queensland University of Technology Brisbane 4059 Australia
| |
Collapse
|
15
|
Xiong Y, Kong J, Yi S, Feng X, Duan Y, Zhu X. Surfactin Ameliorated the Internalization and Inhibitory Performances of Bleomycin Family Compounds in Tumor Cells. Mol Pharm 2020; 17:2125-2134. [DOI: 10.1021/acs.molpharmaceut.0c00281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yi Xiong
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Jieqian Kong
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Sirun Yi
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Xueqiong Feng
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| |
Collapse
|
16
|
Xie C, Ding R, Wang X, Hu C, Yan J, Zhang W, Wang Y, Qu Y, Zhang S, He P, Wang Z. A disulfiram-loaded electrospun poly(vinylidene fluoride) nanofibrous scaffold for cancer treatment. NANOTECHNOLOGY 2020; 31:115101. [PMID: 31766038 DOI: 10.1088/1361-6528/ab5b35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Disulfiram (DSF), an FDA approved drug for the treatment of alcoholism, has shown its effectiveness against diverse cancer types. Thus, we developed a disulfiram-loaded scaffold using the electrospinning method to enhance the stability of DSF and to facilitate its appropriate distribution to tumor tissues. The drug release profile of the disulfiram-loaded scaffold was examined by high-performance liquid chromatography. We obtained mechanical and morphological characterizations of A549 cells treated with different scaffolds by various techniques to evaluate its antitumor properties. This work revealed that the cells after the treatment with the disulfiram-loaded scaffold exhibited a lower height and a larger elastic modulus compared with the untreated cells and those treated with the neat electrospun fibers. The changes were the indicators of cell apoptosis. Taken collectively, the results indicate that DSF was successfully incorporated into the electrospun fibers, and the disulfiram-loaded scaffold has great potential for inhibiting the regional recurrence of cancer.
Collapse
Affiliation(s)
- Chenchen Xie
- International Research Centre for Nano Handing and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li Y, Lin H, Zhang J, Deng X, Li J. An efficient procedure for preparing high-purity pingyangmycin and boanmycin from Streptomyces verticillus var. pingyangensis fermentation broth via macroporous cation-exchange resin and subsequent reversed-phase preparative chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121883. [PMID: 31812005 DOI: 10.1016/j.jchromb.2019.121883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/15/2023]
Abstract
Pingyangmycin (PYM) and boanmycin (BAM), two individual components of bleomycin (bleomycin A5 and bleomycin A6), are glycopeptide antitumor antibiotics. An efficient procedure for the preparation of PYM and BAM from Streptomyces verticillus var. pingyangensis fermentation broth using macroporous cation-exchange (MCE) resin followed by medium-pressure preparative liquid chromatography (MPLC) based on monodisperse poly(styrene-co-divinylbenzene) (p(st-dvb)) microspheres was investigated in this paper. Nine frequently used MCE resins were screened by static adsorption and desorption to enrich PYM and BAM fromthe fermentation broth, and D157 resin was found to be the most effective. After one run of column-based dynamic adsorption and desorption, the contents of PYM and BAM were increased by factors of 13.8 and 12.1 with recovery yields of 84.21% and 81.47%, respectively. The enriched samples were subjected to MPLC with columns prepacked with the PolyRP 10-300 microspheres. The operational parameters of the MPLC, including the stationary phase and mobile phase compositions, sample/stationary phase ratio, sample loading scale and flow rate, were screened and optimized. The results showed that the separation and purification for PYM and BAM by MPLC were dramatically improved with a mobile phase modifier of 0.15 mol/L ammonium chloride aqueoussolution, a flow rate of 10 mL/min and a sample/stationary phase ratio of 1.0:100 (m/v, g/mL), and PYM and BAM with purities of more than 98.65% and 99.12% were obtained, respectively. The total recoveries of PYM and BAM reached 75.38% and 70.31%. The separation and purification method is simple, efficient, energy-saving, environmentally friendly and suitable for the large-scale preparation of high-purity PYM and BAM from Streptomyces verticillus var. pingyangensis fermentation broth.
Collapse
Affiliation(s)
- Yajun Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Huimin Lin
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Jianbin Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Xu Deng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Ji'an Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, PR China.
| |
Collapse
|
18
|
Polylactide/polyethylene glycol fibrous mats for local paclitaxel delivery: comparison of drug release into liquid medium and to HEMA-based hydrogel model. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02469-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Singh A, Thakur S, Sharma T, Kaur M, Sahajpal NS, Aurora R, Jain SK. Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends. Curr Med Chem 2019; 27:3463-3498. [PMID: 31223077 DOI: 10.2174/1573406415666190621095726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 11/22/2022]
Abstract
Locoregional drug delivery is a novel approach for the effective delivery of anti-cancer agents as it exposes the tumors to high concentration of drugs. In situ gelling systems have fetched paramount attention in the field of localized cancer chemotherapy due to their targeted delivery, ease of preparation, prolonged or sustained drug release and improved patient compliance. Numerous polymers have been investigated for their properties like swelling along with biodegradation, drug release and physicochemical properties for successful targeting of the drugs at the site of implantation. The polymers such as chitosan, Hyaluronic Acid (HA), poloxamer, Poly Glycolic Lactic Acid (PGLA) and Poly Lactic Acid (PLA) tend to form in situ hydrogels and have been exploited to develop localized delivery vehicles. These formulations are administered in the solution form and on exposure to physiological environment such as temperature, pH or ionic composition they undergo phase conversion into a hydrogel drug depot. The use of in situ gelling approach has provided prospects to increase overall survival and life quality of cancer patient by enhancing the bioavailability of drug to the site of tumor by minimizing the exposure to normal cells and alleviating systemic side effects. Because of its favorable safety profile and clinical benefits, United States Food and Drug Administration (U.S. FDA) has approved polymer based in situ systems for prolonged locoregional activity. This article discusses the rationale for developing in situ systems for targeted delivery of anti-cancer agents with special emphasis on types of polymers used to formulate the in situ system. In situ formulations for locoregional anti-cancer drug delivery that are marketed and are under clinical trials have also been discussed in detail in this article.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tushit Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
20
|
Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. MEDICINES 2018; 6:medicines6010007. [PMID: 30597953 PMCID: PMC6473859 DOI: 10.3390/medicines6010007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
Hydrogels are three-dimensional networks of hydrophilic polymers able to absorb and retain a considerable amount of water or biological fluid while maintaining their structure. Among these, thermo-sensitive hydrogels, characterized by a temperature-dependent sol–gel transition, have been massively used as drug delivery systems for the controlled release of various bioactives. Poloxamer 407 (P407) is an ABA-type triblock copolymer with a center block of hydrophobic polypropylene oxide (PPO) between two hydrophilic polyethyleneoxide (PEO) lateral chains. Due to its unique thermo-reversible gelation properties, P407 has been widely investigated as a temperature-responsive material. The gelation phenomenon of P407 aqueous solutions is reversible and characterized by a sol–gel transition temperature. The nanoencapsulation of drugs within biocompatible delivery systems dispersed in P407 hydrogels is a strategy used to increase the local residence time of various bioactives at the injection site. In this mini-review, the state of the art of the most important mixed systems made up of colloidal carriers localized within a P407 hydrogel will be provided in order to illustrate the possibility of obtaining a controlled release of the entrapped drugs and an increase in their therapeutic efficacy as a function of the biomaterial used.
Collapse
|
21
|
Allur Subramaniyan S, Sheet S, Balasubramaniam S, Berwin Singh SV, Rampa DR, Shanmugam S, Kang DR, Choe HS, Shim KS. Fabrication of nanofiber coated with l-arginine via electrospinning technique: a novel nanomatrix to counter oxidative stress under crosstalk of co-cultured fibroblasts and satellite cells. ACTA ACUST UNITED AC 2018; 24:19-32. [DOI: 10.1080/15419061.2018.1493107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Sunirmal Sheet
- Department of Wood Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | | | - Swami Vetha Berwin Singh
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University, Medical School and Hospital, Jeonju-si, Republic of Korea
| | - Dileep Reddy Rampa
- Department of BIN convergence Technology, College of Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | | | - Da Rae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Ho Sung Choe
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| |
Collapse
|
22
|
Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706665. [PMID: 29756237 DOI: 10.1002/adma.201706665] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Javad Foroughi
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Samantha J Wade
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, University of Wollongong, NSW 2522, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, Centre for Medical and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
23
|
AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability. Colloids Surf B Biointerfaces 2018; 167:82-92. [DOI: 10.1016/j.colsurfb.2018.03.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/20/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
24
|
Fu Y, Li X, Ren Z, Mao C, Han G. Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801183. [PMID: 29952070 PMCID: PMC6342678 DOI: 10.1002/smll.201801183] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
Localized cancer treatment is one of the most effective strategies in clinical destruction of solid tumors at early stages as it can minimize the side effects of cancer therapeutics. Electrospun nanofibers have been demonstrated as a promising implantable platform in localized cancer treatment, enabling the on-site delivery of therapeutic components and minimizing side effects to normal tissues. This Review discusses the recent cutting-edge research with regard to electrospun nanofibers used for various therapeutic approaches, including gene therapy, chemotherapy, photodynamic therapy, thermal therapy, and combination therapy, in enhancing localized cancer treatment. Furthermore, it extensively analyzes the current challenges and potential breakthroughs in utilizing this novel platform for clinical transition in localized cancer treatment.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway,
Norman, Oklahoma, 73019-5300, USA.,
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| |
Collapse
|
25
|
Plch J, Venclikova K, Janouskova O, Hrabeta J, Eckschlager T, Kopeckova K, Hampejsova Z, Bosakova Z, Sirc J, Hobzova R. Paclitaxel-Loaded Polylactide/Polyethylene Glycol Fibers with Long-Term Antitumor Activity as a Potential Drug Carrier for Local Chemotherapy. Macromol Biosci 2018; 18:e1800011. [DOI: 10.1002/mabi.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/01/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Johana Plch
- Department of Pediatric Hematology and Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Kristyna Venclikova
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Katerina Kopeckova
- Department of Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Zuzana Hampejsova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Hlavova 8 128 43 Prague 2 Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Hlavova 8 128 43 Prague 2 Czech Republic
| | - Jakub Sirc
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Radka Hobzova
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
26
|
Yuba E, Osaki T, Ono M, Park S, Harada A, Yamashita M, Azuma K, Tsuka T, Ito N, Imagawa T, Okamoto Y. Bleomycin-Loaded pH-Sensitive Polymer⁻Lipid-Incorporated Liposomes for Cancer Chemotherapy. Polymers (Basel) 2018; 10:polym10010074. [PMID: 30966109 PMCID: PMC6415073 DOI: 10.3390/polym10010074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer chemotherapeutic systems with high antitumor effects and less adverse effects are eagerly desired. Here, a pH-sensitive delivery system for bleomycin (BLM) was developed using egg yolk phosphatidylcholine liposomes modified with poly(ethylene glycol)-lipid (PEG-PE) for long circulation in the bloodstream and 2-carboxycyclohexane-1-carboxylated polyglycidol-having distearoyl phosphatidylethanolamine (CHexPG-PE) for pH sensitization. The PEG-PE/CHexPG-PE-introduced liposomes showed content release responding to pH decrease and were taken up by tumor cells at a rate 2.5 times higher than that of liposomes without CHexPG-PE. BLM-loaded PEG-PE/CHexPG-PE-introduced liposomes exhibited comparable cytotoxicity with that of the free drug. Intravenous administration of these liposomes suppressed tumor growth more effectively in tumor-bearing mice than did the free drug and liposomes without CHexPG-PE. However, at a high dosage of BLM, these liposomes showed severe toxicity to the spleen, liver, and lungs, indicating the trapping of liposomes by mononuclear phagocyte systems, probably because of recognition of the carboxylates on the liposomes. An increase in PEG molecular weight on the liposome surface significantly decreased toxicity to the liver and spleen, although toxicity to the lungs remained. Further improvements such as the optimization of PEG density and lipid composition and the introduction of targeting ligands to the liposomes are required to increase therapeutic effects and to reduce adverse effects.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | - Misato Ono
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | - Shinjae Park
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masamichi Yamashita
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | - Kazuo Azuma
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | - Takeshi Tsuka
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | - Norihiko Ito
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | - Tomohiro Imagawa
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
27
|
Pitorre M, Gondé H, Haury C, Messous M, Poilane J, Boudaud D, Kanber E, Rossemond Ndombina GA, Benoit JP, Bastiat G. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J Control Release 2017; 266:140-155. [PMID: 28951319 DOI: 10.1016/j.jconrel.2017.09.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/02/2023]
Abstract
The combination of pharmaceutical technologies can be a wise choice for developing innovative therapeutic strategies. The association of nanocarriers and gels provides new therapeutic possibilities due to the combined properties of the two technologies. Gels support the nanocarriers, localize their administration to the target tissue, and sustain their release. In addition to the properties afforded by the gel, nanocarriers can provide additional drug sustained release or different pharmacokinetic and biodistribution profiles than those from nanocarriers administered by the conventional route to improve the drug therapeutic index. This review focuses on recent (over the last ten years) in vivo data showing the advances and advantages of using nanocarrier-loaded gels. Liposomes, micelles, liquid and solid lipid nanocapsules, polymeric nanoparticles, dendrimers, and fullerenes are all nanotechnologies which have been recently assessed for medical applications, such as cancer therapy, the treatment of cutaneous and infectious diseases, anesthesia, the administration of antidepressants, and the treatment of unexpected diseases, such as alopecia.
Collapse
Affiliation(s)
- Marion Pitorre
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Henri Gondé
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Clotilde Haury
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Marwa Messous
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Jérémie Poilane
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - David Boudaud
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Erdem Kanber
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | | | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Guillaume Bastiat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France.
| |
Collapse
|
28
|
Patel N, Nakrani H, Raval M, Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv 2016; 23:3712-3723. [DOI: 10.1080/10717544.2016.1223225] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Nirav Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Happy Nakrani
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Mihir Raval
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Navin Sheth
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|