1
|
Chandrappa SM, Xie L, Andueza SG, Sadeghi H, Rashid MH, Niazi M, Qiao K, Dong Q, Vincenti L, Ricci A, Pascottini OB, Opsomer G. Effect of type of anticoagulant, transportation time, and glucose in the culture media on neutrophil viability and function test results in dairy cattle. PLoS One 2024; 19:e0311742. [PMID: 39388447 PMCID: PMC11466419 DOI: 10.1371/journal.pone.0311742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
In dairy cattle research, in vitro assessment of innate immune function is commonly evaluated by flow cytometry via the quantitative analysis of circulating polymorphonuclear leukocytes (PMN) functionalities specifically focusing on the capacities for phagocytosis (PC) and oxidative burst (OB). Variations in these PMN functions, however, may not only be influenced by the health status of the animals but also by technical, non-animal related factors. Our objectives were to assess the PMN viability, PC and OB capacities from blood samples collected in tubes coated with different anticoagulants (acid citrate dextrose (ACD) and ethylenediaminetetraacetic acid (EDTA)) and stored for 0, 3, 6, 9, and 12 h at 4°C (to mimic transportation timeframe). Furthermore, we evaluated the PMN functionalities (PC and OB) in samples incubated in culture medium with glucose (7.2 mM) versus no glucose. Over five replicates, coccygeal blood samples were collected from three nulliparous Holstein heifers (5 ACD and 5 EDTA per heifer) and allocated in a refrigerated container (4°C) for 0, 3, 6, 9, and 12 h. At each time point, PMN were isolated using gradient centrifugation. Immunolabeled PMN (CH138A) were subjected to a tricolor fluorescent staining to evaluate their viability (viable, apoptotic, and necrotic PMN). Phagocytosis and OB were assessed by incubating PMN with fluorescent beads and by phorbol 12-myristate 13-acetate stimulation, respectively. The effects of anticoagulant type, storage time, and presence of glucose in the culture medium on PMN viability and function parameters were fitted in mixed linear regression models. The proportion of viable PMN at 0 h was similar for ACD and EDTA (92 ± 4.6% and 93 ± 4.6%, respectively) but it decreased to 78 ± 4.6% for ACD and 79 ± 4.6% for EDTA after 6 h of storage. The proportion of viable PMN was not different between ACD and EDTA at any time point. The proportion of PMN that engulfed beads (PC percentage) and the PC median fluorescence intensity (MFI) reached their highest value after 3 h of storage compared with the other time points. However, the anticoagulant type (ACD versus EDTA) and the presence of glucose in the culture medium did not influence these PC parameters. Oxidative burst MFI was higher in PMN incubated in glucose-supplemented culture medium versus no glucose. We demonstrated that technical factors interfere with the evaluation of PMN viability and functionality, which can potentially lead to bias in the findings of a research hypothesis. To conclude, the present study showed that the optimal timeframe for performing PMN function analyses is within 3 hours after blood sampling. Furthermore, the presence of 7.2 mM glucose in the culture medium, a common concentration in formulation of cell culture medium, increases the in vitro OB capacity, potentially masking any impairments in in vivo PMN dysfunctionality.
Collapse
Affiliation(s)
- Sanjana Malledevarahalli Chandrappa
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Lei Xie
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
| | - Sebastian Gonzalez Andueza
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
| | - Hafez Sadeghi
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States of America
| | - Muhammad Hussnain Rashid
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
| | - Mehrnaz Niazi
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
| | - Kaixi Qiao
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Leila Vincenti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Alessandro Ricci
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Osvaldo Bogado Pascottini
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geert Opsomer
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Ghent, Belgium
| |
Collapse
|
2
|
Paz A, Michelotti TC, Suazo M, Bonilla J, Bulnes M, Minuti A, Luchini D, Trevisi E, Lima AF, Halfen J, Rovai M, Osorio JS. Rumen-protected methionine supplementation improves lactation performance and alleviates inflammation during a subclinical mastitis challenge in lactating dairy cows. J Dairy Sci 2024:S0022-0302(24)01099-3. [PMID: 39218072 DOI: 10.3168/jds.2024-25028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to evaluate the effects of rumen-protected Met on lactation performance, inflammation and immune response, and liver glutathione of lactating dairy cows during a subclinical mastitis challenge (SMC). Thirty-two Holstein cows (145 ± 51 DIM) were enrolled in a randomized complete block design. At -21 d relative to the SMC, cows were assigned to dietary treatments, and data were collected before and during the SMC. Cows were blocked according to parity, DIM, and milk yield and received a basal diet (17.4% CP; Lys 7.01% MP and Met 2.14% MP) plus 100 g/d of ground corn (CON; n = 16) or a basal diet plus 100 g/d of ground corn and rumen-protected Met (SM, Smartamine M at 0.09% of dietary DM; n = 16), fed as a top-dress. At 0 d, the mammary gland's rear right quarter was infused with 100,000 cfu of Streptococcus uberis (O140J). Milk yield was recorded twice daily from 0 until 3 d relative to SMC. Milk samples were collected during each milking from 0 to 3 d relative to SMC, blood samples were collected at 0, 6, 12, 24, 48, and 72 h relative to SMC. The mTOR pathway activation was assessed in immune cells in blood and milk samples by measuring quantity and phosphorylation status of mTOR-related proteins, including AKT, S6RP, and 4EBP1. For the ratio of phosphorylated to total AKT, S6RP, and 4EBP1, blood samples were collected at 0, 12, and 24 h, and milk samples at 24 h relative to SMC. Liver biopsies were performed at -10 d and 24 h relative to SMC for measurement of glutathione. Linear mixed models with repeated measures were used to analyze the results. There was a trend for greater milk yield per milking (+ 0.8 kg) and per day (+1.7 kg) after SMC in SM cows compared with CON. The DMI was not affected by dietary treatments. Reactive oxygen metabolites (ROM) were lower in SM cows than in CON. Milk somatic cell linear score was not affected by dietary treatments, and a score >4 at 24 h confirmed subclinical mastitis. The SM cows had greater milk fat percentage at 24 and 36 h post SMC, resulting in overall greater milk fat. Milk protein tended to be greater in SM cows than in CON. We observed greater liver glutathione in SM cows than in CON. Among inflammation biomarkers, ceruloplasmin was lower for SM cows compared with CON. In milk, greater pAKT:AKT and pS6RP:S6RP ratios were observed in immune cell populations from SM cows compared with CON. Blood neutrophils had a greater p4EBP1:4EBP1 ratio in SM cows compared with CON. Overall, our results show that Met supplementation during an SMC positively affected milk performance, lowered the risk of oxidative stress, and attenuated inflammation partially by increasing liver glutathione and immune cells' protein synthesis via mTOR signaling.
Collapse
Affiliation(s)
- A Paz
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - T C Michelotti
- INRAE, UMR Herbivores, Saint-Genès-Champanelle, France 631222
| | - M Suazo
- Department of Animal Sciences, University of Minnesota, Falcon Heights, Minnesota 55108
| | - J Bonilla
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - M Bulnes
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Facoltà di Scienza Agrarie, Alimentari e Ambientali, Universit Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Facoltà di Scienza Agrarie, Alimentari e Ambientali, Universit Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A F Lima
- School of Animal Science, Virginia Tech, Blacksburg 24061
| | - J Halfen
- School of Animal Science, Virginia Tech, Blacksburg 24061
| | - M Rovai
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - J S Osorio
- School of Animal Science, Virginia Tech, Blacksburg 24061..
| |
Collapse
|
3
|
Yadav DK, Somagond YM, Das P, Lathwal SS, Kamboj A, Alhussien MN, Dang AK. Injection of antioxidant trace minerals/vitamins into peripartum crossbred cows improves the nutritional and immunological properties of colostrum/milk and the health of their calves under heat stress conditions. Trop Anim Health Prod 2024; 56:225. [PMID: 39066797 DOI: 10.1007/s11250-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Multimineral and vitamin injections can provide better nutrient availability at the cellular level, which is essential for mitigating transition period stress and improving the wellbeing and productivity of dairy cows. The present study was conducted to assess the colostrum quality and calf health after intramuscular injection of multi-minerals (MM) and multi-vitamins (MV) to peripartum cows during winter (THI = 58 to 66) and summer (THI = 78 to 82) months. In each season, twenty-four pregnant crossbred Karan Fries cows were grouped into four, each consisting of six cows. Group I, referred to as the Control, received solely the basal diet, without any additional supplements. Groups II, III, and IV were administered additional MM (T1), MV (T2), and a combined MM and MV (T3) along with their basal diet, starting 30 days before calving and continuing for 30 days after calving. Blood samples were collected from the calves, while colostrum/milk samples were obtained from the cows on days 1, 3, 7, and 15 after calving. The somatic cell counts (SCC) in the milk were determined using a cell counter. Cortisol, IgG, IGF1 and total immunoglobulins (TIG) in whey and plasma from cow colostrum/milk or calf blood samples were estimated by ELISA. Cows that calved in the summer exhibited notably reduced levels (P < 0.05) of IgG, milk, and plasma IGF1, along with lower calf body weights, in comparison to those calving in the winter season. Furthermore, the summer months saw significant increases (P < 0.05) in plasma and milk cortisol levels, as well as total somatic cell counts (SCC) in both colostrum and milk samples. Maximum beneficial effect was observed in T3 group. Results indicate that injections to peripartum cows could be an important strategy for improving colostrum quality and calf health during the summer seasons.
Collapse
Affiliation(s)
- Dhawal Kant Yadav
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Yallappa M Somagond
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Animal Physiology and Reproduction, ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797106, India
| | - Pravasini Das
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Surender Singh Lathwal
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, 85354, Freising, Germany
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
4
|
Miqueo E, Mattioli GA, Moore DP, Bilbao MG, Moran KD, Relling AE. Impact of Parenteral Maternal Supplementation with Trace Minerals and Vitamins on Neonatal Calf Antioxidant System and Growth in a Dairy Herd. Animals (Basel) 2024; 14:1868. [PMID: 38997979 PMCID: PMC11240774 DOI: 10.3390/ani14131868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Oxidative stress may affect new born calves due to high stress suffered around birth. We hypothesized that maternal supplementation with micronutrients and vitamins in late gestation enhance the neonatal calf's antioxidant system, decreasing the occurrence and duration of diarrhea, and improving growth from birth through weaning. To test this hypothesis, 80 multiparous cows were cluster-assigned to treatment groups. Treated group (TG) cows received mineral and vitamin supplementation while control group (CG) cows received saline solution. Feed intake and fecal score were measured daily until the ninth week. Weight and body measurements were registered weekly, and blood samples were collected from postpartum cows and calves after birth and at 7, 14, and 63 days of life. Although CG calves had greater fecal scores (p = 0.01), diarrhea characteristics did not differ. Calves in the TG showed greater starter intake (p = 0.04). Feed efficiency showed a trend with treatment-age interaction (p = 0.06). Calves in the CG had wider hips in the first week (p = 0.03), but not by the ninth week. Total antioxidant status, thiobarbituric acid reactive substances, and haptoglobin did not differ between treatment groups. Serum metabolites showed no differences. Supplementation did not impact calf antioxidant system or growth in the first two months.
Collapse
Affiliation(s)
- Evangelina Miqueo
- Departamento de Producción Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620, CP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, CP, Argentina
| | - Guillermo A. Mattioli
- Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata 1900, CP, Argentina
| | - Dadin P. Moore
- Departamento de Producción Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce 7620, CP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, CP, Argentina
| | - María G. Bilbao
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, CP, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico 6360, CP, Argentina
| | - Karen D. Moran
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, CP, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico 6360, CP, Argentina
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
5
|
Kesler KW, Abuelo A. Zinc about it - zinc and calf immunity. Front Immunol 2024; 15:1387950. [PMID: 38799472 PMCID: PMC11116585 DOI: 10.3389/fimmu.2024.1387950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Micronutrients, such as vitamins and trace minerals, are critical for supporting growth, performance, health and maintaining redox balance. Zinc (Zn), an essential micronutrient, aids the functioning of innate and adaptive immune cells. This scoping review aims to assemble and evaluate the evidence available for the role of Zn within calf immunity. Relevant literature was identified within Web of Science, PubMed, and CABI using search terms specific to the major innate and adaptive immune cell populations. There was no evidence that Zn supplementation altered neutrophil, natural killer cell, or T-cell functions. However, there was limited evidence to support Zn supplementation with reduced monocyte numbers, but there was no evidence to associate the monocytopenia with improvements in monocyte function. There is moderate evidence to suggest that Zn supplementation was beneficial for maintaining epithelial barriers of integumental and mucosal surfaces. The evidence supports supplementation above the current industry recommendations for improving immunoglobulin (Ig) production, with the strongest results being observed for IgG and IgM. Moreover, Zn supplementation was associated with reduced proinflammatory cytokine production, which may reduce inflammation-associated hypophagia and warrants further investigation. Furthermore, Zn reduced the duration of clinical signs in animals facing respiratory disease and diarrhea. However, consensus is needed about the optimal dose, route, and Zn formulation most appropriate for supporting immunity. In conclusion, while the literature supports that Zn could enhance calf immunity, there is insufficient evidence to adequately determine the extent to which Zn impacts innate immune cell and T-cell functions. Determination of the immune cell functions susceptible to modification by Zn supplementation is an important knowledge gap for enhancing the understanding of Zn and calf immunity.
Collapse
Affiliation(s)
| | - Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Catellani A, Mezzetti M, Minuti A, Cattaneo L, Trevisi E. Metabolic and inflammatory responses reveal different adaptation to the transition period challenges in Holstein, Brown Swiss, and Simmental dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2196995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- A. Catellani
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - M. Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A. Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - L. Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - E. Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
7
|
Stephenson EL, Rathert-Williams AR, Kenny AL, Nagy DW, Shoemake BM, McFadden TB, Tucker HA, Meyer AM. Effects of copper, zinc, and manganese source and inclusion during late gestation on beef cow-calf performance, mineral transfer, and metabolism. Transl Anim Sci 2023; 7:txad097. [PMID: 37767050 PMCID: PMC10519816 DOI: 10.1093/tas/txad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
To determine effects of Cu, Zn, and Mn source and inclusion during late gestation, multiparous beef cows [n = 48; 649 ± 80 kg body weight (BW); 5.3 ± 0.5 body condition score (BCS)] were individually-fed hay and supplement to meet or exceed all nutrient recommendations except Cu, Zn, and Mn. From 91.2 ± 6.2 d pre-calving to 11.0 ± 3.2 d post-calving, cows received: no additional Cu, Zn, or Mn (control, CON), sulfate-based Cu, Zn, and Mn (inorganic, ITM) or metal methionine hydroxy analogue chelates (MMHAC) of Cu, Zn, and Mn at 133% recommendations, or a combination of inorganic and chelated Cu, Zn, and Mn (reduce and replace, RR) to meet 100% of recommendations. Data were analyzed with treatment and breeding group (and calf sex if P < 0.25 for offspring measures) as fixed effects, animal as experimental unit, and sampling time as a repeated effect for serum, plasma, and milk measures over time. Post-calving cow liver Cu was greater (P ≤ 0.07) in MMHAC compared with all other treatments. Calves born to RR had greater (P ≤ 0.05) liver Cu than ITM and CON, and MMHAC had greater (P = 0.06) liver Cu than CON. Liver Mn was less (P ≤ 0.08) for RR calves than all other treatments. Calf plasma Zn was maintained (P ≥ 0.15) from 0 to 48 h of age in ITM and MMHAC but decreased (P ≤ 0.03) in CON and RR. Gestational cow BW, BCS, and metabolites were not affected (P ≥ 0.13) by treatment, but gestational serum thiobarbituric acid reactive substances (TBARS) were greater (P = 0.01) for CON than MMHAC. Treatment did not affect (P ≥ 0.13) calf birth size, vigor, placental size and minerals, or transfer of passive immunity. Neonatal calf serum Ca was greater (P ≤ 0.05) for MMHAC than all other treatments; other calf serum chemistry and plasma cortisol were not affected (P ≥ 0.12). Pre-suckling colostrum yield, and lactose concentration and content, were greater (P ≤ 0.06) for MMHAC compared with ITM and RR. Colostral triglyceride and protein concentrations were greater (P ≤ 0.08) for RR than MMHAC and CON. Cow lactational BW and BCS, milk yield and composition, and pre-weaning calf BW and metabolism were not affected (P ≥ 0.13) by treatment. Lactational serum TBARS were greater (P = 0.04) for RR than CON at day 35 and greater (P ≤ 0.09) for MMHAC at day 60 than all other treatments. Source and inclusion of Cu, Zn, and Mn altered maternal and neonatal calf mineral status, but calf size and vigor at birth, passive transfer, and pre-weaning growth were not affected in this study.
Collapse
Affiliation(s)
- Emma L Stephenson
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Ann L Kenny
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Dusty W Nagy
- School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Brian M Shoemake
- School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Thomas B McFadden
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Ogilvie L, Van Winters B, Mion B, King K, Spricigo JFW, Karrow NA, Steele MA, Ribeiro ES. Effects of replacing inorganic salts of trace minerals with organic trace minerals in the diet of prepartum cows on quality of colostrum and immunity of newborn calves. J Dairy Sci 2023; 106:3493-3508. [PMID: 37028969 DOI: 10.3168/jds.2022-21913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/09/2022] [Indexed: 04/08/2023]
Abstract
Our objectives were to evaluate the impact of supplementary trace mineral (TM) form-inorganic salts (STM; Co, Cu, Mn, Zn sulfates, and Na selenite) or organic (OTM; Co, Cu, Mn, Zn proteinates, and selenized yeast)-in the prepartum diet on quantity and quality of colostrum, passive immunity, antioxidant biomarkers, cytokine responses to lipopolysaccharide (LPS), health, and growth of newborn calves. Pregnant heifers (n = 100) and cows (n = 173) were enrolled at 45 d before calving, blocked by parity and body condition score, and allocated randomly to STM (50 heifers; 86 cows) or OTM (50 heifers; 87 cows) supplementation. Cows in both treatments were fed the same diet, except for the source of supplementary TM. Within 2 h of calving, dams and calves were separated, colostrum was harvested, the yield was measured, and a sample was saved for posterior analyses of colostrum quality. A subgroup of calves (n = 68) had a blood sample collected before colostrum feeding. After colostrum feeding, all samples and data collection were limited to 163 calves (STM = 82; OTM = 81) fed 3 L of good quality (Brix% >22) maternal colostrum via nipple bottle minutes after harvesting. Concentration of IgG in colostrum and serum was determined 24 h after colostrum feeding using radial immunodiffusion. Concentration of TM in colostrum and serum were performed by inductively coupled plasma mass spectrometry. Activity of glutathione peroxidase, ferric reducing ability of plasma, and concentration of superoxide dismutase were evaluated in plasma by colorimetric assays. Ex vivo whole blood stimulation with LPS was performed on d 7 of life to evaluate cytokine responses in a subgroup of 66 calves. Health events were recorded from birth to weaning, and body weight was recorded at birth (all calves) and on d 30 and 60 (heifers only). Continuous variables were analyzed by ANOVA and binary responses were analyzed by logistic regression. Complete replacement of STM by OTM in prepartum diet resulted in greater concentration of Se (461 vs. 543 ± 7 μg/g; ± SEM) but did not alter the concentration or total mass of other TM and IgG in colostrum. Female calves of the OTM group had greater concentration of Se in serum at birth (0.23 vs. 0.37 ± 0.05 μg/mL), were lighter in weight at birth (40.9 vs. 38.8 ± 0.6 kg) and weaning (93.2 vs. 89.7 ± 1.6 kg) than those of the STM group. Maternal treatments did not affect passive immunity or antioxidant biomarkers. On d 7, basal concentrations (log10 of concentration in pg/mL) of IFNγ (0.70 vs. 0.95 ± 0.083) and LPS-stimulated concentrations of CC chemokine ligand 2 (CCL2; 2.45 vs. 2.54 ± 0.026), CC chemokine ligand 3 (CCL3; 2.63 vs. 2.76 ± 0.038), IL-1α (2.32 vs. 2.49 ± 0.054), and IL-1β (3.62 vs. 3.86 ± 0.067) were greater in OTM than in STM. Supplementation with OTM in pregnant heifers, but not in pregnant cows, reduced the incidence of preweaning health problems in their calves (36.4 vs. 11.5%). Complete replacement of STM by OTM in the prepartum diet did not cause major changes in colostrum quality, passive immunity, and antioxidant capacity, but increased cytokine and chemokine responses to LPS on d 7 of life and benefited preweaning health of calves born to primiparous cows.
Collapse
Affiliation(s)
- L Ogilvie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - J F W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - N A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1.
| |
Collapse
|
9
|
Somagond YM, Alhussien MN, Dang AK. Repeated injection of multivitamins and multiminerals during the transition period enhances immune response by suppressing inflammation and oxidative stress in cows and their calves. Front Immunol 2023; 14:1059956. [PMID: 36845154 PMCID: PMC9950815 DOI: 10.3389/fimmu.2023.1059956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Periparturient dairy cows undergo major physiological and metabolic changes as well as immunosuppression, associated with decrease in plasma concentrations of various minerals and vitamins. The present study was conducted to investigate effects of repeated injections of vitamins and minerals on oxidative stress, innate and adaptive immune response in periparturient dairy cows and their offspring. Experiment was carried out on 24 peripartum Karan-Fries cows, randomly divided into four groups (n=6): control, Multi-mineral (MM), Multi-vitamin (MV) and Multi-minerals and Multi-vitamin (MMMV). Five ml of MM (Zinc 40 mg/ml, Manganese 10 mg/ml, Copper 15 mg/ml, Selenium 5 mg/ml) and five ml of MV (Vitamin E 5 mg/ml, Vitamin A 1000 IU/ml, B-Complex 5 mg/ml, and Vitamin D3 500 IU/ml) were injected intramuscularly (IM) to the MM and MV groups. MMMV group cows were injected with both. In all treatment groups, injections and blood sampling were carried out on 30th, 15th, 7th days before and after expected date of parturition and at calving. In calves, blood was collected at calving and on 1, 2, 3, 4, 7, 8, 15, 30 and 45 days post-calving. Colostrum/milk were collected at calving and at days 2, 4, and 8 post-calving. A lower percentage of total neutrophils and immature neutrophils, higher percentage of lymphocytes together with increased phagocytic activity of neutrophils and proliferative capacity of lymphocytes found in blood of MMMV cows/calves. Lower relative mRNA expression of TLRs and CXCRs and higher mRNA expression of GR-α, CD62L, CD11b, CD25 and CD44 found in blood neutrophils of MMMV groups. Total antioxidant capacity was higher, activity of antioxidant enzymes (SOD and CAT), TBARS levels were lower in the blood plasma of treated cows/calves. In both cows/calves, plasma pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, IL-17A, IFN-γ and TNF-α) increased, whereas anti-inflammatory cytokines (IL-4 and IL-10) decreased in MMMV groups. Total immunoglobulins increased in colostrum/milk of MMMV injected cows and plasma of their calves. Results indicate that repeated injections of multivitamins and multiminerals to peripartum dairy cows could be a major strategy to improve immune response and decrease in inflammation and oxidative stress in transition dairy cows and their calves.
Collapse
Affiliation(s)
- Yallappa M. Somagond
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,Reproductive Biotechnology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,*Correspondence: Ajay Kumar Dang, ;
| |
Collapse
|
10
|
Gonzalez-Rivas PA, Lean GR, Chambers M, Liu J. A Trace Mineral Injection before Joining and Lambing Increases Marking Percentages and Lamb Weights on Diverse Farms in Victoria, Australia. Animals (Basel) 2023; 13:ani13010178. [PMID: 36611786 PMCID: PMC9817843 DOI: 10.3390/ani13010178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
This study was conducted on five commercial farms across Victoria, Australia, between September 2018 and November 2019, where the TM status of ewes was within normal ranges before joining. Mix breed ewes (n = 1484) were randomly allocated to receive either nil treatment (Control) or two injections of an ITM product containing zinc (40 mg/mL), manganese (10 mg/mL), selenium (3 mg/mL), and copper (10 mg/mL); 0.2 mL per 10 kg BW (Multimin® plus Copper for Sheep, Virbac (Australia) Pty Ltd., Milperra, NSW, Australia) 30 days before the start of joining and 30 days before the start of lambing. Approximately 90 days after joining, pregnancy status and conception rate were determined by ultrasound. The marking rate was determined approximately four weeks after the end of lambing, and lamb weights were determined at weaning (12 weeks after the end of lambing). In all farms, ITM treatment did not affect the conception rate. The average conception rate was 156 ± 11.0% (p > 0.05). The marking rate of ITM ewes was 9% higher than control ewes (95% Confidence Interval 3−21%). Lambs born to ITM ewes were 2.31 kg heavier at weaning than lambs born to control ewes (p < 0.001). Although not significant, ewe mortality across farms was 1.3% lower in the ITM group than in the control group. On average, ewes treated with ITM pre-joining and pre-lambing produced more and heavier lambs that represent an extra AU$ 2338 per 100 ewes net benefit for the producer. These results help to understand strategic TM supplementation for animal health, performance and farm profitability beyond the treatment of clinical deficiencies.
Collapse
Affiliation(s)
- Paula A. Gonzalez-Rivas
- Virbac Australia Pty Ltd., 361 Horsley Road, Milperra, NSW 2214, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-412-039-610
| | - Graham R. Lean
- Agrivet Business Consulting, P.O. Box 105, Hamilton, VIC 3300, Australia
| | | | - Jerry Liu
- Virbac Australia Pty Ltd., 361 Horsley Road, Milperra, NSW 2214, Australia
| |
Collapse
|
11
|
Cavallini D, Mammi LME, Palmonari A, García-González R, Chapman JD, McLean DJ, Formigoni A. Effect of an Immunomodulatory Feed Additive in Mitigating the Stress Responses in Lactating Dairy Cows to a High Concentrate Diet Challenge. Animals (Basel) 2022; 12:2129. [PMID: 36009720 PMCID: PMC9404850 DOI: 10.3390/ani12162129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy cows are often exposed to multiple stressors in a lactation-cycle, with sub-acute ruminal acidosis (SARA) a frequent example of nutritional stress. SARA affects ruminal and intestinal equilibrium resulting in dysbiosis with localized and systemic inflammation impacting animal health and productivity. OmniGen-AF (OMN, Phibro Animal Health Corporation, Teaneck, NJ, USA) is a feed product recognized for modulating innate immune function, especially during periods of stress. The objective of this study was to determine the effects of OMN in lactating dairy cows fed a high-starch, low-fiber diet. Twenty-four blocked cows were assigned to control or treatment (55 g/d). After the additive adaptation (49 d) cows were fed the challenge diet (28 d). Milk, rumination and pH were continuously recorded; components, rumen fluid, and blood were taken in multiple time-point and analyzed. Results showed that the challenge decreased the rumination, shifted ruminal fluid composition, decreased milk production and the components, and slightly increased the time below pH 5.5, with no differences between groups. The treatment produced greater rumen butyrate and lower lactate, prompter regeneration of red blood cells, increase of neutrophils, lower paraoxonase, gamma-glutamyl-transferase, and β-hydroxybutyrate, with no differences on other tested inflammatory markers. Results show that OMN helps modulating some of the metabolic and immunological responses to SARA.
Collapse
Affiliation(s)
- Damiano Cavallini
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| | - Ludovica M. E. Mammi
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| | - Alberto Palmonari
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| | | | | | | | - Andrea Formigoni
- DIMEVET—Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Bologna, Italy
| |
Collapse
|
12
|
Mezzetti M, Piccioli-Cappelli F, Minuti A, Trevisi E. Effects of an Intravenous Infusion of Emulsified Fish Oil Rich in Long-Chained Omega-3 Fatty Acids on Plasma Total Fatty Acids Profile, Metabolic Conditions, and Performances of Postpartum Dairy Cows During the Early Lactation. Front Vet Sci 2022; 9:870901. [PMID: 35651967 PMCID: PMC9149583 DOI: 10.3389/fvets.2022.870901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022] Open
Abstract
A group of 10 multiparous Italian Holstein cows were housed in individual tied stalls and infused with 150 ml of saline (CTR; 5 cows), or of 10% solution rich in long-chained omega-3 fatty acids (n3FA; 5 cows) at 12, 24, and 48 h after calving. From −7 to 21 days from calving (DFC), the body condition score, body weight, dry matter intake (DMI), and milk yield were measured, blood samples were collected to assess the plasma fatty acids (FA) and metabolic profiles, and milk samples were collected to assess the milk composition. Data underwent a mixed model for repeated measurements, including the treatment and time and their interactions as fixed effects. Plasma FA profile from n3FA cows had lower myristic and higher myristoleic proportions, higher cis-11,14-eicosadienoic acid and monounsaturated FA proportions at 3 DFC, and lower cis-10-pentadecanoic proportion at 10 DFC. Besides these, n3FA cows had higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) proportions (1.09 vs. 0.71 and 0.33 vs. 0.08 g/100 g), confirming the effectiveness of the infusion in elevating plasma availability of these FA. The plasma metabolic profile from n3FA cows revealed a tendency toward a lower concentration of reactive oxygen metabolites at 1 DFC and lower haptoglobin at 2 and 3 DFC, reflecting a mitigated inflammatory state. Furthermore, n3FA cows had a higher DMI during the first week of lactation. Higher DMI of n3FA could account for the changes detected on their plasma FAs, the higher milk yield they had at 1 and 2 DFC, the reduced lactose and urea nitrogen content in their milk. Higher DMI could also account for the lower plasma urea that n3FA cows had at 1 and 2 DFC, suggesting a lower amount of endogenous amino acids deserved to gluconeogenic fate. Milk from n3FA cows had lower rennet clotting time and higher curd firmness, which is probably driven by a higher EPA and DHA inclusion in the milk fat. Together, these outcomes suggest that the infusion exerts a short-term anti-inflammatory action on dairy cows at the onset of lactation.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center Romeo and Enrica Invernizzi for Sustainable Dairy Production (CREI), Università Cattolica del Sacro Cuore, Piacenza, Italy
- *Correspondence: Erminio Trevisi
| |
Collapse
|
13
|
Wang H, Elsaadawy SA, Wu Z, Bu DP. Maternal Supply of Ruminally-Protected Lysine and Methionine During Close-Up Period Enhances Immunity and Growth Rate of Neonatal Calves. Front Vet Sci 2021; 8:780731. [PMID: 34926646 PMCID: PMC8677362 DOI: 10.3389/fvets.2021.780731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effect of supplying ruminally-protected lysine (RPL), methionine (RPM), or the two in combination (RPML) to transition dairy cows on the immunity and performance of their offspring. Eighty heifer calves (n = 20 calves per group) were assigned to four treatments based on their dam diet; basal diet (CON), a basal diet with lysine [RPL, 0.33% of dry matter (DM)], a basal diet with methionine (RPM, 0.16% DM), or with the combination (RPML). Calves were fed colostrum from their dams within 2 h of birth. Calves were then fed milk only (d 2-22), a combination of milk and milk replacer (d 23-25), and milk replacer (d 25-60). Starter feed was fed to the calves twice daily after liquid feeding. Calves blood samples were collected after calving on 0, 12, 24, and 48 h and 5 and 7 d after birth. Data were analyzed by SAS software v9.4. Providing ruminally-protected amino acids (RPAA) to transition cows improved colostrum quality compared to the CON (Brix; P < 0.01). Serum total protein concentrations were higher in calves from supplemented cows than in calves from unsupplemented cows (P < 0.01). Calves born to dams in the RPM, RPL, and RPML groups had higher plasma immunoglobulin G (IgG) concentrations 0, 12, 24, and 48 h and 7 d after birth than those born to dams in the CON group (P < 0.05). The percentage of calves with adequate passive immunity transfer was increased with RPM and RPL or the two in combination (P < 0.01). However, there was no difference in the percentage of calves with adequate passive immunity transfer between the RPM and RPL groups (P = 0.21). Calves from cows that receive supplemental RPAA have a greater average daily gain (ADG) than those born to cows in the CON group (P < 0.01). These results indicate that maternal supplementation with RPM or RPL or the two in combination during the periparturient period could be an alternative strategy to improve the performance of calves, especially in accelerated growth programs in calves.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Samy A. Elsaadawy
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohai Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengpan P. Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Centre (ICRAF), Beijing, China
- Hunan Co-Innovation Center of Safety Animal Production, Changsha, China
| |
Collapse
|
14
|
Nutritional Regulation of Embryonic Survival, Growth, and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:63-76. [PMID: 34807437 DOI: 10.1007/978-3-030-85686-1_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal nutritional status affects conceptus development and, therefore, embryonic survival, growth, and development. These effects are apparent very early in pregnancy, which is when most embryonic losses occur. Maternal nutritional status has been shown to affect conceptus growth and gene expression throughout the periconceptual period of pregnancy (the period immediately before and after conception). Thus, the periconceptual period may be an important "window" during which the structure and function of the fetus and the placenta are "programmed" by stressors such as maternal malnutrition, which can have long-term consequences for the health and well-being of the offspring, a concept often referred to as Developmental Origins of Health and Disease (DOHaD) or simply developmental programming. In this review, we focus on recent studies, using primarily animal models, to examine the effects of various maternal "stressors," but especially maternal malnutrition and Assisted Reproductive Techniques (ART, including in vitro fertilization, cloning, and embryo transfer), during the periconceptual period of pregnancy on conceptus survival, growth, and development. We also examine the underlying mechanisms that have been uncovered in these recent studies, such as effects on the development of both the placenta and fetal organs. We conclude with our view of future research directions in this critical area of investigation.
Collapse
|
15
|
Silva TH, Guimaraes I, Menta PR, Fernandes L, Paiva D, Ribeiro TL, Celestino ML, Netto AS, Ballou MA, Machado VS. Effect of injectable trace mineral supplementation on peripheral polymorphonuclear leukocyte function, antioxidant enzymes, health, and performance in dairy cows in semi-arid conditions. J Dairy Sci 2021; 105:1649-1660. [PMID: 34799106 DOI: 10.3168/jds.2021-20624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022]
Abstract
The objective of this study was to evaluate the effect of subcutaneous injections of 15 mg/mL Cu, 5 mg/mL Se, 60 mg/mL Zn, and 10 mg/mL Mn on health, performance, polymorphonuclear leukocyte (PMNL) function, circulating glutathione peroxidase (GPx) and superoxide dismutase (SOD) concentrations, and inflammation of dairy cows undergoing the transition period in high temperature-humidity index. A total of 923 multiparous cows from 2 commercial dairy farms were randomly allocated into 1 of 2 treatment groups as follows: control and injectable trace mineral supplementation (ITMS). Cows in the ITMS group received 7 mL of subcutaneous injections at dry-off (208 ± 3 d of gestation), 260 ± 3 d of gestation, and at 35 ± 3 d in milk (DIM). Data regarding health traits, reproductive performance, milk yield, and survivability were extracted from farm database software, and animals were followed-up until 300 DIM. For a subset of 142 cows from one herd, blood samples were collected at enrollment, and at 3 ± 1, 7 ± 1, 10 ± 1, and 35 ± 3 DIM to evaluate hematology, PMNL function, GPx and SOD concentrations, and circulating haptoglobin. Logistic regression was used to assess health and pregnancy per artificial insemination at first service. Cox proportional hazards models were used to evaluate hazard of pregnancy and culling. Mixed linear regression models accounting for repeated measures were used to assess all continuous variables collected over time. Parity, twinning, and previous gestation length were considered as potential confounders. Farm was included as a random effect. The ITMS cows tended to have lower incidence of metritis and stillbirth compared with control group. However, ITMS treatment did not influence the incidence of other diseases (e.g., mastitis, retained placenta), milk yield, reproductive performance, culling, and leukocyte count. Neutrophil-to-lymphocyte ratio, PMNL phagocytosis, and oxidative burst as well as intensity of the oxidative burst were greater for ITMS-treated cows in comparison to control cows. The ITMS cows had decreased expression of the adhesion molecule L-selectin on PMNL surface. The serum concentration of GPx and SOD were not affected by ITMS treatment. In conclusion, ITMS tended to reduce the incidence of metritis and stillbirth parturition, improved PMNL function, and improved the inflammatory status of dairy cows undergoing the transition period in high temperature-humidity index conditions. However, these findings did not translate into improved milk yield, reproductive performance, and survivability.
Collapse
Affiliation(s)
- T H Silva
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415; Department of Animal Science, School of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP 13635-900 Brazil
| | - I Guimaraes
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - P R Menta
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - L Fernandes
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - D Paiva
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - T L Ribeiro
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - M L Celestino
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - A Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP 13635-900 Brazil
| | - M A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - V S Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415.
| |
Collapse
|
16
|
Cavallini D, Mammi LME, Buonaiuto G, Palmonari A, Valle E, Formigoni A. Immune-metabolic-inflammatory markers in Holstein cows exposed to a nutritional and environmental stressing challenge. J Anim Physiol Anim Nutr (Berl) 2021; 105 Suppl 1:42-55. [PMID: 34622484 DOI: 10.1111/jpn.13607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022]
Abstract
Dairy cows are exposed to multiple stressors during the productive cycle, such as metabolic challenges, overcrowding, grouping change, environmental stress and dietary errors. Thus, it is essential to study reliable markers able to detect stress conditions in dairy farms. This study evaluates dairy cows' immunologic and metabolic markers after the sudden and combined exposition to a high-grain diet (75% concentrates) and the abrupt change of the housing system (from free stall to tie stall). A group of twenty-four Holstein cows were enrolled in a challenge study of 28 days duration. Several immunological and metabolic blood markers were evaluated over the trial. Blood samples were taken at day 0 (normal value) and day 1, 3, 7, 14, 21, and 28 (challenge). Data were submitted to a mixed model for repeated measures, including time as fixed and cows as random effects. The nutritional and environmental challenge had heavy effects on animal welfare and cows responded with a dramatic rumination drop. Our results suggest that the most responsive markers after abiotic stressors in cows were as follows: Serum Amyloid A and ROM in the acute response; Ceruloplasmin and GGT in the mid acute and Albumin, Paroxonase and FRAP in the chronic phase. Serum Amyloid A, Ceruloplasmin, Paraoxonase, GGT and ROM resulted as positive phase proteins, while, Albumin and FRAP resulted as negative phase proteins. Preliminary obtained results could concur to develop strategies able to mitigate stressor effects; moreover, the proposed design can be used as a model to test stress nutritional modulators.
Collapse
Affiliation(s)
- Damiano Cavallini
- Department of Veterinary Science, University of Bologna, Bologna, Italy
| | | | | | - Alberto Palmonari
- Department of Veterinary Science, University of Bologna, Bologna, Italy
| | - Emanuela Valle
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Andrea Formigoni
- Department of Veterinary Science, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Negrati M, Razza C, Biasini C, Di Nunzio C, Vancini A, Dall’Asta M, Lovotti G, Trevisi E, Rossi F, Cavanna L. Mediterranean Diet Affects Blood Circulating Lipid-Soluble Micronutrients and Inflammatory Biomarkers in a Cohort of Breast Cancer Survivors: Results from the SETA Study. Nutrients 2021; 13:nu13103482. [PMID: 34684483 PMCID: PMC8539583 DOI: 10.3390/nu13103482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is a major public health concern and substantial research has shown that adhering to a healthy dietary pattern, such as the Mediterranean Diet (MD), may prevent the onset of cancer and BC relapses. This study aims at specifically investigating the association of MD with circulating dietary-related biomarkers in a cohort of BC survivors. Eighty patients (mean age of 54.9 ± 10.6) with a histologically confirmed diagnosis of BC who had not received any pharmacological or radiotherapy treatment for at least two months were enrolled. Fasting serum lipid-soluble vitamins (retinol, tocopherol), plant pigments (β-carotene, lutein + zeaxanthin, cryptoxanthin, lycopene), inflammatory and oxidative stress markers (ceruloplasmin; haptoglobin; paraoxonases; reactive oxygen molecule; thiol groups, Ferric reducing antioxidant power), and cardiometabolic parameters (body mass index (BMI); glucose; insulin; HOMA-IR; total cholesterol; LDL-cholesterol; HDL-cholesterol; triglycerides) were analyzed. Adherence to the MD was assessed through the Mediterranean Diet Score (MDS) questionnaire. Fasting blood samples were collected for the evaluation of selected biomarkers. MDS resulted positively correlated with β-carotene (r 0.331; p < 0.01) and lycopene (r 0.274; p < 0.05) and negatively with retinol (r −0.346; p < 0.05). Among the investigated inflammatory biomarkers, MDS was only correlated with antioxidant capacity (r 0.256; p < 0.05), while none of the investigated cardiometabolic parameters were significantly correlated with this index. The strong significant correlation between β-carotene and MDS encourages us to consider this pro-vitamin as a putative biomarker to take into account for evaluating the adherence to the MD.
Collapse
Affiliation(s)
- Mara Negrati
- Clinical Nutrition Unit, Medicine Department, “G. da Saliceto” Hospital, Via Taverna 49, 29121 Piacenza, Italy; (M.N.); (C.R.); (A.V.)
| | - Claudia Razza
- Clinical Nutrition Unit, Medicine Department, “G. da Saliceto” Hospital, Via Taverna 49, 29121 Piacenza, Italy; (M.N.); (C.R.); (A.V.)
| | - Claudia Biasini
- Oncology Unit, Onco-Hematology Department, “G. da Saliceto” Hospital, Via Taverna 49, 29121 Piacenza, Italy; (C.B.); (C.D.N.)
| | - Camilla Di Nunzio
- Oncology Unit, Onco-Hematology Department, “G. da Saliceto” Hospital, Via Taverna 49, 29121 Piacenza, Italy; (C.B.); (C.D.N.)
| | - Alessandra Vancini
- Clinical Nutrition Unit, Medicine Department, “G. da Saliceto” Hospital, Via Taverna 49, 29121 Piacenza, Italy; (M.N.); (C.R.); (A.V.)
| | - Margherita Dall’Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.D.); (G.L.); (E.T.); (L.C.)
| | - Giorgia Lovotti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.D.); (G.L.); (E.T.); (L.C.)
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.D.); (G.L.); (E.T.); (L.C.)
| | - Filippo Rossi
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.D.); (G.L.); (E.T.); (L.C.)
- Correspondence: ; Tel.: +39-0523-599286
| | - Luigi Cavanna
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.D.); (G.L.); (E.T.); (L.C.)
| |
Collapse
|
18
|
An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows. Antioxidants (Basel) 2021; 10:antiox10091478. [PMID: 34573111 PMCID: PMC8466393 DOI: 10.3390/antiox10091478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.
Collapse
|
19
|
Elolimy AA, Liang Y, Lopes MG, Loor JJ. Antioxidant networks and the microbiome as components of efficiency in dairy cattle. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Effects of a Maternal Essential Fatty Acid and Conjugated Linoleic Acid Supplementation during Late Pregnancy and Early Lactation on Hematologic and Immunological Traits and the Oxidative and Anti-Oxidative Status in Blood Plasma of Neonatal Calves. Animals (Basel) 2021; 11:ani11082168. [PMID: 34438626 PMCID: PMC8388434 DOI: 10.3390/ani11082168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/15/2023] Open
Abstract
Fatty acids are known for their regulatory role in inflammation and oxidative stress. The present study investigated 38 calves born from dams, abomasally supplemented with coconut oil, essential fatty acids (EFA), conjugated linoleic acid (CLA) or EFA + CLA, according to immunological traits and the oxidative and anti-oxidative status for the first 5 days of life. On day 2 of life, plasma total bilirubin, cholesterol, interleukin 1-β and ferric ion reducing anti-oxygen power (FRAP) were lower in calves with than without maternal EFA supplementation, and FRAP additionally on day 4. On day 3, the concentrations of reactive oxygen metabolites were higher in calves with than without maternal EFA supplementation and additionally on day 5 together of retinol. Total leucocyte counts were decreased in the EFA group compared to the CLA group on day 5. Lymphocyte proportions decreased from day 1 to 5 only in the EFA + CLA group. On day 2, plasma total protein was higher in CLA and EFA + CLA than in EFA calves. Similarly, CLA calves had higher interleukin 1-β concentrations compared to EFA + CLA calves. FRAP was decreased by CLA on day 4. Overall, the maternal fatty acid supply affected the inflammatory response and the oxidative and anti-oxidative status of the neonatal offspring.
Collapse
|
21
|
Effects of Supplements Differing in Fatty Acid Profile to Late Gestational Beef Cows on Steer Progeny Finishing Phase Growth Performance, Carcass Characteristics, and mRNA Expression of Myogenic and Adipogenic Genes. Animals (Basel) 2021; 11:ani11071904. [PMID: 34206801 PMCID: PMC8300423 DOI: 10.3390/ani11071904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The objective was to investigate the effects of feeding late gestational beef cows supplements differing in fatty acid profile on steer progeny finishing phase growth performance, carcass characteristics, and relative mRNA expression of myogenic and adipogenic genes. Seventy Angus-cross steers (initial body weight [BW] 273 ± 34 kg) born from dams supplemented with either 155 g DM/d EnerGII (CON, rich in palmitic and oleic acids) or 80 g DM/d Strata + 80 g DM/d Prequel (PUFA, rich in linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid) for the last 77 ± 6 d prepartum were used. Longissimus muscle and subcutaneous adipose biopsies were collected to evaluate relative mRNA expression of genes related to myogenesis and adipogenesis. Steers were slaughtered at 423 ± 6 d of age. No treatment × time interaction or treatment effect (p ≥ 0.21) was detected for steer finishing phase BW, while steers from PUFA supplemented dams tended (p = 0.06) to have a greater gain to feed ratio (G:F). Neither carcass characteristics nor relative mRNA expression was different (p ≥ 0.11). In conclusion, late gestation PUFA supplementation tended to increase steer progeny finishing phase G:F, but had no effects on finishing phase BW, carcass characteristics, or relative mRNA expression during the finishing phase.
Collapse
|
22
|
Shao T, Ireland FA, McCann JC, Shike DW. Effects of supplements differing in fatty acid profile to late gestational beef cows on cow performance, calf growth performance, and mRNA expression of genes associated with myogenesis and adipogenesis. J Anim Sci Biotechnol 2021; 12:67. [PMID: 34120653 PMCID: PMC8201839 DOI: 10.1186/s40104-021-00588-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Maternal nutrition during gestation affects fetal development, which has long-term programming effects on offspring postnatal growth performance. With a critical role in protein and lipid metabolism, essential fatty acids can influence the development of muscle and adipose tissue. The experiment investigated the effects of late gestation supplements (77 d prepartum), either rich in saturated and monounsaturated fatty acids (CON; 155 g/cow/d EnerGII) or polyunsaturated fatty acids (PUFA; 80 g/cow/d Strata and 80 g/cow/d Prequel), on cow performance and subsequent calf growth performance as well as mRNA expression in longissimus muscle (LM) and subcutaneous adipose tissue at birth and weaning. Results There was no difference (P ≥ 0.34) in cow body weight (BW) or body condition score from pre-supplementation through weaning. Relative concentrations of C18:3n-3 and C20:4n-6 decreased (P ≤ 0.05) to a greater extent from mid-supplementation to calving for PUFA compared with CON cows. Cow plasma C20:0, C20:5n-3, and C22:6n-3 were increased (P ≤ 0.01) in PUFA during supplementation period. At birth, PUFA steers had greater (P = 0.01) plasma C20:5n-3. No differences (P ≥ 0.33) were detected in steer birth BW or dam milk production, however, CON steers tended (P = 0.06) to have greater pre-weaning average daily gain and had greater (P = 0.05) weaning BW compared with PUFA. For mRNA expression in steers: MYH7 and C/EBPβ in LM increased (P ≤ 0.04) to a greater extent from birth to weaning for PUFA compared with CON; MYF5 in LM and C/EBPβ in adipose tissue tended (P ≤ 0.08) to decrease more from birth to weaning for CON compared with PUFA; SCD in PUFA adipose tissue tended (P = 0.08) to decrease to a greater extent from birth to weaning than CON. In addition, maternal PUFA supplementation tended (P = 0.08) to decrease MYOG mRNA expression in LM and decreased (P = 0.02) ZFP423 in adipose tissue during the pre-weaning stage. Conclusions Late gestation PUFA supplementation decreased pre-weaning growth performance of the subsequent steer progeny compared with CON supplementation, which could have been a result of downregulated mRNA expression of myogenic genes during pre-weaning period. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00588-w.
Collapse
Affiliation(s)
- Taoqi Shao
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank A Ireland
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
23
|
Changes of Plasma Analytes Reflecting Metabolic Adaptation to the Different Stages of the Lactation Cycle in Healthy Multiparous Holstein Dairy Cows Raised in High-Welfare Conditions. Animals (Basel) 2021; 11:ani11061714. [PMID: 34201201 PMCID: PMC8226749 DOI: 10.3390/ani11061714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study investigates the changes occurring in plasma analytes of healthy multiparous Holstein dairy cows during the dry, the postpartum, the early and the late lactation phases. A welfare assessment at the herd level and a retrospective subclinical diseases screening were used as blocking factors for the selection of reference individuals. Thus, this study provides measurements of the physiological variations affecting plasma analytes concentrations during the pivotal stages of the lactation cycle in a healthy, high welfare-raised subset of reference individuals and suggest an explanation for the underlying processes involved. Finally, we propose reference intervals for plasma analytes in the stages investigated. Abstract Here, we tested the changes occurring in several plasma analytes during different stages of the lactation cycle of high welfare raised multiparous Holstein cows, and provided reference intervals (RI) for plasma analytes concentrations. Eleven high-welfare farms (HWF) located in Northern Italy were selected and their herds used to recruit 361 clinically healthy cows undergoing the dry (from −30 to −10 days from real calving; DFC), the postpartum (from 3 to 7 DFC), the early lactation (from 28 to 45 DFC) and the late lactation phases (from 160 to 305 DFC). Cows affected by subclinical diseases (SCD) were retrospectively excluded, and a subset of 285 cows was selected. Data of plasma analytes underwent ANOVA testing using physiological phases as predictors. The individual effect of each phase was assessed using a pairwise t-test assuming p ≤ 0.05 as a significance limit. A bootstrap approach was used to define the reference interval (RI) for each blood analyte within physiological phases having a pairwise t-test p ≤ 0.05. The concentration of nonesterified fatty acids, albumin, cholesterol, retinol, paraoxonase and tocopherol changed throughout all the physiological phases, whereas the concentration of K, alkaline phosphatase and thiol groups remained stable. Triglycerides, Zn, and ferric ion reducing antioxidant power in the dry phase and BHB, Ca, myeloperoxidase, haptoglobin, reactive oxygen metabolites and advanced oxidation of protein product in postpartum differed compared with other physiological phases. During the dry phase, Packed cell volume, Cl, and urea concentrations were similar to during the postpartum phase. Similarly, Na, γ-glutamyl transferase and β-carotene concentrations were similar to during the early lactation phase; fructosamine and bilirubin concentrations were similar to during the late lactation phase. During the postpartum phase, fructosamine and P concentrations were similar to during the early lactation phase, and the aspartate transaminase concentration was similar to during the late lactation phase. During the early lactation phase, Mg, creatinine, total protein, globulin and ceruloplasmin concentrations were similar to during the postpartum phase, while the urea concentration was similar to during the late lactation phase. All these plasma analytes differed among the other phases. This study identifies physiological trends affecting plasma analytes concentrations during the different stages of the lactation cycle and provides a guideline for the duration and magnitude of their changes when animals are healthy and raised in optimal welfare conditions.
Collapse
|
24
|
Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Socha MT, Ballou MA, Trevisi E, Loor JJ. Maternal supplementation with cobalt sources, folic acid, and rumen-protected methionine and its effects on molecular and functional correlates of the immune system in neonatal Holstein calves. J Dairy Sci 2021; 104:9340-9354. [PMID: 33985772 DOI: 10.3168/jds.2020-19674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Calves born to multiparous Holstein cows fed during the last 30 d of pregnancy 2 different cobalt sources [cobalt glucoheptonate (CoPro) or cobalt pectin (CoPectin)], folic acid (FOA), and rumen-protected methionine (RPM) were used to study neonatal immune responses after ex vivo lipopolysaccharide (LPS) challenge. Groups were (n = 12 calves/group) CoPro, FOA+CoPro, FOA+CoPectin, and FOA+CoPectin+RPM. Calves were weighed at birth and blood collected at birth (before colostrum), 21 d of age, and 42 d of age (at weaning). Growth performance was recorded once a week during the first 6 wk of age. Energy metabolism, inflammation, and antioxidant status were assessed at birth through various plasma biomarkers. Whole blood was challenged with 3 µg/mL of LPS or used for phagocytosis and oxidative burst assays. Target genes evaluated by real-time quantitative PCR in whole blood samples were associated with immune response, antioxidant function, and 1-carbon metabolism. The response in mRNA abundance in LPS challenged versus nonchallenged samples was assessed via Δ = LPS challenged - LPS nonchallenged samples. Phagocytosis capacity and oxidative burst activity were measured in neutrophils and monocytes, with data reported as ratio (percentage) of CD14 to CH138A-positive cells. Data including all time points were subjected to ANOVA using PROC MIXED in SAS 9.4 (SAS Institute Inc.), with Treatment, Sex, Age, and Treatment × Age as fixed effects. A 1-way ANOVA was used to determine differences at birth, with Treatment and Sex as fixed effects. Calf birth body weight and other growth parameters did not differ between groups. At birth, plasma haptoglobin concentration was lower in FOA+CoPro compared with CoPro calves. We detected no effect for other plasma biomarkers or immune function due to maternal treatments at birth. Compared with CoPro, in response to LPS challenge, whole blood from FOA+CoPectin and FOA+CoPectin+RPM calves had greater mRNA abundance of intercellular adhesion molecule 1 (ICAM1). No effect for other genes was detectable. Regardless of maternal treatments, sex-specific responses were observed due to greater plasma concentrations of haptoglobin, paraoxonase, total reactive oxygen metabolites, nitrite, and β-carotene in female versus male calves at birth. In contrast, whole blood from male calves had greater mRNA abundance of IRAK1, CADM1, and ITGAM in response to LPS challenge at birth. The longitudinal analysis of d 0, 21, and 42 data revealed greater bactericidal permeability-increasing protein (BPI) mRNA abundance in whole blood from FOA+CoPectin versus FOA+CoPro calves, coupled with greater abundance in FOA+CoPro compared with CoPro calves. Regardless of maternal treatments, most genes related to cytokines and cytokine receptors (IL1B, IL10, TNF, IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (ICAM1, ITGAM), antimicrobial function (MPO), and antioxidant function (GPX1) were downregulated over time. Phagocytosis capacity and oxidative burst activity in both neutrophils and monocytes did not differ due to maternal treatment. Regardless of maternal treatments, we observed an increase in the percentage of neutrophils capable of phagocytosis and oxidative burst activity over time. Overall, these preliminary assessments suggested that maternal supplementation with FOA and Co combined with RPM had effects on a few plasma biomarkers of inflammation at birth and molecular responses associated with inflammatory mechanisms during the neonatal period.
Collapse
Affiliation(s)
- M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - H Dai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - M A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79409
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
25
|
Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals (Basel) 2021; 11:ani11041159. [PMID: 33919507 PMCID: PMC8072782 DOI: 10.3390/ani11041159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary During gestation, the fetus relies on the dam for the supply of all nutrients, including trace minerals, which are essential for developmental processes including organogenesis, vascularization, and differentiation. Alterations in maternal nutritional status may promote adaptations that permanently alter the trajectory of growth, physiology, and metabolism of the offspring. Supplementing trace minerals to gestating cows may be a strategy to enhance progeny performance and health. The purpose of this review is to highlight current information relevant to trace mineral supplementation during gestation, with an emphasis on Zn, Cu, Co, and Mn, and their impacts on offspring productive responses. Identifying nutritional strategies targeted at this period of development and understanding the implications of such provides an opportunity to enhance the productive efficiency of beef cattle systems. Abstract Nutritional management during gestation is critical to optimize the efficiency and profitability of beef production systems. Given the essentiality of trace minerals to fetal developmental processes, their supplementation represents one approach to optimize offspring productivity. Our research group investigated the impacts of supplementing gestating beef cows with organic-complexed (AAC) or inorganic sources (INR) of Co, Cu, Mn, or Zn on productive and health responses of the progeny. Calves born to AAC supplemented cows had reduced incidence of bovine respiratory disease and were >20 kg heavier from weaning until slaughter compared to unsupplemented cohorts. Complementing these findings, heifer progeny born to AAC supplemented cows had accelerated puberty attainment. Collectively, research demonstrates supplementing trace minerals to gestating beef cows may be a strategy to enhance offspring productivity in beef production systems.
Collapse
|
26
|
Complexed trace mineral supplementation alters antioxidant activities and expression in response to trailer stress in yearling horses in training. Sci Rep 2021; 11:7352. [PMID: 33795725 PMCID: PMC8016935 DOI: 10.1038/s41598-021-86478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 12/04/2022] Open
Abstract
To test the hypothesis that complexed trace mineral supplementation would increase antioxidant capacity and decrease muscle oxidative stress and damage in young horses entering an exercise training program, Quarter Horses (mean \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm$$\end{document}± SD; 9.7 ± 0.7 mo) balanced by age, sex, and BW were assigned to receive complexed (CTM; n = 8) or inorganic (INORG; n = 8) trace minerals at -12 week relative to this study. Blood and muscle samples were collected before (week 0) and after 12 week of light exercise training surrounding a 1.5-h trailer stressor. Muscle glutathione peroxidase (GPx) activity was higher for CTM than INORG horses (P ≤ 0.0003) throughout the study. Following both trailer stressors, serum creatine kinase increased (P < 0.0001) and remained elevated through 24 h post-trailering (P < 0.0001). At week 0, muscle malondialdehyde, expression of superoxide dismutase 2, and whole blood GPx activity increased (P\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le$$\end{document}≤ 0.003) following trailering but trailering did not affect these measures at week 12. Young horses supplemented with CTM had higher muscle GPx activity than horses receiving INORG, but CTM did not affect damage markers following a stressor. Dietary CTM may be useful for improving antioxidant capacity during exercise training in young equine athletes.
Collapse
|
27
|
Diniz WJS, Reynolds LP, Borowicz PP, Ward AK, Sedivec KK, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Forcherio JC, Scott RR, Caton JS, Dahlen CR. Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes. Genes (Basel) 2021; 12:genes12030385. [PMID: 33803164 PMCID: PMC8001966 DOI: 10.3390/genes12030385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways in the placenta that act in response to early maternal nutrition are yet to be elucidated. Herein, we examined the impact of maternal vitamin and mineral supplementation (from pre-breeding to day 83 post-breeding) and two rates of gain during the first 83 days of pregnancy on the gene expression of placental caruncles (CAR; maternal placenta) and cotyledons (COT; fetal placenta) of crossbred Angus beef heifers. We identified 267 unique differentially expressed genes (DEG). Among the DEGs from CAR, we identified ACAT2, SREBF2, and HMGCCS1 that underlie the cholesterol biosynthesis pathway. Furthermore, the transcription factors PAX2 and PAX8 were over-represented in biological processes related to kidney organogenesis. The DEGs from COT included SLC2A1, SLC2A3, SLC27A4, and INSIG1. Our over-representation analysis retrieved biological processes related to nutrient transport and ion homeostasis, whereas the pathways included insulin secretion, PPAR signaling, and biosynthesis of amino acids. Vitamin and mineral supplementation and rate of gain were associated with changes in gene expression, biological processes, and KEGG pathways in beef cattle placental tissues.
Collapse
Affiliation(s)
- Wellison J. S. Diniz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
- Correspondence: ; Tel.: +1-701-5411997
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Kevin K. Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA;
| | - Kacie L. McCarthy
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Cierrah J. Kassetas
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Friederike Baumgaertner
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - James D. Kirsch
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Sheri T. Dorsam
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Tammi L. Neville
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - J. Chris Forcherio
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA; (J.C.F.); (R.R.S.)
| | - Ronald R. Scott
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA; (J.C.F.); (R.R.S.)
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| |
Collapse
|
28
|
Effects of Maternal Supplementation with an Injectable Trace Mineral Containing Copper, Manganese, Zinc, and Selenium on Subsequent Steer Finishing Phase Performance and Carcass Characteristics. Animals (Basel) 2020; 10:ani10122226. [PMID: 33261026 PMCID: PMC7760028 DOI: 10.3390/ani10122226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The persistent effects of maternal nutrition on subsequent offspring health and performance have drawn great attention in both the livestock industry and human health field in recent years. Trace minerals play very important roles in nutrition and regulate many critical biological processes. Therefore, trace mineral status of the dam has the potential to influence early growth and development of the fetus, which leads to long-lasting effects on animal health and growth performance. This study demonstrated that maternal supplementation of trace minerals increased the percentage of carcasses graded as USDA Choice or greater, but maternal trace mineral injections had limited effects on finishing phase growth performance and other carcass characteristics of the offspring. Stakeholders of the cow/calf and feedlot operations should consider these results as they make decisions on maternal trace mineral administrations. Abstract The objective of this study was to investigate effects of maternal supplementation with an injectable trace mineral (Cu, Mn, Zn, and Se) on subsequent steer performance during the finishing phase. Seventy-six Angus cross steers (initial body weight 249 ± 41.5 kg) from dams administered either an injectable trace mineral (TM; Multimin 90) or sterilized physiological saline (CON) during prepartum stage were used. Individual feed intake during the finishing phase were recorded with GrowSafe feed bunks. Blood and liver biopsy samples were collected to evaluate trace mineral status. Steers were slaughtered at 413 ± 26 days of age and carcass data were obtained at a commercial abattoir. Growth performance or mineral status of the steers during the finishing phase was not affected (p ≥ 0.14) by maternal treatments. Carcass characteristics were not different (p ≥ 0.18), except steers from TM dams had greater (p = 0.05) percentage of carcasses graded as Choice or greater. In conclusion, maternal supplementation of an injectable trace mineral increased the percentage of carcasses graded as Choice or greater, other than that, maternal supplementation had limited influence on finishing phase growth performance, trace mineral status, or carcass characteristics of the subsequent steer progeny.
Collapse
|
29
|
Dai H, Coleman DN, Lopes MG, Hu L, Martinez-Cortés I, Parys C, Shen X, Loor JJ. Alterations in immune and antioxidant gene networks by gamma-d-glutamyl-meso-diaminopimelic acid in bovine mammary epithelial cells are attenuated by in vitro supply of methionine and arginine. J Dairy Sci 2020; 104:776-785. [PMID: 33189269 DOI: 10.3168/jds.2020-19307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor 1 (NOD1) is a cytosolic pattern recognition receptor with a crucial role in the innate immune response of cells triggered by the presence of compounds such as gamma-d-glutamyl-meso-diaminopimelic acid (iE-DAP) present in the peptidoglycan of all gram-negative and certain gram-positive bacteria. Methionine (Met) and arginine (Arg) are functional AA with immunomodulatory properties. In the present study, we aimed to assess the effect of increased Met and Arg supply on mRNA abundance of genes associated with innate immune response, antioxidant function, and AA metabolism during iE-DAP challenge in bovine mammary epithelial cells (BMEC). Primary BMEC (n = 4 per treatment) were precultured in modified medium for 12 h with the following AA formulations: ideal profile of AA (control), increased Met supply (incMet), increased Arg supply (incArg), or increased supply of Met plus Arg (incMetArg). Subsequently, cells were challenged with or without iE-DAP (10 μg/mL) for 6 h. Data were analyzed as a 2 × 2 × 2 factorial using the MIXED procedure of SAS 9.4. Greater mRNA abundance of NOD1, the antioxidant enzyme SOD1, and AA transporters (SLC7A1 and SLC3A2) was observed in the incMet cells after iE-DAP stimulation. Although increased Met alone had no effect, incMetArg led to greater abundance of the inflammatory cytokine IL-6, and the antioxidant enzyme GPX1 after iE-DAP stimulation. The increased Arg alone downregulated NOD1 after iE-DAP stimulation, coupled with a downregulation in the AA transporters mRNA abundance (SLC7A1, SLC7A5, SLC3A2, and SLC38A9), and upregulation in GSS and KEAP1 mRNA abundance. Overall, the data indicated that increased supply of both Met and Arg in the culture medium were more effective in modulating the innate immune response and antioxidant capacity of BMEC during in vitro iE-DAP stimulation.
Collapse
Affiliation(s)
- H Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - L Hu
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City, Mexico 04960
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
30
|
Osorio JS. Gut health, stress, and immunity in neonatal dairy calves: the host side of host-pathogen interactions. J Anim Sci Biotechnol 2020; 11:105. [PMID: 33292513 PMCID: PMC7649058 DOI: 10.1186/s40104-020-00509-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
The cumulative evidence that perinatal events have long-lasting ripple effects through the life of livestock animals should impact future nutritional and management recommendations at the farm level. The implications of fetal programming due to malnutrition, including neonatal survival and lower birth weights, have been characterized, particularly during early and mid-gestation, when placental and early fetal stages are being developed. The accelerated fetal growth during late pregnancy has been known for some time, while the impact of maternal stressors during this time on fetal development and by extent its postnatal repercussions on health and performance are still being defined. Maternal stressors during late pregnancy cannot only influence colostrogenesis but also compromise adequate intestinal development in the fetus, thus, that further limits the newborn's ability to absorb nutrients, bioactive compounds, and immunity (i.e., immunoglobulins, cytokines, and immune cells) from colostrum. These negative effects set the newborn calf to a challenging start in life by compromising passive immunity and intestinal maturation needed to establish a mature postnatal mucosal immune system while needing to digest and absorb nutrients in milk or milk replacer. Besides the dense-nutrient content and immunity in colostrum, it contains bioactive compounds such as growth factors, hormones, and cholesterol as well as molecular signals or instructions [e.g., microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)] transferred from mother to offspring with the aim to influence postnatal gut maturation. The recent change in paradigm regarding prenatal materno-fetal microbiota inoculation and likely the presence of microbiota in the developing fetus intestine needs to be addressed in future research in ruminants. There still much to know on what prenatal or postnatal factors may predispose neonates to become susceptible to enteropathogens (e.g., enterotoxigenic Escherichia coli), causing diarrhea. From the host-side of this host-pathogen interaction, molecular data such as fecal RNA could, over time, help fill those gaps in knowledge. In addition, merging this novel fecal RNA approach with more established microbiome techniques can provide a more holistic picture of an enteropathogenesis and potentially uncover control points that can be addressed through management or nutrition at the farm level to minimize preweaning morbidity and mortality.
Collapse
Affiliation(s)
- Johan S Osorio
- Dairy and Food Science Department, South Dakota State University, 113 H Alfred Dairy Science Hall, Brookings, SD, 57007, USA.
| |
Collapse
|
31
|
HESA-A Attenuates Hepatic Steatosis in NAFLD Rat Model Through the Suppression of SREBP-1c and NF-kβ. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Lopreiato V, Mezzetti M, Cattaneo L, Ferronato G, Minuti A, Trevisi E. Role of nutraceuticals during the transition period of dairy cows: a review. J Anim Sci Biotechnol 2020; 11:96. [PMID: 32864127 PMCID: PMC7450574 DOI: 10.1186/s40104-020-00501-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
The transition period of dairy cattle is characterized by a number of metabolic, endocrine, physiologic, and immune adaptations, including the occurrence of negative energy balance, hypocalcemia, liver dysfunction, overt systemic inflammatory response, and oxidative stress status. The degree and length of time during which these systems remain out of balance could render cows more susceptible to disease, poor reproductive outcomes, and less efficient for milk production and quality. Studies on both monogastrics and ruminants have reported the health benefits of nutraceuticals (e.g. probiotics, prebiotics, dietary lipids, functional peptides, phytoextracts) beyond nutritional value, interacting at different levels of the animal’s physiology. From a physiological standpoint, it seems unrealistic to disregard any systemic inflammatory processes. However, an alternate approach is to modulate the inflammatory process per se and to resolve the systemic response as quickly as possible. To this aim, a growing body of literature underscores the efficacy of nutraceuticals (active compounds) during the critical phase of the transition period. Supplementation of essential fatty acids throughout a 2-month period (i.e. a month before and a month after calving) successfully attenuates the inflammatory status with a quicker resolution of phenomenon. In this context, the inflammatory and immune response scenario has been recognized to be targeted by the beneficial effect of methyl donors, such as methionine and choline, directly and indirectly modulating such response with the increase of antioxidants GSH and taurine. Indirectly by the establishment of a healthy gastrointestinal tract, yeast and yeast-based products showed to modulate the immune response, mitigating negative effects associated with parturition stress and consequent disorders. The use of phytoproducts has garnered high interest because of their wide range of actions on multiple tissue targets encompassing a series of antimicrobial, antiviral, antioxidant, immune-stimulating, rumen fermentation, and microbial modulation effects. In this review, we provide perspectives on investigations of regulating the immune responses and metabolism using several nutraceuticals in the periparturient cow.
Collapse
Affiliation(s)
- Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luca Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Giulia Ferronato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.,PRONUTRIGEN-Centro di Ricerca Nutrigenomica e Proteomica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.,PRONUTRIGEN-Centro di Ricerca Nutrigenomica e Proteomica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
33
|
Effect of a Commercial Bentonite Clay (Smectite Clay) on Dairy Cows Fed Aflatoxin-Contaminated Feed. DAIRY 2020. [DOI: 10.3390/dairy1020009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We evaluated the impact of dietary supplementation with a commercially available smectite clay (TOXO® MX, Trouw Nutrition, Amersfoort, The Netherlands), that binds to aflatoxins (AFs), on the performance and health status of multiparous lactating Holstein dairy cows that received dietary AFB1 (the main AF). The carry-over of AFB1 was determined by measuring AFM1 (the main metabolite) in dairy milk. Performance values, blood markers, and liver inflammatory markers were also measured. Nine multiparous mid-lactation Holstein cows (parity: 2.67 ± 0.86; days in milk: 91 ± 15 days; milk yield: 40.4 ± 2.7 kg/cow/day) were assigned to one of three treatments in a 3 periods × 3 treatments Latin square design (n = 3). In particular, three cows each received the CTR-0 diet (total mixed ration (TMR) with normal corn meals), the CTR-AFLA diet (CTR-0 diet with 17.53 ± 6.55 µg/kg DM AFBI), or the TRT diet (CTR-AFLA diet with 100 ± 1 g/cow/day of smectite clay). The AFB1 level was 0.63 ± 0.50 µg/kg DM in the CTR-0 diet, 2.28 ± 1.42 µg/kg DM in the CTR-AFLA diet, and 2.13 ± 1.11 µg/kg DM in the TRT diet. The experiment consisted of an adaptation period (21 days) and three 17-day experimental periods, each consisting of a 10-day intoxication period and 7-day clearance period. Data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC, USA) with or without repeated measurements. Overall, the addition of AFB1 reduced the DM intake, but the groups had no significant differences in milk yields. The highest feed efficiency was in the TRT group. Measurement of AFM1 in milk indicated a “plateau” period, from day 4 to day 10 of the intoxication period, when the AFM1 level exceeded the guidelines of the European Union. The commercial smectite clay reduced milk AFM1 concentration by 64.8% and reduced the carry-over by 47.0%. The CTR-0 and TRT groups had similar carry-over levels of AFM1, although the absolute concentrations differed. The groups had no significant differences in plasma biomarkers. These results indicate that the commercially available smectite clay tested here was effective in adsorbing AFs in the gastro-intestinal tracts of cows, thus reducing the excretion of AFM1 into dairy milk.
Collapse
|
34
|
Zhao Y, Tang Z, Nan X, Sun F, Jiang L, Xiong B. Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1096-1102. [PMID: 32054234 PMCID: PMC7322664 DOI: 10.5713/ajas.19.0388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/02/2019] [Indexed: 01/15/2023]
Abstract
Objective An experiment was conducted to evaluate the effects of Lonicera japonica extract (LJE) on milk production, rumen fermentation and blood biomarkers of energy metabolism, inflammation and oxidative stress during the perinatal period of Holstein dairy cows. Methods Eighteen Holstein dairy cows were used in a complete randomized design experiment with 3 dietary treatments and 6 cows per treatment. All cows received the same basal total mixed ration (TMR) including a prepartal diet (1.35 Mcal of net energy for lactation [NEL]/kg of dry matter [DM], 13.23% crude protein [CP]) from −60 d to calving and a postpartal diet (1.61 Mcal of NEL/kg of DM, 17.39% CP) from calving to 30 days in milk (DIM). The 3 dietary treatments were TMR supplemented with LJE at 0 (control), 1 and 2 g/kg DM, respectively. LJE was offered from 21 d before calving to 30 DIM. Dry matter intake (DMI) and milk production were measured daily after calving. Milk and rumen fluid samples were collected on 29 and 30 d after calving. On −10, 4, 14, and 30 d relative to calving, blood samples were collected to analyze the biomarkers of energy metabolism, inflammation and oxidative stress. Results Compared with control diet, LJE supplementation at 1 and 2 g/kg DM increased DMI, milk yield and reduced milk somatic cell count. LJE supplementation also decreased the concentrations of blood biomarkers of pro-inflammation (interleukin-1β [IL-1β], IL-6, and haptoglobin), energy metabolism (nonesterified fatty acid and β-hydroxybutyric acid) and oxidative stress (reactive oxygen metabolites), meanwhile increased the total antioxidant capacity and superoxide dismutase concentrations in blood. No differences were observed in rumen pH, volatile fatty acid, and ammonia-N (NH3-N) concentrations between LJE supplemented diets and the control diet. Conclusion Supplementation with 1 and 2 g LJE/kg DM could increase DMI, improve lactation performance, and enhance anti-inflammatory and antioxidant capacities of dairy cows during perinatal period.
Collapse
Affiliation(s)
- Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiwen Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuyu Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
35
|
Abuelo A. Symposium review: Late-gestation maternal factors affecting the health and development of dairy calves. J Dairy Sci 2020; 103:3882-3893. [PMID: 32037167 DOI: 10.3168/jds.2019-17278] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Efficient production of heifers is fundamental to the productivity and sustainability of dairy farms. However, high preweaning morbidity and mortality rates are frequently reported worldwide, imposing substantial welfare and economic implications. A major contributing factor to disease susceptibility in the neonatal stage is the inability of calves to mount an effective immune response. Appreciation is now greater that exposure in utero to several stresses (nutritional, social, metabolic, and so on) during the last stages of pregnancy have downstream carryover effects in calves' health, growth, and development. Suboptimal intrauterine conditions during critical periods of development lead to changes in tissue structure and function that may have long-term consequences on the offspring's physiology and disease susceptibility. Indeed, preweaning metabolic function and growth are associated with future milk production. Thus, late-gestation carryover effects span into the lactating stage of the heifers. Nevertheless, researchers have been studying how to minimize these effects. This review will discuss the effects of maternal stress during late gestation on the offspring's growth, productivity, metabolism, and health. In addition, strategies focusing on maternal interventions that improve neonatal health will be discussed. A better understanding of the intrauterine conditions affecting calf health and growth may facilitate the design of management practices that could improve neonatal development and future cow productivity.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd., East Lansing 48824.
| |
Collapse
|
36
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Trevisi E. Inflammatory status and metabolic changes at dry-off in high-yield dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1691472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
37
|
Stokes RS, Volk MJ, Ireland F, Shike DW. Effects of maternal supplementation with an injectable trace mineral on subsequent calf performance and inflammatory response1. J Anim Sci 2019; 97:4475-4481. [PMID: 31560759 PMCID: PMC6827413 DOI: 10.1093/jas/skz305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/24/2019] [Indexed: 11/14/2022] Open
Abstract
Newly weaned, commercial Angus steers [body weight (BW) = 204 ± 19 kg; n = 24; 12 steers from dams administered an injectable trace mineral (MM; Mulimin90) and 12 steers from control (CON) dams] were utilized to determine the effects of maternal supplementation with an injectable trace mineral on the inflammatory response of subsequent steers subjected to a lipopolysaccharide (LPS) challenge at the initiation of a 42-d receiving period. On day -2 steers were weaned, and the following day, shipped 354 km to the Beef Cattle and Sheep Field Laboratory in Urbana, IL. On day 0, steers were administered an intravenous LPS challenge. Body temperature and blood samples were collected from steers prior to LPS administration (0 h) and again at 0.5, 1, 2, 3, 4, 5, and 6 h. Blood samples were analyzed for trace mineral and cortisol at 0 and 2 h and glucose, insulin, LPS-binding protein (LBP), interleukin-1β (IL-1β), interleukin-6 (IL-6), haptoglobin, ceruloplasmin, and fibrinogen at 0, 0.5, 1, 2, 3, 4, 5, and 6 h. Calf BW was collected at trial initiation and subsequently every 14 d. Dry matter intake was collected daily and average daily gain (ADG) and feed efficiency were assessed. Initial plasma Zn tended (P = 0.06) to be greater for MM steers. However, there was no difference (P ≥ 0.31) in trace mineral status or serum cortisol at any other time. Total area under the curve (TAUC) for body temperature was lesser (P > 0.01) for MM steers. Basal LBP concentrations and TAUC for LBP tended (P ≤ 0.10) to be greater for MM steers. Peak concentration of IL-6 tended (P = 0.09) to be reached earlier for CON steers. However, there was no difference (P ≥ 0.11) in glucose, insulin, IL-6, ceruloplasmin, haptoglobin, and fibrinogen concentrations between treatments. Calf performance and feed efficiency did not differ (P ≥ 0.17) between treatments except ADG from day 28 to 42, which was greater (P = 0.03) for CON steers. Maternal supplementation with an injectable trace mineral tended to improve steer plasma Zn status at 0 h and tended to increase basal concentrations of LBP and overall LBP production when steers were administered an LPS challenge. Additionally, MM steers exhibited a more favorable change in body temperature following LPS administration. However, injectable trace mineral supplementation of dams during gestation had minimal to no effect on cytokine and acute-phase protein concentrations, as well as overall calf performance and efficiency during a 42-d receiving period.
Collapse
Affiliation(s)
- Rebecca S Stokes
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Mareah J Volk
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Frank Ireland
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
38
|
Morittu VM, Minuti A, Spina A, Riboni MV, Piccioli-Cappelli F, Trevisi E, Britti D, Lopreiato V. Age-related metabolic changes of pre-weaned Simmental calves fed whole bulk milk and ad libitum calf starter. Res Vet Sci 2019; 135:237-243. [PMID: 31668752 DOI: 10.1016/j.rvsc.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/29/2019] [Accepted: 10/08/2019] [Indexed: 02/03/2023]
Abstract
The present study aimed to investigate blood biomarkers encompassing the metabolic status of Simmental calves, with emphasis on weekly differences in the pre-weaning period. Ten Italian Simmental calves were used for the experiment and were offered 6 L of bulk whole milk/d from an open-bucket starting at day 2 from birth and through 5 weeks. Blood samples were collected at birth and weekly to assess biochemical indicators related to energy metabolism and liver function, minerals, markers of inflammation, and oxidative stress. Body weight (BW), heart girth (HG), and solid feed intake were positively affected by aging. Calves increased solid feed intake consumption after 2 week and reached a BW gain of 28.16 kg at 5 weeks. Most of blood biomarkers were affected by age, mostly concerned the period after birth and day 1, whereas no changes were observed for haptoglobin, urea, β-hydroxybutyrate, Na, and K. The amount of milk fed to calves throughout this study contributes to the maintenance of glucose concentration over time, coupled also with a considerable amount of starter intake. Glucose levels associated to the high ADG (0.89 ± 0.09 kg/d, mean ± SEM) suggest that calves experienced a positive energy balance throughout the entire pre-weaning period. Similar levels of haptoglobin and ceruloplasmin, together with a gradual increase of albumin, reflect good liver functionality and a stable condition regarding the inflammatory status. These results suggest that blood biomarkers of Simmental calves in the pre-weaning phase vary with growing stages.
Collapse
Affiliation(s)
- Valeria Maria Morittu
- Interdepartmental Services Centre of Veterinary for Human and Animal Health, Department of Health Science, Magna Græcia University, Catanzaro 88100, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Antonella Spina
- Interdepartmental Services Centre of Veterinary for Human and Animal Health, Department of Health Science, Magna Græcia University, Catanzaro 88100, Italy
| | - Mario Vailati Riboni
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, United States of America
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Domenico Britti
- Interdepartmental Services Centre of Veterinary for Human and Animal Health, Department of Health Science, Magna Græcia University, Catanzaro 88100, Italy
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
39
|
Hofstetter AR, Sacco RE. Oxidative stress pathway gene transcription after bovine respiratory syncytial virus infection in vitro and ex vivo. Vet Immunol Immunopathol 2019; 219:109956. [PMID: 31706084 DOI: 10.1016/j.vetimm.2019.109956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/26/2022]
Abstract
Studies in mouse and lamb models indicate important roles of reactive oxygen species (ROS) in the pathology and immune response to respiratory syncytial virus (RSV). The role of ROS in bovine RSV (BRSV) infection of calves remains unclear. BRSV naturally infects calves, leading to similar disease course, micro- and macro-lesions, and symptomology as is observed in RSV infection of human neonates. Furthermore, humans, lambs, and calves, but not mice, have an active lung oxidative system involving lactoperoxidase (LPO) and the dual oxidases (DUOX) 1 and 2. To gain insight into the role of ROS in the BRSV-infected lung, we examined gene expression in infected bovine cells using qPCR. A panel of 19 primers was used to assay ex vivo and in vitro BRSV-infected cells. The panel targeted genes involved in both production and regulation of ROS. BRSV infection significantly increased transcription of five genes in bovine respiratory tract cells in vitro and ex vivo. PTGS2 expression more than doubled in both sample types. Four transcripts varied significantly in lung lesions, but not non-lesion samples, compared with uninfected lung. This is the first report of the transcriptional profile of ROS-related genes in the airway after BRSV infection in the natural host.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, United States of America.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, United States of America.
| |
Collapse
|
40
|
Diniz WJDS, Banerjee P, Regitano LCA. Cross talk between mineral metabolism and meat quality: a systems biology overview. Physiol Genomics 2019; 51:529-538. [PMID: 31545932 DOI: 10.1152/physiolgenomics.00072.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Meat quality has an inherent complexity because of the multiple interrelated causative factors and layers of feedback regulation. Understanding the key factors and their interactions has been challenging, despite the availability of remarkable high-throughput tools and techniques that have provided insights on muscle metabolism and the genetic basis of meat quality. Likewise, we have deepened our knowledge about mineral metabolism and its role in cell functioning. Regardless of these facts, complex traits like mineral content and meat quality have been studied under reductionist approaches. However, as these phenotypes arise from complex interactions among different biological layers (genome, transcriptome, proteome, epigenome, etc.), along with environmental effects, a holistic view and systemic-level understanding of the genetic basis of complex phenotypes are in demand. Based on the state of the art, we addressed some of the questions regarding the interdependence of meat quality traits and mineral content. Furthermore, we sought to highlight potential regulatory mechanisms arising from the genes, miRNAs, and mineral interactions, as well as the pathways modulated by this interplay affecting muscle, mineral metabolism, and meat quality. By answering these questions, we did not intend to give an exhaustive review but to identify the key biological points, the challenges, and benefits of integrative genomic approaches.
Collapse
Affiliation(s)
- Wellison J da Silva Diniz
- Center for Biological and Health Sciences (CCBS), Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Priyanka Banerjee
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Carlos, São Paulo, Brazil
| |
Collapse
|
41
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Gabai G, Trevisi E. Administration of an Immune Stimulant during the Transition Period Improved Lipid Metabolism and Rumination without Affecting Inflammatory Status. Animals (Basel) 2019; 9:ani9090619. [PMID: 31466285 PMCID: PMC6770279 DOI: 10.3390/ani9090619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Immune stimulants are widely used to address immune dysfunctions that occur in transitioning dairy cows, reducing the likelihood they will develop infectious diseases. This study elucidates the effectiveness of an immune stimulant in promoting rumination recovery, reducing lipid mobilization and ketogenesis, and affecting the levels of circulating antioxidant systems in early lactation. These findings highlight the stimulant’s potential effect in treating metabolic disorders of the transition period in dairy cows. Abstract Omnigen-AF (OAF) increases leukocyte functions in immunosuppressed animal models and reduces incidence of infectious diseases in early lactating dairy cows, although its mode of action is still unclear. This study aims to provide a wider perspective of the metabolic effect of OAF to test its potential as a strategy to address metabolic disorders of the transition period. A group of 10 Holstein dairy cows were divided into 2 groups: The treated group (IMS; 5 cows) received 32.5 g of OAF twice a day (65 g d−1) as top-dress in the morning and afternoon feeds from −55 to 42 days from calving (DFC), whereas the control group (CTR; 5 cows) received no supplementation. From −62 to 42 DFC, body condition score, body weight, dry matter intake, rumination time and milk yield were measured; blood samples were collected weekly to assess a wide hematochemical profile and to test white blood cell functions by ex-vivo challenge assays. At 30 DFC, rumen fluid was collected and analyzed for pH, volatile fatty acids composition, urea nitrogen, and lactate contents. Data were submitted to ANOVA using a mixed model for repeated measures, including treatment, time, and their interaction as fixed effects. OAF decreased blood nonesterified fatty acids and beta hydroxybutyrate concentrations and increased rumination time in early lactation. Leukocytes from IMS cows had lower lactate production and lower glucose consumption after ex-vivo stimulation. OAF did not reduce the acute phase response indicators and reduced the blood concentrations of albumin and antioxidants after calving, suggesting impairment of hepatic functions related to protein synthesis and antioxidant management. Nevertheless, the lack of effect on bilirubin and liver enzymes refutes the possibility of severe liver damage occurring with OAF supplementation. Positive effects in reducing mobilization of body fats and ketogenesis and in increasing rumination time after calving suggest OAF effectiveness in preventing metabolic disorders of the transition period.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (PD), Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
42
|
Flaga J, Korytkowski Ł, Górka P, Kowalski ZM. The effect of docosahexaenoic acid-rich algae supplementation in milk replacer on performance and selected immune system functions in calves. J Dairy Sci 2019; 102:8862-8873. [PMID: 31421880 DOI: 10.3168/jds.2018-16189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine the effect of docosahexaenoic acid-rich algae (DHA-RA) supplementation in milk replacer (MR) on performance, selected cytokine expression in lymphocytes, and blood immunoglobulin concentration in newborn dairy calves. Forty female Holstein-Friesian calves (8.6 ± 0.8 d old and 41.1 ± 4.3 kg; mean ± standard deviation) were blocked by date of birth and allocated into 4 experimental groups (10 animals/group): (1) not supplemented with DHA-RA, (2) supplemented with 9 g of DHA-RA/d in MR, (3) supplemented with 18 g of DHA-RA/d in MR, and (4) supplemented with 27 g of DHA-RA/d in MR. Milk replacer was fed in an amount equal to 900 g of MR powder/d (as fed), 2 times a d, for 49 d. Starter mixture (SM) was fed ad libitum beginning on d 15 of the study. Each calf was in the study over a period of 49 d. The MR and SM intake and fecal score were recorded daily and body weight was recorded weekly. Blood samples were collected before the morning feeding, at the beginning of the study, every consecutive week, and at the end of the study for morphology and smear analysis, serum immunoglobulin level (IgG, IgA, and IgM), and lymphocyte isolation. The mRNA isolated from lymphocytes was checked for TNFα, IL-1β, IL-6, and p65 expression. Average daily gain between d 1 to 14 of the study increased quadratically with increasing dose of DHA-RA. However, average daily gain between d 15 to 49 of the study tended to linearly decrease and over the whole study linearly decreased with increasing dose of DHA-RA. The MR intake decreased linearly between d 1 to 14 of the study and over the whole study, and mean SM intake decreased quadratically with increasing dose of DHA-RA. Feed efficiency increased quadratically and fecal score decreased quadratically during the first 14 d of the study. Increasing dose of DHA-RA led to cubic changes in feed efficiency and fecal score between d 15 and 49 of the study. Overall, over the whole study period a tendency was observed for lower fecal score for the DHA-RA supplemented groups. Interleukin-1β mRNA expression decreased linearly, whereas the mRNA expression of p65 and TNFα as well as serum IgG concentration tended to decrease linearly with increasing dose of supplemental DHA-RA. No effect of group was found on IgA and IgM serum level and the majority of blood parameters. Altogether, treatment worsened production variables but seemed to have a beneficial effect on the immune system of calves.
Collapse
Affiliation(s)
- J Flaga
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Ł Korytkowski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - P Górka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Z M Kowalski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
43
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Amadori M, Bionaz M, Trevisi E. The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J Dairy Sci 2019; 102:9241-9258. [PMID: 31378488 DOI: 10.3168/jds.2019-16497] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Subclinical ketosis (SCK) may impair white blood cell (WBC) function and thus contribute to the risk of disease postpartum. This preliminary study investigated changes occurring in the immune system before disease onset to elucidate their role in the occurrence of SCK. A group of 13 Holstein dairy cows were housed in tie-stalls and retrospectively divided into 2 groups based on their levels of β-hydroxybutyrate (BHB) measured in plasma between calving day and 35 d from calving (DFC). Levels of BHB <1.4 mmol/L were found in 7 cows (control cows, CTR group) and levels >1.4 mmol/L were found in 6 cows at ≥1 of 6 time points considered (cows with SCK, KET group). From -48 to 35 DFC, body condition score, body weight, dry matter intake, rumination time, and milk yield were measured, and blood samples were collected regularly to assess the hematochemical profile and test the WBC function by ex vivo challenge assays. Data were submitted for ANOVA testing using a mixed model for repeated measurements that included health status and time and their interactions as fixed effects. Compared with CTR cows, KET cows had more pronounced activation of the immune system (higher plasma concentrations of proinflammatory cytokines, myeloperoxidase, and oxidant species, and greater IFN-γ responses to Mycobacterium avium), higher blood concentrations of γ-glutamyl transferase, and lower plasma concentrations of minerals before calving. Higher levels of nonesterified fatty acids, BHB, and glucose were detected in KET cows than in CTR cows during the dry period. The effect observed during the dry period was associated with a reduced dry matter intake, reduced plasma glucose, and increased fat mobilization (further increases in nonesterified fatty acids and BHB) during early lactation. A reduced milk yield was also detected in KET cows compared with CTR. The KET cows had an accentuated acute-phase response after calving (with greater concentrations of positive acute-phase proteins and lower concentrations of retinol than CTR cows) and impaired liver function (higher blood concentrations of glutamate-oxaloacetate transaminase and bilirubin). The WBC of the KET cows, compared with CTR cows, had a reduced response to an ex vivo stimulation assay, with lower production of proinflammatory cytokines and greater production of lactate. These alterations in the WBC could have been driven by the combined actions of metabolites related to the mobilization of lipids and the occurrence of a transient unresponsive state against stimulation aimed at preventing excessive inflammation. The associations identified here in a small number of cows in one herd should be investigated in larger studies.
Collapse
Affiliation(s)
- M Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Amadori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratory of Cellular Immunology, 25124 Brescia, Italy
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
44
|
Mayasari N, Trevisi E, Ferrari A, Kemp B, Parmentier HK, van Knegsel ATM. Relationship between inflammatory biomarkers and oxidative stress with uterine health in dairy cows with different dry period lengths. Transl Anim Sci 2019; 3:607-619. [PMID: 32704831 PMCID: PMC7200916 DOI: 10.1093/tas/txz040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/08/2019] [Indexed: 11/13/2022] Open
Abstract
Earlier studies indicated that the inflammatory status of dairy cows in early lactation could not be fully explained by the negative energy balance (NEB) at that moment. The objective of the present study was to determine relationships between inflammatory biomarkers and oxidative stress with uterine health in dairy cows after different dry period lengths. Holstein-Friesian dairy cows were assigned to one of three dry period lengths (0-, 30-, or 60-d) and one of two early lactation rations (glucogenic or lipogenic ration). Cows were fed either a glucogenic or lipogenic ration from 10-d before the expected calving date. Part of the cows which were planned for a 0-d dry period dried themselves off and were attributed to a new group (0 → 30-d dry period), which resulted in total in four dry period groups. Blood was collected (N = 110 cows) in weeks -3, -2, -1, 1, 2, and 4 relative to calving to determine biomarkers for inflammation, liver function, and oxidative stress. Uterine health status (UHS) was monitored by scoring vaginal discharge (VD) based on a 4-point scoring system (0, 1, 2, or 3) in weeks 2 and 3 after calving. Cows were classified as having a healthy uterine environment (HU, VD score = 0 or 1 in both weeks 2 and 3), nonrecovering uterine environment (NRU, VD score = 2 or 3 in week 3), or a recovering uterine environment (RU, VD score = 2 or 3 in week 2 and VD score= 0 or 1 in week 3). Independent of dry period length, cows with NRU had higher plasma haptoglobin (P = 0.05) and lower paraoxonase levels (P < 0.01) in the first 4 weeks after calving and lower liver functionality index (P < 0.01) compared with cows with HU. Cows with NRU had lower plasma albumin (P = 0.02) and creatinine (P = 0.02) compared with cows with a RU, but not compared with cows with HU. Independent of UHS, cows with a 0 → 30-d dry period had higher bilirubin levels compared with cows with 0-, 30-, or 60-d dry period (P < 0.01). Cows with RU and fed a lipogenic ration had higher levels of albumin in plasma compared with cows with NRU and fed a lipogenic ration (P < 0.01). In conclusion, uterine health was related to biomarkers for inflammation (haptoglobin and albumin) and paraoxonase in dairy cows in early lactation. Cows which were planned for a 0-d dry period, but dried themselves off (0 → 30-d dry period group) had higher bilirubin levels, which was possibly related to a more severe NEB in these cows. Inflammatory biomarkers in dairy cows in early lactation were related to uterine health in this period.
Collapse
Affiliation(s)
- Novi Mayasari
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands.,Faculty of Animal Husbandry, Universitas Padjadjaran, Bandung, Indonesia
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Annarita Ferrari
- Department of Animal Sciences, Food and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Henk K Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Ariette T M van Knegsel
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
45
|
Chen W, Yan Q, Yang H, Zhou X, Tan Z. Effects of restrictions on maternal feed intake on the immune indexes of umbilical cord blood and liver Toll-like receptor signaling pathways in fetal goats during pregnancy. J Anim Sci Biotechnol 2019; 10:29. [PMID: 31011422 PMCID: PMC6466723 DOI: 10.1186/s40104-019-0336-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/17/2019] [Indexed: 01/16/2023] Open
Abstract
Background Liver has important immune function during fetal development and after birth. However, the effect of maternal malnutrition on immune function of the fetal liver is rarely reported. In this study, twelve pregnant goats (Xiangdong black goat, at d 45 of gestation) were assigned to the control group (fed 100% of nutritional requirements) and the restriction group (fed 60% of the intake of the control group) during gestation from d 55 to 100. Fetal goats were harvested at d 100 of gestation and immune indexes and amino acid profiles of the umbilical cord blood and liver Toll-like receptors (TLRs) signaling pathways were measured. Results Maternal body weight in the restriction group was lower than the control group (P < 0.05). Maternal feed intake restriction decreased (P < 0.05) heart weight, heart index, alkaline phosphatase and serum amyloid protein A in the umbilical cord blood (UCB). Moreover, only histidine was decreased in the restricted group (P = 0.084), and there were no differences in other amino acids contents in the UCB between the two groups (P > 0.05). The TLR2 and TLR4 mRNA expression in the fetal liver in the restriction group was greater (P < 0.05) than that in the control group. Furthermore, the mRNA expression levels of myeloid differentiation primary response 88 (MyD88), TNF receptor associated factor 6, nuclear factor kappa B subunit 1, NFKB inhibitor alpha, IFN-β, TGF-β, TNF-α and IL-1β in the restricted group were upregulated (P < 0.05), and the expression of TLR3 (P = 0.099) tended to be higher in the restricted group. However, protein levels of TLR2, TLR4, IκBα, phosphorylated IκBα, phosphorylated IκBα/total IκBα, TRIF and MyD88 were not affected (P > 0.05) by maternal intake restriction. Conclusions These results revealed that the restriction of maternal feed intake influenced the development of heart and hepatic protein synthesis at the acute phase of fetal goats and upregulated the mRNA expression of genes involved in MyD88-dependent signaling pathways and of target cytokines.
Collapse
Affiliation(s)
- Wenxun Chen
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China
| | - Qiongxian Yan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China
| | - Hong Yang
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China
| | - Xiaoling Zhou
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China.,3College of Animal Science, Tarim University, Alaer, 843300 People's Republic of China
| | - Zhiliang Tan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128 People's Republic of China.,5Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan People's Republic of China
| |
Collapse
|
46
|
Abuelo A, Hernández J, Benedito JL, Castillo C. Redox Biology in Transition Periods of Dairy Cattle: Role in the Health of Periparturient and Neonatal Animals. Antioxidants (Basel) 2019; 8:antiox8010020. [PMID: 30642108 PMCID: PMC6356809 DOI: 10.3390/antiox8010020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Dairy cows undergo various transition periods throughout their productive life, which are associated with periods of increased metabolic and infectious disease susceptibility. Redox balance plays a key role in ensuring a satisfactory transition. Nevertheless, oxidative stress (OS), a consequence of redox imbalance, has been associated with an increased risk of disease in these animals. In the productive cycle of dairy cows, the periparturient and neonatal periods are times of increased OS and disease susceptibility. This article reviews the relationship of redox status and OS with diseases of cows and calves, and how supplementation with antioxidants can be used to prevent OS in these animals.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joaquín Hernández
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - José L Benedito
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Cristina Castillo
- Departamento de Patoloxía Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
47
|
Zhou Z, Ferdous F, Montagner P, Luchini D, Corrêa M, Loor J. Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. J Dairy Sci 2018; 101:10374-10382. [DOI: 10.3168/jds.2018-14972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
|
48
|
Stokes RS, Ireland FA, Shike DW. Influence of repeated trace mineral injections during gestation on beef heifer and subsequent calf performance. Transl Anim Sci 2018; 3:493-503. [PMID: 32704820 PMCID: PMC7200489 DOI: 10.1093/tas/txy105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
Commercial Angus heifers (n = 190; body weight (BW) = 315 ± 49.3 kg) were used to determine the effects of trace mineral injections during gestation on heifer and subsequent calf performance. Heifers received three previous subcutaneous trace mineral (Multimin 90 [MM]; n = 93) or sterilized physiological saline (CON; n = 97) injections approximately 90 d apart. These treatments were maintained and subsequent injections were given 205, 114, and 44 ± 26 d prepartum. Heifers were provided free-choice inorganic minerals. Heifer BW and body condition scores (BCS) were collected at trial initiation (296 ± 26 d prepartum) and 5- to 10-week intervals thereafter. Liver samples were collected at trial initiation, 5 and 176 ± 3 d postpartum from a subset of cows to determine trace mineral status. Milk production was assessed on 80 cow-calf pairs (40/treatment) at 71 ± 15 d postpartum. Cows were artificially inseminated (AI) 82 d postpartum and then exposed to bulls for 38 d. Data were reported from 174 calves (n = 87 calves/treatment). Calf liver samples were collected 5 and 147 ± 3 d postpartum to determine trace mineral status. Calf weaning BW was collected at 159 ± 26 d postpartum. Calf performance including calving date, birth BW, weaning BW, average daily gain (ADG), and health data were collected. Heifer BW and BCS did not differ (P ≥ 0.72) throughout the experiment. Multimin heifers tended (P = 0.08) to have greater initial liver Se and tended to have decreased (P = 0.08) initial liver Zn compared with CON. At calving, MM cows had increased (P ≤ 0.01) liver Cu and Se. There was no difference (P ≥ 0.47) in Julian calving date, calving percent, or unassisted births. Calf birth BW was lesser (P = 0.02) for MM than CON calves, and MM calves had greater (P = 0.03) liver Cu concentrations at birth than CON calves. Despite MM cows having increased (P < 0.01) milk production, calf weaning BW and ADG were not different (P ≥ 0.87). In addition, calf morbidity and mortality were not different (P ≥ 0.43) between treatments. Calf mineral status was not different (P ≥ 0.57) at the time of weaning regardless of treatment; however, MM cows had decreased (P = 0.03) liver Zn. Multimin cows had decreased (P = 0.05) AI pregnancy rates, yet there was no difference (P = 0.34) in overall pregnancy rate. Supplementing an injectable trace mineral during heifer development and gestation increased cow milk production and resulted in decreased AI pregnancy rates; however, there was no effect on overall pregnancy rates or preweaning calf health or performance.
Collapse
Affiliation(s)
- Rebecca S Stokes
- Department of Animal Sciences, College of ACES, University of Illinois, Urbana, IL
| | - Frank A Ireland
- Department of Animal Sciences, College of ACES, University of Illinois, Urbana, IL
| | - Daniel W Shike
- Department of Animal Sciences, College of ACES, University of Illinois, Urbana, IL
| |
Collapse
|
49
|
Jacometo C, Alharthi A, Zhou Z, Luchini D, Loor J. Maternal supply of methionine during late pregnancy is associated with changes in immune function and abundance of microRNA and mRNA in Holstein calf polymorphonuclear leukocytes. J Dairy Sci 2018; 101:8146-8158. [DOI: 10.3168/jds.2018-14428] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
|
50
|
Rodriguez-Jimenez S, Haerr K, Trevisi E, Loor J, Cardoso F, Osorio J. Prepartal standing behavior as a parameter for early detection of postpartal subclinical ketosis associated with inflammation and liver function biomarkers in peripartal dairy cows. J Dairy Sci 2018; 101:8224-8235. [DOI: 10.3168/jds.2017-14254] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/13/2018] [Indexed: 11/19/2022]
|