1
|
Hattori M, Nagashima A, Abe K, Kasai S, Okochi Y. Occupational Diffuse Alveolar Hemorrhage Due to Metal Fume and Nitric Acid Exposure: A Case Report. Cureus 2024; 16:e70618. [PMID: 39483597 PMCID: PMC11526617 DOI: 10.7759/cureus.70618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
A 52-year-old male welder, who had been exposed to metal fumes and nitric acid without adequate protective measures, presented with symptoms of cough, dyspnea, and fever. He was admitted to our hospital, where bronchoscopy revealed hemorrhagic bronchoalveolar lavage fluid. He was diagnosed with diffuse alveolar hemorrhage (DAH) due to occupational inhalation of metal fumes and nitric acid. Treatment with corticosteroids led to a rapid recovery without pulmonary sequelae. The case highlights the potential for metal fumes and/or nitric acid to induce DAH, the effectiveness of corticosteroids in treating the condition, and the critical importance of occupational protective measures.
Collapse
Affiliation(s)
- Mototaka Hattori
- Department of Respiratory Medicine, Japan Community Healthcare Organization Tokyo Yamate Medical Center, Tokyo, JPN
| | - Akimichi Nagashima
- Department of Respiratory Medicine, Japan Community Healthcare Organization Tokyo Yamate Medical Center, Tokyo, JPN
| | - Keiko Abe
- Department of Pathology, Japan Community Healthcare Organization Tokyo Yamate Medical Center, Tokyo, JPN
| | - Shogo Kasai
- Department of Respiratory Medicine, Japan Community Healthcare Organization Tokyo Yamate Medical Center, Tokyo, JPN
| | - Yasumi Okochi
- Department of Respiratory Medicine, Japan Community Healthcare Organization Tokyo Yamate Medical Center, Tokyo, JPN
| |
Collapse
|
2
|
Shoeb M, Meighan T, Kodali VK, Abadin H, Faroon O, Zarus GM, Erdely A, Antonini JM. TERT-independent telomere elongation and shelterin dysregulation after pulmonary exposure to stainless-steel welding fume in-vivo. ENVIRONMENTAL RESEARCH 2024; 250:118515. [PMID: 38373547 PMCID: PMC11375608 DOI: 10.1016/j.envres.2024.118515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA.
| | - Terence Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Vamsi K Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Henry Abadin
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Obaid Faroon
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Gregory M Zarus
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, Mailstop S106-5, Chamblee, GA, 30341, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
3
|
Onyeso OK, Ugwu AK, Adandom HC, Damag S, Onyeso KM, Abugu JO, Aruma OE, Odole AC, Awosoga OA, Ezema CI. Impact of welding occupation on serum aluminium level and its association with physical health, cognitive function, and quality of life: a cross-sectional study. Int Arch Occup Environ Health 2024; 97:133-144. [PMID: 38110550 DOI: 10.1007/s00420-023-02038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE There is an occupational health concern about welders' inhalation of toxic aluminium fumes. We investigated whether serum aluminium level (SAL) and demographic variables can significantly predict physical health parameters, cognition, and quality of life (QoL) among welders. METHODS The cross-sectional study involved 100 age- and location-matched men (50 welders and 50 non-welders). SAL obtained using a graphite furnace atomic absorption spectrometer, and data collected using blood pressure and body mass index (BMI) apparatuses, biodata form, pain rating scale, General Practitioner Assessment of Cognition, WHOQoL-BREF, and Nordic musculoskeletal symptoms (MSS) questionnaire were analysed using independent samples t test, chi-square, Pearson's correlation, and hierarchical linear regression. RESULTS Welders had significantly higher SAL (mean difference [MD] = 1.77 µg/L, p < 0.001), lower QoL (MD = 3.92, p = 0.039), and higher prevalence of MSS on the neck (χ2 = 10.187, p = 0.001), shoulder (χ2 = 9.007, p = 0.003), upper back (χ2 = 6.832, p = 0.009), and knee (χ2 = 12.190, p < 0.001) than non-welders. There was a significant bivariate association between SAL, systolic blood pressure (β = 0.313, p = 0.002), and BMI (β = 0.279, p = 0.005), but not pain intensity, cognition, or QoL. SAL remained a significant predictor of systolic blood pressure after adjustment for physical health and QoL parameters (β = 0.191, p = 0.044). The association between SAL and social QoL became significant after adjustment for physical health and other QoL domains (β = - 0.210, p = 0.032) and demographic variables (β = - 0.233, p = 0.046). CONCLUSION Welders had significantly higher SAL, musculoskeletal symptoms, blood pressure, and lower QoL than non-welders. SAL was associated with adverse physical health parameters and social-related QoL, not cognition. We recommend routine aluminium bioavailability and physical health checks among welders.
Collapse
Affiliation(s)
- Ogochukwu Kelechi Onyeso
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria.
- Faculty of Health Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | - Arinze Kingsley Ugwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | - Suha Damag
- Faculty of Health Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Kelechi Mirabel Onyeso
- Department of Estate Management, Faculty of Environmental Sciences, University of Nigeria, Nsukka, Enugu, Nigeria
| | - James Okechukwu Abugu
- Department of Marketing, Faculty of Business Administration, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Okwukweka Emmanuela Aruma
- Department of Applied Biology and Biotechnology, Faculty of Applied Natural Sciences, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Adesola Christiana Odole
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Charles Ikechukwu Ezema
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
4
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Xia L, Park JH, Biggs K, Lee CG, Liao L, Shannahan JH. Compositional variations in metal nanoparticle components of welding fumes impact lung epithelial cell toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:735-757. [PMID: 37485994 DOI: 10.1080/15287394.2023.2238209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Welding fumes contain harmful metals and gas by-products associated with development of lung dysfunction, asthma, bronchitis, and lung cancer. Two prominent welding fume particulate metal components are nanosized iron (Fe) and manganese (Mn) which might induce oxidative stress and inflammation resulting in pulmonary injury. Welding fume toxicity may be dependent upon metal nanoparticle (NP) components. To examine toxicity of welding fume NP components, a system was constructed for controlled and continuous NP generation from commercial welding and customized electrodes with varying proportions of Fe and Mn. Aerosols generated consisted of nanosized particles and were compositionally consistent with each electrode. Human alveolar lung A459 epithelial cells were exposed to freshly generated metal NP mixtures at a target concentration of 100 µg/m3 for 6 hr and then harvested for assessment of cytotoxicity, generation of reactive oxygen species (ROS), and alterations in the expression of genes and proteins involved in metal regulation, inflammatory responses, and oxidative stress. Aerosol exposures decreased cell viability and induced increased ROS production. Assessment of gene expression demonstrated variable up-regulation in cellular mechanisms related to metal transport and storage, inflammation, and oxidative stress based upon aerosol composition. Specifically, interleukin-8 (IL-8) demonstrated the most robust changes in both transcriptional and protein levels after exposure. Interleukin-8 has been determined to serve as a primary cytokine mediating inflammatory responses induced by welding fume exposures in alveolar epithelial cells. Overall, this study demonstrated variations in cellular responses to metal NP mixtures suggesting compositional variations in NP content within welding fumes may influence inhalation toxicity.
Collapse
Affiliation(s)
- Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Jae Hong Park
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Katelyn Biggs
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Chang Geun Lee
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Li Liao
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Roach KA, Kodali V, Shoeb M, Meighan T, Kashon M, Stone S, McKinney W, Erdely A, Zeidler-Erdely PC, Roberts JR, Antonini JM. Examination of the exposome in an animal model: The impact of high fat diet and rat strain on local and systemic immune markers following occupational welding fume exposure. Toxicol Appl Pharmacol 2023; 464:116436. [PMID: 36813138 DOI: 10.1016/j.taap.2023.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
The goal of this study was to investigate the impact of multiple exposomal factors (genetics, lifestyle factors, environmental/occupational exposures) on pulmonary inflammation and corresponding alterations in local/systemic immune parameters. Accordingly, male Sprague-Dawley (SD) and Brown Norway (BN) rats were maintained on either regular (Reg) or high fat (HF) diets for 24wk. Welding fume (WF) exposure (inhalation) occurred between 7 and 12wk. Rats were euthanized at 7, 12, and 24wk to evaluate local and systemic immune markers corresponding to the baseline, exposure, and recovery phases of the study, respectively. At 7wk, HF-fed animals exhibited several immune alterations (blood leukocyte/neutrophil number, lymph node B-cell proportionality)-effects which were more pronounced in SD rats. Indices of lung injury/inflammation were elevated in all WF-exposed animals at 12wk; however, diet appeared to preferentially impact SD rats at this time point, as several inflammatory markers (lymph node cellularity, lung neutrophils) were further elevated in HF over Reg animals. Overall, SD rats exhibited the greatest capacity for recovery by 24wk. In BN rats, resolution of immune alterations was further compromised by HF diet, as many exposure-induced alterations in local/systemic immune markers were still evident in HF/WF animals at 24wk. Collectively, HF diet appeared to have a greater impact on global immune status and exposure-induced lung injury in SD rats, but a more pronounced effect on inflammation resolution in BN rats. These results illustrate the combined impact of genetic, lifestyle, and environmental factors in modulating immunological responsivity and emphasize the importance of the exposome in shaping biological responses.
Collapse
Affiliation(s)
- K A Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| | - V Kodali
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - M Shoeb
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - T Meighan
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - M Kashon
- Bioanalytics Branch (BB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - S Stone
- Physical Effects Research Branch (PERB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - W McKinney
- Physical Effects Research Branch (PERB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - A Erdely
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - P C Zeidler-Erdely
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J R Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J M Antonini
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
7
|
Kendzia B, Kaerlev L, Ahrens W, Merletti F, Eriksson M, Guénel P, Lynge E, Costa-Pereira A, Morales Suárez-Varela M, Jöckel KH, Stang A, Behrens T. Lifetime Exposure to Welding Fumes and Risk of Some Rare Cancers. Am J Epidemiol 2022; 191:1753-1765. [PMID: 35872594 DOI: 10.1093/aje/kwac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/29/2023] Open
Abstract
We investigated the association between exposure to welding fumes and the risk of biliary tract, male breast, bone, and thymus cancer, as well as cancer of the small intestine, eye melanoma, and mycosis fungoides, among men in a European, multicenter case-control study. From 1995-1997, 644 cases and 1,959 control subjects from 7 countries were studied with respect to information on welding and potential confounders. We linked the welding histories of the participants with a measurement-based exposure matrix to calculate lifetime exposure to welding fumes. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression models, conditional on country and 5-year age groups, and adjusted for education and relevant confounders. Regular welding was associated with an increased risk of cancer of the small intestine (OR = 2.30, 95% CI: 1.17, 4.50). Lifetime exposure to welding fumes above the median of exposed controls was associated with an increased risk of cancer of the small intestine (OR = 2.00, 95% CI: 1.07, 3.72) and male breast (OR = 2.07, 95% CI: 1.14, 3.77), and some elevation in risk was apparent for bone cancer (OR = 1.92, 95% CI: 0.85, 4.34) with increasing lifetime exposure to welding fumes. Welding fumes could contribute to an increased risk of some rare cancers.
Collapse
|
8
|
Li G, Jiang J, Liao Y, Wan S, Yao Y, Luo Y, Chen X, Qian H, Dai X, Yin W, Min Z, Yi G, Tan X. Risk for lung-related diseases associated with welding fumes in an occupational population: Evidence from a Cox model. Front Public Health 2022; 10:990547. [PMID: 36091502 PMCID: PMC9455702 DOI: 10.3389/fpubh.2022.990547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
Background Welding fumes are a risk factor for welder pneumoconiosis. However, there is a lack of population information on the occurrence of welding fume-induced lung cancer, and little is known about the welding fume pathogenesis. Methods Welding fume and metal ion concentrations were assessed in a vehicle factory in Wuhan. A Cox regression model estimated lung-related disease risk in workers by independent and combined factors. Results Workers' exposures were divided into four grades; the highest exposure was among the welders in the maintenance workshop, the highest Mn and Fe exposure was 4 grades, and the highest Cr exposure was 3 grades. Subgroup analysis found that the risk of lung-related disease was 2.17 (95% CI: 1.31-3.57, p < 0.05) in welders compared with non-welders, and the risk of pulmonary disease in male welders was 2.24 (95% CI: 1.34-3.73, p < 0.05) compared to non-welders. Smoking welders had a 2.44 (95% CI: 1.32-4.51, p < 0.01) higher incidence of lung-related diseases than non-welders. Total years of work as an independent protective factor for lung-related disease risk was 0.72 (95% CI: 0.66-0.78, p < 0.01). As an independent risk factor, high-high and high-low exposure had a 5.39 (95% CI: 2.52-11.52, p < 0.001) and 2.17 (95% CI: 1.07-4.41, p < 0.05) higher risk for lung-related diseases, respectively. Conclusions High welding fume exposure is a significant risk factor for lung-related disease in workers.
Collapse
Affiliation(s)
- Guangming Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Jinfeng Jiang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Yonggang Liao
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Siyu Wan
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Yong Yao
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Yongbin Luo
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Xuyu Chen
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Huiling Qian
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Xiayun Dai
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Zhiteng Min
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Guilin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China,Guilin Yi
| | - Xiaodong Tan
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China,School of Health and Nurse, Wuchang University of Technology, Wuhan, China,*Correspondence: Xiaodong Tan
| |
Collapse
|
9
|
Parks CG, Costenbader KH, Long S, Hofmann JN, Beane FLE, Sandler DP. Pesticide use and risk of systemic autoimmune diseases in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2022; 209:112862. [PMID: 35123967 PMCID: PMC9205340 DOI: 10.1016/j.envres.2022.112862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) risk has been associated with pesticide use, but evidence on specific pesticides or other agricultural exposures is lacking. We investigated history of pesticide use and risk of SLE and a related disease, Sjögren's syndrome (SS), in the Agricultural Health Study. METHODS The study sample (N = 54,419, 52% male, enrolled in 1993-1997) included licensed pesticide applicators from North Carolina and Iowa and spouses who completed any of the follow-up questionnaires (1999-2003, 2005-2010, 2013-2015). Self-reported cases were confirmed by medical records or medication use (total: 107 incident SLE or SS, 79% female). We examined ever use of 31 pesticides and farm tasks and exposures reported at enrollment in association with SLE/SS, using Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI), with age as the timescale and adjusting for gender, state, and correlated pesticides. RESULTS In older participants (>62 years), SLE/SS was associated with ever use of the herbicide metribuzin (HR 5.33; 95%CI 2.19, 12.96) and applying pesticides 20+ days per year (2.97; 1.20, 7.33). Inverse associations were seen for petroleum oil/distillates (0.39; 0.18, 0.87) and the insecticide carbaryl (0.56; 0.36, 0.87). SLE/SS was inversely associated with having a childhood farm residence (0.59; 0.39, 0.91), but was not associated with other farm tasks/exposures (except welding, HR 2.65; 95%CI 0.96, 7.35). CONCLUSIONS These findings suggest that some agricultural pesticides may be associated with higher or lower risk of SLE/SS. However, the overall risk associated with farming appears complex, involving other factors and childhood exposures.
Collapse
Affiliation(s)
- C G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - K H Costenbader
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Long
- Westat, Rockville, MD, USA
| | - J N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freeman L E Beane
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - D P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
McCarrick S, Karlsson HL, Carlander U. Modelled lung deposition and retention of welding fume particles in occupational scenarios: a comparison to doses used in vitro. Arch Toxicol 2022; 96:969-985. [PMID: 35188583 PMCID: PMC8921161 DOI: 10.1007/s00204-022-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Translating particle dose from in vitro systems to relevant human exposure remains a major challenge for the use of in vitro studies in assessing occupational hazard and risk of particle exposure. This study aimed to model the lung deposition and retention of welding fume particles following occupational scenarios and subsequently compare the lung doses to those used in vitro. We reviewed published welding fume concentrations and size distributions to identify input values simulating real-life exposure scenarios in the multiple path particle dosimetry (MPPD) model. The majority of the particles were reported to be below 0.1 μm and mass concentrations ranged between 0.05 and 45 mg/m3. Following 6-h exposure to 5 mg/m3 with a count median diameter of 50 nm, the tracheobronchial lung dose (0.89 µg/cm2) was found to exceed the in vitro cytotoxic cell dose (0.125 µg/cm2) previously assessed by us in human bronchial epithelial cells (HBEC-3kt). However, the tracheobronchial retention decreased rapidly when no exposure occurred, in contrast to the alveolar retention which builds-up over time and exceeded the in vitro cytotoxic cell dose after 1.5 working week. After 1 year, the tracheobronchial and alveolar retention was estimated to be 1.15 and 2.85 µg/cm2, respectively. Exposure to low-end aerosol concentrations resulted in alveolar retention comparable to cytotoxic in vitro dose in HBEC-3kt after 15-20 years of welding. This study demonstrates the potential of combining real-life exposure data with particle deposition modelling to improve the understanding of in vitro concentrations in the context of human occupational exposure.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ulrika Carlander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
11
|
Li N, Taneepanichskul N. Associations between welding fume exposure and blood hemostatic parameters among workers exposed to welding fumes in confined space in Chonburi, Thailand. PLoS One 2021; 16:e0260065. [PMID: 34793518 PMCID: PMC8601467 DOI: 10.1371/journal.pone.0260065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Occupational welding fumes contain varieties of toxic metal particles and may affect cardiovascular system like the Particulate Matters (PM). Few studies have focused on the effects of toxic metals on the hemodynamic balance; however, the reporting results were not consistent. This study aimed to investigate the association between toxic metals exposure (Chromium (Cr), Manganese (Mn) and Lead (Pb)) and blood hemostatic parameters status after a 3-week exposure cessation among workers exposed to welding fumes. Methodology Structured interviews and biological samplings were conducted for 86 male workers without a history of Anemia and Cardiovascular diseases (CVDs) and working in a confined space to construct crude oil tanks. Metal levels of Cr, Mn and Pb in urine were measured during the working days using Inductively Coupled Plasma Mass Spectrometer (ICP-MS) method. The concentrations of hemostatic proteins in blood (White blood cell counts (WBC), Lymphocytes, Monocyte, Eosinophil, Neutrophil, Hematocrit (Hct) were assessed after a 3 weeks exposure cessation. Workers were divided into groups based on occupation type (welder group and non-welder group), and based on metal levels (high and low exposure groups) for comparison. Linear regression models were used to explore the association between metal exposure and multiple blood hemostatic parameters adjusted for age, Body Mass Index (BMI), and smoking status. Results Urine Mn and Cr level of the welder group was significantly higher than the non-welder group (Mn: 0.96 VS 0.22 ug/g creatinine, p < 0.001; Cr: 0.63 VS 0.22 ug/g creatinine, p < 0.01). The mean value of Hct in the welder group was 44.58 ± 2.84 vol%, significantly higher than the non-welder group (43.07 ± 3.31 vol%, p = 0.026). The median value of WBC in the high Mn-exposed group (6.93 ± 1.59 X 106 Cell/ml) was significantly lower than the low Mn-exposed group (7.90 ± 2.13 X 106 Cell/ml, p = 0.018). The linear regression analyses showed that there was a significantly negative association between log transformed WBC value and the Mn exposure groups (high and low) after adjusting for age, BMI, and smoking status (β = - 0.049, p = 0.045), but no significant result was found between WBC and occupation types (welder and non-welder) (p > 0.05). Multiple linear regression analysis also showed positive association between Hct and occupational types (welder and non-welders) (β = 0.014, p = 0.055). The other hemostatic parameters were not different from controls when divided by occupation type or metal level groups. Conclusions Our results showed that welders were exposed to about 3 to 4 times higher Mn and Cr concentrations than non-welders. Moreover, one third of the non-welders were exposed to high-exposure groups of Mn and Cr metals. Regression models revealed a significant association of the WBC counts with the Mn exposure group. Therefore, we infer that Mn exposure may play a significant role on the blood hemostatic parameters of workers in the confined space. Hazard identification for non-welders should also be conducted in the confined space.
Collapse
Affiliation(s)
- Ning Li
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Nutta Taneepanichskul
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, HAUS IAQ Research Unit, Department of Pediatrics, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
12
|
Genotoxicity and inflammatory potential of stainless steel welding fume particles: an in vitro study on standard vs Cr(VI)-reduced flux-cored wires and the role of released metals. Arch Toxicol 2021; 95:2961-2975. [PMID: 34287684 PMCID: PMC8380239 DOI: 10.1007/s00204-021-03116-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Welders are daily exposed to various levels of welding fumes containing several metals. This exposure can lead to an increased risk for different health effects which serves as a driving force to develop new methods that generate less toxic fumes. The aim of this study was to explore the role of released metals for welding particle-induced toxicity and to test the hypothesis that a reduction of Cr(VI) in welding fumes results in less toxicity by comparing the welding fume particles of optimized Cr(VI)-reduced flux-cored wires (FCWs) to standard FCWs. The welding particles were thoroughly characterized, and toxicity (cell viability, DNA damage and inflammation) was assessed following exposure to welding particles as well as their released metal fraction using cultured human bronchial epithelial cells (HBEC-3kt, 5–100 µg/mL) and human monocyte-derived macrophages (THP-1, 10–50 µg/mL). The results showed that all Cr was released as Cr(VI) for welding particles generated using standard FCWs whereas only minor levels (< 3% of total Cr) were released from the newly developed FCWs. Furthermore, the new FCWs were considerably less cytotoxic and did not cause any DNA damage in the doses tested. For the standard FCWs, the Cr(VI) released in cell media seemed to explain a large part of the cytotoxicity and DNA damage. In contrast, all particles caused rather similar inflammatory effects suggesting different underlying mechanisms. Taken together, this study suggests a potential benefit of substituting standard FCWs with Cr(VI)-reduced wires to achieve less toxic welding fumes and thus reduced risks for welders.
Collapse
|
13
|
Hedberg YS, Wei Z, McCarrick S, Romanovski V, Theodore J, Westin EM, Wagner R, Persson KA, Karlsson HL, Odnevall Wallinder I. Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125273. [PMID: 33581669 DOI: 10.1016/j.jhazmat.2021.125273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 05/28/2023]
Abstract
Welding fume particles are hazardous. Their toxicity likely depends on their composition and reactivity. This study aimed at exploring the role of sodium or other fluorides (NaF), which are intentionally added to flux-cored wire electrodes for stainless steel welding, on the solubility (in phosphate buffered saline) and toxicity of the generated welding fume particles. A multi-analytical particle characterization approach along with in-vitro cell assays was undertaken. The release of Cr(VI) and Mn from the particles was tested as a function of fluoride solution concentration. The welding fume particles containing NaF released significantly higher amounts of Cr(VI) compared with solid wire reference fumes, which was associated with increased cytotoxicity and genotoxicity in-vitro. No crystalline Na or potassium (K) containing chromates were observed. Cr(VI) was incorporated in an amorphous mixed oxide. Solution-added fluorides did not increase the solubility of Cr(VI), but contributed to a reduced Mn release from both solid and flux-cored wire fume particles and the reduction of Cr(VI) release from solid wire fume particles. Chemical speciation modeling suggested that metal fluoride complexes were not formed. The presence of NaF in the welding electrodes did not have any direct, but possibly an indirect, role in the Cr(VI) solubility of welding fumes.
Collapse
Affiliation(s)
- Y S Hedberg
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada; Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada.
| | - Z Wei
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden
| | - S McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - V Romanovski
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", 119049 Moscow, Russia; Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - J Theodore
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden
| | - E M Westin
- voestalpine Böhler Welding Group GmbH, Böhler-Welding-Str. 1, 8605 Kapfenberg, Austria
| | - R Wagner
- Linde GmbH/UniBw Munich, Germany
| | | | - H L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - I Odnevall Wallinder
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Khisroon M, Khan A, Shah AA, Ullah I, Farooqi J, Ullah A. Scalp Hair Metal Analysis Concerning DNA Damage in Welders of Peshawar Khyber Pakhtunkhwa Pakistan. Biol Trace Elem Res 2021; 199:1649-1656. [PMID: 32676939 DOI: 10.1007/s12011-020-02281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Welding is used throughout the world in refineries, thermal power plants, chemical facilities, and pressurized containers, and the welders are exposed to toxic heavy metals, electromagnetic fields, polycyclic aromatic hydrocarbon, and ultraviolet radiations. In the present study, 59 welders and an equal number of control subjects were assessed for DNA damage in the lymphocytes using the comet assay. Heavy metals such as lead (Pb), iron (Fe), nickel (Ni), chromium (Cr), manganese (Mn), and cadmium (Cd) levels in the scalp hair of the subjects were evaluated by using atomic absorption spectroscopy (AAS). The results of the current study showed that DNA damage in the lymphocytes of welders (121.8 ± 10.7) was significantly higher as compared with controls (56.5 ± 17.6) (P < 0.001). Besides, the levels of Pb, Fe, Ni, Cr, Mn, and Cd were remarkably higher in the scalp hair of workers as compared with the control group (P < 0.001). Regression analysis showed a prominent association between the heavy metals and total comet score (TCS) in the exposed subjects. Age and duration of occupational exposure had significant effects (P < 0.05) on TCS values. Our results concluded that occupational exposure to welding fumes may cause DNA damage and can lead to important health hazards in the workers.
Collapse
Affiliation(s)
- Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Ashraf Ali Shah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ihsan Ullah
- Poonch Medical College, Rawalakot, AJK, Pakistan
| | - Javeed Farooqi
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Abid Ullah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| |
Collapse
|
15
|
Preventing Evaporation Products for High-Quality Metal Film in Directed Energy Deposition: A Review. METALS 2021. [DOI: 10.3390/met11020353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Directed energy deposition (DED), a type of additive manufacturing (AM) is a process that enables high-speed deposition using laser technology. The application of DED extends not only to 3D printing, but also to the 2D surface modification by direct laser-deposition dissimilar materials with a sub-millimeter thickness. One of the reasons why DED has not been widely applied in the industry is the low velocity with a few m/min, but thin-DED has been developed to the extent that it can be over 100 m/min in roller deposition. The remaining task is to improve quality by reducing defects. Thus far, defect studies on AM, including DED, have focused mostly on preventing pores and crack defects that reduce fatigue strength. However, evaporation products, fumes, and spatters, were often neglected despite being one of the main causes of porosity and defects. In high-quality metal deposition, the problems caused by evaporation products are difficult to solve, but they have not yet caught the attention of metallurgists and physicists. This review examines the effect of the laser, material, and process parameters on the evaporation products to help obtain a high-quality metal film layer in thin-DED.
Collapse
|
16
|
Vinnikov D, Tulekov Z. Plasma cutting and exposure to PM 2.5 metal aerosol in metalworking, Almaty, Kazakhstan, 2020. Occup Environ Med 2020; 78:oemed-2020-106883. [PMID: 33229334 DOI: 10.1136/oemed-2020-106883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/31/2020] [Accepted: 11/10/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Little is known regarding the metal working subprocesses that determine exposures in the workplace primarily because their segregation from the main process is rather difficult in real-life occupational settings. The present study aimed to identify the subprocesses in a metalworks plant with high personal exposure to particulate matter (PM2.5) metal aerosol in order to plan future risk reduction interventions. METHODS A total of eighty 8-hour PM2.5 metal aerosol samples from the breathing zone of four workers in each of four major operations (plasma cutting, machine operating, assembling and welding) were collected in a metalwork plant in Almaty in January to June 2020. Minimal, maximal, time-weighted average PM2.5 metal aerosol mass concentrations were recorded with TSI SidePak AM520 personal aerosol and analysed using analysis of variance (ANOVA) after normalisation. RESULTS The overall sampling time was 640 hours. Maximal 1 min and geometric mean PM2.5 concentrations were 8.551 and 1.7268 mg/m3 in plasma cutting; 4.844 and 0.9343 mg/m3 in machine operating; 2.993 and 0.6898 mg/m3 in assembling; and 2.848 and 0.4903 mg/m3 in welding. Using a Tukey-Kramer test after a one-way ANOVA, plasma cutting concentrations were significantly higher compared with all other operations (F-ratio 29.6, p<0.001). The fold-range containing 95% of the total variability (R0.95) from all samples was 12.5. CONCLUSIONS The highest PM2.5 concentrations were found in plasma cutting, potentially elevating the risk of systemic inflammatory effects.
Collapse
Affiliation(s)
- Denis Vinnikov
- Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Department of Biochemistry, Peoples' Friendship University of Russia, Moscow, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Zhangir Tulekov
- Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
17
|
Abdullahi IL, Sani A. Welding fumes composition and their effects on blood heavy metals in albino rats. Toxicol Rep 2020; 7:1495-1501. [PMID: 33204650 PMCID: PMC7653205 DOI: 10.1016/j.toxrep.2020.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 01/23/2023] Open
Abstract
Toxic substances produced during welding include heavy metals, carbon monoxide, carbon dioxide, and nitrogen oxides. The study aims to evaluate the heavy metals concentration in welding fumes and the blood of the animals exposed to welding fumes. The fumes were collected from a welding site by a skilled welder and part of it was subjected to metals analysis. A total of 130 rats were divided into 13 groups. 12 groups were given doses calculated to correspond to real-life workers exposure regimes and 1 group served as control. The dosages were administered intratracheally after anesthetization weekly for 12 weeks. The animals were sacrificed and whole blood samples were collected for atomic absorption spectrophotometry. The metals in fumes analyzed were decreasing in order of Fe > K > Pb > Co > Cd > Ca > Ni > Mn > Zn > Cr > Al > Cu > Mg. Changes were observed in the behaviour of the test animals compared to the control indicating probable toxicity. The values of Pb, Cr, Fe, Mn, and Ni in the exposed animal's blood were higher than the control and increased relatively across the treatment groups. However, the values of Al and Zn were not significantly different from the control. These indicate that exposure to welding fumes having contained a significant amount of heavy metals has caused noticeable toxicity symptoms with simultaneous elevation in blood metal levels. Monitoring and regulation of these activities should be enforced by relevant authorities in Kano and Nigeria in general.
Collapse
Affiliation(s)
| | - Ali Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Knobloch J, Casjens S, Lehnert M, Yanik SD, Körber S, Lotz A, Rupp J, Raulf M, Zschiesche W, Weiss T, Kronsbein J, Koch A, Brüning T, Pesch B. Exposure to welding fumes suppresses the activity of T-helper cells. ENVIRONMENTAL RESEARCH 2020; 189:109913. [PMID: 32980007 DOI: 10.1016/j.envres.2020.109913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Welders have an increased susceptibility to airway infections with non-typeable Haemophilus influenzae (NTHi), which implicates immune defects and might promote pneumonia and chronic obstructive pulmonary disease (COPD). We hypothesized that welding-fume exposure suppresses Th1-lymphocyte activity. Non-effector CD4+ T-cells from blood of 45 welders (n = 23 gas metal arc welders, GMAW; n = 16 tungsten inert gas welders, TIG; n = 6 others) and 25 non-welders were ex vivo activated towards Th1 via polyclonal T-cell receptor stimulation and IL-12 (first activation step) and then stimulated with NTHi extract or lipopolysaccharide (LPS) (second activation step). IFNγ and IL-2 were measured by ELISA. In the first activation step, IFNγ was reduced in welders compared to non-welders and in the GMAW welders with higher concentrations of respirable particles compared to the lower exposed TIG welders. IFNγ was not influenced by tobacco smoking and correlated negatively with welding-fume exposure, respirable manganese, and iron. In the second activation step, NTHi and LPS induced additional IFNγ, which was reduced in current smokers compared to never smokers in welders as well as in non-welders. Analyzing both activation steps together, IFNγ production was lowest in smoking welders and highest in never smoking non-welders. IL-2 was not associated with any of these parameters. Welding-fume exposure might suppress Th1-based immune responses due to effects of particulate matter, which mainly consists of iron and manganese. For responses to NTHi this is strongest in smoking welders because welding fume suppresses T-cell activation towards Th1 and cigarette smoke suppresses the subsequent Th1-response to NTHi via LPS. Both effects are independent from IL-2-regulated T-cell proliferation. This might explain the increased susceptibility to infections and might promote COPD development.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Martin Lehnert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Sarah D Yanik
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Sandra Körber
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Anne Lotz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Wolfgang Zschiesche
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Tobias Weiss
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology Allergology, Sleep-, and Respiratory Medicine, Bergmannsheil University Hospital, Ruhr University Bochum; Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Andrea Koch
- Zürcher RehaZentren Davos, Klinikstrasse 6, 7272 Davos-Clavadel, Switzerland; Ludwig-Maximilians-University of Munich (LMU) and DZL (German Center of Lung Science), 81377 Munich, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Beate Pesch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA); Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
19
|
Schubauer-Berigan MK, Dahm MM, Toennis CA, Sammons DL, Eye T, Kodali V, Zeidler-Erdely PC, Erdely A. Association of occupational exposures with ex vivo functional immune response in workers handling carbon nanotubes and nanofibers. Nanotoxicology 2020; 14:404-419. [PMID: 32031476 PMCID: PMC7121920 DOI: 10.1080/17435390.2020.1717007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
The objective of this study was to evaluate the association between carbon nanotube and nanofiber (CNT/F) exposure and ex vivo responses of whole blood challenged with secondary stimulants, adjusting for potential confounders, in a cross-sectional study of 102 workers. Multi-day exposure was measured by CNT/F structure count (SC) and elemental carbon (EC) air concentrations. Demographic, lifestyle and other occupational covariate data were obtained via questionnaire. Whole blood collected from each participant was incubated for 18 hours with and without two microbial stimulants (lipopolysaccharide/LPS and staphylococcal enterotoxin type B/SEB) using TruCulture technology to evaluate immune cell activity. Following incubation, supernatants were preserved and analyzed for protein concentrations. The stimulant:null response ratio for each individual protein was analyzed using multiple linear regression, followed by principal component (PC) analysis to determine whether patterns of protein response were related to CNT/F exposure. Adjusting for confounders, CNT/F metrics (most strongly, the SC-based) were significantly (p < 0.05) inversely associated with stimulant:null ratios of several individual biomarkers: GM-CSF, IFN-γ, interleukin (IL)-2, IL-4, IL-5, IL-10, IL-17, and IL-23. CNT/F metrics were significantly inversely associated with PC1 (a weighted mean of most biomarkers, explaining 25% of the variance in the protein ratios) and PC2 (a biomarker contrast, explaining 14%). Among other occupational exposures, only solvent exposure was significant (inversely related to PC2). CNT/F exposure metrics were uniquely related to stimulant responses in challenged whole blood, illustrating reduced responsiveness to a secondary stimulus. This approach, if replicated in other exposed populations, may present a relatively sensitive method to evaluate human response to CNT/F or other occupational exposures.
Collapse
Affiliation(s)
- Mary K. Schubauer-Berigan
- National Institute for Occupational Safety and Health (NIOSH) Division of Field Studies and Engineering, Cincinnati, OH, USA
- Current address: International Agency for Research on Cancer, Evidence Synthesis and Classification Section; Lyon, France
| | - Matthew M. Dahm
- National Institute for Occupational Safety and Health (NIOSH) Division of Field Studies and Engineering, Cincinnati, OH, USA
| | | | | | - Tracy Eye
- NIOSH Health Effects Laboratory Division, Morgantown, WV, USA
| | - Vamsi Kodali
- NIOSH Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - Aaron Erdely
- NIOSH Health Effects Laboratory Division, Morgantown, WV, USA
| |
Collapse
|
20
|
Shoeb M, Mustafa GM, Kodali VK, Smith K, Roach KA, Boyce G, Meighan T, Roberts JR, Erdely A, Antonini JM. A possible relationship between telomere length and markers of neurodegeneration in rat brain after welding fume inhalation exposure. ENVIRONMENTAL RESEARCH 2020; 180:108900. [PMID: 31711660 PMCID: PMC6899181 DOI: 10.1016/j.envres.2019.108900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Inhalation of welding fume (WF) can result in the deposition of toxic metals, such as manganese (Mn), in the brain and may cause neurological changes in exposed workers. Alterations in telomere length are indicative of cellular aging and, possibly, neurodegeneration. Here, we investigated the effect of WF inhalation on telomere length and markers of neurodegeneration in whole brain tissue in rats. Male Fischer-344 (F-344) rats were exposed by inhalation to stainless steel WF (20 mg/m3 x 3 h/d x 4 d/wk x 5 wk) or filtered air (control). Telomere length, DNA-methylation, gene expression of Trf1, Trf2, ATM, and APP, protein expression of p-Tau, α-synuclein, and presenilin 1 and 2 were assessed in whole brain tissue at 12 wk after WF exposure ended. Results suggest that WF inhalation increased telomere length without affecting telomerase in whole brain. Moreover, we observed that components of the shelterin complex, Trf1 and Trf2, play an important role in telomere end protection, and their regulation may be responsible for the increase in telomere length. In addition, expression of different neurodegeneration markers, such as p-Tau, presenilin 1-2 and α-synuclein proteins, were increased in brain tissue from the WF-exposed rats as compared to control. These findings suggest a possible correlation between epigenetic modifications, telomere length alteration, and neurodegeneration because of the presence of factors in serum after WF exposure that may cause extra-pulmonary effects as well as the translocation of potentially neurotoxic metals associated with WF to the central nervous system (CNS). Further studies are needed to investigate the brain region specificity and temporal response of these effects.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | - Gul M Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Vamsi K Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Kelly Smith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Katherine A Roach
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Gregory Boyce
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Terence Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
21
|
DebRoy T, Mukherjee T, Milewski JO, Elmer JW, Ribic B, Blecher JJ, Zhang W. Scientific, technological and economic issues in metal printing and their solutions. NATURE MATERIALS 2019; 18:1026-1032. [PMID: 31263223 DOI: 10.1038/s41563-019-0408-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- T DebRoy
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
| | - T Mukherjee
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - J W Elmer
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - B Ribic
- Rolls-Royce Corp., Indianapolis, IN, USA
| | | | - W Zhang
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Keyter M, Van Der Merwe A, Franken A. Particle size and metal composition of gouging and lancing fumes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:643-655. [PMID: 31361583 DOI: 10.1080/15459624.2019.1639719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m3 (inhalable), 1.83-13.96 mg/m3 (thoracic) and 0.88-15.82 mg/m3 (respirable) for gouging; and 2.34-5.60 mg/m3 (inhalable), 2.82-4.01 mg/m3 (thoracic), and 1.89-3.24 mg/m3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures.
Collapse
Affiliation(s)
| | - Alicia Van Der Merwe
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| | - Anja Franken
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| |
Collapse
|
23
|
Balabekova MK, Ostapchuk YO, Perfilyeva YV, Tokusheva AN, Nurmuhambetov A, Tuhvatshin RR, Trubachev VV, Akhmetov ZB, Abdolla N, Kairanbayeva GK, Sulev K, Belyaev NN. Oral administration of ammonium metavanadate and potassium dichromate distorts the inflammatory reaction induced by turpentine oil injection in male rats. Drug Chem Toxicol 2019; 44:277-285. [PMID: 30849244 DOI: 10.1080/01480545.2019.1585446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heavy metal pollution is rapidly increasing in the environment. It has been shown that exposure to vanadium and chromium is able to alter the immune response. Nevertheless, the mechanisms by which these metal pollutants mediate their immunomodulatory effects are not completely understood. Herein, we examined the effect of ammonium metavanadate and potassium dichromate on the development of an inflammatory response caused by subcutaneous injection of turpentine oil. We demonstrated that pretreatment of rats with ammonium metavanadate and potassium dichromate for two weeks prior to initiation of the inflammatory response resulted in a wider zone of necrosis surrounding the site of inflammation. The acute inflammatory process in the combined model was characterized by elevated serum levels of IL-10 and decreased serum levels of IL-6 as compared to rats not treated with ammonium metavanadate and potassium dichromate. Ammonium metavanadate and potassium dichromate administration induced a decrease in the proportion of splenic His48HighCD11b/c+ myeloid cells accompanied by a reduced infiltration of the wound with neutrophils. Further analysis showed decreased proportions of CD3+CD4+IFNγ+ and CD3+CD4+IL-4+ T cells in the rats with combined model as compared to inflamed rats not treated with ammonium metavanadate and potassium dichromate. The data suggest that consumption of vanadium and chromium compounds disrupts the inflammatory response through an altered balance of pro- and anti-inflammatory cytokines and inhibition of effector T cell activation and neutrophil expansion.
Collapse
Affiliation(s)
- Marina K Balabekova
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yekaterina O Ostapchuk
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Yuliya V Perfilyeva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Aliya N Tokusheva
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Adilman Nurmuhambetov
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Rustam R Tuhvatshin
- Department of Pathophysiology, I.K. Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan
| | - Vasiliy V Trubachev
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Zhaugashty B Akhmetov
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Nurshat Abdolla
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Gulgul K Kairanbayeva
- Department of Pathological Physiology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Koks Sulev
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Nikolai N Belyaev
- Department of New Technology, Saint-Petersburg Pasteur Institute, Saint-Petersburg, Russia
| |
Collapse
|
24
|
Falcone LM, Erdely A, Salmen R, Keane M, Battelli L, Kodali V, Bowers L, Stefaniak AB, Kashon ML, Antonini JM, Zeidler-Erdely PC. Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding-stainless steel fume: Iron as a primary mediator versus chromium and nickel. PLoS One 2018; 13:e0209413. [PMID: 30586399 PMCID: PMC6306264 DOI: 10.1371/journal.pone.0209413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
In 2017, the International Agency for Research on Cancer classified welding fumes as "carcinogenic to humans" (Group 1). Both mild steel (MS) welding, where fumes lack carcinogenic chromium and nickel, and stainless steel (SS) increase lung cancer risk in welders; therefore, further research to better understand the toxicity of the individual metals is needed. The objectives were to (1) compare the pulmonary toxicity of chromium (as Cr(III) oxide [Cr2O3] and Cr (VI) calcium chromate [CaCrO4]), nickel [II] oxide (NiO), iron [III] oxide (Fe2O3), and gas metal arc welding-SS (GMAW-SS) fume; and (2) determine if these metal oxides can promote lung tumors. Lung tumor susceptible A/J mice (male, 4-5 weeks old) were exposed by oropharyngeal aspiration to vehicle, GMAW-SS fume (1.7 mg), or a low or high dose of surrogate metal oxides based on the respective weight percent of each metal in the fume: Cr2O3 + CaCrO4 (366 + 5 μg and 731 + 11 μg), NiO (141 and 281 μg), or Fe2O3 (1 and 2 mg). Bronchoalveolar lavage, histopathology, and lung/liver qPCR were done at 1, 7, 28, and 84 days post-aspiration. In a two-stage lung carcinogenesis model, mice were initiated with 3-methylcholanthrene (10 μg/g; intraperitoneal; 1x) or corn oil then exposed to metal oxides or vehicle (1 x/week for 5 weeks) by oropharyngeal aspiration. Lung tumors were counted at 30 weeks post-initiation. Results indicate the inflammatory potential of the metal oxides was Fe2O3 > Cr2O3 + CaCrO4 > NiO. Overall, the pneumotoxic effects were negligible for NiO, acute but not persistent for Cr2O3 + CaCrO4, and persistent for the Fe2O3 exposures. Fe2O3, but not Cr2O3 + CaCrO4 or NiO significantly promoted lung tumors. These results provide experimental evidence that Fe2O3 is an important mediator of welding fume toxicity and support epidemiological findings and the IARC classification.
Collapse
Affiliation(s)
- Lauryn M. Falcone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- West Virginia University, School of Medicine, Morgantown, West Virginia, United States of America
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- West Virginia University, School of Medicine, Morgantown, West Virginia, United States of America
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Michael Keane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Lori Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Lauren Bowers
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - James M. Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Patti C. Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- West Virginia University, School of Medicine, Morgantown, West Virginia, United States of America
| |
Collapse
|
25
|
Krishnaraj J, Baba AB, Viswanathan P, Veeravarmal V, Balasubramanian V, Nagini S. Impact of stainless-steel welding fumes on proteins and non-coding RNAs regulating DNA damage response in the respiratory tract of Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1231-1245. [PMID: 30507362 DOI: 10.1080/15287394.2018.1550027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Substantial evidence has established the negative impact of inhalation exposure to welding fumes on respiratory functions. The aim of the present study was to investigate the effect of welding fume inhalation on expression of molecules that function as sensors, transducers and effectors of DNA damage response (DDR) in the respiratory tract of male Sprague-Dawley rats. Animals were exposed to 50 mg/m3 stainless steel welding fumes for 1 h/d for 4, 8, and 12 weeks, respectively. Histological examination demonstrated preneoplastic changes in trachea and bronchi with focal atelectasis and accumulation of chromium (Cr) in the lungs. This was associated with elevated levels of DNA damage markers (8-oxodG, γH2AX), ATM phosphorylation, cell cycle arrest, apoptosis induction, activation of homologous recombination (HR), non-homologous end joining (NHEJ), and Nrf2 signaling, as well as altered expression of noncoding RNAs (ncRNAs). However, after 12 weeks of exposure, DDR was compromised as reflected by resumption of the cell cycle, repair inhibition, and failure of apoptosis. Data demonstrate that exposure to welding fumes influences two crucial layers of DDR regulation, phosphorylation of key proteins in NHEJ and HR, as well as the ncRNAs that epigenetically modulate DDR. Evidence indicates that marked DNA damage coupled with non-productive DNA repair and apoptosis avoidance may be involved in neoplastic transformation.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Abdul Basit Baba
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Periasamy Viswanathan
- b Division of Pathology, Rajah Muthiah Medical College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Veeran Veeravarmal
- c Division of Oral Pathology, Rajah Muthiah Dental College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Viswalingam Balasubramanian
- d Department of Manufacturing Engineering, Faculty of Engineering and Technology , Annamalai University , Annamalainagar , TN , India
| | - Siddavaram Nagini
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| |
Collapse
|
26
|
Falcone LM, Erdely A, Kodali V, Salmen R, Battelli LA, Dodd T, McKinney W, Stone S, Donlin M, Leonard HD, Cumpston JL, Cumpston JB, Andrews RN, Kashon ML, Antonini JM, Zeidler-Erdely PC. Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice. Toxicology 2018; 409:24-32. [PMID: 30055299 PMCID: PMC6390845 DOI: 10.1016/j.tox.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for Research on Cancer in 2017. Gas metal arc welding (GMAW) is a process widely used in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene (MCA; 10 μg/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m3. Lung nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fume significantly increased lung tumor multiplicity in mice initiated with MCA (21.86 ± 1.50) compared to MCA/air-exposed mice (8.34 ± 0.59). Histopathological analysis confirmed these findings and also revealed an absence of inflammation. Bronchoalveolar lavage analysis also indicated a lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to carcinogenic metals, are at an increased risk for lung cancer.
Collapse
Affiliation(s)
- L M Falcone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - A Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States
| | - V Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - R Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - L A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - T Dodd
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - W McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - S Stone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - M Donlin
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - H D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J B Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - R N Andrews
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, United States
| | - M L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - J M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - P C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; West Virginia University, School of Medicine, Morgantown, WV, United States.
| |
Collapse
|
27
|
Ali N, Ljunggren S, Karlsson HM, Wierzbicka A, Pagels J, Isaxon C, Gudmundsson A, Rissler J, Nielsen J, Lindh CH, Kåredal M. Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix. Clin Proteomics 2018; 15:20. [PMID: 29760600 PMCID: PMC5946400 DOI: 10.1186/s12014-018-9196-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. METHODS In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. RESULTS The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. CONCLUSION Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
Collapse
Affiliation(s)
- Neserin Ali
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helen M. Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Aneta Wierzbicka
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Joakim Pagels
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Christina Isaxon
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Jenny Rissler
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Jörn Nielsen
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Suojalehto H, Lindström I, Wolff H, Puustinen A. Nasal protein profiles in work-related asthma caused by different exposures. Allergy 2018; 73:653-663. [PMID: 28960398 DOI: 10.1111/all.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mechanisms of work-related asthma (WRA) are incompletely delineated. Nasal cell samples may be informative about processes in the lower airways. Our aim was to determine the nasal protein expression profiles of WRA caused by different kind of exposures. METHODS We collected nasal brush samples from 82 nonsmoking participants, including healthy controls and WRA patients exposed to (i) protein allergens, (ii) isocyanates and (iii) welding fumes the day after relevant exposure. The proteome changes in samples were analysed by two-dimensional difference gel electrophoresis, and the differentially regulated proteins found were identified by mass spectrometry. Immunological comparison was carried out using Western blot. RESULTS We detected an average of 2500 spots per protein gel. Altogether, 228 protein spots were chosen for identification, yielding 77 different proteins. Compared to the controls, exposure to protein allergens had the largest effects on the proteome. Hierarchical clustering revealed that protein allergen- and isocyanate-related asthma had similar profiles, whereas asthma related to welding fumes differed. The highly overrepresented functional categories in the asthma groups were defence response, protease inhibitor activity, inflammatory and calcium signalling, complement activation and cellular response to oxidative stress. Immunological analysis confirmed the found abundance differences in galectin 10 and protein S100-A9 between the groups. CONCLUSIONS Work-related asthma patients exposed to protein allergens and isocyanates elicit similar nasal proteome responses and the profiles of welders and healthy controls were alike. Revealed biological activities of the protein expression changes are associated with allergic inflammation and asthma.
Collapse
Affiliation(s)
- H. Suojalehto
- Occupational Medicine; Finnish Institute of Occupational Health; Helsinki Finland
| | - I. Lindström
- Occupational Medicine; Finnish Institute of Occupational Health; Helsinki Finland
| | - H. Wolff
- Work Environment Laboratories; Finnish Institute of Occupational Health; Helsinki Finland
| | - A. Puustinen
- Unit of Systems Toxicology; Finnish Institute of Occupational Health; Helsinki Finland
- Verifin; Department of Chemistry; University of Helsinki; Helsinki Finland
| |
Collapse
|
29
|
Kodali VK, Roberts JR, Shoeb M, Wolfarth MG, Bishop L, Eye T, Barger M, Roach KA, Friend S, Schwegler-Berry D, Chen BT, Stefaniak A, Jordan KC, Whitney RR, Porter DW, Erdely AD. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture. Nanotoxicology 2017; 11:1040-1058. [DOI: 10.1080/17435390.2017.1390177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vamsi K. Kodali
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mohammad Shoeb
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Lindsey Bishop
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tracy Eye
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Barger
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Bean T. Chen
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | | | | | - Dale W. Porter
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aaron D. Erdely
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
30
|
Stanislawska M, Halatek T, Cieslak M, Kaminska I, Kuras R, Janasik B, Wasowicz W. Coarse, fine and ultrafine particles arising during welding - Analysis of occupational exposure. Microchem J 2017. [DOI: 10.1016/j.microc.2017.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Hassan SM, Nasir U, Anwar K, Talib U. An assessment of the level of awareness and reported complaints regarding occupational health hazards and the utilization of personal protective equipments among the welders of Lahore, Pakistan. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2017; 23:98-109. [PMID: 29338641 PMCID: PMC6060853 DOI: 10.1080/10773525.2018.1426259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Objective To assess the level of awareness and reported complaints of occupational health hazards among the welders of Lahore. Methods A cross-sectional descriptive study of 70 welders. An interview questionnaire was employed to assess awareness and complaints, the possession and utilization of protective personal equipment (PPE), and socio-demographic characteristics. Results All of the respondents were male with a mean age of 25.7 years. 54.3% of the respondents were aware of welding as a risk to their health. 98.6% possessed at least 1 PPE. There was an association between the level of education and the awareness of a health risk (χ2 = 6.885; p = 0.032). The most frequent complaint was foreign body in the eye (47.1%) followed by arc eye injury (45.7%), cuts and injuries (50.0%), and burns (48.6%). Conclusion The findings suggest that welders had low level of awareness and reported many complaints of occupational health hazards. Preventive initiatives are recommended.
Collapse
Affiliation(s)
- Syed Moin Hassan
- Department of Surgery, Shalamar Institute of Health Sciences, Lahore, Pakistan
| | - Usama Nasir
- CMH Lahore Medical and Dental College, Lahore Cantt, Pakistan
| | - Kanwal Anwar
- University Medical and Dental College, Faisalabad, Pakistan
| | - Usama Talib
- Research Fellow, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| |
Collapse
|
32
|
Dierschke K, Isaxon C, Andersson UBK, Assarsson E, Axmon A, Stockfelt L, Gudmundsson A, Jönsson BAG, Kåredal M, Löndahl J, Pagels J, Wierzbicka A, Bohgard M, Nielsen J. Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates. Int Arch Occup Environ Health 2017; 90:451-463. [PMID: 28258373 PMCID: PMC5486570 DOI: 10.1007/s00420-017-1209-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/10/2017] [Indexed: 11/26/2022]
Abstract
Purpose Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders’ airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day. Method In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure. Results No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms. Conclusion Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust).
Collapse
Affiliation(s)
- Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden.
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Ulla B K Andersson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden
| | - Anna Axmon
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, Gothenburg University, Gothenburg, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Bo A G Jönsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden
| | - Jakob Löndahl
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Mats Bohgard
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Jörn Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden
| |
Collapse
|
33
|
Krajnak K, Sriram K, Johnson C, Roberts JR, Mercer R, Miller GR, Wirth O, Antonini JM. Effects of pulmonary exposure to chemically-distinct welding fumes on neuroendocrine markers of toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:301-314. [PMID: 28598268 PMCID: PMC6422021 DOI: 10.1080/15287394.2017.1318324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exposure to welding fumes may result in disorders of the pulmonary, cardiovascular, and reproductive systems. Welders are also at a greater risk of developing symptoms similar to those seen in individuals with idiopathic Parkinson's disease. In welders, there are studies that suggest that alterations in circulating prolactin concentrations may be indicative of injury to the dopamine (DA) neurons in the substantia nigra. The goal of these studies was to use an established model of welding particulate exposure to mimic the effects of welding fume inhalation on reproductive functions. Since previous investigators suggested that changes in circulating prolactin may be an early marker of DA neuron injury, movement disorders, and reproductive dysfunction, prolactin, hypothalamic tyrosine hydroxylase (TH) levels (a marker of DA synthesis), and other measures of hypothalamic-pituitary-gonadal (HPG) function were measured after repetitive instillation of welding fume particulates generated by flux core arc-hard surfacing (FCA-HS), manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) welding, or manganese chloride (MnCl2). Exposure to welding fume particulate resulted in the accumulation of various metals in the pituitary and testes of rats, along with changes in hypothalamic TH and serum prolactin levels. Exposure to particulates with high concentrations of soluble manganese (Mn) appeared to exert the greatest influence on TH activity levels and serum prolactin concentrations. Thus, circulating prolactin levels may serve as a biomarker for welding fume/Mn-induced neurotoxicity. Other reproductive measures were collected, and these data were consistent with epidemiological findings that prolactin and testosterone may serve as biomarkers of welding particulate induced DA neuron and reproductive dysfunction.
Collapse
Affiliation(s)
- K. Krajnak
- Engineering Controls and Technology Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - K. Sriram
- Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - C. Johnson
- Engineering Controls and Technology Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - J. R. Roberts
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - R. Mercer
- Physiology and Pathology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - G. R. Miller
- Engineering Controls and Technology Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - O. Wirth
- Biostatistic and Epidemiology Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - J. M. Antonini
- Physiology and Pathology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
34
|
Marongiu A, Hasan O, Ali A, Bakhsh S, George B, Irfan N, Minelli C, Canova C, Schofield S, De Matteis S, Cullinan P. Are welders more at risk of respiratory infections? Findings from a cross-sectional survey and analysis of medical records in shipyard workers: the WELSHIP project. Thorax 2016; 71:601-6. [DOI: 10.1136/thoraxjnl-2015-207912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/04/2016] [Indexed: 11/04/2022]
|
35
|
DeWitt JC, Germolec DR, Luebke RW, Johnson VJ. Associating Changes in the Immune System with Clinical Diseases for Interpretation in Risk Assessment. CURRENT PROTOCOLS IN TOXICOLOGY 2016; 67:18.1.1-18.1.22. [PMID: 26828330 PMCID: PMC4780336 DOI: 10.1002/0471140856.tx1801s67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This overview is an update of the unit originally published in 2004. While the basic tenets of immunotoxicity have not changed in the past 10 years, several publications have explored the application of immunotoxicological data to the risk assessment process. Therefore, the goal of this unit is still to highlight relationships between xenobiotic-induced immunosuppression and risk of clinical diseases progression. In immunotoxicology, this may require development of models to equate moderate changes in markers of immune functions to potential changes in incidence or severity of infectious diseases. For most xenobiotics, exposure levels and disease incidence data are rarely available, and safe exposure levels must be estimated based on observations from experimental models or human biomarker studies. Thus, it is important to establish a scientifically sound framework that allows accurate and quantitative interpretation of experimental or biomarker data in the risk assessment process.
Collapse
Affiliation(s)
- Jamie C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Dori R Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Robert W Luebke
- Cardiopulmonary and Immunotoxicology Branch, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | | |
Collapse
|
36
|
Raulf M, Weiss T, Lotz A, Lehnert M, Hoffmeyer F, Liebers V, Van Gelder R, Udo Käfferlein H, Hartwig A, Pesch B, Brüning T. Analysis of inflammatory markers and metals in nasal lavage fluid of welders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:1144-1157. [PMID: 27924706 DOI: 10.1080/15287394.2016.1221370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Welding fumes may produce adverse health effects in the respiratory tract. To assess the relationship between exposure to welding fumes and inflammation in the upper airways, 190 male welders were examined from the WELDOX study (median age 40 yr, 54.7% smokers, and 32.9% atopics). Inhalable welding fumes were collected in the breathing zone of welders during a single shift. Chromium (Cr), nickel (Ni), manganese (Mn), and iron (Fe) were measured in the welding-fume samples and in postshift nasal lavage fluid (NALF). In addition, the numbers of particles and inflammatory biomarkers, including total and differential cell counts, interleukin (IL)-8, leukotriene (LT) B4, 8-isoprostane (8-iso-PGF2α), tissue inhibitor of metalloproteinase-1 (TIMP-1), and immunoreactive matrix metalloproteinase (MMP)-9, were determined. Metal concentrations in NALF correlated with airborne concentrations. No significant association was found between airborne metal concentrations and biomarkers of inflammation in NALF, whereas increasing metal concentrations in NALF resulted in increased concentrations of total protein, IL-8, MMP-9, and TIMP-1. LTB4 and 8-iso PGF2α were elevated at higher concentrations of Cr or Ni in NALF. The same was true for Fe, although the effects were less pronounced and of borderline significance. In conclusion, our results showed a significant association between the concentrations of metals and soluble inflammatory markers in the NALF of welders. The noninvasive collection of NALF is applicable in field studies, where it may serve as a suitable matrix to simultaneously assess biomarkers of exposure and effect in the upper respiratory tract in workers who are occupationally exposed to airborne hazardous substances.
Collapse
Affiliation(s)
- Monika Raulf
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Tobias Weiss
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Anne Lotz
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Martin Lehnert
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Frank Hoffmeyer
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Verena Liebers
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Rainer Van Gelder
- b Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) , Sankt Augustin , Germany
| | - Heiko Udo Käfferlein
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Andrea Hartwig
- c Technische Universität Berlin, Lebensmittelchemie und Toxikologie , Berlin , Germany
- d Karlsruhe Institut für Technologie, IAB, Lebensmittelchemie und Toxikologie , Karlsruhe , Germany
| | - Beate Pesch
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| | - Thomas Brüning
- a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance , Institute of the Ruhr University Bochum (IPA) , Bochum , Germany
| |
Collapse
|
37
|
Zeidler-Erdely PC, Meighan TG, Erdely A, Fedan JS, Thompson JA, Bilgesu S, Waugh S, Anderson S, Marshall NB, Afshari A, McKinney W, Frazer DG, Antonini JM. Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats. Inhal Toxicol 2014; 26:697-707. [PMID: 25140454 DOI: 10.3109/08958378.2014.944287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m³ to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (R(L)) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline R(L) was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased R(L) and result in endothelial dysfunction, but otherwise had minor effects on the lung.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown, WV , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Erdely A, Antonini JM, Young SH, Kashon ML, Gu JK, Hulderman T, Salmen R, Meighan T, Roberts JR, Zeidler-Erdely PC. Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats. Part Fibre Toxicol 2014; 11:34. [PMID: 25123171 PMCID: PMC4151022 DOI: 10.1186/s12989-014-0034-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022] Open
Abstract
Welding fume is an exposure that consists of a mixture of metal-rich particulate matter with gases (ozone, carbon monoxide) and/or vapors (VOCs). Data suggests that welders are immune compromised. Given the inability of pulmonary leukocytes to properly respond to a secondary infection in animal models, the question arose whether the dysfunction persisted systemically. Our aim was to evaluate the circulating leukocyte population in terms of cellular activation, presence of oxidative stress, and functionality after a secondary challenge, following welding fume exposure. Rats were intratracheally instilled (ITI) with PBS or 2 mg of welding fume collected from a stainless steel weld. Rats were sacrificed 4 and 24 h post-exposure and whole blood was collected. Whole blood was used for cellular differential counts, RNA isolation with subsequent microarray and Ingenuity Pathway Analysis, and secondary stimulation with LPS utilizing TruCulture technology. In addition, mononuclear cells were isolated 24 h post-exposure to measure oxidative stress by flow cytometry and confocal microscopy. Welding fume exposure had rapid effects on the circulating leukocyte population as identified by relative mRNA expression changes. Instillation of welding fume reduced inflammatory protein production of circulating leukocytes when challenged with the secondary stimulus LPS. The effects were not related to transcription, but were observed in conjunction with oxidative stress. These findings support previous studies of an inadequate pulmonary immune response following a metal-rich exposure and extend those findings showing leukocyte dysfunction occurs systemically.
Collapse
Affiliation(s)
- Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown 26505, WV, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Andujar P, Simon-Deckers A, Galateau-Sallé F, Fayard B, Beaune G, Clin B, Billon-Galland MA, Durupthy O, Pairon JC, Doucet J, Boczkowski J, Lanone S. Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Part Fibre Toxicol 2014; 11:23. [PMID: 24885771 PMCID: PMC4037282 DOI: 10.1186/1743-8977-11-23] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/18/2014] [Indexed: 01/07/2023] Open
Abstract
Background Although major concerns exist regarding the potential consequences of human exposure to nanoparticles (NP), no human toxicological data is currently available. To address this issue, we took welders, who present various adverse respiratory outcomes, as a model population of occupational exposure to NP. The aim of this study was to evaluate if welding fume-issued NP could be responsible, at least partially, in the lung alterations observed in welders. Methods A combination of imaging and material science techniques including ((scanning) transmission electron microscopy ((S)TEM), energy dispersive X-ray (EDX), and X-ray microfluorescence (μXRF)), was used to characterize NP content in lung tissue from 21 welders and 21 matched control patients. Representative NP were synthesized, and their effects on macrophage inflammatory secretome and migration were evaluated, together with the effect of this macrophage inflammatory secretome on human lung primary fibroblasts differentiation. Results Welding-related NP (Fe, Mn, Cr oxides essentially) were identified in lung tissue sections from welders, in macrophages present in the alveolar lumen and in fibrous regions. In vitro macrophage exposure to representative NP (Fe2O3, Fe3O4, MnFe2O4 and CrOOH) induced the production of a pro-inflammatory secretome (increased production of CXCL-8, IL-1ß, TNF-α, CCL-2, −3, −4, and to a lesser extent IL-6, CCL-7 and −22), and all but Fe3O4 NP induce an increased migration of macrophages (Boyden chamber). There was no effect of NP-exposed macrophage secretome on human primary lung fibroblasts differentiation. Conclusions Altogether, the data reported here strongly suggest that welding-related NP could be responsible, at least in part, for the pulmonary inflammation observed in welders. These results provide therefore the first evidence of a link between human exposure to NP and long-term pulmonary effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sophie Lanone
- Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et de Pathologie Professionnelle, 94000 Créteil, France.
| |
Collapse
|
40
|
BARKHORDARI A, ZARE SAKHVIDI MJ, ZARE SAKHVIDI F, HALVANI G, FIROOZICHAHAK A, SHIRALI G. Cancer Risk Assessment in Welder's Under Different Exposure Scenarios. IRANIAN JOURNAL OF PUBLIC HEALTH 2014; 43:666-73. [PMID: 26060768 PMCID: PMC4449415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/24/2014] [Indexed: 10/26/2022]
Abstract
BACKGROUND Welders exposure to nickel and hexavalent chromium in welding fumes is associated with increase of cancer risk in welders. In this study we calculated cancer risk due to exposure to these compounds in welders. METHODS The role of exposure parameters in welders on derived incremental lifetime cancer risk were determined by stochastic modeling of cancer risk. Input parameters were determined by field investigation in Iranian welders in 2013 and literature review. RESULTS The 90% upper band cancer risk due to hexavalent chromium and nickel exposure was in the range of 6.03E-03 to 2.12E-02 and 7.18E-03 to 2.61E-02 respectively. Scenario analysis showed that asthmatic and project welders are significantly at higher cancer risk in comparison with other welders (P<0.05). Shift duration was responsible for 37% and 33% of variances for hexavalent chromium and nickel respectively. CONCLUSIONS Welders are at high and unacceptable risk of cancer. Control measures according to scenario analysis findings are advisable.
Collapse
Affiliation(s)
- Abolfazl BARKHORDARI
- 1. Dept. of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad ZARE SAKHVIDI
- 1. Dept. of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran,* Corresponding Author:
| | - Fariba ZARE SAKHVIDI
- 1. Dept. of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gholamhossein HALVANI
- 1. Dept. of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali FIROOZICHAHAK
- 1. Dept. of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - GholamAbbas SHIRALI
- 2. Dept. of Occupational Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
41
|
Zeidler-Erdely PC, Meighan TG, Erdely A, Battelli LA, Kashon ML, Keane M, Antonini JM. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model. Part Fibre Toxicol 2013; 10:45. [PMID: 24107379 PMCID: PMC3774220 DOI: 10.1186/1743-8977-10-45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. METHODS Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. RESULTS MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. CONCLUSIONS GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road MS L2015, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hedmer M, Karlsson JE, Andersson U, Jacobsson H, Nielsen J, Tinnerberg H. Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry. Int Arch Occup Environ Health 2013; 87:623-34. [PMID: 23979145 DOI: 10.1007/s00420-013-0896-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Hedmer
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 85, Lund, Sweden,
| | | | | | | | | | | |
Collapse
|
43
|
Antonini JM, Roberts JR, Schwegler-Berry D, Mercer RR. Comparative microscopic study of human and rat lungs after overexposure to welding fume. ACTA ACUST UNITED AC 2013; 57:1167-79. [PMID: 23798603 DOI: 10.1093/annhyg/met032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.
Collapse
Affiliation(s)
- James M Antonini
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, MS 4020, Morgantown, WV 26505, USA
| | | | | | | |
Collapse
|
44
|
Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume. ANNALS OF OCCUPATIONAL HYGIENE 2013. [DOI: 10.1093/annhyg/met032\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|