1
|
Ghadirian S, Shariati L, Karbasi S. Evaluation of the effects of cartilage decellularized ECM in optimizing PHB-chitosan-HNT/chitosan-ECM core-shell electrospun scaffold: Physicochemical and biological properties. BIOMATERIALS ADVANCES 2025; 172:214249. [PMID: 40048901 DOI: 10.1016/j.bioadv.2025.214249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Cartilage regeneration is still a highly challenging field due to its low self-healing ability. This study used a core-shell electrospinning technique to enhance cartilage tissue engineering by incorporating cartilage extracellular matrix (ECM). The core of fibers included poly(3-hydroxybutyrate)-Chitosan (PHB-Cs) and Halloysite nanotubes. The shell of fibers consisted of Cs and ECM (0, 1, 3, 5 wt%). Subsequently, the scaffolds were named 0E, 1E, 3E, and 5E. The study aimed to assess the impact of ECM on cellular behavior and chondrogenesis. Our findings indicate that ECM reduced fiber diameter from 775 nm for the 0E scaffold to 454 nm for the 1E scaffold. Water contact angle measurements revealed an increasing trend by ECM addition, from 42° for 0E to 67° for 1E. According to mechanical analysis, the 1E scaffold represented the highest strength (5.81 MPa) and strain (3.17%). Based on these analyses, the 1E was considered the optimum scaffold. MTT analysis showed cell viability of over 80% for the 0E and 1E. Also, the gene expression level was assessed for Collagen II, Aggrecan, SOX 9, and Collagen X. The results represented that in the 1E scaffold Collagen II, Aggrecan, and SOX 9 were more upregulated at the end of the 21st day. However, in the 1E scaffold collagen X, as a hypertrophy marker, was downregulated at the end of the experiment. Overall, these results confirmed the potential of the 1E scaffold to be introduced as a promising cartilage tissue engineering scaffold for further studies.
Collapse
Affiliation(s)
- Sepideh Ghadirian
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Bargali P, Kumar R, Joshi S, Karakoti H, Gautam S, Rawat S, Rawat DS. Artemisia annua L. essential oil-loaded chitosan nanoparticles: synthesis, characterization, in-vitro release kinetics, and acetylcholinesterase inhibition as a mode of action against plant-parasitic nematodes. Int J Biol Macromol 2025; 313:144221. [PMID: 40379160 DOI: 10.1016/j.ijbiomac.2025.144221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
This study aimed to develop Artemisia annua oil-loaded chitosan nanoparticles (AANPs) and evaluate their efficacy as bio-nematicide against M. incognita. The direct application of essential oils is limited by poor stability, volatility, and low water solubility. Nanoencapsulation improves their stability and bioavailability. AANPs were synthesized via ionic gelation, achieving 50 % Encapsulation efficiency and 25 % Loading capacity. DLS, SEM-EDX, FTIR, and XRD characterized spherical nanoparticles (90.34 nm) and successful encapsulation. TGA/DTG indicated improved thermal stability. Phytochemical analysis of AAO identified (E)-β-Farnesene (12.09 %), Germacrene D (11.68 %), and Camphor (11.66 %) as main constituents. In vitro release studies demonstrated that 67.4 % of the oil was released in acidic conditions within 48 h. AANPs inhibited egg hatching by 61.47 % and 71.56 % at 3000 μg/mL and 5000 μg/mL doses respectively. Larvicidal activity of AANPs reached 88.67 % at 5000 μg/mL, compared to 100 % mortality by commercial nematicide Nimitz. AChE inhibition assay yielded an IC₅₀ of 1.844 μg/mL for AANPs compared to Physostigmine. Molecular docking revealed Germacrene D as a key inhibitor, with a docking score of -6.8 kcal/mol. AANPs showed improved nematicidal and AChE-inhibition. This study demonstrates that nanoencapsulation enhances the stability, efficacy, and controlled release of AAO, offering a promising eco-friendly alternative for nematode management.
Collapse
Affiliation(s)
- Pooja Bargali
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India.
| | - Shivang Joshi
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Himani Karakoti
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - Shilpi Rawat
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| | - D S Rawat
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, 263145, Uttarakhand, India
| |
Collapse
|
3
|
Ali IH, Al-Tabakha MM, Khalil IA. Loratadine Loaded Chitosan Tannic Acid Nanoparticles as Anti-Proliferative Agent Against Breast Cancer: In-silico, in-vitro and Cell Studies. Int J Nanomedicine 2024; 19:12483-12504. [PMID: 39600410 PMCID: PMC11590658 DOI: 10.2147/ijn.s483667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose This study aims to prepare Loratadine-loaded chitosan/tannic acid nanoparticles (LOR-CS/TAN NPs) through ionic gelation to be used as an anti-proliferative agent to aid in overcoming breast cancer propagation. Methods First, in-silico virtual screening was carried out to select the most appropriate anti-histaminic drug based on its inhibitory effect on the H1-histamine receptor, resulting in the selection of Loratadine (LOR). Molecular interaction between LOR with chitosan (CS), a positively charged polymer, and hyaluronan, a negatively charged polymer, was investigated separately through molecular docking, leading to the selection of CS. Optimization was carried out using Box Behnken Design, with concentrations of CS, LOR, and tannic acid (TAN) as independent variables. The optimized nanoparticles were then examined through morphological and physicochemical studies. Cell studies against the MCF-7 breast cancer cell line were conducted to assess cytotoxicity, cell cycle, apoptosis, and necrosis. Results The optimum formulation was determined to be CS (0.2% w/v), LOR (1:2 weight ratio to CS), and TAN (1:30.6 weight ratio to CS). The optimized LOR-CS/TAN NPs exhibited a size of 283 nm, a polydispersity index (PDI) of 0.102, and an entrapment efficiency of 78%, along with sustained drug release for 24 hours. The results demonstrated that LOR-CS/TAN NPs possess higher anti-cancer activity compared to free LOR. This enhanced activity is attributed to the synergistic effect of the drug and the designed nanoparticle, particularly due to the presence of tannic acid. Conclusion In conclusion, Loratadine-loaded chitosan/tannic acid nanoparticles (LOR-CS/TAN NPs) demonstrated enhanced anti-cancer activity against the MCF-7 breast cancer cell line. The synergistic effect of Loratadine and the nanoparticle system, particularly due to the presence of tannic acid, resulted in higher cytotoxicity compared to free Loratadine. These findings suggest that LOR-CS/TAN NPs have significant potential as a novel anti-proliferative agent for breast cancer therapy.
Collapse
Affiliation(s)
- Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
- Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Moawia M Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| |
Collapse
|
4
|
Zhang Z, Zhao X, Song Z, Wang L, Gao J. Electrospun collagen/chitosan composite fibrous membranes for accelerating wound healing. Biomed Mater 2024; 19:055024. [PMID: 39025112 DOI: 10.1088/1748-605x/ad6545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The protein-polysaccharide nanofibers have attracted intensive attention in promoting wound healing, due to their components and nanoscale fibrous structure that mimics the native extracellular matrix (ECM). For the full-thickness wounds, in addition to promoting healing, hemostatic property and antibacterial activity are also of critical importance. However, currently, protein-polysaccharide-based nanofiber membranes exhibit poor mechanical properties, lack inherent hemostatic and antibacterial capabilities, as well as the ability to promote tissue repair. In this study, we developed composited membranes, which were composed of collagen (Col) and chitosan (Chs), through solvent alteration and post-processing, the membranes showed enhanced stability under physiological conditions, proper hydrophilic performance and improved mechanical property. Appropriated porosity and water vapor transmission rate, which benefit to wound healing, were detected among all the membranes except for Col membrane. Aimed at wound dressing, hemocompatibility, antibacterial activity and cell proliferation of the electrospun membranes were evaluated. The results indicated that the Col/Chs composited membranes exhibited superior blood clotting capacity, and the membranes with Chs exceeding 60% possessed sufficient antibacterial activity. Moreover, compared with Chs nanofibers, significant increase in cell grow was detected in Col/Chs (1:3) membrane. Taken together, the electrospun membrane with multiple properties favorable to wound healing, superior blood coagulation, sufficient antibacterial performance and promoting cell proliferation property make it favorable candidate for full-thickness skin wound healing.
Collapse
Affiliation(s)
- Zhan Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xinzhe Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Ziyu Song
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Jing Gao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
5
|
Ali IH, Khalil IA, Hefnawy A, Chester A, Yacoub MH, El-Sherbiny IM. Exogenous and endogenous nitric oxide eluting polylactic acid-based nanofibrous scaffolds for enhancing angiogenesis of diabetic wounds. Int J Biol Macromol 2024; 261:129736. [PMID: 38280700 DOI: 10.1016/j.ijbiomac.2024.129736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Delayed wound healing is a major complication that diabetic patients suffer from due to high microbial infection susceptibility, high diabetic wound alkalinity, a low lymphangiogenesis rate, and a high inflammation rate, resulting in severe gangrene. Hence, this study aims to develop a multifunctional adhesive nanofibrous patch to promote the wound healing process. Phenytoin, sildenafil citrate, and/or nitric oxide-eluting nanoparticles were incorporated separately within the polylactic acid nanofibrous layer. Polylactic acid was fabricated in the form of highly porous nanofibrous matrices that resemble the natural structure of skin tissues in order to act as scaffolds that help cell migration and proliferation. A polylactic acid nanofibrous layer incorporating phenytoin was designed to stimulate fibroblast proliferation and inhibit inflammation. Another polylactic acid nanofibrous layer was loaded either with nitric oxide-eluting nanoparticles or sildenafil as a pro-angiogenic layer that can supply tissues with nitric oxide gas either exogenously or endogenously, respectively. The developed nanofibrous layers were in-vitro evaluated through different physicochemical, mechanical, and biological approaches. Finally, the efficiency of the prepared single multilayered patch was tested using an in-vivo alloxan-induced diabetic rats' model, which proved that the patches were able to release the incorporated cargos in a controlled manner, enhancing the wound healing process.
Collapse
Affiliation(s)
- Isra H Ali
- Nanomedicine Research Labs, Center of Material Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Islam A Khalil
- Nanomedicine Research Labs, Center of Material Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt; Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6(th) of October, Giza 12566, Egypt
| | - Amr Hefnawy
- Nanomedicine Research Labs, Center of Material Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Adrian Chester
- National Heart and Lung Institute, Heart Science Center, Imperial College London, Middlesex UB9 6JH, UK
| | - Magdi H Yacoub
- National Heart and Lung Institute, Heart Science Center, Imperial College London, Middlesex UB9 6JH, UK
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center of Material Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt.
| |
Collapse
|
6
|
Shetta A, Ali IH, Sharaf NS, Mamdouh W. "Review of strategic methods for encapsulating essential oils into chitosan nanosystems and their applications". Int J Biol Macromol 2024; 259:129212. [PMID: 38185303 DOI: 10.1016/j.ijbiomac.2024.129212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Essential oils (EOs) are hydrophobic, concentrated extracts of botanical origin containing diverse bioactive molecules that have been used for their biomedical properties. On the other hand, the volatility, toxicity, and hydrophobicity limited their use in their pure form. Therefore, nano-encapsulation of EOs in a biodegradable polymeric platform showed a solution. Chitosan (CS) is a biodegradable polymer that has been intensively used for EOs encapsulation. Various approaches such as homogenization, probe sonication, electrospinning, and 3D printing have been utilized to integrate EOs in CS polymer. Different CS-based platforms were investigated for EOs encapsulation such as nanoparticles (NPs), nanofibers, films, nanoemulsions, 3D printed composites, and hydrogels. Biological applications of encapsulating EOs in CS include antioxidant, antimicrobial, and anticancer functions. This review explores the principles for nanoencapsulation strategies, and the available technologies are also reviewed, in addition to an in-depth overview of the current research and application of nano-encapsulated EOs.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Isra H Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Nouran S Sharaf
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
7
|
Pourheydari-Barsari Z, Mirzadeh H, Farhadi M, Solouk A, Jalessi M. Antibacterial aligned nanofibrous chitosan/PVA patch for repairing chronic tympanic membrane perforations. Int J Biol Macromol 2023; 253:126597. [PMID: 37660854 DOI: 10.1016/j.ijbiomac.2023.126597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Chronic tympanic membrane (TM) perforation is a consequence of trauma or chronic otitis media, and these chronic TM perforations often lead to conduction hearing loss. This study focuses on the development of a patch using a combination of chitosan (CS) and polyvinyl alcohol (PVA) as graft material for repairing chronic tympanic membrane (TM) perforations. Aligned nanofibers were created using a specially designed collector (SDC) through the electrospinning method. The scanning electron microscopy (SEM) analysis revealed that the CS/PVA ratio of (15:85) resulted in uniform and bead-free nanofibers. The aligned nanofibers had a diameter of 131.11 ± 28 nm, indicating that the influence of the electrostatic field introduced by the SDC affected not only the nanofiber alignment but also the nanofiber diameter. The nanofiber angles demonstrated effective alignment. This patch is infused with thyme essential oil (TEO) for antibacterial properties. The results showed that its antibacterial property for Pseudomonas aeruginosa bacteria was enhanced in such a way that the diameter of the antibacterial halo increased from zero to 25 mm. Cell viability assays showed >80 % viability. A preclinical case study on six patients demonstrated the biocompatibility and promising potential of the fabricated patch for eardrum repair.
Collapse
Affiliation(s)
- Zohreh Pourheydari-Barsari
- Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, the Five Senses Health Institute, Rasoul Akram Hospital, Faulty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, the Five Senses Health Institute, Rasoul Akram Hospital, Faulty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Paul S, Schrobback K, Tran PA, Meinert C, Davern JW, Weekes A, Klein TJ. Photo-Cross-Linkable, Injectable, and Highly Adhesive GelMA-Glycol Chitosan Hydrogels for Cartilage Repair. Adv Healthc Mater 2023; 12:e2302078. [PMID: 37737465 PMCID: PMC11468424 DOI: 10.1002/adhm.202302078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Hydrogels provide a promising platform for cartilage repair and regeneration. Although hydrogels have shown some efficacy, they still have shortcomings including poor mechanical properties and suboptimal integration with surrounding cartilage. Herein, hydrogels that are injectable, cytocompatible, mechanically robust, and highly adhesive to cartilage are developed. This approach uses GelMA-glycol chitosan (GelMA-GC) that is crosslinkable with visible light and photoinitiators (lithium acylphosphinate and tris (2,2'-bipyridyl) dichlororuthenium (II) hexahydrate ([RuII(bpy)3 ]2+ and sodium persulfate (Ru/SPS)). Ru/SPS-cross-linked hydrogels have higher compressive and tensile modulus, and most prominently higher adhesive strength with cartilage, which also depends on inclusion of GC. Tensile and push-out tests of the Ru/SPS-cross-linked GelMA-GC hydrogels demonstrate adhesive strength of ≈100 and 46 kPa, respectively. Hydrogel precursor solutions behave in a Newtonian manner and are injectable. After injection in focal bovine cartilage defects and in situ cross-linking, this hydrogel system remains intact and integrated with cartilage following joint manipulation ex vivo. Cells remain viable (>85%) in the hydrogel system and further show tissue regeneration potential after three weeks of in vitro culture. These preliminary results provide further motivation for future research on bioadhesive hydrogels for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Sattwikesh Paul
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- Department of Surgery and RadiologyFaculty of Veterinary Medicine and Animal ScienceBangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU)Gazipur1706Bangladesh
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Karsten Schrobback
- School of Biomedical SciencesCentre for Genomics and Personalised HealthTranslational Research InstituteQueensland University of Technology (QUT)37 Kent StreetWoolloongabbaQLD4102Australia
| | - Phong Anh Tran
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Christoph Meinert
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Chief Executive Officer of Gelomics Pty LtdBrisbaneQueensland4059Australia
| | - Jordan William Davern
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
| | - Angus Weekes
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Travis Jacob Klein
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
9
|
Lin SH, Ou SL, Hsu HM, Wu JY. Preparation and Characteristics of Polyethylene Oxide/Curdlan Nanofiber Films by Electrospinning for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103863. [PMID: 37241490 DOI: 10.3390/ma16103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
In this study, polyethylene oxide (PEO) and curdlan solutions were used to prepare PEO/curdlan nanofiber films by electrospinning using deionized water as the solvent. In the electrospinning process, PEO was used as the base material, and its concentration was fixed at 6.0 wt.%. Moreover, the concentration of curdlan gum varied from 1.0 to 5.0 wt.%. For the electrospinning conditions, various operating voltages (12-24 kV), working distances (12-20 cm) and feeding rates of polymer solution (5-50 μL/min) were also modified. Based on the experimental results, the optimum concentration for the curdlan gum was 2.0 wt.%. Additionally, the most suitable operating voltage, working distance and feeding rate for the electrospinning process were 19 kV, 20 cm and 9 μL/min, respectively, which can help to prepare relatively thinner PEO/curdlan nanofibers with higher mesh porosity and without the formation of beaded nanofibers. Finally, the PEO/curdlan nanofiber instant films containing 5.0 wt.% quercetin inclusion complex were used to perform wetting and disintegration processes. It was found that the instant film can be dissolved significantly on the low-moisture wet wipe. On the other hand, when the instant film touched water, it can be disintegrated very quickly within 5 s, and the quercetin inclusion complex was dissolved in water efficiently. Furthermore, when the instant film encountered the water vapor at 50 °C, it almost completely disintegrated after immersion for 30 min. The results indicate that the electrospun PEO/curdlan nanofiber film is highly feasible for biomedical applications consisting of instant masks and quick-release wound dressings, even in the water vapor environment.
Collapse
Affiliation(s)
- Shu-Hung Lin
- PhD Program of Biotechnology and Industry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Sin-Liang Ou
- Department of Biomedical Engineering, Da-Yeh University, Changhua 515, Taiwan
| | - Hung-Ming Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Jane-Yii Wu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
- Biotechnology Research and Development Center, Da-Yeh University, Changhua 515, Taiwan
- Innovation Incubation Center, Da-Yeh University, Changhua 515, Taiwan
| |
Collapse
|
10
|
Ali IH, Khalil IA, El-Sherbiny IM. Design, development, in-vitro and in-vivo evaluation of polylactic acid-based multifunctional nanofibrous patches for efficient healing of diabetic wounds. Sci Rep 2023; 13:3215. [PMID: 36828848 PMCID: PMC9958191 DOI: 10.1038/s41598-023-29032-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
Impaired healing of diabetic ulcers is one of the major complications of diabetic patients due to high susceptibility to microbial infections, impaired lymphianogenesis, edema, and consequently impairing proper healing. This could even lead to much worse complications that include severe gangrene, trauma and finally limb amputation. Therefore, this study aims to develop a multilayered durable nanofibrous wound patch loaded with three promising drugs (phenytoin, sildenafil citrate and simvastatin) each in a separate layer to target a different wound healing phase. Polylactic acid was used for the preparation of the nanofibrous matrix of the wound patch, where each drug was incorporated in a separate layer during the preparation process. Drugs release profiles were studied over 3 weeks. Results showed that both phenytoin and simvastatin were released within 14 days while sildenafil continued till 21 days. Both physicochemical and mechanical characteristics of the patches were fully assessed as well as their biodegradability, swellability, breathability and porosity. Results showed that incorporation of drugs preserved the physicochemical and mechanical properties as well as porosity of the developed nanofibers. In addition, patches were evaluated for their biocompatibility and cell adhesion capability before being tested through in-vivo diabetic wound rat model induced by alloxan for three weeks. In vivo results showed that the patches were successful in inducing proper wound healing in diabetic rat model with overcoming the above-mentioned obstacles within 3 weeks. This was confirmed through assessing wound closure as well as from histopathological studies that showed complete healing with proper cell regeneration and arrangement without forming scars.
Collapse
Affiliation(s)
- Isra H Ali
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October City, Giza, 12578, Egypt
| | - Islam A Khalil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October City, Giza, 12578, Egypt
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
11
|
Gritsch L, Bossard C, Jallot E, Jones JR, Lao J. Bioactive glass-based organic/inorganic hybrids: an analysis of the current trends in polymer design and selection. J Mater Chem B 2023; 11:519-545. [PMID: 36541433 DOI: 10.1039/d2tb02089k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioactive glass-based organic/inorganic hybrids are a family of materials holding great promise in the biomedical field. Developed from bioactive glasses following recent advances in sol-gel and polymer chemistry, they can overcome many limitations of traditional composites typically used in bone repair and orthopedics. Thanks to their unique molecular structure, hybrids are often characterized by synergistic properties that go beyond a mere combination of their two components; it is possible to synthesize materials with a wide variety of mechanical and biological properties. The polymeric component, in particular, can be tailored to prepare tough, load-bearing materials, or rubber-like elastomers. It can also be a key factor in the determination of a wide range of interesting biological properties. In addition, polymers can also be used within hybrids as carriers for therapeutic ions (although this is normally the role of silica). This review offers a brief look into the history of hybrids, from the discovery of bioactive glasses to the latest developments, with a particular emphasis on polymer design and chemistry. First the benefits and limitations of hybrids will be discussed and compared with those of alternative approaches (for instance, nanocomposites). Then, key advances in the field will be presented focusing on the polymeric component: its chemistry, its physicochemical and biological advantages, its drawbacks, and selected applications. Comprehensive tables summarizing all the polymers used to date to fabricate sol-gel hybrids for biomedical applications are also provided, to offer a handbook of all the available candidates for hybrid synthesis. In addition to the current trends, open challenges and possible avenues of future development are proposed.
Collapse
Affiliation(s)
- Lukas Gritsch
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France. .,Technogym S.p.A., via Calcinaro 2861, 47521 Cesena (FC), Italy
| | - Cédric Bossard
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Edouard Jallot
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jonathan Lao
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| |
Collapse
|
12
|
Totito TC, Laatikainen K, Bode-Aluko C, Pereao O, Petrik L. Fabrication and Characterization of Electrospun Waste Polyethylene Terephthalate Blended with Chitosan: A Potential Single-Use Material. Polymers (Basel) 2023; 15:polym15020442. [PMID: 36679322 PMCID: PMC9861542 DOI: 10.3390/polym15020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Textile single-use products are dominantly used for hygiene and personal care, many of which are non-biodegradable and are frequently discarded into sewerage systems, thus causing blockages. Thus, there is a need to move towards water-soluble textiles. This research study focuses on transforming or repurposing biomass material and synthetic reusable waste plastic materials to improve waste. Chitosan (CS) nanofibers could be used in single-use nonwoven fabric or biodegradable tissues, as the water-soluble properties of chitosan nanofibers make them the perfect material for single-use applications. Furthermore, CS was blended with polyethylene terephthalate (PET) polymer and PET-based waste plastic (CS-WPET) to slow the CS nanofibers' water degradability and strengthen the durability of the nanofiber which could be used as air filters. The CS-TFA and CS-TFA/DCM nanofiber diameters were 95.58 ± 39.28 nm or 907.94 ± 290.18 nm, respectively, as measured from the HRSEM images. The CS-PET and CS-WPET hybrid nanofibers had fiber diameters of 246.13 ± 96.36 or 58.99 ± 20.40 nm, respectively. The thermal durability of the nanofibers was tested by TGA, which showed that CS-TFA/DCM nanofibers had sufficient thermal stability up to 150 °C, making them suitable for filter or fabric use at moderate temperatures. The blended nanofibers (CS-PET and CS-WPET) were thermally stable up to 160 °C. In the aqueous medium stability test, CS-PET and CS-WPET hybrid nanofibers had a slower degradation rate and were easily dissolved, while the CS nanofibers were rapidly and completely dissolved in an aqueous medium. Blending waste PET with CS allows it to be recycled into a useful single-use, non-woven textile, with greater water solubility than unmodified PET nanofibers but more durability than CS nanofibers on their own.
Collapse
Affiliation(s)
- Thandiwe Crystal Totito
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- Correspondence:
| | - Katri Laatikainen
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland
| | - Chris Bode-Aluko
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Omoniyi Pereao
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Leslie Petrik
- Environmental and Nanoscience Research Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
13
|
Giordano-Kelhoffer B, Rodríguez-Gonzalez R, Perpiñan-Blasco M, Buitrago JO, Bosch BM, Perez RA. A Novel Chitosan Composite Biomaterial with Drug Eluting Capacity for Maxillary Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020685. [PMID: 36676422 PMCID: PMC9866710 DOI: 10.3390/ma16020685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/09/2023]
Abstract
Bone grafting is one of the most commonly performed treatments for bone healing or repair. Autografts, grafts from the same patient, are the most frequently used bone grafts because they can provide osteogenic cells and growth factors at the site of the implant with reduced risk of rejection or transfer of diseases. Nevertheless, this type of graft presents some drawbacks, such as pain, risk of infection, and limited availability. For this reason, synthetic bone grafts are among the main proposals in regenerative medicine. This branch of medicine is based on the development of new biomaterials with the goal of increasing bone healing capacity and, more specifically in dentistry, they aim at simultaneously preventing or eliminating bacterial infections. The use of fibers made of chitosan (CS) and hydroxyapatite (HA) loaded with an antibiotic (doxycycline, DX) and fabricated with the help of an injection pump is presented as a new strategy for improving maxillary bone regeneration. In vitro characterization of the DX controlled released from the fibers was quantified after mixing different amounts of HA (10-75%). The 1% CS concentration was stable, easy to manipulate and exhibited adequate cuttability and pH parameters. The hydroxyapatite concentration dictated the combined fast and controlled release profile of CSHA50DX. Our findings demonstrate that the CS-HA-DX complex may be a promising candidate graft material for enhancing bone tissue regeneration in dental clinical practice.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Raquel Rodríguez-Gonzalez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Marina Perpiñan-Blasco
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Jenifer O. Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| |
Collapse
|
14
|
Mirbagheri MS, Akhavan-Mahdavi S, Hasan A, Kharazmi MS, Jafari SM. Chitosan-based electrospun nanofibers for diabetic foot ulcer management; recent advances. Carbohydr Polym 2023; 313:120512. [PMID: 37182929 DOI: 10.1016/j.carbpol.2022.120512] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Diabetic foot ulcer (DFU) healing has long been a major medical challenge. The type of dressing is an essential factor in wound healing, prevention of local infection, and scar formation. Today, smart wound dressings or wound healing patches can precisely control drug delivery to the target tissue and prevent this significant complication. Nanofiber (NF) wound dressings are effective in reducing wound scarring and helping to speed up the healing process for DFU. The electrospun NFs have a suitable surface topography, density, and three-dimensional structure, which can be considered an efficient method to produce a substrate for tissue engineering and wound healing. Chitosan (CS) is one of the most well-known biopolymers in wound healing tissue engineering and drug delivery systems. The unique properties of CS make it suitable for biomedical applications. Based on new studies in the field of hemostatic and antimicrobial effects of CS in controlling bleeding and wound healing and application of NF wound dressings, the purpose of this study is a review relevant works on CS-based NFs to improve the DFU.
Collapse
|
15
|
Cho W, Park Y, Jung YM, Park JH, Park J, Yoo HS. Electrospun Nanofibrils Surface-Decorated with Photo-Cross-Linked Hyaluronic Acid for Cell-Directed Assembly. ACS OMEGA 2022; 7:40355-40363. [PMID: 36385880 PMCID: PMC9647879 DOI: 10.1021/acsomega.2c05322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) was chemically immobilized on the surface of electrospun nanofibrils to form a cell/NF complex. Poly(caprolactone) (PCL) was electrospun into nanofibrous mats that were subsequently aminolyzed into nanofibrils. The aminolyzed nanofibrils were surface-decorated with methacrylated HA via Michael type addtion and by photo-cross-linking. Fourier transform infrared spectroscopy revealed the presence of HA on the surface of the nanofibrils. The thermogravimetric and colorimetric analyses indicate that the degree of HA immobilization could be varied by varying the photo-cross-linking duration. Thus, on increasing the photo-cross-linking duration, the swelling ratios increased gradually, and the surface charge of the decorated nanofibrils decreased. NIH3T3 cells and surface-decorated nanofibrils spontaneously assembled into the cell/NF complex. A higher degree of surface-immobilized HA enhanced cell viability and proliferation compared to nanofibrils without surface-immobilized HA. Thus, we envision that HA-immobilized nanofibrils can be employed as a tissue-engineering matrix to control cell proliferation and differentiation.
Collapse
Affiliation(s)
- Wanho Cho
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
| | - Yeonju Park
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Mee Jung
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department
of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Hyun Park
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jongmin Park
- Department
of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
16
|
Haghdoost F, Bahrami SH, Barzin J, Ghaee A. Development of biocompatible co-electrospun polyethersulfone/polyvinylpyrrolidone-Y zeolite hybrid nanofiber. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2118274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Fatemeh Haghdoost
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S. Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Jalal Barzin
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Li J, Li Y, Zhong Z, Fu X, Li Z. One-pot self-assembly fabrication of chitosan coated hollow sphere for pH/ glutathione dual responsive drug delivery. Colloids Surf B Biointerfaces 2022; 218:112773. [PMID: 36007312 DOI: 10.1016/j.colsurfb.2022.112773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Chitosan-coated poly (methacrylic acid) (PMAA) hollow spheres with 64 ± 3% drug loading capacity and low drug leakage (7 ± 2%, 54 h) were prepared through a novel one-pot two-step self-assembly process. Site-specific doxorubicin (DOX) loading and chitosan coating were achieved by electrostatic interaction to fulfill efficient drug loading and well-controlled drug release behavior. In vitro drug release profile revealed the pH and glutathione (GSH) dual responsive fast triggered drug release behavior, reaching 62 ± 3% during the first 10 h. And completely drug release could be achieved in 54 h. The high drug content and sensitive tumor microenvironment responsibility lead to similar anti-cancer efficiency with free doxorubicin in in vitro MTT assay. This self-assembly guided one-pot two-step fabrication process was proved to be an effective and convenient way to prepare the well-defined multi-layer structure and might be further employed in fabricating high-performance drug delivery systems.
Collapse
Affiliation(s)
- Jiagen Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| | - Yaqi Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China
| | - Zhanqiong Zhong
- Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Xiaohong Fu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| | - Zhonghui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| |
Collapse
|
18
|
Kurt SB, Sahiner N. Beaded chitosan/carrageenan based fiber with bio-medicinal application potentials. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
20
|
Wu S, Ma J, Liu J, Liu C, Ni S, Dai T, Wang Y, Weng Y, Zhao H, Zhou D, Zhao X. Immunomodulation of Telmisartan-Loaded PCL/PVP Scaffolds on Macrophages Promotes Endogenous Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15942-15955. [PMID: 35353482 DOI: 10.1021/acsami.1c24748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomaterial-immune system interactions play an important role in postimplantation osseointegration to retain the functionality of healthy and intact bones. Therefore, appropriate osteoimmunomodulation of implants has been considered and validated as an efficient strategy to alleviate inflammation and enhance new bone formation. Here, we fabricated a nanostructured PCL/PVP (polycaprolactone/polyvinylpyrrolidone) electrospinning scaffold for cell adhesion, tissue ingrowth, and bone defect padding. In addition, telmisartan, an angiotensin 2 receptor blocker with distinct immune bioactivity, was doped into PCL-/PVP-electrospun scaffolds at different proportions [1% (TPP-1), 5% (TPP-5), and 10% (TPP-10)] to investigate its immunomodulatory effects and osteoinductivity/conductivity. Telmisartan-loaded scaffolds displayed in vitro anti-inflammatory bioactivity on lipopolysaccharide-induced M1 macrophages by polarizing them to an M2-like phenotype and exhibited pro-osteogenic properties on bone marrow-derived mesenchymal stem cells (BMSCs). Histological analysis and micro-CT results of a rat skull defect model also showed that the telmisartan-loaded scaffolds induced a higher M2/M1 ratio, less inflammatory infiltration, and better bone regenerative patterns. Furthermore, activation of the BMP2 (bone morphogenetic protein-2)-Smad signaling pathway was found to be dominant in telmisartan-loaded scaffold-mediated macrophage-BMSC interactions. These findings indicate that telmisartan incorporation with PCL/PVP nanofibrous scaffolds is a potential therapeutic strategy for promoting bone healing by modulating M1 macrophages to a more M2 phenotype at early stages of postimplantation.
Collapse
Affiliation(s)
- Siyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Jiayi Ma
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Jun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Ting Dai
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Yan Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Yiping Weng
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Hongbin Zhao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Dong Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| |
Collapse
|
21
|
Mirtaghi SM, Hassannia H, Mahdavi M, Hosseini-Khah Z, Mellati A, Enderami SE. A novel hybrid polymer of PCL/Fish gelatin nanofibrous scaffold improves proliferation and differentiation of wharton's jelly-derived mesenchymal cells into islet-like cells. Artif Organs 2022; 46:1491-1503. [PMID: 35403747 DOI: 10.1111/aor.14257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Using a different source of stem cells to compensate for the lost beta cells is a promising way to cure diabetic patients. Besides The best efficiency of insulin-producing cells (IPCs) will appear when we culture them in an environment similar to inside the body. Hence, three-dimensional (3D) culture ameliorates the differentiation of diverse kinds of stem cells into IPCs compared to those differentiated in two-dimensional (2D) culture. In this study, we aim to create an ideal differentiation environment by using PCL/Fish gelatin nanofibrous scaffolds to differentiate wharton's jelly-derived mesenchymal cells (WJ-MSCs) to IPCs and compare them with a 2D cultured group. METHODS The evaluation of cellular, molecular, and functional properties of differentiated cells on the 3D and 2D cultures were investigated by several assay such as electron microscopy, quantitative PCR, immunochemistry, western blotting, and ELISA. RESULTS The in vitro studies showed, WJ-MSCs that differentiated in the 3D culture have strong properties of IPCs such as islet-like cells. The expression of pancreatic-specific genes at both RNA and protein levels showed higher differentiation efficacy of 3D culture. Besides, the results of the elisa tests demonstrates that in both groups the differentiated cells are functional and secreted C-peptide and insulin in glucose stimulation, but the secretion of C-peptide and insulin in the 3D culture group was higher than those cultured in 2D groups. CONCLUSION Our findings showed the use of PCL/Fish gelatin nanofibrous scaffolds with optimized differentiation protocols can promote the differentiation of IPCs from WJ-MSCs compared to the 2D culture group.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Mirtaghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Mahdavi
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Zahra Hosseini-Khah
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Fayaz G, Soleimanian Y, Mhamadi M, Turgeon SL, Khalloufi S. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Compr Rev Food Sci Food Saf 2022; 21:2149-2199. [DOI: 10.1111/1541-4337.12934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/04/2021] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Goly Fayaz
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Yasamin Soleimanian
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Mmadi Mhamadi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Sylvie L. Turgeon
- Institute of Nutrition and Functional Foods Laval University Québec Canada
- Food Science Department Laval University Québec Canada
| | - Seddik Khalloufi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| |
Collapse
|
23
|
Karizmeh MS, Poursamar SA, Kefayat A, Farahbakhsh Z, Rafienia M. An in vitro and in vivo study of PCL/chitosan electrospun mat on polyurethane/propolis foam as a bilayer wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112667. [DOI: 10.1016/j.msec.2022.112667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
|
24
|
Jatal R, Osman R, Mamdouh W, Awad GA. Lung targeted electrosprayed chitosan nanocomposite microparticles boost the cytotoxic activity of magnolol. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
26
|
Molina-Ramírez C, Mazo P, Zuluaga R, Gañán P, Álvarez-Caballero J. Characterization of Chitosan Extracted from Fish Scales of the Colombian Endemic Species Prochilodus magdalenae as a Novel Source for Antibacterial Starch-Based Films. Polymers (Basel) 2021; 13:polym13132079. [PMID: 34202687 PMCID: PMC8271442 DOI: 10.3390/polym13132079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Scales of Prochilodus magdalenae, a Colombian endemic fish species, were used to obtain chitosan for application as an antibacterial agent integrated into starch-based films. Analysis of its composition during the demineralization and deproteinization process indicated that minerals and protein were both removed successfully. At this point, mild conditions for the deacetylation process were employed, namely, 2, 4, and 6 wt.% NaOH at room temperature for 16 h. Chitosan processed under 2 wt.% NaOH had low molecular weight, with the lowest value of 107.18 ± 24.99 kDa, which was closely related to its antibacterial activity. Finally, this chitosan was integrated into a banana starch-based film, and its antibacterial activity was assayed in Escherichia coli and Staphylococcus aureus cultures, with positive results in the former culture, especially due to the low-molecular-weight characteristic of chitosan.
Collapse
Affiliation(s)
- Carlos Molina-Ramírez
- Grupo Química y Bioprospección de Productos Naturales, Universidad del Magdalena, Santa Marta 470004, Colombia;
- Grupo de Investigación Sobre Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín 050004, Colombia;
- Correspondence:
| | - Paulina Mazo
- Grupo de Investigaciones Agroindustriales (GRAIN), Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (P.M.); (R.Z.)
| | - Robin Zuluaga
- Grupo de Investigaciones Agroindustriales (GRAIN), Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (P.M.); (R.Z.)
| | - Piedad Gañán
- Grupo de Investigación Sobre Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín 050004, Colombia;
| | - Juan Álvarez-Caballero
- Grupo Química y Bioprospección de Productos Naturales, Universidad del Magdalena, Santa Marta 470004, Colombia;
| |
Collapse
|
27
|
Gorantla S, Dabholkar N, Sharma S, Rapalli VK, Alexander A, Singhvi G. Chitosan-based microneedles as a potential platform for drug delivery through the skin: Trends and regulatory aspects. Int J Biol Macromol 2021; 184:438-453. [PMID: 34126145 DOI: 10.1016/j.ijbiomac.2021.06.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Microneedles (MNs) fabrication using chitosan has gained significant interest due to its ability of film-forming, biodegradability, and biocompatibility, making it suitable for topical and transdermal drug delivery. The presence of amine and hydroxyl functional groups on chitosan permits the modification with tunable properties and functionalities. In this regard, chitosan is the preferred material for fabrication of MNs because it does not produce an immune response in the body and can be tailored as per required strength and functionalities. Therefore, many researchers have attempted to use chitosan as a drug delivery vehicle for hydrophilic drugs, peptides, and hormones. In 2020, the FDA has issued "Regulatory Considerations for Microneedling Products". This official guidance is a sign for future opportunities in the development of MNs. The present review focuses on properties, and modifications of chitosan used in the fabrication of MNs. The therapeutic and diagnostic applications of different types of chitosan-based MNs have been discussed. Further, the regulatory aspects of MN-based devices, and patents related to chitosan-based MNs are discussed.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Sudhanshu Sharma
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
28
|
Alturki AM. Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. Int J Biol Macromol 2021; 184:648-665. [PMID: 34102239 DOI: 10.1016/j.ijbiomac.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Nanofibers have a particular benefit when delivering a spectrum of therapeutic drugs for diverse biomedical applications. Nanofibers are easily fabricated from cellulose acetate, chitosan, polycaprolactone, and other polymers with regulated morphology and release profiles due to nanotechnology's recent advancement. This review will provide the latest approaches to the fabrication of electrospun nanofibers containing herbal extracts, antimicrobial peptides, and antibiotics for wound-healing potential. Besides, synthesis and evaluation of nanofibrous mats, including conducting polymer and evaluate their possibility for wound healing. In addition, nanofibers are loaded with some drugs for skin cancer treatment and contain growth factors for tissue regeneration. Also, the current two-dimensional nanofibers limitations and the various techniques for convert two-dimensional to three-dimension nanofibers to avoid these drawbacks. Moreover, the future direction in improving the three-dimensional structure and functionality has been including.
Collapse
Affiliation(s)
- Asma M Alturki
- Department of Chemistry, Faculty of Science, University of Tabuk, Saudi Arabia.
| |
Collapse
|
29
|
Garcia Garcia CE, Bossard F, Rinaudo M. Electrospun Biomaterials from Chitosan Blends Applied as Scaffold for Tissue Regeneration. Polymers (Basel) 2021; 13:1037. [PMID: 33810406 PMCID: PMC8036406 DOI: 10.3390/polym13071037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Our objective in this work was to summarize the main results obtained in processing pure chitosan and chitosan/hyaluronan complex in view of biomedical applications, taking advantage of their original properties. In addition, an electrospinning technique was selected to prepare nanofiber mats well adapted for tissue engineering in relation to the large porosity of the materials, allowing an exchange with the environment. The optimum conditions for preparation of purified and stable nanofibers in aqueous solution and phosphate buffer pH = 7.4 are described. Their mechanical properties and degree of swelling are given. Then, the prepared biomaterials are investigated to test their advantage for chondrocyte development after comparison of nanofiber mats and uniform films. For that purpose, the adhesion of cells is studied by atomic force microscopy (AFM) using single-cell force spectroscopy, showing the good adhesion of chondrocytes on chitosan. At the end, adhesion and proliferation of chondrocytes in vitro are examined and clearly show the interest of chitosan nanofiber mats compared to chitosan film for potential application in tissue engineering.
Collapse
Affiliation(s)
- Christian Enrique Garcia Garcia
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara C.P. 44430, Jalisco, Mexico
- Institute of Engineering Universite, Universite Grenoble Alpes, CNRS, LRP 38000 Grenoble, France;
| | - Frédéric Bossard
- Institute of Engineering Universite, Universite Grenoble Alpes, CNRS, LRP 38000 Grenoble, France;
| | | |
Collapse
|
30
|
Ahmadi S, Hivechi A, Bahrami SH, Milan PB, Ashraf SS. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. Int J Biol Macromol 2021; 173:580-590. [PMID: 33513421 DOI: 10.1016/j.ijbiomac.2021.01.156] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/11/2023]
Abstract
This study develops chitosan/gelatin nanofiber membranes with sustained release capacity to prevent infection by delivering cinnamon extract (CE) in the implanted site. The effects of the incorporation of CE content (2-6%) on the properties of the nanofibers were evaluated. Morphological studies using SEM indicated that loading the extract did not affect the average diameter of nanofiber mats, which remained around 140-170 nm. TGA and FTIR spectroscopy results confirmed successful CE loading. Furthermore, the results showed that incorporating extract into the nanofibers enhanced their degradation behavior, antibacterial activity, and biocompatibility. Cultured cells attached to and proliferate on the nanofiber membrane with high cell viability capacity until the CE content reached 4%. The extract release profile consisted of a burst release in the first 6 h, followed by a controlled release in the next 138 h. Therefore, CE loaded chitosan/gelatin nanofiber is an excellent construct for biomedical applications.
Collapse
Affiliation(s)
- Soroush Ahmadi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ahmad Hivechi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Peiman B Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Ashraf
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Houshyar S, Bhattacharyya A, Khalid A, Rifai A, Dekiwadia C, Kumar GS, Tran PA, Fox K. Multifunctional Sutures with Temperature Sensing and Infection Control. Macromol Biosci 2021; 21:e2000364. [PMID: 33433960 DOI: 10.1002/mabi.202000364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The next-generation sutures should provide in situ monitoring of wound condition such as temperature while reducing surgical site infection during wound closure. In this study, functionalized nanodiamond (FND) and reduced graphene oxide (rGO) into biodegradable polycaprolactone (PCL) are incorporated to develop a new multifunctional suture with such capabilities. Incorporation of FND and rGO into PCL enhances its tensile strength by about 43% and toughness by 35%. The sutures show temperature sensing capability in the range of 25-40 °C based on the shift in zero-splitting frequency of the nitrogen-vacancy (NV- ) centers in FND via optically detected magnetic resonance, paving the way for potential detection of infection or excessive inflammation in healing wounds. The suture surface readily coats with antibiotics to reduce bacterial infection risk to the wounds. The new suture thus is promising in monitoring and supporting wound closure.
Collapse
Affiliation(s)
- Shadi Houshyar
- College of Science, Engineering and Health, School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Amitava Bhattacharyya
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Asma Khalid
- College of Science, Engineering and Health, School of Applied Sciences, RMIT University, Melbourne, 3000, Australia
| | - Aaqil Rifai
- College of Science, Engineering and Health, School of Engineering, RMIT University, Melbourne, 3001, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, Vic, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy & Microanalysis Facility, College of Science, Engineering and Health, RMIT University, Melbourne, 3000, Australia
| | - G Sathish Kumar
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Phong A Tran
- Centre for Biomedical Technologies, 2 George Street, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Kate Fox
- College of Science, Engineering and Health, School of Engineering, RMIT University, Melbourne, 3001, Australia
| |
Collapse
|
32
|
Jiang R, Yan T, Wang Y, Pan Z. The preparation of PA6/CS‐NPs nanofiber filaments with excellent antibacterial activity via a one‐step multineedle electrospinning method with liquid bath circling system. J Appl Polym Sci 2020. [DOI: 10.1002/app.49053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rui Jiang
- College of Textile and Clothing EngineeringSoochow University Suzhou China
| | - Tao Yan
- College of Textile and Clothing EngineeringSoochow University Suzhou China
- National Engineering Laboratory for Modern Silk (Suzhou)Soochow University Suzhou China
| | - Yi‐Qi Wang
- JF R & D Center Laboratory, JF Polymers (Suzhou) Co., Ltd Suzhou China
| | - Zhi‐Juan Pan
- College of Textile and Clothing EngineeringSoochow University Suzhou China
- National Engineering Laboratory for Modern Silk (Suzhou)Soochow University Suzhou China
| |
Collapse
|
33
|
Hameed M, Rasul A, Nazir A, Yousaf AM, Hussain T, Khan IU, Abbas G, Abid S, Yousafi QUA, Ghori MU, Shahzad Y. Moxifloxacin-loaded electrospun polymeric composite nanofibers-based wound dressing for enhanced antibacterial activity and healing efficacy. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Misbah Hameed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahsan Nazir
- Electrospun Materials and Polymeric Membranes Research Group, National Textile University, Faisalabad, Pakistan
| | | | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sharjeel Abid
- Electrospun Materials and Polymeric Membranes Research Group, National Textile University, Faisalabad, Pakistan
| | | | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Science, University of Huddersfield, Huddersfield, UK
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
34
|
Tshangana CS, Muleja AA, Nxumalo EN, Mhlanga SD. Poly (ether) sulfone electrospun nanofibrous membranes embedded with graphene oxide quantum dots with antimicrobial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26845-26855. [PMID: 32382904 DOI: 10.1007/s11356-020-09080-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 05/05/2023]
Abstract
This work describes the development of novel electrospun nanofibrous membranes (ENMs) prepared by embedding graphene oxide quantum dots (GOQDs) into poly (ether) sulfone (PES). FTIR and Raman spectroscopy confirmed the successful incorporation of the GOQDs into the PES membranes. The optimal electrospinning polymer concentration that showed no defects or bead formation was at 26 wt% of the PES polymer. Spectroscopy, microscopy and contact angle were some of the techniques used to characterize the ENMs. SEM images showed smooth and unbranched ENMs. The average diameter upon incorporation of the GOQDs was determined to be 2.45 μm. XRD revealed that the GOQDs were structurally close to graphite with an interlaying space of 0.36 nm. The antimicrobial effect of the GOQDs-PES electrospun nanofibrous membranes was assessed against three bacterial strains (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus)) using the disc diffusion method. The electrospun nanofibres containing 10 wt% of GOQDs showed the most active antimicrobial activity against all three bacterial strains tested. The zones of inhibition ranged from 9 to 40 mm. The minimum inhibitory concentration (MIC) was determined to be 0.5 mg/mL, 0.3 mg/mL and 0.2 mg/mL for E. coli, B. cereus and S. aureus, respectively. The results demonstrated that incorporating GOQDs in the PES nanofibre gives rise to new antimicrobial properties, and as a result, the GOQDs-PES nanofibrous membrane can be used in antimicrobial applications such as water treatment.
Collapse
Affiliation(s)
- Charmaine S Tshangana
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - Adolph A Muleja
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - Edward N Nxumalo
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa.
| | - Sabelo D Mhlanga
- Sabinano Innovation in Carbon Nanotechnology Research & Development and Industrial Applications Division, Strijdom Park, Randburg, Johannesburg, 2194, South Africa.
- DST/Mintek Nanotechnology Innovation Centre, Mintek, Private Bag X3015, Randburg, Johannesburg, 2124, South Africa.
| |
Collapse
|
35
|
Zhong S. Incorporation of Palladium Catalyst Inside Cross-Linked Chitosan Hybrid Nanofibers for the Sonogashira Reaction. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Lee S, Choi JH, Park A, Rim M, Youn J, Lee W, Song JE, Khang G. Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. Int J Biol Macromol 2020; 158:452-460. [PMID: 32335106 DOI: 10.1016/j.ijbiomac.2020.04.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 01/01/2023]
Abstract
Gellan gum (GG), a nature-derived polysaccharide, is one of the materials widely used in cartilage tissue engineering (TE). Glycol chitosan (GC), a derivative of chitosan, is a water-soluble natural polymer that has excellent biocompatibility and biodegradability as well as cell adhesion. Herein, GG was physically blended with GC to enhance the mechanical properties and microenvironment of the GG to apply in cartilage TE. The study was conducted with a hydrogel model which is similar to the extracellular matrix (ECM) of cartilage tissue. The physicochemical studies were carried out with morphological study, swelling ratio, weight loss, and sol fraction. The mechanical characterization was conducted with compression test and rheological study to confirm availability in cartilage TE material. Furthermore, in vitro studies such as morphology investigation, viability assay, GAG content, qRT-PCR, and histological study were performed to verify biocompatibility and chondrogenesis of the material. The mechanical and biological properties improved with a proper amount of GC. Overall results verify the potential of the material and can be further used for the cartilage TE.
Collapse
Affiliation(s)
- Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Mina Rim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jina Youn
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Wonchan Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
37
|
Roy H, Rahaman SA, Kumar TV, Nandi S. Current Development on Chitosan-based Antimicrobial Drug Formulations for the Wound Healing. Curr Drug Discov Technol 2020; 17:534-541. [PMID: 31971111 DOI: 10.2174/1570163817666200123122532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Derived from polyose, chitosan is an outstanding natural linear polysaccharide comprised of random arrangement of β-(1-4)-linked D-Glucosamine and N-acetyl-DGlucosamine units. OBJECTIVE Researchers have been using chitosan as a network forming or gelling agent with economically available, present polyose, low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and don't suffer the danger of transmission animal infective agent. METHODS Furthermore, recent studies gear up the chitosan used in the development of various biopharmaceutical formulations, including nanoparticles, hydrogels, implants, films, fibers, etc. Results: These formulations produce potential activities as antimicrobials, cancer treatment, medical aid, and wound healing, controlled unleash device or drug trigger retarding device and 3DBiomedical sponge, etc. Conclusion: The present article discusses the development of various drug formulations utilizing chitosan as biopolymers for the repairing of broken tissues and healing in case of wound infection.
Collapse
Affiliation(s)
- Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Shaik A Rahaman
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Theendra V Kumar
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
38
|
Ma L, Shi X, Zhang X, Li L. Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123956] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
de Lima Nascimento TR, de Amoêdo Campos Velo MM, Silva CF, Costa Cruz SBS, Gondim BLC, Mondelli RFL, Castellano LRC. Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems. Curr Pharm Des 2019; 25:3997-4012. [PMID: 31701845 DOI: 10.2174/1381612825666191108162948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high surface-to-volume ratio of polymeric nanofibers makes them an effective vehicle for the release of bioactive molecules and compounds such as growth factors, drugs, herbal extracts and gene sequences. Synthetic polymers are commonly used as sensors, reinforcements and energy storage, whereas natural polymers are more prone to mimicking an extracellular matrix. Natural polymers are a renewable resource and classified as an environmentally friendly material, which might be used in different techniques to produce nanofibers for biomedical applications such as tissue engineering, implantable medical devices, antimicrobial barriers and wound dressings, among others. This review sheds some light on the advantages of natural over synthetic polymeric materials for nanofiber production. Also, the most important techniques employed to produce natural nanofibers are presented. Moreover, some pieces of evidence regarding toxicology and cell-interactions using natural nanofibers are discussed. Clearly, the potential extrapolation of such laboratory results into human health application should be addressed cautiously.
Collapse
Affiliation(s)
- Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | - Camila Félix Silva
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Sara Brito Silva Costa Cruz
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
40
|
Sun J, Perry SL, Schiffman JD. Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates. Biomacromolecules 2019; 20:4191-4198. [DOI: 10.1021/acs.biomac.9b01072] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juanfeng Sun
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
Gómez-Mascaraque LG, Lopez-Rubio A. Encapsulation of Plant-derived Bioactive Ingredients through Electrospraying for Nutraceuticals and Functional Foods Applications. Curr Med Chem 2019; 27:2872-2886. [PMID: 31604404 DOI: 10.2174/0929867326666191010115343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022]
Abstract
The electrospraying technique, which consists of electrohydrodynamic atomization of polymeric fluids, can be used to generate dry nano- and microparticles by subjecting a polymer solution, suspension or melt to a high voltage (typically in the range of 7-20 kV) electric field. This potential can be exploited for developing nano- and microencapsulation structures under mild temperature conditions. Thus, it constitutes a promising alternative to conventional microencapsulation techniques for sensitive ingredients, like most plant-derived bioactive compounds, especially for their application in the food sector. Given the importance of plants as one of the major sources of dietary bioactive compounds, significant attention has been recently paid to research the encapsulation of phytochemicals through novel techniques such as electrospraying, aiming to provide new tools for the development of innovative functional food products and nutraceuticals. In this review, the latest advances in the application of electrospraying for nano- and microencapsulation of phytochemicals are discussed, with a focus on their potential use in the food sector.
Collapse
Affiliation(s)
| | - Amparo Lopez-Rubio
- Food Preservation and Food Quality Department, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
42
|
Huang J, Cheng Y, Wu Y, Shi X, Du Y, Deng H. Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Int J Biol Macromol 2019; 139:191-198. [DOI: 10.1016/j.ijbiomac.2019.07.185] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/01/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
43
|
Moutsatsou P, Coopman K, Georgiadou S. Chitosan & Conductive PANI/Chitosan Composite Nanofibers - Evaluation of Antibacterial Properties. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573413714666181114110651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background:
Within the healthcare industry, including the care of chronic wounds, the
challenge of antimicrobial resistance continues to grow. As such, there is a need to develop new
treatments that can reduce the bioburden in wounds.
Objective:
The present study is focused on the development of polyaniline (PANI) / chitosan (CH)
nanofibrous electrospun membranes and evaluates their antibacterial properties.
Methods:
To this end, experimental design was used to determine the electrospinning windows of
both pure chitosan and PANI/CH blends of different ratios (1:3, 3:5, 1:1). The effect of key environmental
and process parameters (relative humidity and applied voltage) was determined, as well as the
effect of the PANI/CH ratio in the blend and the molecular interactions between PANI and chitosan
that led to jet stability.
Results:
The nanofibrous mats were evaluated regarding their morphology and antibacterial effect
against model gram positive and gram negative bacterial strains, namely B. subtilis and E. coli. High
PANI content mats show increased bactericidal activity against both bacterial strains.
Conclusion:
The blend fibre membranes combine the materials’ respective properties, namely electrical
conductivity, biocompatibility and antibacterial activity. This study suggests that electrospun
PANI/CH membranes are promising candidates for healthcare applications, such as wound dressings.
Collapse
Affiliation(s)
- Panagiota Moutsatsou
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - Karen Coopman
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - Stella Georgiadou
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| |
Collapse
|
44
|
Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev 2019; 146:267-288. [PMID: 30075168 DOI: 10.1016/j.addr.2018.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds. Recent advances in biomaterials and stem cell research presented in this review provide novel ways to tackle different molecular and cellular culprits responsible for chronic and nonhealing wounds by delivering therapeutic agents in direct or indirect ways. Careful integration of different approaches presented in the current article could lead to the development of new therapeutic platforms that can address multiple pathophysiologic abnormalities and facilitate wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Hongkwan Cho
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA.
| |
Collapse
|
45
|
Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol 2019; 60:506-532. [PMID: 29761314 DOI: 10.1007/s12033-018-0084-5] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Simran Asawa
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Bhaskar Birru
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Ramaraju Baadhe
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Sreenivasa Rao
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
46
|
Liu Y, Yu S, Gu X, Cao R, Cui S. Tissue-engineered nerve grafts using a scaffold-independent and injectable drug delivery system: a novel design with translational advantages. J Neural Eng 2019; 16:036030. [PMID: 30965290 DOI: 10.1088/1741-2552/ab17a0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Currently commercially available nerve conduits have demonstrated suboptimal clinical efficacy in repairing peripheral nerve defects. Although tissue-engineered nerve grafts (TENGs) with sustained release of neurotrophic factors (NTFs) are experimentally proved to be more effective than these blank conduits, there remains a lack of clinical translation. NTFs are typically immobilized onto scaffold materials of the conduit via adsorption, specific binding or other incorporation techniques. These scaffold-based delivery strategies increase complexity and cost of conduit fabrication and lack flexibility in choosing different drugs. Therefore, to facilitate clinical translation and commercialization, we construct a TENG using a scaffold-independent drug delivery system (DDS). APPROACH This study adopted a scaffold-independent DDS based on methoxy-poly (ethylene glycol)-b-poly(γ-ethyl-L-glutamate) (mPEG-PELG) thermosensitive hydrogels that undergo sol-to-gel transition at body temperature. In addition, TENG, a chitosan scaffold filled with nerve growth factor (NGF)-loaded mPEG-PELG that gel in the lumen upon injection during surgery and function as a drug-releasing conduit-filler, was designed. Subsequently, the efficacy of DDS and therapeutic effects of TENG were assessed. MAIN RESULTS The results demonstrated that NGF-loaded mPEG-PELG controllably and sustainably released bioactive NGF for 28 d. When bridging a 10 mm rat sciatic nerve gap, the morphological, electrophysiological, and functional analyses revealed that NGF-releasing TENG (Scaffold + NGF/mPEG-PELG) achieved superior regenerative outcomes compared to plain scaffolds and those combined with systemic delivery of NGF (daily intramuscular injection (IM)), and its effects were relatively similar to autografts. SIGNIFICANCE This study has proposed a TENG using thermosensitive hydrogels as an injectable implant to controllably release NGF, which has promising therapeutic potential and translatability. Such TENGs obviate the need for conduit modification, complex preloading or binding mediators, therefore they allow the ease of drug switching in clinical practice and greatly simplify the manufacturing process due to the independent preparation of drug delivery system.
Collapse
Affiliation(s)
- Yanxi Liu
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Lim LT, Mendes AC, Chronakis IS. Electrospinning and electrospraying technologies for food applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:167-234. [PMID: 31151724 DOI: 10.1016/bs.afnr.2019.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning and electrospraying are versatile techniques for the production of nano- to micro-scale fibers and particles. Over the past 2 decades, significant progresses have been made to advance the fundamental understandings of these electrohydrodynamic processes. Researchers have investigated different polymeric and non-polymeric substrates for producing submicron electrospun/electrosprayed materials of unique morphologies and physicochemical properties. This chapter provides an overview on the basic principles of electrospinning and electrospraying, highlighting the effects of key processing and solution parameters. Electrohydrodynamic phenomena of edible substrates, including polysaccharides (xanthan, alginate, starch, cyclodextrin, pullulan, dextran, modified celluloses, and chitosan), proteins (zein, what gluten, whey protein, soy protein, gelatin, etc.), and phospholipids are reviewed. Selected examples are presented on how ultrafine fibers and particles derived from these substrates are being exploited for food and nutraceutical applications. Finally, the challenges and opportunities of the electrostatic methods are discussed.
Collapse
Affiliation(s)
- Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| | - Ana C Mendes
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
48
|
Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1102-1124. [DOI: 10.1016/j.msec.2018.10.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
|
49
|
Jiang M, Han T, Wang J, Shao L, Qi C, Zhang XM, Liu C, Liu X. Removal of heavy metal chromium using cross-linked chitosan composite nanofiber mats. Int J Biol Macromol 2018; 120:213-221. [DOI: 10.1016/j.ijbiomac.2018.08.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
|
50
|
Laidmäe I, Ērglis K, Cēbers A, Janmey PA, Uibo R. Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:182. [PMID: 30506370 PMCID: PMC6267118 DOI: 10.1007/s10856-018-6192-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
3D fibrous scaffolds have received much recent attention in regenerative medicine. Use of fibrous scaffolds has shown promising results in tissue engineering and wound healing. Here we report the development and properties of a novel fibrous scaffold that is useful for promoting wound healing. A scaffold made of salmon fibrinogen and chitosan is produced by electrospinning, resulting in a biocompatible material mimicking the structure of the native extracellular matrix (ECM) with suitable biochemical and mechanical properties. The scaffold is produced without the need for enzymes, in particular thrombin, but is fully compatible with their addition if needed. Human dermal fibroblasts cultured on this scaffold showed progressive proliferation for 14 days. Split-thickness experimental skin wounds treated and untreated were compared in a 10-day follow-up period. Wound healing was more effective using the fibrinogen-chitosan scaffold than in untreated wounds. This scaffold could be applicable in various medical purposes including surgery, tissue regeneration, burns, traumatic injuries, and 3D cell culture platforms.
Collapse
Affiliation(s)
- Ivo Laidmäe
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia.
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia.
| | - Kaspars Ērglis
- Faculty of Physics, Mathematics and Optometry, University of Latvia, Riga, LV-1002, Latvia
| | - Andrejs Cēbers
- Faculty of Physics, Mathematics and Optometry, University of Latvia, Riga, LV-1002, Latvia
| | - Paul A Janmey
- Institute for Medicine and Engineering and Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| |
Collapse
|