1
|
Girard CL, Duplessis M. Review: State of the knowledge on the importance of folates and cobalamin for dairy cow metabolism. Animal 2023; 17 Suppl 3:100834. [PMID: 37210233 DOI: 10.1016/j.animal.2023.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 05/22/2023] Open
Abstract
Synthesis of B vitamins by the rumen microbiota is usually sufficient to avoid the appearance of clinical deficiency symptoms in dairy cows under normal feeding conditions. Nevertheless, it is now generally accepted that vitamin deficiency is much more than the appearance of major functional and morphological symptoms. Subclinical deficiency, which is present as soon as the supply is lower than the need, causes cellular metabolic changes leading to a loss of metabolic efficiency. Folates and cobalamin, two B vitamins, share close metabolic relationships. Folates act as co-substrates in one-carbon metabolism, providing one-carbon unit for DNA synthesis and de novo synthesis of methyl groups for the methylation cycle. Cobalamin acts as a coenzyme for reactions in the metabolism of amino acids, odd-numbered chain fatty acids including propionate and de novo synthesis of methyl groups. Both vitamins are involved in reactions to support lipid and protein metabolism, nucleotide synthesis, methylation reactions and possibly, maintenance of redox status. Over the last decades, several studies have reported the beneficial effects of folic acid and vitamin B12 supplements on lactation performance of dairy cows. These observations indicate that, even when cows are fed diets adequately balanced for energy and major nutrients, B-vitamin subclinical deficiency could be present. This condition reduces casein synthesis in the mammary gland and milk and milk component yields. Folic acid and vitamin B12 supplements, especially when given together, may alter energy partitioning in dairy cows during early and mid-lactation as indicated by increased milk, energy-corrected milk, or milk component yields without affecting DM intake and BW or even with reductions in BW or body condition loss. Folate and cobalamin subclinical deficiency interferes with efficiency of gluconeogenesis and fatty acid oxidation and possibly alters responses to oxidative conditions. The present review aims to describe the metabolic pathways affected by folate and cobalamin supply and the consequences of a suboptimal supply on metabolic efficiency. The state of knowledge on the estimation of folate and cobalamin supply is also briefly mentioned.
Collapse
Affiliation(s)
- C L Girard
- Centre de recherche et développement de Sherbrooke, Agriculture et agroalimentaire Canada, 2000 rue Collège, Sherbrooke, Québec J1M 0C8, Canada.
| | - M Duplessis
- Centre de recherche et développement de Sherbrooke, Agriculture et agroalimentaire Canada, 2000 rue Collège, Sherbrooke, Québec J1M 0C8, Canada
| |
Collapse
|
2
|
Potts SB, Brady KM, Scholte CM, Moyes KM, Sunny NE, Erdman RA. Rumen-protected choline and methionine during the periparturient period affect choline metabolites, amino acids, and hepatic expression of genes associated with one-carbon and lipid metabolism. J Dairy Sci 2023:S0022-0302(23)00230-8. [PMID: 37173256 DOI: 10.3168/jds.2022-22334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/29/2022] [Indexed: 05/15/2023]
Abstract
Feeding supplemental choline and Met during the periparturient period can have positive effects on cow performance; however, the mechanisms by which these nutrients affect performance and metabolism are unclear. The objective of this experiment was to determine if providing rumen-protected choline, rumen-protected Met, or both during the periparturient period modifies the choline metabolitic profile of plasma and milk, plasma AA, and hepatic mRNA expression of genes associated with choline, Met, and lipid metabolism. Cows (25 primiparous, 29 multiparous) were blocked by expected calving date and parity and randomly assigned to 1 of 4 treatments: control (no rumen-protected choline or rumen-protected Met); CHO (13 g/d choline ion); MET (9 g/d DL-methionine prepartum; 13.5 g/d DL-methionine, postpartum); or CHO + MET. Treatments were applied daily as a top dress from ~21 d prepartum through 35 d in milk (DIM). On the day of treatment enrollment (d -19 ± 2 relative to calving), blood samples were collected for covariate measurements. At 7 and 14 DIM, samples of blood and milk were collected for analysis of choline metabolites, including 16 species of phosphatidylcholine (PC) and 4 species of lysophosphatidylcholine (LPC). Blood was also analyzed for AA concentrations. Liver samples collected from multiparous cows on the day of treatment enrollment and at 7 DIM were used for gene expression analysis. There was no consistent effect of CHO or MET on milk or plasma free choline, betaine, sphingomyelin, or glycerophosphocholine. However, CHO increased milk secretion of total LPC irrespective of MET for multiparous cows and in absence of MET for primiparous cows. Furthermore, CHO increased or tended to increase milk secretion of LPC 16:0, LPC 18:1, and LPC 18:0 for primi- and multiparous cows, although the response varied with MET supplementation. Feeding CHO also increased plasma concentrations of LPC 16:0 and LPC 18:1 in absence of MET for multiparous cows. Although milk secretion of total PC was unaffected, CHO and MET increased secretion of 6 and 5 individual PC species for multiparous cows, respectively. Plasma concentrations of total PC and individual PC species were unaffected by CHO or MET for multiparous cows, but MET reduced total PC and 11 PC species during wk 2 postpartum for primiparous cows. Feeding MET consistently increased plasma Met concentrations for both primi- and multiparous cows. Additionally, MET decreased plasma serine concentrations during wk 2 postpartum and increased plasma phenylalanine in absence of CHO for multiparous cows. In absence of MET, CHO tended to increase hepatic mRNA levels of betaine-homocysteine methyltransferase and phosphate cytidylyltransferase 1 choline, α, but tended to decrease expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 and peroxisome proliferator activated receptor α irrespective of MET. Although shifts in the milk and plasma PC profile were subtle and inconsistent between primi- and multiparous cows, gene expression results suggest that supplemental choline plays a probable role in promoting the cytidine diphosphate-choline and betaine-homocysteine S-methyltransferase pathways. However, interactive effects suggest that this response depends on Met availability, which may explain the inconsistent results observed among studies when supplemental choline is fed.
Collapse
Affiliation(s)
- S B Potts
- Western Maryland Research and Education Center, University of Maryland Extension, Keedysville 21756.
| | - K M Brady
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - C M Scholte
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - K M Moyes
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - N E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - R A Erdman
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| |
Collapse
|
3
|
Khan MZ, Liu S, Ma Y, Ma M, Ullah Q, Khan IM, Wang J, Xiao J, Chen T, Khan A, Cao Z. Overview of the effect of rumen-protected limiting amino acids (methionine and lysine) and choline on the immunity, antioxidative, and inflammatory status of periparturient ruminants. Front Immunol 2023; 13:1042895. [PMID: 36713436 PMCID: PMC9878850 DOI: 10.3389/fimmu.2022.1042895] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Overproduction of reactive oxygen species (ROS) is a well-known phenomenon experienced by ruminants, especially during the transition from late gestation to successful lactation. This overproduction of ROS may lead to oxidative stress (OS), which compromises the immune and anti-inflammatory systems of animals, thus predisposing them to health issues. Besides, during the periparturient period, metabolic stress is developed due to a negative energy balance, which is followed by excessive fat mobilization and poor production performance. Excessive lipolysis causes immune suppression, abnormal regulation of inflammation, and enhanced oxidative stress. Indeed, OS plays a key role in regulating the metabolic activity of various organs and the productivity of farm animals. For example, rapid fetal growth and the production of large amounts of colostrum and milk, as well as an increase in both maternal and fetal metabolism, result in increased ROS production and an increased need for micronutrients, including antioxidants, during the last trimester of pregnancy and at the start of lactation. Oxidative stress is generally neutralized by the natural antioxidant system in the body. However, in some special phases, such as the periparturient period, the animal's natural antioxidant system is unable to cope with the situation. The effect of rumen-protected limiting amino acids and choline on the regulation of immunity, antioxidative, and anti-inflammatory status and milk production performance, has been widely studied in ruminants. Thus, in the current review, we gathered and interpreted the data on this topic, especially during the perinatal and lactational stages.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhijun Cao,
| |
Collapse
|
4
|
Duplessis M, Lapierre H, Girard CL. Biotin, folic acid, and vitamin B12 supplementation given in early lactation to Holstein dairy cows: Their effects on whole-body propionate, glucose, and protein metabolism. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Duplessis M, Lapierre H, Sauerwein H, Girard CL. Combined biotin, folic acid, and vitamin B 12 supplementation given during the transition period to dairy cows: Part I. Effects on lactation performance, energy and protein metabolism, and hormones. J Dairy Sci 2022; 105:7079-7096. [PMID: 35840411 DOI: 10.3168/jds.2021-21677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 12/31/2022]
Abstract
Biotin (B8), folates (B9), and vitamin B12 (B12) are involved and interrelated in several metabolic reactions related to energy and protein metabolism. We hypothesized that a low supply of one of the latter vitamins during the transition period would impair metabolic status. The purpose of this study was to evaluate the effect of B8 supplementation on the response of lactation performance and selected energy and protein metabolites and hormones to a combined supplementation of B9 and B12 given to periparturient dairy cows, from d -21 to 21 relative to calving. A total of 32 multiparous Holstein cows housed in tie stalls were randomly assigned, according to their previous 305-d milk yield, to 8 incomplete blocks of 4 treatments: (1) a 2-mL weekly i.m. injection of saline (0.9% NaCl; B8-/B9B12-); (2) 20 mg/d of dietary B8 (unprotected from ruminal degradation) and 2-mL weekly i.m. injection of 0.9% NaCl (B8+/B9B12-); (3) 2.6 g/d of dietary B9 (unprotected) and 2-mL weekly i.m. injection of 10 mg of B12 (B8-/B9B12+); and (4) 20 mg/d of dietary B8, 2.6 g/d of dietary B9, and weekly i.m. injection of 10 mg of B12 (B8+/B9B12+) in a 2 × 2 factorial arrangement. Milk yield and dry matter intake were obtained daily and milk components weekly. Blood samples were taken weekly from d -21 to calving and 3 times per week from calving to 21 d following parturition. Prepartum plasma concentrations of glucose, insulin, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), and adiponectin were unaffected by treatments. Biotin, B9, and B12 supplements increased their respective concentrations in plasma and milk. Cows fed the B8 supplement tended to have lower dry matter intake, but only cows in B8+/B9B12- had greater plasma concentrations of NEFA compared with B8-/B9B12-. Milk and total solid yields were greater by 13.5 and 13.9%, respectively, for B8-/B9B12+ [45.5 (standard error, SE: 1.8) and 5.81 (0.22) kg/d, respectively] compared with B8-/B9B12- [40.1 (1.9) and 5.10 (0.23) kg/d, respectively], but these effects were suppressed when combined with the B8 supplement. Cows in the B8-/B9B12+ group had decreased plasma insulin and tended to have increased NEFA concentrations, but postpartum plasma concentrations of glucose, BHB, leptin, and adiponectin were not affected. These cows also mobilized more body fat reserves, as suggested by a tendency to increased plasma NEFA and more milk total solids compared with B8-/B9B12- cows. However, plasma concentrations of BHB and adiponectin were similar among treatments. This suggests that the B9 and B12 supplements enhanced efficiency of energy metabolism in early lactation cows. Folic acid and B12 supplementation increased postpartum plasma Cys and homocysteine concentrations but did not affect plasma Met concentration, suggesting an upregulation of the transsulfuration pathway. In summary, our results showed that, under the current experimental conditions, increasing B8 supply did not improve responses to the B9 and B12 supplementation.
Collapse
Affiliation(s)
- M Duplessis
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada.
| | - H Lapierre
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| | - H Sauerwein
- Institute for Animal Science, Physiology Unit, University of Bonn, Bonn, 53115, Germany
| | - C L Girard
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| |
Collapse
|
6
|
Folic acid supplementation during pregnancy modulates hepatic methyl metabolism and genes expression profile of neonatal lambs of different litter sizes. Br J Nutr 2022; 128:1-12. [PMID: 34325757 DOI: 10.1017/s0007114521002841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maternal folic acid (FA) plays an important role in the fetus development, but it is unknown the response of hepatic metabolism in the offspring from different litter sizes to maternal FA supplementation. In the present study, this was done by feeding the ewes with 0, 16 and 32 mg/(kg·DM) FA supplemented diet during pregnancy and analysing the hepatic one-carbon metabolism-related indices and gene expression in the neonatal lambs of different litter sizes (twins, TW; triplets, TR). Regardless of litter sizes, the concentrations of folate, methionine, S-adenosylmethionine and DNA methyltransferase increased significantly, but homocysteine and S-adenosylhomocysteine decreased in the liver of newborn lambs from ewes whose diet was supplemented with FA. In TW, maternal FA status has little effect on hepatic genes expression profile of newborn lambs, and no significant enriched pathway was found. However, DEG involved in cell proliferation such as CCNA2, CCNB2, CCNE2, CDK1 and BUB1 were significantly enriched when the ewes were supplemented with FA in TR groups. In addition, nucleotide synthesis-related genes such as POLD1, POLD2, MCM4 and MCM5 were enriched markedly in DNA replication and pyrimidine metabolism pathways in triplets when a higher FA ingestion [32 mg/(kg·DM)] was implemented in ewes. This finding demonstrated that the hepatic methyl metabolism in TW and TR newborn lambs was regulated by maternal FA status. The hepatic cell proliferation and nucleotide metabolism related genes in TR were more susceptible to maternal dietary FA supplementation during pregnancy.
Collapse
|
7
|
Duplessis M, Gervais R, Lapierre H, Girard CL. Combined biotin, folic acid, and vitamin B 12 supplementation given during the transition period to dairy cows: Part II. Effects on energy balance and fatty acid composition of colostrum and milk. J Dairy Sci 2022; 105:7097-7110. [PMID: 35787322 DOI: 10.3168/jds.2021-21678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023]
Abstract
Biotin (B8), folate (B9), and vitamin B12 (B12) are involved in several metabolic reactions related to energy metabolism. We hypothesized that a low supply of one of these vitamins during the transition period would impair metabolic status. This study was undertaken to assess the interaction between B8 supplement and a supplementation of B9 and B12 regarding body weight (BW) change, dry matter intake, energy balance, and fatty acid (FA) compositions of colostrum and milk fat from d -21 to 21 relative to calving. Thirty-two multiparous Holstein cows housed in tie stalls were randomly assigned, according to their previous 305-d milk yield, to 8 incomplete blocks in 4 treatments: (1) a 2-mL weekly i.m. injection of saline (0.9% NaCl; B8-/B9B12-); (2) 20 mg/d of dietary B8 (unprotected from ruminal degradation) and 2-mL weekly i.m. injection of 0.9% NaCl (B8+/B9B12-); (3) 2.6 g/d of dietary B9 (unprotected) and 2-mL weekly i.m. injection of 10 mg of B12 (B8-/B9B12+); (4) 20 mg/d of dietary B8, 2.6 g/d of dietary B9, and 2-mL weekly i.m. injection of 10 mg of B12 (B8+/B9B12+) in a 2 × 2 factorial arrangement. Colostrum was sampled at first milking. and milk samples were collected weekly on 2 consecutive milkings and analyzed for FA composition. Body condition score and BW were recorded every week throughout the trial. Within the first 21 d of lactation, B8-/B9B12+ cows had an increased milk yield by 13.5% [45.5 (standard error, SE: 1.8) kg/d] compared with B8-/B9B12- cows [40.1 (SE: 1.9)], whereas B8 supplement had no effect. Even though body condition score was not affected by treatment, B8-/B9B12+ cows had greater BW loss by 24 kg, suggesting higher mobilization of body reserves. Accordingly, milk de novo FA decreased and preformed FA concentration increased in B8-/B9B12+ cows compared with B8-/B9B12- cows. In addition, cows in the B8+/B9B12- group had decreased milk de novo FA and increased preformed FA concentration compared with B8-/B9B12- cows. Treatment had no effect on colostrum preformed FA concentration. Supplemental B8 decreased concentrations of ruminal biohydrogenation intermediates and odd- and branched-chain FA in colostrum and milk fat. Moreover, postpartum dry matter intake for B8+ cows tended to be lower by 1.6 kg/d. These results could indicate ruminal perturbation caused by the B8 supplement, which was not protected from rumen degradation. Under the conditions of the current study, in contrast to B8+/B9B12- cows, B8-/B9B12+ cows produced more milk without increasing dry matter intake, although these cows had greater body fat mobilization in early lactation as suggested by the FA profile and BW loss.
Collapse
Affiliation(s)
- M Duplessis
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada.
| | - R Gervais
- Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - H Lapierre
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| | - C L Girard
- Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| |
Collapse
|
8
|
Girard CL, Duplessis M. The Importance of B Vitamins in Enhanced Precision Nutrition of Dairy Cows: The Case of Folates and Vitamin B12. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dairy cow diets are generally balanced for energy and major nutrients with B vitamins generally assumed not to be limiting, in spite of their role as coenzymes, essential to many metabolic reactions in protein, carbohydrate and lipid metabolism. Assuming adequacy of B-vitamin supply may explain some of the discrepancies between the outcomes of metabolic prediction models and measured cow performance. In lactating dairy cow, the amount of B vitamins from the diet and synthesized by the ruminal microbiota is generally sufficient to prevent deficiency symptoms and, as such, is assumed to fulfill requirements. However, reports of beneficial effects of B-vitamin supplementation on dairy cow performance suggest that B-vitamin supply is sometimes lower than its needs, as an insufficient B-vitamin supply decreases metabolic efficiency by driving a shift towards alternative metabolic pathways with greater energy cost. Using information on folates and vitamin B12 illustrated how meeting dairy cow needs for B vitamins should not be overlooked in formulation of rations for lactating dairy cattle. The present review discusses current knowledge and indicates areas presently impeded by the lack of research results, especially the limitations on the ability to estimate B vitamin need and supply.
Collapse
Affiliation(s)
| | - Mélissa Duplessis
- Agriculture et Agroalimentaire Canada, 6337, Sherbrooke, Quebec, Canada
| |
Collapse
|
9
|
Enhancing in vitro oocyte maturation competence and embryo development in farm animals: roles of vitamin-based antioxidants – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Oocyte/embryo in vitro culture is one of the most important assisted reproductive technologies used as a tool for maintaining genetic resources biodiversity and the inheritance of valuable genetic resources through generations. The success of such processes affects the final goal of the in vitro culture, getting viable and healthy offspring. In common in vitro oocyte maturation and/or embryo development techniques, the development of oocytes/embryos is carried out at 5% carbon dioxide and roughly 20% atmosphere-borne oxygen ratios in cell culture incubators due to their reduced cost in comparison with low atmospheric oxygen-tension incubators. These conditions are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles, as well as genetic material. The present review mainly focuses on the antioxidant roles of different vitamins on in vitro oocyte maturation competence and embryo development in farm animals. Because, the conditions of in vitro embryo production (IVEP) are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles as well as genetic material. The use of antioxidant agents may prevent the extreme augmentation of ROS generation and enhance in vitro matured oocyte competence and embryo development. Therefore, this review aimed to provide an updated outline of the impact of antioxidant vitamin (Vit) supplementations during in vitro maturation (IVM) and in vitro fertilization (IVF) on oocyte maturation and consequent embryo development, in various domestic animal species. Thus, the enrichment of the culture media with antioxidant agents may prevent and neutralize the extreme augmentation of ROS generation and enhance the in vitro embryo production (IVEP) outcomes.
Collapse
|
10
|
Molano RA, Girard CL, Van Amburgh ME. Effect of dietary supplementation of 2 forms of a B vitamin and choline blend on the performance of Holstein calves during the transition and postweaning phase. J Dairy Sci 2021; 104:10812-10827. [PMID: 34304881 DOI: 10.3168/jds.2021-20461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
Abstract
The transition from a liquid- to a solid-based diet involves several adaptations in calves. Development of ruminal function is likely to alter B vitamin and choline supply, although little is known about the extent of these changes relative to the calf's requirements and consequences for the calf around weaning. Moreover, literature data are equivocal concerning the need to supplement B vitamins and choline through weaning and transition phase of the dairy calf. To evaluate the effect of increasing B vitamin and choline supply on performance, 61 Holstein calves were individually housed and raised from birth to 13 wk of age. Calves were fed milk replacer (28% crude protein, 15% fat) up to 1.6 kg of dry matter (DM)/d at 15% solids (3 times/d) from birth to 4 wk of age. At that time, calves were randomly assigned to one of 3 treatments: a rumen-protected blend of B vitamins and choline (RPBV); a 30:70 mix of a nonprotected blend of B vitamins and choline and fat (UPBV); or fat only, used as control (CTRL). Calves were maintained on milk replacer and offered ad libitum quantities of a starter grain (25.5% crude protein) specifically formulated to supply all essential amino acids with no added B vitamins or choline. The supplements were provided in gel capsules and administered once a day to each calf in quantities corresponding to 0.39 and 0.28% of the previous day's starter DM intake for the vitamin blends and control, respectively. Calves were weaned gradually from d 49 to 63. Body weight and stature were measured, and blood was collected and analyzed for hematocrit, plasma urea nitrogen, β-hydroxybutyrate, folates, and vitamin B12. Body weight and stature were similar among treatments. Overall gain (0.99 kg/d), DM intake (1.90 kg of DM/d), and feed efficiency (0.52) were not affected by vitamin supplementation. Plasma vitamin B12 concentrations were not different between RPBV and UPBV but tended to be higher at the end of weaning and were greater postweaning in RPBV and UPBV treatments compared with CTRL. Both forms of the vitamin blend effectively improved vitamin B12 status postweaning with no effect on folate status. No differences were observed in other blood measurements. Under conditions of this study, additional B vitamins and choline did not improve calf performance before, during, or after weaning.
Collapse
Affiliation(s)
- Rodrigo A Molano
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Christiane L Girard
- Agriculture et Agroalimentaire Canada, Centre de Recherche et Développement sur le Bovin Laitier et le Porc, Sherbrooke, Québec, J1M 1Z3, Canada
| | | |
Collapse
|
11
|
Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Socha MT, Ballou MA, Trevisi E, Loor JJ. Maternal supplementation with cobalt sources, folic acid, and rumen-protected methionine and its effects on molecular and functional correlates of the immune system in neonatal Holstein calves. J Dairy Sci 2021; 104:9340-9354. [PMID: 33985772 DOI: 10.3168/jds.2020-19674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Calves born to multiparous Holstein cows fed during the last 30 d of pregnancy 2 different cobalt sources [cobalt glucoheptonate (CoPro) or cobalt pectin (CoPectin)], folic acid (FOA), and rumen-protected methionine (RPM) were used to study neonatal immune responses after ex vivo lipopolysaccharide (LPS) challenge. Groups were (n = 12 calves/group) CoPro, FOA+CoPro, FOA+CoPectin, and FOA+CoPectin+RPM. Calves were weighed at birth and blood collected at birth (before colostrum), 21 d of age, and 42 d of age (at weaning). Growth performance was recorded once a week during the first 6 wk of age. Energy metabolism, inflammation, and antioxidant status were assessed at birth through various plasma biomarkers. Whole blood was challenged with 3 µg/mL of LPS or used for phagocytosis and oxidative burst assays. Target genes evaluated by real-time quantitative PCR in whole blood samples were associated with immune response, antioxidant function, and 1-carbon metabolism. The response in mRNA abundance in LPS challenged versus nonchallenged samples was assessed via Δ = LPS challenged - LPS nonchallenged samples. Phagocytosis capacity and oxidative burst activity were measured in neutrophils and monocytes, with data reported as ratio (percentage) of CD14 to CH138A-positive cells. Data including all time points were subjected to ANOVA using PROC MIXED in SAS 9.4 (SAS Institute Inc.), with Treatment, Sex, Age, and Treatment × Age as fixed effects. A 1-way ANOVA was used to determine differences at birth, with Treatment and Sex as fixed effects. Calf birth body weight and other growth parameters did not differ between groups. At birth, plasma haptoglobin concentration was lower in FOA+CoPro compared with CoPro calves. We detected no effect for other plasma biomarkers or immune function due to maternal treatments at birth. Compared with CoPro, in response to LPS challenge, whole blood from FOA+CoPectin and FOA+CoPectin+RPM calves had greater mRNA abundance of intercellular adhesion molecule 1 (ICAM1). No effect for other genes was detectable. Regardless of maternal treatments, sex-specific responses were observed due to greater plasma concentrations of haptoglobin, paraoxonase, total reactive oxygen metabolites, nitrite, and β-carotene in female versus male calves at birth. In contrast, whole blood from male calves had greater mRNA abundance of IRAK1, CADM1, and ITGAM in response to LPS challenge at birth. The longitudinal analysis of d 0, 21, and 42 data revealed greater bactericidal permeability-increasing protein (BPI) mRNA abundance in whole blood from FOA+CoPectin versus FOA+CoPro calves, coupled with greater abundance in FOA+CoPro compared with CoPro calves. Regardless of maternal treatments, most genes related to cytokines and cytokine receptors (IL1B, IL10, TNF, IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (ICAM1, ITGAM), antimicrobial function (MPO), and antioxidant function (GPX1) were downregulated over time. Phagocytosis capacity and oxidative burst activity in both neutrophils and monocytes did not differ due to maternal treatment. Regardless of maternal treatments, we observed an increase in the percentage of neutrophils capable of phagocytosis and oxidative burst activity over time. Overall, these preliminary assessments suggested that maternal supplementation with FOA and Co combined with RPM had effects on a few plasma biomarkers of inflammation at birth and molecular responses associated with inflammatory mechanisms during the neonatal period.
Collapse
Affiliation(s)
- M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - H Dai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - M A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79409
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
12
|
Coleman DN, Alharthi AS, Liang Y, Lopes MG, Lopreiato V, Vailati-Riboni M, Loor JJ. Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J Anim Sci Biotechnol 2021; 12:27. [PMID: 33536062 PMCID: PMC7860211 DOI: 10.1186/s40104-021-00547-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Dairy cattle undergo dramatic metabolic, endocrine, physiologic and immune changes during the peripartal period largely due to combined increases in energy requirements for fetal growth and development, milk production, and decreased dry matter intake. The negative nutrient balance that develops results in body fat mobilization, subsequently leading to triacylglycerol (TAG) accumulation in the liver along with reductions in liver function, immune dysfunction and a state of inflammation and oxidative stress. Mobilization of muscle and gluconeogenesis are also enhanced, while intake of vitamins and minerals is decreased, contributing to metabolic and immune dysfunction and oxidative stress. Enhancing post-ruminal supply of methyl donors is one approach that may improve immunometabolism and production synergistically in peripartal cows. At the cellular level, methyl donors (e.g. methionine, choline, betaine and folic acid) interact through one-carbon metabolism to modulate metabolism, immune responses and epigenetic events. By modulating those pathways, methyl donors may help increase the export of very low-density lipoproteins to reduce liver TAG and contribute to antioxidant synthesis to alleviate oxidative stress. Thus, altering one-carbon metabolism through methyl donor supplementation is a viable option to modulate immunometabolism during the peripartal period. This review explores available data on the regulation of one-carbon metabolism pathways in dairy cows in the context of enzyme regulation, cellular sensors and signaling mechanisms that might respond to increased dietary supply of specific methyl donors. Effects of methyl donors beyond the one-carbon metabolism pathways, including production performance, immune cell function, mechanistic target or rapamycin signaling, and fatty acid oxidation will also be highlighted. Furthermore, the effects of body condition and feeding system (total mixed ration vs. pasture) on one-carbon metabolism pathways are explored. Potential effects of methyl donor supply during the pepartum period on dairy calf growth and development also are discussed. Lastly, practical nutritional recommendations related to methyl donor metabolism during the peripartal period are presented. Nutritional management during the peripartal period is a fertile area of research, hence, underscoring the importance for developing a systems understanding of the potential immunometabolic role that dietary methyl donors play during this period to promote health and performance.
Collapse
Affiliation(s)
- Danielle N. Coleman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Abdulrahman S. Alharthi
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Yusheng Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Matheus Gomes Lopes
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Mario Vailati-Riboni
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
13
|
Gao ST, Girma DD, Bionaz M, Ma L, Bu DP. Hepatic transcriptomic adaptation from prepartum to postpartum in dairy cows. J Dairy Sci 2020; 104:1053-1072. [PMID: 33189277 DOI: 10.3168/jds.2020-19101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022]
Abstract
The transition from pregnancy to lactation is the most challenging period for high-producing dairy cows. The liver plays a key role in biological adaptation during the peripartum. Prior works have demonstrated that hepatic glucose synthesis, cholesterol metabolism, lipogenesis, and inflammatory response are increased or activated during the peripartum in dairy cows; however, those works were limited by a low number of animals used or by the use of microarray technology, or both. To overcome such limitations, an RNA sequencing analysis was performed on liver biopsies from 20 Holstein cows at 7 ± 5d before (Pre-P) and 16 ± 2d after calving (Post-P). We found 1,475 upregulated and 1,199 downregulated differently expressed genes (DEG) with a false discovery rate adjusted P-value < 0.01 between Pre-P and Post-P. Bioinformatic analysis revealed an activation of the metabolism, especially lipid, glucose, and amino acid metabolism, with increased importance of the mitochondria and a key role of several signaling pathways, chiefly peroxisome proliferators-activated receptor (PPAR) and adipocytokines signaling. Fatty acid oxidation and gluconeogenesis, with a likely increase in amino acid utilization to produce glucose, were among the most important functions revealed by the transcriptomic adaptation to lactation in the liver. Although gluconeogenesis was induced, data indicated decrease in expression of glucose transporters. The analysis also revealed high activation of cell proliferation but inhibition of xenobiotic metabolism, likely due to the liver response to inflammatory-like conditions. Co-expression network analysis disclosed a tight connection and coordination among genes driving biological processes associated with protein synthesis, energy and lipid metabolism, and cell proliferation. Our data confirmed the importance of metabolic adaptation to lipid and glucose metabolism in the liver of early Post-P cows, with a pivotal role of PPAR and adipocytokines.
Collapse
Affiliation(s)
- S T Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - D D Girma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - L Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
14
|
Elad O, Uribe-Diaz S, Losada-Medina D, Yitbarek A, Sharif S, Rodriguez-Lecompte JC. Epigenetic effect of folic acid (FA) on the gene proximal promoter area and mRNA expression of chicken B cell as antigen presenting cells. Br Poult Sci 2020; 61:725-733. [PMID: 32705890 DOI: 10.1080/00071668.2020.1799332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. This study evaluated and characterised the effect of folic acid (FA) on chromosomal DNA methylation and the epigenetic result on gene expression control mechanisms in chicken B cells as a model of antigen presenting cells. 2. After FA supplementation, the methylation pattern on the proximal promoter area and mRNA expression of toll-like receptor (TLR) 2b, TLR4, B cell receptor (BCR) immunoglobulin (Ig) β and major histocompatibility complex (MHC) II β chain genes in chicken B cells was observed 3. Chicken B cell line (DT40) cultures were incubated with 0, 1.72 or 3.96 mM of FA for 4 and 8 h and samples were taken at specific time points. After 4 h of incubation, cells were challenged with 0, 1 or 10 µg/ml of lipopolysaccharide (LPS) and samples were collected 4 h post-challenge. 4. FA supplementation modified the methylation patterns of the proximal promoter regions of TLR4, Igß, and MHCII ß chain at 4 and 8 hours of incubation; however, the single CpG dinucleotide of TLR2b remained methylated regardless of the treatment. 5. A positive association was found between FA concentration and percentage DNA methylation on the promoter area of Igβ and TLR2b. However, there was a negative association between FA and MHCII β chain. 6. There were downregulatory effects in TLR4, Igß and MHCII ß chain gene expression after 8 h of incubation, nut not at 4 h. Although incubation time did not affect TLR2b gene expression, FA concentration did, whereby it increased TLR2b expression at 1.72 mM FA (P < 0.05). 7. LPS significant downregulated TLR2b expression, while an interaction between FA and LPS concentration affected TLR4 and Igβ gene expression. 8. In conclusion, the results showed that FA can have an immunomodulatory effect on chicken B cells, possibly affecting their ability to both recognise antigens through the TLR and BCR pathways, and to present it via the MHCII presentation pathway.
Collapse
Affiliation(s)
- O Elad
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada
| | - S Uribe-Diaz
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada.,Department of Chemistry, University of Prince Edward Island , Charlottetown, Prince Edward Island, Canada
| | - D Losada-Medina
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada.,Department of Chemistry, University of Prince Edward Island , Charlottetown, Prince Edward Island, Canada
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| | - S Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| | - J C Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada
| |
Collapse
|
15
|
Gómez E, Salvetti P, Gatien J, Muñoz M, Martín-González D, Carrocera S, Goyache F. Metabolomic Profiling of Bos taurus Beef, Dairy, and Crossbred Cattle: A Between-Breeds Meta-Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8732-8743. [PMID: 32687347 DOI: 10.1021/acs.jafc.0c02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cattle breeds may differ substantially in their metabolism. However, the metabolomes of dairy and beef cattle are not well-known. Knowledge of breed-specific metabolic features is essential for biomarker identification and to adopt specific nutritional strategies. The muscle hypertrophy (mh), a beef cattle phenotype present in Asturiana de los Valles (AV) but absent in Asturiana de la Montaña (AM) and Holsteins, may underlie such differences. We compared the plasma metabolomes of Holstein, AV, AM, and crossbred cattle recipients selected for meta-analysis within an embryo transfer (ET) program. Blood samples were collected on day 0 (oestrus) and day 7 (prior to ET) (N = 234 samples × 2 days). Nuclear magnetic resonance quantified N = 36 metabolites in plasma, and more metabolic differences between breeds were found on day 0 (N = 19 regulated metabolites) than on day 7 (N = 5). AV and AM largely differed from Holstein cattle (N = 55 and 35 enriched metabolic pathways, respectively); however, AV and AM differed in N = 6 enriched pathways. Metabolic activity was higher in AV than in Holstein cattle, as explained in part by the mh phenotype. The metabolomic characterization of breeds facilitates biomarker research and helps to define the healthy ranges of metabolite concentrations.
Collapse
Affiliation(s)
- E Gómez
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - P Salvetti
- Experimental Facilities, ALLICE, Le Perroi, 37380 Nouzilly, France
| | - J Gatien
- Experimental Facilities, ALLICE, Le Perroi, 37380 Nouzilly, France
| | - M Muñoz
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - D Martín-González
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - F Goyache
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| |
Collapse
|
16
|
Khan MZ, Khan A, Xiao J, Dou J, Liu L, Yu Y. Overview of Folic Acid Supplementation Alone or in Combination with Vitamin B12 in Dairy Cattle during Periparturient Period. Metabolites 2020; 10:metabo10060263. [PMID: 32630405 PMCID: PMC7344520 DOI: 10.3390/metabo10060263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022] Open
Abstract
The periparturient period is the period from three weeks before calving to three weeks post-calving. This period is important in terms of health, productivity and profitability, and is fundamental to successful lactation. During this period, the animal experiences stress because of hormonal changes due to pregnancy and the significant rise in milk production. In addition, a negative energy balance usually occurs, because the demand for nutrients to sustain milk production increases by more than the nutrient supply during the periparturient period. The immunity of dairy cattle is suppressed around parturition, which increases their susceptibility to infections. Special care regarding nutrition can reduce the risks of metabolism and immunity depression, which dairy cattle face during the periparturient span. Folic acid is relevant in this regard because of its critical role in the metabolism to maintain lactational performance and to improve health. Being a donor of one-carbon units, folic acid has a vital role in DNA and RNA biosynthesis. Generally, the folic acid requirements of dairy cattle can be met by the microbial synthesis in the rumen; however, in special cases, such as during the periparturient period, the requirement for this vitamin strictly increases. Vitamin B12 also has a critical role in the metabolism as a coenzyme of the enzyme methionine synthase for the transfer of a methyl group from folic acid to homocysteine for the regeneration of methionine. In the current review, we highlight the issues facing periparturient dairy cattle, and relevant knowledge and practices, and point out future research directions for utilization of the associated vitamins in ruminants, especially during the periparturient period.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research, Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
- Correspondence: ; Tel.: +86-10-627324611
| |
Collapse
|
17
|
McFadden JW, Girard CL, Tao S, Zhou Z, Bernard JK, Duplessis M, White HM. Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow. J Dairy Sci 2020; 103:5668-5683. [PMID: 32278559 DOI: 10.3168/jds.2019-17319] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
The present review focuses on methyl donor metabolism and nutrition in the periparturient and lactating dairy cow. Methyl donors are involved in one-carbon metabolism, which includes the folate and Met cycles. These cycles work in unison to support lipid, nucleotide, and protein synthesis, as well as methylation reactions and the maintenance of redox status. A key feature of one-carbon metabolism is the multi-step conversion of tetrahydrofolate to 5-methyltetrahyrofolate. Homocysteine and 5-methyltetrahyrofolate are utilized by vitamin B12-dependent Met synthase to couple the folate and Met cycles and generate Met. Methionine may also be remethylated from choline-derived betaine under the action of betaine hydroxymethyltransferase. Regardless, Met is converted within the Met cycle to S-adenosylmethionine, which is universally utilized in methyl-group transfer reactions including the synthesis of phosphatidylcholine. Homocysteine may also enter the transsulfuration pathway to generate glutathione or taurine for scavenging of reactive oxygen metabolites. In the transition cow, a high demand exists for compounds with a labile methyl group. Limited methyl group supply may contribute to inadequate hepatic phosphatidylcholine synthesis and hepatic triglyceride export, systemic oxidative stress, and compromised milk production. To minimize the perils associated with methyl donor deficiency, the peripartum cow relies on de novo methylneogenesis from tetrahydrofolate. In addition, dietary supplementation of rumen-protected folic acid, vitamin B12, Met, choline, and betaine are potential nutritional approaches to target one-carbon pools and improve methyl donor balance in transition cows. Such strategies have merit considering research demonstrating their ability to improve milk production efficiency, milk protein synthesis, hepatic health, and immune response. This review aims to summarize the current understanding of folic acid, vitamin B12, Met, choline, and betaine utilization in the dairy cow. Methyl donor co-supplementation, fatty acid feeding strategies that may optimize methyl donor supplementation efficacy, and potential epigenetic mechanisms are also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - C L Girard
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - Z Zhou
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - M Duplessis
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - H M White
- Department of Dairy Science, University of Wisconsin, Madison 53706
| |
Collapse
|
18
|
Wang B, Li Z, Li H, Luo H, Blair HT, Jian L, Diao Z. Effect of Dietary Folic Acid Supplementation during Pregnancy on Blood Characteristics and Milk Composition of Ewes. Animals (Basel) 2020; 10:ani10030433. [PMID: 32143378 PMCID: PMC7143891 DOI: 10.3390/ani10030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/12/2023] Open
Abstract
The objective of the present study was to investigate the dynamic change of serum parameters and milk composition by dietary FA supplementation with ewes with different litter size from mating to lambing. The ewes were divided into six treatments (TW-CON, TW-F16, TW-F32, TR-CON, TR-F16, TR-F32) according to dietary FA levels (control, CON; 16 or 32 mg·kg-1 rumen-protect-FA supplementation, F16 and F32) and litter size (twin born, TW; and triplet born, TR). In serum, the concentration of folate increased linearly with dietary FA supplementation (P < 0.05), regardless of the litter size, they showed a quadratic response to gestation progression (P < 0.05). With dietary FA addition, IGFI-I levels significant increased from late gestation to after lambing (P < 0.05), and linearly increased immunoglobulin during the perinatal period (P < 0.05). In colostrum and milk at d 15, the content of folate, lactoferrin, and IgG were affected positively by FA supplementation (P < 0.05). IgG was higher in the TW group than TR in colostrum (P < 0.05), and lactoferrin in TW was lower than TR in milk of d 15 (P < 0.05). FA supplementation increased protein content in colostrum (P < 0.05), while it had no effect on the fat, lactose, and BUN of colostrum and milk of d 15 (P > 0.05). These results suggest that FA supplementation during gestation could regulate maternal blood metabolism and contribute to milk immune composition.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (B.W.); (Z.L.); (H.L.); (L.J.); (Z.D.)
| | - Zhen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (B.W.); (Z.L.); (H.L.); (L.J.); (Z.D.)
| | - Heqiong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (B.W.); (Z.L.); (H.L.); (L.J.); (Z.D.)
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (B.W.); (Z.L.); (H.L.); (L.J.); (Z.D.)
- Correspondence: ; Tel.: +86-010-62734597
| | - Hugh T. Blair
- Sheep Research Group, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
- National Research Centre for Growth and Development, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Luyang Jian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (B.W.); (Z.L.); (H.L.); (L.J.); (Z.D.)
| | - Zhicheng Diao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (B.W.); (Z.L.); (H.L.); (L.J.); (Z.D.)
| |
Collapse
|
19
|
Duplessis M, Ritz KE, Socha MT, Girard CL. Cross-sectional study of the effect of diet composition on plasma folate and vitamin B 12 concentrations in Holstein cows in the United States and Canada. J Dairy Sci 2020; 103:2883-2895. [PMID: 31954561 DOI: 10.3168/jds.2019-17657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022]
Abstract
The objective of this cross-sectional study was to assess the variability of plasma folate and vitamin B12 concentrations in lactating Holstein cows across the United States and Canada. We also evaluated the effect of diet composition and cow characteristics on folate and vitamin B12 plasma vitamin concentrations. A total of 22 and 24 US and Canadian dairy herds were enrolled, totaling 427 and 476 cows at 10 to 197 days in milk across all US and Canadian herds, respectively. Blood samples were taken to analyze plasma folate and vitamin B12 concentrations, and ingredients of the diet were collected to determine nutrient composition. To reduce the number of interdependent variables in the analysis of the association of diet composition with plasma vitamin concentrations, we conducted a principal component analysis. Plasma folate concentrations were lower for US cows [13.4 ng/mL, 95% confidence interval (CI): 12.7-14.2] than for Canadian cows (14.5 ng/mL, 95% CI: 13.7-15.2), and the opposite was observed for plasma vitamin B12 concentrations (US 206 pg/mL, 95% CI: 192-221; Canada 170 pg/mL, 95% CI: 159-181). The highest plasma concentrations of both vitamins were observed in the Northwest region of the United States (Oregon and Washington). Cows in California had the lowest plasma folate concentrations, and cows in Québec and New York State had the lowest plasma vitamin B12 concentrations. Plasma folate concentrations were higher for multiparous than for primiparous cows and plasma vitamin B12 concentrations progressively increased from parity 1 to 3 and higher. For both studied vitamins, plasma concentrations were lower at 0 to 55 than at 56 to 200 days in milk. Of 3 principal components, the one associated with dietary carbohydrates was significantly correlated with plasma folate and vitamin B12 concentrations. Indeed, plasma folate concentrations decreased with dietary fiber concentrations (i.e., neutral and acid detergent fibers and lignin) and increased with dietary nonfiber carbohydrate concentrations. We obtained the opposite results for plasma vitamin B12 concentrations. Both multivariable models explained 41% (pseudo-R2) of the variation in plasma folate and vitamin B12 concentrations. Information gathered in this study is the first step toward determining sources of variation in plasma folate and vitamin B12 concentrations, as well as the vitamin status of cows.
Collapse
Affiliation(s)
- M Duplessis
- Agriculture et Agroalimentaire Canada, Centre de Recherche et Développement de Sherbrooke, Sherbrooke, Québec, J1M 0C8, Canada.
| | - K E Ritz
- Zinpro Corporation, Eden Prairie, MN 55344
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - C L Girard
- Agriculture et Agroalimentaire Canada, Centre de Recherche et Développement de Sherbrooke, Sherbrooke, Québec, J1M 0C8, Canada
| |
Collapse
|
20
|
Chandler TL, White HM. Glucose metabolism is differentially altered by choline and methionine in bovine neonatal hepatocytes. PLoS One 2019; 14:e0217160. [PMID: 31141525 PMCID: PMC6541273 DOI: 10.1371/journal.pone.0217160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Choline and methionine serve essential roles in the liver that may interact with glucose metabolism. Our objectives were to quantify glucose export, cellular glycogen, and expression of genes controlling oxidation and gluconeogenesis in primary bovine neonatal hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM) with or without fatty acids (FA). Primary hepatocytes isolated from 3 Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, 4528 μmol/L) and DLM (16, 30, 100, 300 μmol/L) with or without a 1 mmol/L FA cocktail in a factorial design. After 24 h, media was harvested to quantify glucose, β-hydroxybutyrate (BHB), and cells harvested to quantify glycogen, DNA, and gene expression. No interactions between CC and DLM were detected. The potential two-way interaction between CC or DLM and FA was partitioned into three contrasts when P ≤ 0.20: linear without FA, linear with FA, difference of slope. Fatty acids did not affect glucose or cellular glycogen but increased pyruvate carboxylase (PC), cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCKc, PEPCKm), and glucose-6-phosphatase (G6PC) expression. Increasing CC decreased glucose but increased cellular glycogen. Expression of PC and PEPCKc was increased by CC during FA treatment. Increasing DLM did not affect metabolites or PC expression, although PEPCKc was marginally decreased. Methionine did not affect G6PC, while CC had a marginal quadratic effect on G6PC. Oxidative and gluconeogenic enzymes appear to respond to FA in primary bovine neonatal hepatocytes. Increased PC and PEPCKc by CC during FA treatment suggest increased gluconeogenic capacity. Changes in G6PC may have shifted glucose-6-phosphate towards cellular glycogen; however, subsequent examination of G6PC protein is needed. Unaltered PC and marginally decreased PEPCKc suggest increased oxidative capacity with DLM, although BHB export was unaltered. The differential regulation supports unique effects of CC and DLM within bovine hepatocytes.
Collapse
Affiliation(s)
- Tawny L. Chandler
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Heather M. White
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
21
|
Maternal folic acid supplementation modulates the growth performance, muscle development and immunity of Hu sheep offspring of different litter size. J Nutr Biochem 2019; 70:194-201. [PMID: 31229912 DOI: 10.1016/j.jnutbio.2019.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/20/2022]
Abstract
It is generally accepted that the phenotype and gene expression pattern of the offspring can be altered by maternal folic acid (FA) supplementation during the gestation period. The aims of this study were to investigate the effects of maternal FA supplementation on the growth performance, muscle development and immunity of newborn lambs of different litter size. According to litter size (twins, TW; triplets, TR) and maternal dietary FA supplementation levels (control, C; 16 or 32 mg·kg-1 FA supplementation, F16 and F32), neonatal lambs were randomly divided into six groups (TW-C, TW-F16, TW-F32, TR-C, TR-F16 and TR-F32). After farrowing, the birth weight in TW was higher than that in the TR group, and increased with FA supplementation of their mothers (P<.05). Folate, IGF-I, IgM and IgA concentrations of newborn lambs showed a litter size and FA supplementation interaction (P<.05). FA supplementation also increased diameter, area, perimeter and DNA content of the longissimus dorsi muscle of the lambs (P<.05) regardless of the litter size. Transcriptome analysis of the longissimus dorsi muscle revealed differentially expressed genes with dietary FA supplementation enriched in immunity- and cell development-related genes. Furthermore, FA supplementation upregulated the expression of myogenesis-related genes, while downregulated those involved in the inhibition of muscle development. In addition, immunity-related genes in the neonatal lambs showed lower expression levels in response to maternal dietary FA supplementation. Overall, maternal FA supplementation during gestation could increase the offspring's birth weight and modulate its muscle development and immunity.
Collapse
|
22
|
Zang Y, Samii SS, Myers WA, Bailey HR, Davis AN, Grilli E, McFadden JW. Methyl donor supplementation suppresses the progression of liver lipid accumulation while modifying the plasma triacylglycerol lipidome in periparturient Holstein dairy cows. J Dairy Sci 2018; 102:1224-1236. [PMID: 30471914 DOI: 10.3168/jds.2018-14727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Co-supplementation of methyl donors may lower hepatic lipid content in transition cows. To define the ability of methyl donor supplementation (MDS) to reduce hepatic lipid content and modify the plasma lipidome, 30 multiparous Holstein cows (2.04 ± 0.69 lactations; 689 ± 58 kg of body weight; 3.48 ± 0.10 units of body condition score) were fed a ration with or without rumen-protected methyl donors (22 g/d of Met, 10 g/d of choline chloride, 3 g/d of betaine, 96 mg/d of riboflavin, and 1.4 mg/d of vitamin B12) from d -28 before expected calving through d 14 postpartum. Cows were randomly enrolled based on predefined selection criteria (body condition score and parity). Base diets without MDS were formulated for gestation (15.4% crude protein with a predicted Lys-to-Met ratio of 3.25; 1.44 Mcal of net energy for lactation/kg of dry matter) and lactation (16.6% crude protein with a predicted Lys-to-Met ratio of 3.36; 1.64 Mcal of net energy for lactation/kg of dry matter). Blood sampling occurred from d -28 relative to expected calving through d 14 postpartum. Liver tissue was biopsied at d -28 relative to expected calving and on d 5 and 14 postpartum. In addition to routine analyses, serum AA concentrations on d 10 and 12 were quantified using mass spectrometry. Plasma triacylglycerol (TAG) and cholesteryl esters (CE) were qualitatively measured using time-of-flight mass spectrometry. Data were analyzed using a mixed model with repeated measures. Dry matter intake and milk yield were not modified by MDS. The transition from d -28 relative to expected parturition to d 14 postpartum was characterized by increased plasma fatty acid (0.15 to 0.71 mmol/L) and β-hydroxybutyrate (0.34 to 0.43 mmol/L) levels and liver lipid content (3.91 to 9.16%). Methyl donor supplementation increased the serum Met level by 26% and decreased the serum Lys-to-Met ratio by 21% on d 10 and 12, respectively. Moreover, the increase in hepatic lipid content from d 5 through 14 postpartum was suppressed with MDS relative to control (3.57 vs. -0.29%). Dietary MDS modified the TAG and CE lipidome. For example, MDS increased plasma TAG 46:3 (carbon number:double bond) by 116% relative to control cows on d 5 postpartum. Moreover, MDS tended to increase plasma CE 34:6. In contrast, MDS lowered plasma TAG 54:8 by 39% relative to control cows on d 5 postpartum. We concluded that in the absence of gains in dry matter intake and milk and milk protein yields, dietary MDS slows the progression of hepatic lipid accumulation and modifies the plasma TAG lipidome in transition cows.
Collapse
Affiliation(s)
- Y Zang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - S Saed Samii
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - W A Myers
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - H R Bailey
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - A N Davis
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - E Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy 40064
| | - J W McFadden
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505; Department of Animal Science, Cornell University, Ithaca 14853.
| |
Collapse
|
23
|
Morrison EI, Reinhardt H, Leclerc H, DeVries TJ, LeBlanc SJ. Effect of rumen-protected B vitamins and choline supplementation on health, production, and reproduction in transition dairy cows. J Dairy Sci 2018; 101:9016-9027. [PMID: 30100511 DOI: 10.3168/jds.2018-14663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
The objectives were to determine the effects of a rumen-protected blend of B vitamins and choline (RPBC) on the incidence of health disorders, milk yield, and reproduction in early lactation and the effects on gene expression and liver fat infiltration. A randomized controlled trial in 3 commercial dairy herds (n = 1,346 cows with group as the experimental unit; experiment 1) and a university research herd (n = 50 cows with cow as the experimental unit; experiment 2) evaluated the use of 100 g/cow per d of commercially available proprietary RPBC supplement (Transition VB, Jefo, St. Hyacinthe, Quebec, Canada), or a placebo, fed 3 wk before to 3 wk after calving. In experiment 2 liver biopsies were taken at 4 and 14 ± 1 d in milk to measure triacylglycerol concentrations and expression of 28 genes selected to represent relevant aspects of liver metabolism. Treatment effects were assessed using multivariable mixed logistic regression models for binary health and reproductive outcomes; linear regression models for milk yield, dry matter intake, and liver outcomes; and survival analysis for time insemination and pregnancy. In experiment 1, treatment did not have an effect on the incidence of hyperketonemia (blood β-hydroxybutyrate ≥ 1.2 mmol/L; cumulative incidence to 3 wk postpartum of 28 to 30%), clinical health disorders, or udder edema. The prevalence of anovulation at 8 wk postpartum was 11% in the treatment group and 23% in the control but did not differ statistically given group-level randomization. Pregnancy at first insemination (33 and 35%) and median time to pregnancy to 200 d in milk (96 and 97 d) were not different between treatment and control, respectively. No difference was observed between treatment groups in milk yield or components through the first 3 Dairy Herd Improvement Association test days (44 kg/d in both groups, accounting for parity and components). In experiment 2, there were no differences between treatment groups in feed intake. Mean blood β-hydroxybutyrate was lower at wk 3 in RPBC (0.6 vs. 0.9 ± 0.12 mmol/L) with no difference between treatments for mean blood concentrations of fatty acids (wk -1 or 1) and β-hydroxybutyrate at wk 1 or 2. The gene for acyl-CoA oxidase 1 (ACOX1) had lower mRNA abundance in RPBC with no difference between treatments for the other genes, but the expression of half of the genes assessed differed with days in milk. Liver triacylglycerol was lower in primiparous cows at 4 d in milk in RPBC (2.0 vs. 4.4 ± 1.2%) but not at 14 d in milk (2.2 vs. 3.2 ± 0.97%) with no treatment effect in multiparous cows (4.6 ± 0.8%). Accounting for parity, days in milk, fat and protein percentages, repeated test days, and a random effect of cow, no significant difference was observed between treatments in milk yield across the first 3 Dairy Herd Improvement Association tests (41.2 ± 1.3 in RPBC vs. 38.0 ± 1.4 kg/d in control). Under the diet and management conditions of the field study including low prevalence of clinical health disorders, in experiment 1 we did not detect a benefit of RPBC, but in experiment 2 liver fat content decreased in primiparous cows.
Collapse
Affiliation(s)
- E I Morrison
- Department of Population Medicine, University of Guelph, Ontario, N1G 2W1 Canada
| | - H Reinhardt
- Department of Population Medicine, University of Guelph, Ontario, N1G 2W1 Canada
| | - H Leclerc
- Jefo, St. Hyacinthe, Quebec, J2S 7B6 Canada
| | - T J DeVries
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1 Canada
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Ontario, N1G 2W1 Canada.
| |
Collapse
|
24
|
Abbasi IHR, Abbasi F, Wang L, Abd El Hack ME, Swelum AA, Hao R, Yao J, Cao Y. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction. AMB Express 2018; 8:65. [PMID: 29687201 PMCID: PMC5913057 DOI: 10.1186/s13568-018-0592-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B9), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B12 and B9 vitamins are closely connected and utilization of folate by cells is significantly affected by B12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.
Collapse
|
25
|
Bach A, Aris A, Guasch I. Consequences of supplying methyl donors during pregnancy on the methylome of the offspring from lactating and non-lactating dairy cattle. PLoS One 2017; 12:e0189581. [PMID: 29228040 PMCID: PMC5724855 DOI: 10.1371/journal.pone.0189581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/29/2017] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to evaluate the potential effects of methyl donor supplementation of pregnant animals in the presence or absence of a concomitant lactation on the methylome of the offspring. Twenty Holstein cows, 10 nulliparous (non-lactating while pregnant) and 10 multiparous (lactating while pregnant) were blocked by parity and randomly assigned to an i.m. weekly injections of a placebo (CTRL) or a solution containing methyl donors (MET). After calving, 5 calves randomly selected from each treatment (two born to non-lactating and three to lactating dams) were blood-sampled to determine their full methylome. There were more than 2,000 CpG differentially methylated between calves born to CTRL and those born to MET, and also between calves born to lactating and non-lactating dams. Most of the differences affected genes involved in immune function, cell growth regulation and differentiation, kinase activity, and ion channeling. We conclude that the coexistence of pregnancy and lactation affects the methylome of the offspring, and that supplementation of methyl donors early in gestation has also consequences on the methylome.
Collapse
Affiliation(s)
- Alex Bach
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Caldes de Montbui, Spain
- * E-mail:
| | - Anna Aris
- Department of Ruminant Production, IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Caldes de Montbui, Spain
| | | |
Collapse
|
26
|
Duplessis M, Lapierre H, Ouattara B, Bissonnette N, Pellerin D, Laforest JP, Girard C. Whole-body propionate and glucose metabolism of multiparous dairy cows receiving folic acid and vitamin B12 supplements. J Dairy Sci 2017; 100:8578-8589. [DOI: 10.3168/jds.2017-13056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/17/2017] [Indexed: 11/19/2022]
|
27
|
Bieżanowska-Kopeć R, Leszczyńska T. Effect of High Methionine and Folic Acid Diet on The Level of Homocysteine and Lipid Profile in Experimental Rats. POL J FOOD NUTR SCI 2017. [DOI: 10.1515/pjfns-2016-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Duplessis M, Lapierre H, Pellerin D, Laforest JP, Girard C. Effects of intramuscular injections of folic acid, vitamin B12, or both, on lactational performance and energy status of multiparous dairy cows. J Dairy Sci 2017; 100:4051-4064. [DOI: 10.3168/jds.2016-12381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/04/2017] [Indexed: 01/26/2023]
|
29
|
Chandler TL, White HM. Choline and methionine differentially alter methyl carbon metabolism in bovine neonatal hepatocytes. PLoS One 2017; 12:e0171080. [PMID: 28152052 PMCID: PMC5289486 DOI: 10.1371/journal.pone.0171080] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
Intersections in hepatic methyl group metabolism pathways highlights potential competition or compensation of methyl donors. The objective of this experiment was to examine the expression of genes related to methyl group transfer and lipid metabolism in response to increasing concentrations of choline chloride (CC) and DL-methionine (DLM) in primary neonatal hepatocytes that were or were not exposed to fatty acids (FA). Primary hepatocytes isolated from 4 neonatal Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, and 4528 μmol/L) and DLM (16, 30, 100, 300 μmol/L), with or without a 1 mmol/L FA cocktail in a factorial arrangement. After 24 h of treatment, media was collected for quantification of reactive oxygen species (ROS) and very low-density lipoprotein (VLDL), and cell lysates were collected for quantification of gene expression. No interactions were detected between CC, DLM, or FA. Both CC and DLM decreased the expression of methionine adenosyltransferase 1A (MAT1A). Increasing CC did not alter betaine-homocysteine S-methyltranferase (BHMT) but did increase 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylenetetrahydrofolate reductase (MTHFR) expression. Increasing DLM decreased expression of BHMT and MTR, but did not affect MTHFR. Expression of both phosphatidylethanolamine N-methyltransferase (PEMT) and microsomal triglyceride transfer protein (MTTP) were decreased by increasing CC and DLM, while carnitine palmitoyltransferase 1A (CPT1A) was unaffected by either. Treatment with FA decreased the expression of MAT1A, MTR, MTHFR and tended to decrease PEMT but did not affect BHMT and MTTP. Treatment with FA increased CPT1A expression. Increasing CC increased secretion of VLDL and decreased the accumulation of ROS in media. Within neonatal bovine hepatocytes, choline and methionine differentially regulate methyl carbon pathways and suggest that choline may play a critical role in donating methyl groups to support methionine regeneration. Stimulating VLDL export and decreasing ROS accumulation suggests that increasing CC is hepato-protective.
Collapse
Affiliation(s)
- Tawny L. Chandler
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Heather M. White
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
30
|
Gagnon A, Khan DR, Sirard MA, Girard CL, Laforest JP, Richard FJ. Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. J Dairy Sci 2015; 98:7797-809. [PMID: 26298749 DOI: 10.3168/jds.2015-9623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
Abstract
The fertility of dairy cows is challenged during early lactation, and better nutritional strategies need to be developed to address this issue. Combined supplementation of folic acid and vitamin B12 improve energy metabolism in the dairy cow during early lactation. Therefore, the present study was undertaken to explore the effects of this supplement on gene expression in granulosa cells from the dominant follicle during the postpartum period. Multiparous Holstein cows received weekly intramuscular injection of 320 mg of folic acid and 10 mg of vitamin B12 (treated group) beginning 24 (standard deviation=4) d before calving until 56 d after calving, whereas the control group received saline. The urea plasma concentration was significantly decreased during the precalving period, and the concentration of both folate and vitamin B12 were increased in treated animals. Milk production and dry matter intake were not significantly different between the 2 groups. Plasma concentrations of folates and vitamin B12 were increased in treated animals. Daily dry matter intake was not significantly different between the 2 groups before [13.5 kg; standard error (SE)=0.5] and after (23.6 kg; SE=0.9) calving. Average energy-corrected milk tended to be greater in vitamin-treated cows, 39.7 (SE=1.4) and 38.1 (SE=1.3) kg/d for treated and control cows, respectively. After calving, average plasma concentration of β-hydroxybutyrate tended to be lower in cows injected with the vitamin supplement, 0.47 (SE=0.04) versus 0.55 (SE=0.03) for treated and control cows, respectively. The ovarian follicle ≥12 mm in diameter was collected by ovum pick-up after estrus synchronization. Recovered follicular fluid volumes were greater in the vitamin-treated group. A microarray platform was used to investigate the effect of treatment on gene expression of granulosa cells. Lower expression of genes involved in the cell cycle and higher expression of genes associated with granulosa cell differentiation before ovulation were observed. Selected candidate genes were analyzed by reverse transcription quantitative PCR. Although the effects of intramuscular injections of folic acid and vitamin B12 on lactational performance and metabolic status of animals were limited, ingenuity pathway analysis of gene expression in granulosa cells suggests a stimulation of cell differentiation in vitamin-treated cows, which may be the result of an increase in LH secretion.
Collapse
Affiliation(s)
- A Gagnon
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - D R Khan
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - M-A Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - C L Girard
- Agriculture et Agroalimentaire Canada, Centre de Recherche sur le Bovin Laitier et le Porc, Sherbrooke, QC, Canada J1M 0C8
| | - J-P Laforest
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - F J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6.
| |
Collapse
|
31
|
Khaire A, Rathod R, Kale A, Joshi S. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats. Prostaglandins Leukot Essent Fatty Acids 2015; 99:7-17. [PMID: 26003565 DOI: 10.1016/j.plefa.2015.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.
Collapse
Affiliation(s)
- Amrita Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Richa Rathod
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
32
|
Osorio J, Ji P, Drackley J, Luchini D, Loor J. Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. J Dairy Sci 2014; 97:7451-64. [DOI: 10.3168/jds.2014-8680] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 01/09/2023]
|
33
|
Duplessis M, Girard CL, Santschi DE, Pellerin D. An economic model evaluating the supplementation of folic acid and vitamin B12 given around parturition and in early lactation on dairy farms in Québec, Canada. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas-2014-026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Duplessis, M., Girard, C. L., Santschi, D. E. and Pellerin, D. 2014. An economic model evaluating the supplementation of folic acid and vitamin B12 given around parturition and in early lactation on dairy farms in Québec, Canada. Can. J. Anim. Sci. 94: 737–747. The aim of this study was to estimate the potential profitability of a combined supplement of folic acid and vitamin B12 given around parturition and in early lactation in commercial dairy herds in Québec. A total of 791 dairy cows from 14 herds were enrolled. Cows were assigned to weekly intramuscular injections of saline or 320 mg of folic acid and 10 mg of vitamin B12. Treatments began 3 wk before the expected calving date and lasted until 8 wk of lactation. Within each herd, data on production, reproduction, and incidence of metabolic disorders and other diseases were recorded. With regard to the Canadian dairy industry, which operates under a supply management system, two scenarios were studied: (1) quota kept constant and (2) number of cows kept constant. For scenarios 1 and 2, eight and seven herds out of 14, respectively, obtained a positive annual net margin per cow following the vitamin supplement. The average net margins were Can$31.18 and Can$–4.86 N cow−1 yr−1 for scenarios 1 and 2, respectively. The variability of the response highlights that supplies of these vitamins by ruminal synthesis were probably different among herds and actual knowledge does not allow predicting supplies according to the diet.
Collapse
Affiliation(s)
- M. Duplessis
- Département des sciences animales, Université Laval, Québec, Canada G1V 0A6
- Agriculture et Agroalimentaire Canada, Centre de recherche et développement sur le bovin laitier et le porc, Sherbrooke, Québec, Canada J1M 0C8
| | - C. L. Girard
- Agriculture et Agroalimentaire Canada, Centre de recherche et développement sur le bovin laitier et le porc, Sherbrooke, Québec, Canada J1M 0C8
| | | | - D. Pellerin
- Département des sciences animales, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
34
|
Duplessis M, Girard C, Santschi D, Lefebvre D, Pellerin D. Milk production and composition, and body measurements of dairy cows receiving intramuscular injections of folic acid and vitamin B-12 in commercial dairy herds. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Duplessis M, Girard C, Santschi D, Laforest JP, Durocher J, Pellerin D. Effects of folic acid and vitamin B12 supplementation on culling rate, diseases, and reproduction in commercial dairy herds. J Dairy Sci 2014; 97:2346-54. [DOI: 10.3168/jds.2013-7369] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/19/2013] [Indexed: 11/19/2022]
|
36
|
|
37
|
Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal 2014; 8:262-74. [DOI: 10.1017/s1751731113002139] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|