1
|
Nadri P, Nadri T, Gholami D, Zahmatkesh A, Hosseini Ghaffari M, Savvulidi Vargova K, Georgijevic Savvulidi F, LaMarre J. Role of miRNAs in assisted reproductive technology. Gene 2024; 927:148703. [PMID: 38885817 DOI: 10.1016/j.gene.2024.148703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Cellular proteins and the mRNAs that encode them are key factors in oocyte and sperm development, and the mechanisms that regulate their translation and degradation play an important role during early embryogenesis. There is abundant evidence that expression of microRNAs (miRNAs) is crucial for embryo development and are highly involved in regulating translation during oocyte and early embryo development. MiRNAs are a group of short (18-24 nucleotides) non-coding RNA molecules that regulate post-transcriptional gene silencing. The miRNAs are secreted outside the cell by embryos during preimplantation embryo development. Understanding regulatory mechanisms involving miRNAs during gametogenesis and embryogenesis will provide insights into molecular pathways active during gamete formation and early embryo development. This review summarizes recent findings regarding multiple roles of miRNAs in molecular signaling, plus their transport during gametogenesis and embryo preimplantation.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Touba Nadri
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran; Department of Animal Science, College of Agriculture, Tehran University, Karaj, Iran.
| | - Dariush Gholami
- Department of Microbial Biotechniligy, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Vaccine Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Karin Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filipp Georgijevic Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University, Prague, Kamýcká, Czech Republic
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Canada
| |
Collapse
|
2
|
Guan X, Fan Y, Six R, Benedetti C, Raes A, Fernandez Montoro A, Cui X, Azari Dolatabad N, Van Soom A, Pavani KC, Peelman L. Bta-miR-665 improves bovine blastocyst development through its influence on microtubule dynamics and apoptosis. Front Genet 2024; 15:1437695. [PMID: 39479397 PMCID: PMC11521815 DOI: 10.3389/fgene.2024.1437695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Extracellular vesicles (EVs) contain microRNAs (miRNAs), which are important regulators of embryonic development. Nevertheless, little is known about the precise molecular processes controlling blastocyst development and quality. In a previous study, we identified bta-miR-665 as one of the miRNAs more abundantly present in extracellular vesicles of embryo-conditioned culture media of blastocysts compared to degenerate ones. Here, we investigated the effect and regulatory roles of bta-miR-665 in blastocyst development by supplementation of bta-miR-665 mimics or inhibitors to the culture media. Supplementation of bta-miR-665 mimics improved cleavage and blastocyst rate (P < 0.01), and blastocyst quality as indicated by increased inner cell mass rates and reduced apoptotic cell ratios (P < 0.01). Furthermore, supplementation of bta-miR-665 inhibitors had the opposite effect on these phenotypes. Low input transcriptome analysis and RT-qPCR revealed that bta-miR-665 acts on genes linked to microtubule formation and apoptosis/cell proliferation. These insights not only elucidate the important role of bta-miR-665 in embryo development, but also underscore its potential in improving reproductive efficiency in bovine embryo culture.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Rani Six
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Annelies Raes
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Andrea Fernandez Montoro
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Xiaole Cui
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nima Azari Dolatabad
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Gent, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Fan Y, Pavani KC, Bogado Pascottini O, Smits K, Van Soom A, Peelman L. Selection and application of small non-coding RNAs for normalizing RT-qPCR data of bovine preimplantation embryo conditioned medium. Theriogenology 2024; 226:87-94. [PMID: 38870583 DOI: 10.1016/j.theriogenology.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Small non-coding RNAs (sncRNAs) present in the conditioned medium (CM) of bovine preimplantation embryos are potential noninvasive biomarkers for assessing embryo quality. Accurate quantification of sncRNA levels in the spent CM is of utmost importance in this regard. RT-qPCR is considered as the gold standard for quantifying RNA. In order to standardize RT-qPCR data in the sample type under investigation, the use of suitable stable sncRNAs is essential. Here, we selected 10 sncRNAs from small RNA sequencing of CM samples derived from both bovine blastocysts and degenerate embryos, and evaluated their expression stability together with that of cel-miR-39 as a spike and the often-used U6 small nuclear RNA at different embryo developmental stages. In CM of 2-cell embryos, rsRNA-1044 showed the most stable expression, while tDR-1:32-Gly-CCC-1 was the most stable expressed sncRNA in CM of the stages beyond the 2-cell stage. Next, tDR-1:32-Gly-CCC-1 was used for normalizing the RT-qPCR data from the CM of blastocysts and degenerate embryos. Bta-miR-155 and tDR-39:75-Arg-CCG-2 were found to be significantly up-regulated in the CM of blastocysts compared to that of the degenerated embryos (P = 0.028 and P = 0.017, respectively), suggesting their expression levels are related to embryo development stage. In conclusion, tDR-1:32-Gly-CCC-1 can serve as a suitable reference sncRNA for normalization of RT-qPCR data of the CM from bovine blastocysts.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium; Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
4
|
Rio PD, DiMarco S, Madan P. MicroRNAomic Analysis of Spent Media from Slow- and Fast-Growing Bovine Embryos Reveal Distinct Differences. Animals (Basel) 2024; 14:2331. [PMID: 39199865 PMCID: PMC11350645 DOI: 10.3390/ani14162331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In bovine embryos, the microRNA (miRNA) expression has been profiled at each stage of early development in vitro. The miRNAomic analysis of spent media has the potential to reveal characteristics of embryo health; however, applications are limited without categorizing miRNA profiles by embryo quality. Time-lapse imaging has shown the timing of embryo development in vitro may be indicative of their developmental potential. The study aimed to characterize miRNAs in the spent media of bovine embryos with different growth rates during the pre-implantation phase. Bovine cumulus-oocyte complexes were aspirated from ovaries, fertilized, and cultured to blastocyst stage of development. At the 2-cell, 8-cell, and blastocyst stage, each microdrop of 30 presumptive zygotes were classified as slow- or fast-growing based on the percentage of embryos that had reached the desired morphological stage. A comparative analysis was performed on the spent media of slow- and fast-growing embryos using the results of a GeneChip miRNA 4.0 array hybridization. In total, 34 differentially expressed miRNAs were identified between the comparison groups: 14 miRNAs were found in the 2-cell samples, 7 in the 8-cell samples, and 12 in the blastocyst samples. The results demonstrate distinct miRNAs populations can be identified between slow- and fast-growing embryos, highlighting the novel biomarkers of developmental potential at each stage of pre-implantation development.
Collapse
Affiliation(s)
| | | | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Xiong M, Li L, Wen L, Zhao A. Decidual stromal cell-derived exosomes deliver miR-22-5p_R-1 to suppress trophoblast metabolic switching from mitochondrial respiration to glycolysis by targeting PDK4 in unexplained recurrent spontaneous abortion. Placenta 2024; 153:1-21. [PMID: 38810540 DOI: 10.1016/j.placenta.2024.05.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Studies have shown that EMT (epithelial-mesenchymal transition) and energy metabolism influence each other, and it is unclear whether the trophoblast energy metabolism phenotype is dominated by glycolysis or mitochondrial respiration, and the relationship between trophoblast energy metabolism and EMT is still unclear. METHODS Exosomes were isolated from the DSC of URSA patients and their miRNA profile was characterized by miRNA sequencing. Wound healing assays and transwell assays were used to assess the invasion and migration ability of trophoblasts. Mitochondrial stress and glycolysis stress test were used to evaluate energy metabolism phenotype of trophoblast. Luciferase reporter assays, qRT-PCR and WB were conducted to uncover the underlying mechanism. Finally, animal experiments were employed to explore the effect of DSC-exos on embryo absorption in mice. RESULTS Our results showed that URSA-DSC-exos suppressed trophoblast EMT to reduce their migration and invasion, miR-22-5p_R-1 was the most upregulated miRNAs. URSA-DSC-exos can suppress trophoblast MGS (metabolic switch from mitochondrial respiration to glycolysis) and inhibit trophoblast migration and invasion by transferring miR-22-5p_R-1. Mechanistically, miR-22-5p_R-1 suppress trophoblast MGS and inhibit trophoblast EMT by directly suppressing PDK4 expression at the post-transcriptional level. Furthermore, in vivo experiment suggested that URSA-DSC-exos aggravated embryo absorption in mice. Clinically, PDK4 and EMT molecule were aberrant in villous of URSA patients, and negative correlations were found between miR-22-5p_R-1 and PDK4. DISCUSSION Our findings indicated that URSA-DSC-exos induced MGS obstacle playing an important role in intercellular communication between trophoblast and DSC, illuminating a novel mechanism in DSC regulation of trophoblasts and their role in URSA.
Collapse
Affiliation(s)
- Miao Xiong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China; Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liping Wen
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.
| |
Collapse
|
6
|
Pasquariello R, Pennarossa G, Arcuri S, Fernandez-Fuertes B, Lonergan P, Brevini TAL, Gandolfi F. Sperm fertilizing ability in vitro influences bovine blastocyst miRNA content. Theriogenology 2024; 222:1-9. [PMID: 38581760 DOI: 10.1016/j.theriogenology.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755-5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225-3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Beatriz Fernandez-Fuertes
- Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Santana PDPB, Pinheiro KDC, Pereira LCDS, Andrade SS, Aburjaile FF, Ramos PDCDA, de Souza EB, da Costa NN, Cordeiro MDS, Santos SDSD, Miranda MDS, Ramos RTJ, da Silva ALDC. RNA sequencing and gene co-expression network of in vitro matured oocytes and blastocysts of buffalo. Anim Reprod 2024; 21:e20230131. [PMID: 38912163 PMCID: PMC11192227 DOI: 10.1590/1984-3143-ar2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
In reproductive technologies, uncovering the molecular aspects of oocyte and embryo competence under different conditions is crucial for refining protocols and enhancing efficiency. RNA-seq generates high-throughput data and provides transcriptomes that can undergo additional computational analyses. This study presented the transcriptomic profiles of in vitro matured oocytes and blastocysts produced in vitro from buffalo crossbred (Bubalus bubalis), coupled with gene co-expression and module preservation analysis. Cumulus Oophorus Complexes, obtained from slaughterhouse-derived ovaries, were subjected to in vitro maturation to yield metaphase II oocytes (616) or followed in vitro fertilization and culture to yield blastocysts for sequencing (526). Oocyte maturation (72%, ±3.34 sd) and embryo development (21.3%, ±4.18 sd) rates were obtained from three in vitro embryo production routines following standard protocols. Sequencing of 410 metaphase II oocytes and 70 hatched blastocysts (grade 1 and 2) identified a total of 13,976 genes, with 62% being ubiquitously expressed (8,649). Among them, the differentially expressed genes (4,153) and the strongly variable genes with the higher expression (fold-change above 11) were highlighted in oocytes (BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4) and blastocysts (APOA1, KRT18, ANXA2, S100A14, SLC34A2, PRSS8 and ANXA2) as representative indicators of molecular quality. Additionally, genes exclusively found in oocytes (224) and blastocysts (2,200) with specific biological functions were identified. Gene co-expression network and module preservation analysis revealed strong preservation of functional modules related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. However, cell cycle and amino acid transport modules exhibited weak preservation, which may reflect differences in embryo development kinetics and the activation of cell signaling pathways between buffalo and bovine. This comprehensive transcriptomic profile serves as a valuable resource for assessing the molecular quality of buffalo oocytes and embryos in future in vitro embryo production assays.
Collapse
Affiliation(s)
| | | | | | - Soraya Silva Andrade
- Laboratório de Genômica e Bioinformática, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Eduardo Baia de Souza
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Nathalia Nogueira da Costa
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Moysés dos Santos Miranda
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | |
Collapse
|
8
|
Finnerty RM, Carulli DJ, Hegde A, Wang Y, Baodu F, Winuthayanon S, Cheng J, Winuthayanon W. Multi-omics analyses and machine learning prediction of oviductal responses in the presence of gametes and embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598905. [PMID: 38915688 PMCID: PMC11195261 DOI: 10.1101/2024.06.13.598905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.
Collapse
Affiliation(s)
- Ryan M. Finnerty
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| | - Daniel J. Carulli
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| | - Akshata Hegde
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Yanli Wang
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Frimpong Baodu
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Sarayut Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, College of Engineering
| | - Wipawee Winuthayanon
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, Missouri, 65211 USA
| |
Collapse
|
9
|
Cañón-Beltrán K, Cajas YN, Almpanis V, Egido SG, Gutierrez-Adan A, González EM, Rizos D. MicroRNA-148b secreted by bovine oviductal extracellular vesicles enhance embryo quality through BPM/TGF-beta pathway. Biol Res 2024; 57:11. [PMID: 38520036 PMCID: PMC10960404 DOI: 10.1186/s40659-024-00488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and their cargoes, including MicroRNAs (miRNAs) play a crucial role in cell-to-cell communication. We previously demonstrated the upregulation of bta-mir-148b in EVs from oviductal fluid of cyclic cows. This miRNA is linked to the TGF-β pathway in the cell proliferation. Our aim was to verify whether miR-148b is taken up by embryos through gymnosis, validate its target genes, and investigate the effect of miR-148b supplementation on early embryo development and quality. METHODS Zygotes were cultured in SOF + 0.3% BSA (Control) or supplemented with: 1 µM miR-148b mimics during: D1-D7 (miR148b) or D1-D4 (miR148b-OV: representing miRNA effect in the oviduct) or D4-D7 (miR148b-UT: representing miRNA effect in the uterus) or 1 µM control mimics was used during: D1-D7 (CMimic). Embryos at ≥ 16-cells and D7 blastocysts (BD7) were collected to examine the mRNA abundance of transcripts linked to the TGF-β pathway (TGFBR2, SMAD1, SMAD2, SMAD3, SMAD5, BMPR2, RPS6KB1, POU5F1, NANOG), total cell number (TC), trophectoderm (TE), and inner cell mass (ICM) were also evaluated. One-way ANOVA was used for all analyses. RESULTS We demonstrated that miR-148b can be taken up in both 16-cell embryos and BD7 by gymnosis, and we observed a decrease in SMAD5 mRNA, suggesting it's a potential target of miR-148b. Cleavage and blastocysts rates were not affected in any groups; however, supplementation of miR-148b mimics had a positive effect on TC, TE and ICM, with values of 136.4 ± 1.6, 92.5 ± 0.9, 43.9 ± 1.3 for miR148b and 135.3 ± 1.5, 92.6 ± 1.2, 42.7 ± 0.8, for miR148b-OV group. Furthermore, mRNA transcripts of SMAD1 and SMAD5 were decreased (P ≤ 0.001) in 16-cell embryos and BD7 from miR148b and miR148b-OV groups, while POU5F1 and NANOG were upregulated (P ≤ 0.001) in BD7 and TGFBR2 was only downregulated in 16-cell embryos. pSMAD1/5 levels were higher in the miR148b and miR148b-OV groups. CONCLUSIONS Our findings suggest that supplementation of bta-miR-148b mimics during the entire culture period (D1 - D7) or from D1 - D4 improves embryo quality and influences the TGF-β signaling pathway by altering the transcription of genes associated with cellular differentiation and proliferation. This highlights the importance of miR-148b on embryo quality and development.
Collapse
Affiliation(s)
- Karina Cañón-Beltrán
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
- Programa de Medicina Veterinaria y Zootecnia, Corporación Universitaria del Huila (CORHUILA), Grupo Kyron, Huila, Colombia
| | - Yulia N Cajas
- Department Agrarian Production, Technical University of Madrid (UPM), Madrid, Spain
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | - Vasileios Almpanis
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Sandra Guisado Egido
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain.
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain.
| |
Collapse
|
10
|
Lacconi V, Massimiani M, Carriero I, Bianco C, Ticconi C, Pavone V, Alteri A, Muzii L, Rago R, Pisaturo V, Campagnolo L. When the Embryo Meets the Endometrium: Identifying the Features Required for Successful Embryo Implantation. Int J Mol Sci 2024; 25:2834. [PMID: 38474081 DOI: 10.3390/ijms25052834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Evaluation of the optimal number of embryos, their quality, and the precise timing for transfer are critical determinants in reproductive success, although still remaining one of the main challenges in assisted reproduction technologies (ART). Indeed, the success of in vitro fertilization (IVF) treatments relies on a multitude of events and factors involving both the endometrium and the embryo. Despite concerted efforts on both fronts, the overall success rates of IVF techniques continue to range between 25% and 30%. The role of the endometrium in implantation has been recently recognized, leading to the hypothesis that both the "soil" and the "seed" play a central role in a successful pregnancy. In this respect, identification of the molecular signature of endometrial receptivity together with the selection of the best embryo for transfer become crucial in ART. Currently, efforts have been made to develop accurate, predictive, and personalized tests to identify the window of implantation and the best quality embryo. However, the value of these tests is still debated, as conflicting results are reported in the literature. The purpose of this review is to summarize and critically report the available criteria to optimize the success of embryo transfer and to better understand current limitations and potential areas for improvement.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Micol Massimiani
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Ilenia Carriero
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Bianco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynaecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy
| | - Valerio Pisaturo
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Xiong M, Wang Q, Zhang X, Wen L, Zhao A. Decidual stromal cells-derived exosomes incurred insufficient migration and invasion of trophoblast by disturbing of β-TrCP-mediated snail ubiquitination and degradation in unexplained recurrent spontaneous abortion. Eur J Med Res 2024; 29:39. [PMID: 38195659 PMCID: PMC10775448 DOI: 10.1186/s40001-023-01598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Exosomes released from decidual stromal cells (DSC-exos) play a crucial role in facilitating the epithelial-mesenchymal transition (EMT) of trophoblasts and insufficient trophoblasts EMT are associated with URSA (unexplained recurrent spontaneous abortion). However, the mechanisms underlying DSC-exos inducing EMT is not completely understood. METHODS DSC-exos of normal pregnant women (N-DSC-exos) and URSA patients (URSA-DSC-exos) were extracted and characterized. Characterization of the isolated DSC-exos was performed using with TEM (transmission electron microscopy), NTA (nanoparticle tracking analysis), and WB (western blot) techniques. Subsequently, these DSC-exos were co-cultured with trophoblasts cell lines (HTR-8/SVneo). The influence of both N-DSC-exos and URSA-DSC-exos on trophoblasts proliferation, invasion and migration, as well as on the expression of EMT-related proteins, was evaluated through a series of assays including CCK8 assays, wound healing assays, transwell assays, and western blot, respectively. Then rescue experiments were performed by β-TrCP knockdown or β-TrCP overexpressing trophoblasts with snail-siRNA transfection or β-TrCP overexpressing Lentivirus infection, respectively. Finally, animal experiments were employed to explore the effect of N-DSC-exos on embryo absorption in mice. RESULTS We found increased β-TrCP expression in the villus of URSA patients when compared to the normal pregnant women, alongside reduction in the levels of both snail and N-cadherin within URSA patients. N-DSC-exos can promote the EMT of the trophoblast by inhibiting β-TrCP-mediated ubiquitination and degradation of transcription factor snail. Moreover the capacity to promote EMT was found to be more potent in N-DSC-exos than URSA-DSC-exos. Down-regulation of snail or overexpression of β-TrCP can reverse the effects of N-DSC-exos on trophoblast. Finally, in vivo experiment suggested that N-DSC-exos significantly reduced the embryo resorption rate of spontaneous abortion mouse model. CONCLUSIONS Our findings indicate that URSA-DSC-exos caused insufficient migration and invasion of trophoblast because of disturbing of β-TrCP-mediated ubiquitination and degradation of EMT transcription factor snail. Elucidating the underlying mechanism of this dysregulation may shed light on the novel pathways through which DSC-exos influence trophoblast function, thereby contributing to our understanding of their role in URSA.
Collapse
Affiliation(s)
- Miao Xiong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Qiaohong Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China
| | - Xiaoxin Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China
| | - Liping Wen
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Veraguas-Dávila D, Caamaño D, Saéz-Ruiz D, Vásquez Y, Saravia F, Castro FO, Rodríguez-Alvarez L. Zona pellucida removal modifies the expression and release of specific microRNAs in domestic cat blastocysts. ZYGOTE 2023; 31:544-556. [PMID: 37724015 DOI: 10.1017/s0967199423000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The in vitro culture of domestic cat embryos without the zona pellucida affects their implantation capacity. MicroRNAs (miRNAs) have an important role in embryo-maternal communication and implantation. The objective of this study was to evaluate the expression of specific miRNAs in domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were done: (1) domestic cat embryos cultured with the zona pellucida (zona intact control group, ZI); and (2) cultured without the zona pellucida (zona free group, ZF). The cleavage, morula and blastocyst rates were evaluated. The blastocysts and their spent medium were used for miRNA expression analysis using RT-qPCR (miR-21, miR-24, mi25, miR-29, miR-96, miR-98, miR-103, miR-191, miR-196, miR-199, miR-130, miR-155 and miR-302). The pre-mature microRNAs (pre-miRNAs) and miRNAs were evaluated in the blastocysts and only miRNAs were evaluated in the spent medium. No differences were observed in the cleavage, morula and blastocyst rates between the ZF and ZI groups (P > 0.05). For miRNAs analysis, miR-103 and miR-191 had the most stable expression and were selected as internal controls. ZF blastocysts had a higher expression of miR-21, miR-25, miR-29 and miR-199 and a lower expression of miR-96 than their ZI counterparts (P < 0.05). Furthermore, higher levels of miR-21, miR-25 and miR-98 were detected in the spent medium of ZF blastocysts (P < 0.05). In conclusion, in vitro culture of domestic cat embryos without the zona pellucida modifies the expression of miR-21, miR-25, miR-29, miR-199 and miR-96 at the blastocyst stage and the release of miR-21, miR-25 and miR-98.
Collapse
Affiliation(s)
- Daniel Veraguas-Dávila
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
- Facultad de Ciencias Agrarias y Forestales, Departamento de Ciencias Agrarias, Escuela de Medicina Veterinaria, Universidad Católica del Maule, Los Niches, Curicó, Chile
| | - Diego Caamaño
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Darling Saéz-Ruiz
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Yazmín Vásquez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | | |
Collapse
|
13
|
Rabel RAC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-Implantation Bovine Embryo Evaluation-From Optics to Omics and Beyond. Animals (Basel) 2023; 13:2102. [PMID: 37443900 DOI: 10.3390/ani13132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Approximately 80% of the ~1.5 million bovine embryos transferred in 2021 were in vitro produced. However, only ~27% of the transferred IVP embryos will result in live births. The ~73% pregnancy failures are partly due to transferring poor-quality embryos, a result of erroneous stereomicroscopy-based morphological evaluation, the current method of choice for pre-transfer embryo evaluation. Numerous microscopic (e.g., differential interference contrast, electron, fluorescent, time-lapse, and artificial-intelligence-based microscopy) and non-microscopic (e.g., genomics, transcriptomics, epigenomics, proteomics, metabolomics, and nuclear magnetic resonance) methodologies have been tested to find an embryo evaluation technique that is superior to morphologic evaluation. Many of these research tools can accurately determine embryo quality/viability; however, most are invasive, expensive, laborious, technically sophisticated, and/or time-consuming, making them futile in the context of in-field embryo evaluation. However accurate they may be, using complex methods, such as RNA sequencing, SNP chips, mass spectrometry, and multiphoton microscopy, at thousands of embryo production/collection facilities is impractical. Therefore, future research is warranted to innovate field-friendly, simple benchtop tests using findings already available, particularly from omics-based research methodologies. Time-lapse monitoring and artificial-intelligence-based automated image analysis also have the potential for accurate embryo evaluation; however, further research is warranted to innovate economically feasible options for in-field applications.
Collapse
Affiliation(s)
- R A Chanaka Rabel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paula V Marchioretto
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Bangert
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek J Milner
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Identification of miR-192 target genes in porcine endometrial epithelial cells based on miRNA pull-down. Mol Biol Rep 2023; 50:4273-4284. [PMID: 36914869 DOI: 10.1007/s11033-023-08349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs)-a class of small endogenous non-coding RNAs-are widely involved in post-transcriptional gene regulation of numerous physiological processes. High-throughput sequencing revealed that the miR-192 expression level appeared to be significantly higher in the blood exosomes of sows at early gestation than that in non-pregnant sows. Furthermore, miR-192 was hypothesized to have a regulatory role in embryo implantation; however, the target genes involved in exerting the regulatory function of miR-192 required further elucidation. METHODS In the present study, potential target genes of miR-192 in porcine endometrial epithelial cells (PEECs) were identified through biotin-labeled miRNA pull-down; functional and pathway enrichment analysis was performed via gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Bioinformatic analyses were concurrently used to predict the potential target genes associated with sow embryo implantation. In addition, double luciferase reporter vectors, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and Western blot were performed to verify the targeting and regulatory roles of the abovementioned target genes. RESULTS A total of 1688 differentially expressed mRNAs were identified via miRNA pull-down. Through RT-qPCR, the accuracy of the sequencing data was verified. In the bioinformatics analysis, potential target genes of miR-192 appeared to form a dense inter-regulatory network and regulated multiple signaling pathways, such as metabolic pathways and the PI3K-Akt, MAPKs, and mTOR signaling pathways, that are relevant to the mammalian embryo implantation process. In addition, CSK (C-terminal Src kinase) and YY1 (Yin-Yang-1) were predicted to be potential candidates, and we validated that miR-192 directly targets and suppresses the expression of the CSK and YY1 genes. CONCLUSION We screened 1688 potential target genes of miR-192 were screened, and CSK and YY1 were identified as miR-192 target genes. The outcomes of the present study provide novel insights into the regulatory mechanism of porcine embryo implantation and the identification of miRNA target genes.
Collapse
|
15
|
Bovine embryos release extracellular vesicles with differential miRNA signature during the compaction and blastulation stages. Reprod Biol 2023; 23:100725. [PMID: 36565511 DOI: 10.1016/j.repbio.2022.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Pre-implantation embryos release extracellular vesicles (EVs) to extracellular environment. In this work it is hypothesized that the EVs miRNA cargo will vary during pre-implantation development due to the constant changes in gene expression that take place through this period. The concentration, size and miRNA cargo of EVs secreted by competent bovine embryos during the period from compaction to blastulation (Day 3-7) were analyzed. For this analysis tow developmental windows were defined: W2 from 8-cells (D3) to morula (D5) and W3 from morula (D5) to blastocyst (D7). For W2, in vitro produced embryos were individually cultured in EVs-depleted medium from D3 to D5; culture media were collected and assigned to Group W2. Morulae were kept in culture up to blastocyst stage to determine the developmental competence. For W3, D5 morulae were collected and cultured individually in EVs-depleted medium up to blastocyst stage; culture media were assigned to Group W3, and blastocysts were kept in culture up to day 11 to define their competence. The mean size of EVs was similar between groups, however, EVs concentration was lower in W2. A total of 140 miRNAs were identified. From them, 79 were differentially expressed between the groups, 28 upregulated and 51 downregulated. miRNAs differentially detected between both developmental windows participate in the regulation of signaling pathways which crucial for embryonic development. It was concluded that the secretion of EVs is regulated by the developmental progress of the embryo during the pre-implantation period.
Collapse
|
16
|
Wei X, Yuan Y, Yang Q. Long noncoding RNA PVT1 accelerates the growth of placental trophoblasts in preeclampsia through the microRNA-24-3p/HSD11B2 axis. Mol Reprod Dev 2022; 89:271-280. [PMID: 35735229 DOI: 10.1002/mrd.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) is essential for the maintenance of normal functions of trophoblasts in preeclampsia (PE). This study aims to decipher the concrete mechanism of PVT1 with the microRNA-24-3p/Type-2 11β-hydroxysteroid dehydrogenase (miR-24-3p/HSD11B2) axis in PE. PVT1, miR-24-3p, and HSD11B2 expression levels in normal placental tissues and PE placental tissues were defined. HTR-8/SVneo cells were transfected to determine the effects of PVT1, miR-24-3p, and HSD11B2 on the growth of HTR-8/SVneo cells. The relationships among PVT1/miR-24-3p/HSD11B2 in HTR-8/SVneo cells were identified. PVT1 and HSD11B2 were downregulated, while miR-24-3p was upregulated in the placenta of PE. Upregulated/downregulated PVT1 promoted/impeded the growth of human placental trophoblast (HTR-8/SVneo) cells in PE. Restored/knocked down miR-24-3p impeded/enhanced the growth of HTR-8/SVneo cells in PE. PVT1 inhibited miR-24-3p to mediate HSD11B2. PVT1 sponges miR-24-3p to regulate HSD11B2; thereby, the growth of placental trophoblasts is promoted in PE.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Obstetrics, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| | - Yichong Yuan
- Department of gynaecology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| | - Qiong Yang
- Department of Obstetrics, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| |
Collapse
|
17
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
18
|
Esmaeilivand M, Abedelahi A, Hamdi K, Farzadi L, Goharitaban S, Fattahi A, Niknafs B. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers. Reprod Fertil Dev 2022; 34:589-597. [PMID: 35440361 DOI: 10.1071/rd21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
CONTEXT MicroRNAs (miRNAs) play different roles in oocyte fertilisation, degradation of maternal transcripts, embryo development, and implantation. During in vitro fertilisation (IVF), different miRNAs are released from embryos into the spent culture media (SCM) that can potentially reflect the status of the embryo. AIMS This study is the assessment of miRNAs, which secreted in SCM during the IVF cycles can be used as noninvasive biomarkers to predict an embryo's ability to form a blastocyst, implant, and give live birth. METHODS Systematic literature search was conducted to review all recent studies about miRNAs as potential non-invasive biomarkers for selecting the best embryos in the assisted reproductive technology (ART) cycle. KEY RESULTS Studies have shown that levels of some miRNAs in the SCM have an association with the implantation potential and pregnancy outcome of the embryo. CONCLUSIONS Embryo-secreted miRNAs can be used as potential non-invasive biomarkers for selecting the best embryos in the ART cycle. Unfortunately, few human studies evaluated the association between ART outcomes and miRNAs in SCM. IMPLICATIONS This review can pave the way for further miRNAs transcriptomic studies on human embryo culture media and introducing a specific miRNA profile as a multivariable prediction model for embryo selection in IVF cycles.
Collapse
Affiliation(s)
- Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Pavani KC, Meese T, Pascottini OB, Guan X, Lin X, Peelman L, Hamacher J, Van Nieuwerburgh F, Deforce D, Boel A, Heindryckx B, Tilleman K, Van Soom A, Gadella BM, Hendrix A, Smits K. Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts. Proc Natl Acad Sci U S A 2022; 119:e2122708119. [PMID: 35298333 PMCID: PMC8944274 DOI: 10.1073/pnas.2122708119] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Collapse
Affiliation(s)
- Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - XueFeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, D-53115 Bonn, Germany
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium
- Cancer Research Institute Ghent, B-9000 Ghent, Belgium
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| |
Collapse
|
20
|
Rutigliano HM, Thomas AJ, Umbaugh JJ, Wilhelm A, Sessions BR, Kaundal R, Duhan N, Hicks BA, Schlafer DH, White KL, Davies CJ. Increased expression of pro-inflammatory cytokines at the fetal-maternal interface in bovine pregnancies produced by cloning. Am J Reprod Immunol 2022; 87:e13520. [PMID: 34974639 PMCID: PMC9285385 DOI: 10.1111/aji.13520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
PROBLEM A significant rate of spontaneous abortion is observed in cattle pregnancies produced by somatic cell nuclear transfer (SCNT). Major histocompatibility complex class I (MHC-I) proteins are abnormally expressed on the surface of trophoblast cells from SCNT conceptuses. METHOD OF STUDY MHC-I homozygous compatible (n = 9), homozygous incompatible (n = 8), and heterozygous incompatible (n = 5) pregnancies were established by SCNT. Eight control pregnancies were established by artificial insemination. Uterine and trophoblast samples were collected on day 35 ±1 of pregnancy, the expression of immune-related genes was examined by qPCR, and the expression of trophoblast microRNAs was assessed by sequencing. RESULTS Compared to the control group, trophoblast from MHC-I heterozygous incompatible pregnancies expressed increased levels of CD28, CTLA4, CXCL8, IFNG, IL1A, IL2, IL10, IL12B, TBX21, and TNF, while GNLY expression was downregulated. The MHC-I homozygous incompatible treatment group expressed increased levels of IFNG, IL1A, and IL2 while the MHC-I homozygous compatible group did not differentially express any genes compared to the control group. In the endometrium, relative to the control group, MHC-I heterozygous incompatible pregnancies expressed increased levels of CD28, CTLA4, CXCL8, IFNG, IL10, IL12B, and TNF, while GATA3 expression was downregulated. The MHC-I homozygous incompatible group expressed decreased amounts of CSF2 transcripts compared with the control group but did not have abnormal expression of any other immune-related genes. MHC-I incompatible pregnancies had 40 deregulated miRNAs compared to control pregnancies and 62 deregulated microRNAs compared to MHC-I compatible pregnancies. CONCLUSIONS MHC-I compatibility between the dam and fetus prevented an exacerbated maternal immune response from being mounted against fetal antigens.
Collapse
Affiliation(s)
- Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Janae J Umbaugh
- School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Amanda Wilhelm
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Benjamin R Sessions
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Rakesh Kaundal
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA.,Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Naveen Duhan
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA.,Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Brady A Hicks
- J.R. Simplot Company Cattle Reproduction Facility, Boise, Idaho, USA
| | - Donald H Schlafer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| |
Collapse
|
21
|
Wrenzycki C. Parameters to identify good quality oocytes and embryos in cattle. Reprod Fertil Dev 2021; 34:190-202. [PMID: 35231232 DOI: 10.1071/rd21283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oocyte/embryo selection methodologies are either invasive or noninvasive and can be applied at various stages of development from the oocyte to cleaved embryos and up to the blastocyst stage. Morphology and the proportion of embryos developing to the blastocyst stage are important criteria to assess developmental competence. Evaluation of morphology remains the method of choice for selecting viable oocytes for IVP or embryos prior to transfer. Although non-invasive approaches are improving, invasive ones have been extremely helpful in finding candidate genes to determine oocyte/embryo quality. There is still a strong need for further refinement of existing oocyte and embryo selection methods and quality parameters. The development of novel, robust and non-invasive procedures will ensure that only embryos with the highest developmental potential are chosen for transfer. In the present review, various methods for assessing the quality of oocytes and preimplantation embryos, particularly in cattle, are considered. These methods include assessment of morphology including different staining procedures, transcriptomic and proteomic analyses, metabolic profiling, as well as the use of artificial intelligence technologies.
Collapse
Affiliation(s)
- Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic for Veterinary Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Frankfurter Straße 106, Giessen 35392, Germany
| |
Collapse
|
22
|
Bridi A, Andrade GM, Del Collado M, Sangalli JR, de Ávila ACFCM, Motta IG, da Silva JCB, Pugliesi G, Silva LA, Meirelles FV, da Silveira JC, Perecin F. Small extracellular vesicles derived from in vivo- or in vitro-produced bovine blastocysts have different miRNAs profiles-Implications for embryo-maternal recognition. Mol Reprod Dev 2021; 88:628-643. [PMID: 34402123 DOI: 10.1002/mrd.23527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
In vivo- and in vitro-produced bovine embryos have different metabolic profiles and differences in gene transcription patterns. These embryos also have a distinct ability to establish and sustain early pregnancies. Small extracellular vesicles (sEVs) are secreted by embryos and carry bioactive molecules, such as miRNAs. We hypothesize that in vivo or in vitro-produced bovine hatched blastocysts on Day 9 and the sEVs secreted by them have different miRNA profiles. To address this hypothesis, embryos of both groups were placed in in vitro culture on Day 7. After 48 h, hatched embryos and hatched embryo-conditioned media (eCM) of both groups were collected. A total of 210 miRNAs were detected in embryos of both groups, of these 6 miRNAs were downregulated, while 7 miRNAs were upregulated in vitro group when compared to in vivo group. sEVs were isolated from eCM to determine miRNA profile. A total of 106 miRNAs were detected in both groups, including 14 miRNAs upregulated in sEVs from in vivo-eCM, and 2 miRNAs upregulated in sEVs from in vitro-eCM. These miRNAs express in embryos and sEVs secreted by them regulate early embryonic developmental and endometrial pathways, which can modify embryo-maternal communication during early pregnancy and consequently affect pregnancy establishment.
Collapse
Affiliation(s)
- Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Gabriella M Andrade
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Maite Del Collado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Juliano R Sangalli
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Ana C F C M de Ávila
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Igor G Motta
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Júlio C B da Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luciano A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Flávio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Juliano C da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
23
|
Acuña-González RJ, Olvera-Valencia M, López-Canales JS, Lozano-Cuenca J, Osorio-Caballero M, Flores-Herrera H. MiR-191-5p is upregulated in culture media of implanted human embryo on day fifth of development. Reprod Biol Endocrinol 2021; 19:109. [PMID: 34256783 PMCID: PMC8278618 DOI: 10.1186/s12958-021-00786-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Morphological features are the most common criteria used to select human embryos for transfer to a receptive uterine cavity. However, such characteristics are not valid for embryos in cellular arrest. Even aneuploid embryos can have normal morphology, and some euploid embryos have aberrant morphology. The aim of this study was to quantify the expression profile of hsa-miR-21-3p, -24-1-5p, -191-5p, and -372-5p in culture media on day 5 of in vitro embryo development, and compare the profiles of two groups of media classified by outcome: successful (n = 25) or unsuccessful (n = 25) implantation pregnancy. METHODS Fifty patients were accepted in the Department of Reproductive Biology of a Hospital in México City, based on the Institutional inclusion criteria for in vitro fertilization. Embryos were transferred to the women on day 5 of cultivation, and the culture media were collected. RNA was isolated from each culture medium with TRIzol reagent, and microRNA (miRNA) expression was detected through RT-PCR with specific primers. Expression bands were quantified by reading optical density. RESULTS There was a 5.2-fold greater expression of hsa-miR-191-5p in the pregnancy-related culture media (p ≤ 0.001) and a 1.6-fold greater level of hsa-miR-24-1-5p (p = 0.043) in the media corresponding to non-pregnant women. No significant difference existed between the two groups hsa-miR-21-3p (p = 0.38) or hsa-miR-372-5p (p = 0.41). CONCLUSIONS Regarding adequate in vitro embryo development, hsa-miR-191-5p could possibly represent a positive biomarker, while has-miR-24-1-5p may indicate poor prognosis. This former miRNA modulates IGF2BP-1 and IGF2R, associated with the implantation window. On the other hand, hsa-miR-24-1-5p may be related to a poor prognosis of human embryo development.
Collapse
Affiliation(s)
- Ricardo Josué Acuña-González
- Department of Immunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" (INPerIER), Ciudad de México, México
- Department of Biología de la Reproducción, INPerIER, Ciudad de México, México
| | - Mercedes Olvera-Valencia
- Department of Immunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" (INPerIER), Ciudad de México, México
| | | | - Jair Lozano-Cuenca
- Department of Fisiología y Desarrollo Celular, INPerIER, Ciudad de México, México
| | | | - Héctor Flores-Herrera
- Department of Immunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" (INPerIER), Ciudad de México, México.
| |
Collapse
|
24
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol Reprod 2021; 105:918-933. [PMID: 34086842 DOI: 10.1093/biolre/ioab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (scNT) for production of viable offspring is relatively low as compared to in vitro fertilization (IVF), presumably due to deficiencies in epigenetic reprogramming of the donor cell genome. Such defects may also involve the population of small non-coding RNAs (sncRNAs), which are important during early embryonic development. The objective of this study was to examine dynamic changes in relative abundance of sncRNAs during the maternal-to embryonic transition (MET) in bovine embryos produced by scNT as compared to IVF by using RNA sequencing. When comparing populations of miRNA in scNT versus IVF embryos, only miR-2340, miR-345, and miR34a were differentially expressed in morulae, though many more miRNAs were differentially expressed when comparing across developmental stages. Also of interest, distinct populations of piwi-interacting like RNAs (pilRNAs) were identified in bovine embryos prior to and during embryonic genome activation (EGA) as compared bovine embryos post EGA and differentiated cells. Overall, sncRNA sequencing analysis of preimplantation embryos revealed largely similar profiles of sncRNAs for IVF and scNT embryos at the 2-cell, 8-cell, morula and blastocyst stages of development. However, these sncRNA profiles, including miRNA, piRNA and tRNA fragments, were notably distinct prior to and after completion of the MET.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
25
|
Hawke DC, Ahmed DB, Watson AJ, Betts DH. Murine Blastocysts Release Mature MicroRNAs Into Culture Media That Reflect Developmental Status. Front Genet 2021; 12:655882. [PMID: 34122510 PMCID: PMC8193861 DOI: 10.3389/fgene.2021.655882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular microRNA (miRNA) sequences derived from the pre-implantation embryo have attracted interest for their possible contributions to the ongoing embryonic-uterine milieu, as well as their potential for use as accessible biomarkers indicative of embryonic health. Spent culture media microdroplets used to culture late-stage E4.0 murine blastocysts were screened for 641 mature miRNA sequences using a reverse transcription-quantitative polymerase chain reaction-based array. We report here 39 miRNAs exclusively detected in the conditioned media, including the implantation-relevant miR-126a-3p, miR-101a, miR-143, and miR-320, in addition to members of the highly expressed embryonic miR-125 and miR-290 families. Based on these results, an miRNA panel was assembled comprising five members of the miR-290 family (miR-291-295) and five conserved sequences with significance to the embryonic secretome (miR-20a, miR-30c, miR-142-3p, miR-191, and miR-320). Panel profiling of developing embryo cohort lysates and accompanying conditioned media microdroplets revealed extensive similarities in relative quantities of miRNAs and, as a biomarker proof of concept, enabled distinction between media conditioned with differently staged embryos (zygote, 4-cell, and blastocyst). When used to assess media conditioned with embryos of varying degrees of degeneration, the panel revealed increases in all extracellular panel sequences, suggesting cell death is an influential and identifiable factor detectable by this assessment. In situ hybridization of three panel sequences (miR-30c, miR-294, and miR-295) in late-stage blastocysts revealed primarily inner cell mass expression with a significant presence of miR-294 throughout the blastocyst cavity. Furthermore, extracellular miR-290 sequences responded significantly to high centrifugal force, suggesting a substantial fraction of these sequences may exist within a vesicle such as an exosome, microvesicle, or apoptotic bleb. Together, these results support the use of extracellular miRNA to assess embryonic health and enable development of a non-invasive viability diagnostic tool for clinical use.
Collapse
Affiliation(s)
- David Connor Hawke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| | - Danyal Baber Ahmed
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| | - Andrew John Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| | - Dean Harvey Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| |
Collapse
|
26
|
Sánchez JM, Gómez-Redondo I, Browne JA, Planells B, Gutiérrez-Adán A, Lonergan P. MicroRNAs in amniotic fluid and maternal blood plasma associated with sex determination and early gonad differentiation in cattle†. Biol Reprod 2021; 105:345-358. [PMID: 33889937 PMCID: PMC8335352 DOI: 10.1093/biolre/ioab079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
We hypothesized that sexually dimorphic differences exist in the expression of miRNAs in amniotic fluid (AF) and maternal blood plasma (MP) in association with the process of sex determination and gonad differentiation in cattle. Amniotic fluid and MP were collected from six pregnant heifers (three carrying a single male and three a single female embryo) following slaughter on Day 39 postinsemination, coinciding with the peak of SRY expression. Samples (six AF and six MP) were profiled using an miRNA Serum/Plasma Focus PCR Panel. Differentially expressed (DE) miRNAs were identified in AF (n = 5) and associated MP (n = 56) of male vs. female embryos (P < 0.05). Functional analysis showed that inflammatory and immune response were among the 13 biological processes enriched by miRNAs DE in MP in the male group (FDR < 0.05), suggesting that these sex-dependent DE miRNAs may be implicated in modulating the receptivity of the dam to a male embryo. Further, we compared the downstream targets of the sex-dependent DE miRNAs detected in MP with genes previously identified as DE in male vs. female genital ridges. The analyses revealed potential targets that might be important during this developmental stage such as SHROOM2, DDX3Y, SOX9, SRY, PPP1CB, JARID2, USP9X, KDM6A, and EIF2S3. Results from this study highlight novel aspects of sex determination and embryo–maternal communication in cattle such as the potential role of miRNAs in gonad development as well as in the modulation of the receptivity of the dam to a male embryo.
Collapse
Affiliation(s)
- José María Sánchez
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - John A Browne
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Pat Lonergan
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
27
|
Rio PD, Madan P. Does miRNA Expression in the Spent Media Change During Early Embryo Development? Front Vet Sci 2021; 8:658968. [PMID: 33898550 PMCID: PMC8060439 DOI: 10.3389/fvets.2021.658968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Distinct miRNA populations have been detected in the spent media of in-vitro culture systems. However, profiling has been limited to media conditioned with blastocyst-stage embryos. Therefore, the aim of the study was to profile extracellular miRNAs throughout the pre-implantation period in bovine embryos. To achieve this, cumulus oocyte complexes were aspirated from ovaries, in-vitro matured, fertilized, and cultured under standard laboratory procedures to the 2-cell, 8-cell, or blastocyst stage of development. At each developmental stage, 25 μl of spent in-vitro culture media was collected, pooled to 300 μl, and processed for total RNA extraction. In-vitro culture media, which never came in contact with any embryos, were additionally processed for total RNA extraction to serve as a negative control. Following hybridization on a GeneChip miRNA 4.0 array, comparative analysis was conducted between spent media and control samples. In total, 111 miRNAs were detected in the spent media samples, with 56 miRNAs identified in blastocyst spent media, 14 miRNAs shared between 8-cell and blastocyst spent media, 7 miRNAs shared between all 3 conditions, and 6 miRNAs exclusive to 2-cell spent media. miRNA-mRNA target prediction analysis revealed that the majority of genes predicted to be regulated by the miRNAs identified in the study have roles in cellular process, metabolic process, and biological regulation. Overall, the study suggest that miRNAs can be detected in the spent media of in-vitro culture system throughout the pre-implantation period and the detected miRNAs may influence genes impacting early embryo development.
Collapse
Affiliation(s)
| | - Pavneesh Madan
- Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
28
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
29
|
Khan HL, Bhatti S, Abbas S, Kaloglu C, Qurat-Ul-Ain Zahra S, Khan YL, Hassan Z, Turhan NÖ, Aydin HH. Melatonin levels and microRNA (miRNA) relative expression profile in the follicular ambient microenvironment in patients undergoing in vitro fertilization process. J Assist Reprod Genet 2021; 38:443-459. [PMID: 33226531 PMCID: PMC7884535 DOI: 10.1007/s10815-020-02010-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Intrafollicular fluid (IFF) melatonin plays a decisive role in maintaining granulosa cells' DNA integrity and protects them against apoptosis. It reduces oxidative stress and improves the oocyte quality with a higher fertilization rate. METHOD This prospective study investigated the antioxidant property of IFF melatonin and its impact on IVF outcome parameters. We also explored the relative expression of five microRNAs (miR-663b, miR-320a, miR-766-3p, miR-132-3p, miR-16-5p) and levels of cell-free DNA (cfDNA) by real-time PCR in unexplained infertile patients. We collected 425 follicular fluid (FF) samples containing mature oocytes from 295 patients undergoing IVF. RESULTS Patients were subgrouped based on IFF melatonin concentration (group A ≤ 30 pg/mL, group B > 70 to ≤ 110 pg/mL, group C > 111 to ≤ 385 pg/mL). Our results showed that patients with ≤ 30 pg/mL IFF melatonin levels have significantly higher oxidative stress markers, cfDNA levels, and lower relative expression of miR-663b, miR-320a, miR-766-3p, miR-132-3p, and miR-16-5p compared to other subgroups (p < 0.001). Similarly, they have a low fertilization rate and a reduced number of high-quality day 3 embryos. CONCLUSION Findings suggest that the therapeutic use of melatonin produces a considerable rise in the number of mature oocytes retrieved, fertilization rate, and good-quality embryo selection. Furthermore, miRNA signature enhances the quality of embryo selection, thus, may allow us to classify them as non-invasive biomarkers to identify good-quality embryos.
Collapse
Affiliation(s)
- Haroon Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Shahzad Bhatti
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan.
- Department of Human Genetics and Molecular biology, University of Health Sciences, Lahore, 54600, Pakistan.
- Department of Medical Education, Rashid Latif Medical College, Lahore, Pakistan.
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, 54800, Pakistan.
| | - Sana Abbas
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Celal Kaloglu
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, 58140, Sivas, Turkey
| | | | - Yousaf Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
- Department of Gynecology and Obstetrics, Hameed Latif Hospital, 14 - Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Zahira Hassan
- Department of Cellular Pathology, Royal Free Hospital, London, NW3 2QG, UK
| | - Nilgün Öztürk Turhan
- Bayındır Hastanesi, Department of Obstetrics and Gynecology, Nispetiye Mah. Aydın sokak No:8, 34340, Beşiktaş, Istanbul, Turkey
| | - Hikmet Hakan Aydin
- Department of Medical Biochemistry, Ege University School of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
30
|
Sanchez DJD, Vasconcelos FR, Teles-Filho ACA, Viana AGA, Martins AMA, Sousa MV, Castro MS, Ricart CA, Fontes W, Bertolini M, Bustamante-Filho IC, Moura AA. Proteomic profile of pre-implantational ovine embryos produced in vivo. Reprod Domest Anim 2021; 56:586-603. [PMID: 33460477 DOI: 10.1111/rda.13897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
The present study was conducted to decipher the proteome of in vivo-produced pre-implantation ovine embryos. Ten locally adapted Morana Nova ewes received hormonal treatment and were inseminated 12 hr after ovulation. Six days later, 54 embryos (morula and blastocyst developmental state) were recovered from eight ewes and pooled to obtain sufficient protein for proteomic analysis. Extracted embryo proteins were analysed by LC-MS/MS, followed by identification based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, PepExplorer). Identified proteins were analysed for gene ontology terms, protein clusters and interactions. Genes associated with the ovine embryo proteome were screened for miRNA targets using data sets of TargetScan (http://www.targetscan.org) and mIRBase (http://www.mirbase.org) servers. There were 667 proteins identified in the ovine embryos. Biological processes of such proteins were mainly related to cellular process and regulation, and molecular functions, to binding and catalytic activity. Analysis of the embryo proteins revealed 49 enriched functional clusters, linked to energy metabolism (TCA cycle, pyruvate and glycolysis metabolism), zona pellucida (ZP), MAPK signalling pathway, tight junction, binding of sperm to ZP, translation, proteasome, cell cycle and calcium/phospholipid binding. Sixteen miRNAs were related to 25 pre-implantation ovine embryo genes, all conserved in human, bovine and ovine species. The interaction network generated by miRNet showed four key miRNAs (hsa-mir-106b-5p; hsa-mir-30-5p; hsa-mir-103a-5p and hsa-mir-106a-5p) with potential interactions with embryo-expressed genes. Functional analysis of the network indicated that miRNAs modulate genes related to cell cycle, regulation of stem cell and embryonic cell differentiation, among others. Retrieved miRNAs also modulate the expression of genes involved in cell signalling pathways, such as MAPK, Wnt, TGF-beta, p53 and Toll-like receptor. The current study describes the first major proteomic profile of 6-day-old ovine embryos produced in vivo, setting a comprehensive foundation for our understanding of embryo physiology in the ovine species.
Collapse
Affiliation(s)
- Deisy J D Sanchez
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Fabio R Vasconcelos
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Arabela G A Viana
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Aline M A Martins
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Marcelo V Sousa
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Carlos A Ricart
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Marcelo Bertolini
- The School of Veterinay Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
31
|
Fang F, Li Z, Yu J, Long Y, Zhao Q, Ding X, Wu L, Shao S, Zhang L, Xiang W. MicroRNAs secreted by human embryos could be potential biomarkers for clinical outcomes of assisted reproductive technology. J Adv Res 2021; 31:25-34. [PMID: 34194830 PMCID: PMC8240345 DOI: 10.1016/j.jare.2021.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction MicroRNAs (miRNAs) are important regulators of many biological functions, including embryo implantation and development. Recently, it has been reported that miRNAs in biofluids are predictive for physiological and pathological processes. Objectives In this study, we aim to investigate whether the miRNAs secreted by human embryos in culture medium can be used as embryonic biomarkers. Methods The culture media were prospectively collected from embryos of patients at reproductive medicine center with informed consent. A high-throughput miRNA sequencing method was applied to detect the miRNA profiles in the human embryo culture media. After bioinformatics analysis and screening of differentially expressed miRNAs, quantitative real-time polymerase chain reaction (qRT-PCR) assay was subsequently performed to further confirm the sequencing results with mixed samples. Furthermore, we performed droplet digital PCR (ddPCR) to verify the target miRNAs at single sample level. Receiver operating characteristic (ROC) analyses were performed for differentially expressed miRNAs. Results Compared with embryos with failed pregnancy, the embryos with successful pregnancy secreted different miRNA profiles into the culture media, which were predicted to be involved in multiple biological processes. Validated by droplet digital polymerase chain reaction (ddPCR), the expression of hsa-miR-26b-5p and hsa-miR-21-5p in the culture media of cleavage embryos with successful pregnancy was significantly lower than that of embryos with failed pregnancy. Moreover, the Receiver Operating Characteristic (ROC) curve analysis indicated that hsa-miR-26b-5p and hsa-miR-21-5p could serve as potential biomarkers for reproductive outcomes. Conclusion Together, our findings highlight the important predictive potential of miRNAs secreted by human embryos in culture media, which is meaningful for non-invasive embryo selection in assisted reproductive technology.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Jiangyu Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yuting Long
- Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Qian Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiaofang Ding
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Li Wu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shumin Shao
- Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| |
Collapse
|
32
|
Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online 2020; 42:39-54. [PMID: 33303367 DOI: 10.1016/j.rbmo.2020.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Elective single embryo transfer is rapidly becoming the standard of care in assisted reproductive technology for patients under the age of 35 years with a good prognosis. Clinical pregnancy rates have become increasingly dependent on the selection of a single viable embryo for transfer, and diagnostic techniques facilitating this selection continue to develop. Current progress in elucidating the extracellular vesicle and microRNA components of the embryonic secretome is reviewed, and the potential for these findings to improve clinical embryo selection discussed. Key results have shown that extracellular vesicles and microRNAs are rapidly detectable constituents of the embryonic secretome. Evidence suggests that the vesicular population is largely exosomal in nature, secreted at all stages of preimplantation development and capable of traversing the zona pellucida. Both extracellular vesicle and microRNA concentrations within the secretome are elevated for blastocysts with diminished developmental competence, as indicated either by degeneracy or implantation failure, whereas studies have yet to firmly correlate individual microRNA sequences with pregnancy outcome. These emerging correlations support the viability of extracellular vesicles and microRNAs as the basis for a new diagnostic test to supplement or replace morphokinetic assessment.
Collapse
Affiliation(s)
- David Connor Hawke
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Andrew John Watson
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Dean Harvey Betts
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada.
| |
Collapse
|
33
|
Capra E, Lange-Consiglio A. The Biological Function of Extracellular Vesicles during Fertilization, Early Embryo-Maternal Crosstalk and Their Involvement in Reproduction: Review and Overview. Biomolecules 2020; 10:E1510. [PMID: 33158009 PMCID: PMC7693816 DOI: 10.3390/biom10111510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Secretory extracellular vesicles (EVs) are membrane-enclosed microparticles that mediate cell to cell communication in proximity to, or distant from, the cell of origin. Cells release a heterogeneous spectrum of EVs depending on their physiologic and metabolic state. Extracellular vesicles are generally classified as either exosomes or microvesicles depending on their size and biogenesis. Extracellular vesicles mediate temporal and spatial interaction during many events in sexual reproduction and supporting embryo-maternal dialogue. Although many omic technologies provide detailed understanding of the molecular cargo of EVs, the difficulty in obtaining populations of homogeneous EVs makes difficult to interpret the molecular profile of the molecules derived from a miscellaneous EV population. Notwithstanding, molecular characterization of EVs isolated in physiological and pathological conditions may increase our understanding of reproductive and obstetric diseases and assist the search for potential non-invasive biomarkers. Moreover, a more precise vision of the cocktail of biomolecules inside the EVs mediating communication between the embryo and mother could provide new insights to optimize the therapeutic action and safety of EV use.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, 26900 Lodi, Italy;
| | - Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
34
|
Almiñana C, Bauersachs S. Extracellular vesicles: Multi-signal messengers in the gametes/embryo-oviduct cross-talk. Theriogenology 2020; 150:59-69. [PMID: 32088033 DOI: 10.1016/j.theriogenology.2020.01.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) have emerged as novel cell-to-cell communication mediators in physiological and pathological scenarios. Their ability to transfer their molecular cargo (RNAs, proteins and lipids) from one cell to another, in the vicinity or far from the cell of origin, together with their capacity of exerting a functional impact on the target cell make them valuable diagnostic tools as well as therapeutic vectors in a variety of diseases. In the reproductive field, there is a growing interest in the role of EVs in gamete/embryo-maternal communication and their potential implications in the reproductive success. In this review, we provide current knowledge of EVs secreted by the oviduct (oEVs) and embryos (eEVs), since both have been proposed as key players in the crucial two-way dialogue between the oviduct (lining epithelium and secretions) and the embryo that ensures successful pregnancy. Both oEVs and eEVs molecular cargos and their potential role as multi-signal messengers in the gametes/embryo-oviduct cross-talk and in the embryo-to-embryo communication in different species are also addressed. Eventually, a comparative analysis between oEVs and eEVs has been performed to shed some light on common and specific cargos responsible for their functions supporting the early reproductive events and as prime candidate molecules for improving fertility and assisted reproductive technologies outcomes.
Collapse
Affiliation(s)
- Carmen Almiñana
- University of Zurich, Genetics and Functional Genomics Group, Clinic of Reproductive Medicine, VetSuisse Faculty, Zurich, Switzerland; UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.
| | - Stefan Bauersachs
- University of Zurich, Genetics and Functional Genomics Group, Clinic of Reproductive Medicine, VetSuisse Faculty, Zurich, Switzerland.
| |
Collapse
|
35
|
de Ávila ACFCM, Andrade GM, Bridi A, Gimenes LU, Meirelles FV, Perecin F, da Silveira JC. Extracellular vesicles and its advances in female reproduction. Anim Reprod 2020; 16:31-38. [PMID: 33299476 PMCID: PMC7721021 DOI: 10.21451/1984-3143-ar2018-00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication is an essential mechanism for development and maintenance of multicellular organisms. Extracellular vesicles (EVs) were recently described as new players in the intercellular communication. EVs are double-membrane vesicles secreted by cells and are classified according to their biosynthesis, protein markers and morphology. These extracellular vesicles contain bioactive materials such as miRNA, mRNA, protein and lipids. These characteristics permit their involvement in different biological processes. Reproductive physiology is complex and involves constant communication between cells. Different laboratories have described the presence of EVs secreted by ovarian follicular cells, oviductal cells, in vitro produced embryos and by the endometrium, suggesting that EVs are involved in the development of gametes and embryos, in animals and humans. Therefore, is important to understand physiological mechanisms and contributions of EVs in female reproduction in order to develop new tools to improve in vivo reproductive events and assisted reproductive techniques (ARTs). This review will provide the current knowledge related to EVs in female reproductive tissues and their role in ARTs.
Collapse
Affiliation(s)
| | - Gabriella Mamede Andrade
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Lindsay Unno Gimenes
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
36
|
Makri D, Efstathiou P, Michailidou E, Maalouf WE. Apoptosis triggers the release of microRNA miR-294 in spent culture media of blastocysts. J Assist Reprod Genet 2020; 37:1685-1694. [PMID: 32440932 PMCID: PMC7376808 DOI: 10.1007/s10815-020-01796-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/24/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose To study whether members of the miR-290-295 cluster in spent culture medium (SCM) of embryos are correlated with morphokinetics and apoptosis. Methods Cryopreserved 1-cell stage mouse embryos were cultured to the blastocyst stage, development was monitored by time-lapse, 59 SCM were collected, and miR-291a and miR-294 were detected with polymerase chain reaction (PCR). Blastocysts were immuno-stained for sexing (H2AK119ub) and for apoptosis (TUNEL). Each embryo and SCM were individually processed. Correlations were run between the miRNAs and developmental events (t2, t3, t4, t5, t8, tSB, tB, ECC2, ECC3, s2, s3, dB) and apoptosis (apoptotic cells/total cell number %). MiR-294 SCM and cell levels were compared in 40 blastocysts. Apoptosis was induced in 15 blastocysts with UV radiation and SCM samples were analyzed for miR-294. Results MiR-291a and miR-294 are released in variable levels by mouse blastocysts. Their release is similar between male and female embryos. No significant correlations were found between these miRNAs and development. MiR-294 was significantly positively correlated with apoptosis (r = 0.560, p < 0.001). Cellular expression was lower in blastocysts that released miR-294 in high levels compared with null, low, and medium release embryos (p < 0.01). UV radiation caused apoptosis which triggered higher secretion of miR-294 in 15 blastocysts versus 13 control embryos (p < 0.01). Conclusion(s) MicroRNAs are important regulators of preimplantation development. Apoptosis triggers the release of miR-294 by blastocysts which possibly serves a secretory role for embryo-maternal communication. SCM miRNA analysis is possible for individually cultured embryos and future studies can investigate miRNAs as noninvasive markers of embryo quality. Electronic supplementary material The online version of this article (10.1007/s10815-020-01796-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dimitra Makri
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Panagiota Efstathiou
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Eftychia Michailidou
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Walid E Maalouf
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
37
|
Schäfer-Somi S, Gabriel C, Aslan S. Embryo-maternal communication in dogs: Immune system related factors. Theriogenology 2020; 150:382-387. [PMID: 32061404 DOI: 10.1016/j.theriogenology.2020.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/21/2022]
Abstract
In the bitch, establishment of pregnancy is believed to be mainly initiated by the free-floating embryo in the uterus that is under progesterone influence. As in other species, the active participation of the embryo is no longer questioned. Secretory products are transported to the embryo-maternal interface and contribute to extra-cellular matrix (ECM) degradation, a change in the intrauterine immune milieu towards a reduction of immune cells and a change in lymphocyte subsets, cell differentiation, angiogenesis, and the balance between proliferation and apoptosis. For cell-to-cell communication between embryo and maternal tissue, biomolecules inclusive microRNAs might be transported and exchanged via extracellular vesicles (EVs) as in other species. Maternal acceptance of the fetal allograft is vital for the establishment of pregnancy. Findings so far indicate that the embryo avoids attacks from the maternal system via passive and active mechanisms. One hypothesis is that expression or suppression of surface molecules help the canine embryo to hide from the maternal immune system on one side and to actively destroy cytotoxic immune cells on the other side; there are further clues that the canine embryo blocks activation of intrauterine leukocytes. Intracellular repair mechanisms via heat shock proteins (HSP) are candidates under investigation. The presence and function of immunomodulatory intrauterine cells like Treg cells and their interaction with the embryo have been intensely studied in other species but remains to be investigated in the canine preimplantation uterus.
Collapse
Affiliation(s)
- Sabine Schäfer-Somi
- Platform for Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Vienna, Austria.
| | - Cordula Gabriel
- Institute of Histology and Embryology, University of Veterinary Medicine Vienna, Austria
| | - Selim Aslan
- Near East University, Veterinary Faculty, Department for Obstetrics and Gynecology, Nicosia, Cyprus
| |
Collapse
|
38
|
mir-320b rs755613466 T>C and mir-27a rs780199251 G>A polymorphisms and the risk of IVF failure in Kurdish women. Mol Biol Rep 2020; 47:1751-1758. [PMID: 32006196 DOI: 10.1007/s11033-020-05266-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022]
Abstract
In vitro fertilization failure is not only the cause of despair among couples and individuals undergoing the treatment, it has also been contributing to the impediment of assistive reproductive technologies' development. MicroRNAs (miRNAs) have been linked to significant events in the reproduction course. The identification of miRNA polymorphisms may provide a good lead for the potential of diagnosis and treatment of unidentified in vitro fertilization (IVF) failure causes. The aim of our study is to explore the association between miRNA polymorphisms (mir-320b T>C and mir-27a G >A) and IVF failure. Our case-control study consisted of 200 Kurdish women in total, 100 with IVF failure and the other 100 control who have had at least two successful pregnancies and no history of pregnancy loss, we used tetra amplification refractory mutation system PCR to identify the polymorphisms within the groups. The TT genotype of mir-320b was found more frequently in IVF failure patients when compared to the healthy women (OR 8.07, CI 2.18-29.78, P = 0.001) and T allele was more present in the case group (OR 1.83, CI 91.04-2.12, P = 0.034), however mir-27a seemed to show no association with IVF failure in regards to genotype and allele frequencies. The difference in genotype and allele frequencies of mir-320b of the two groups may indicate that it has an effect on the target mRNAs and alter the implantation of embryo during IVF cycles.
Collapse
|
39
|
Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The Role of MicroRNAs in Mammalian Fertility: From Gametogenesis to Embryo Implantation. Int J Mol Sci 2020; 21:ijms21020585. [PMID: 31963271 PMCID: PMC7014195 DOI: 10.3390/ijms21020585] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The genetic codes inscribed during two key developmental processes, namely gametogenesis and embryogenesis, are believed to determine subsequent development and survival of adult life. Once the embryo is formed, its further development mainly depends on its intrinsic characteristics, maternal environment (the endometrial receptivity), and the embryo–maternal interactions established during each phase of development. These developmental processes are under strict genetic regulation that could be manifested temporally and spatially depending on the physiological and developmental status of the cell. MicroRNAs (miRNAs), one of the small non-coding classes of RNAs, approximately 19–22 nucleotides in length, are one of the candidates for post-transcriptional developmental regulators. These tiny non-coding RNAs are expressed in ovarian tissue, granulosa cells, testis, oocytes, follicular fluid, and embryos and are implicated in diverse biological processes such as cell-to-cell communication. Moreover, accumulated evidences have also highlighted that miRNAs can be released into the extracellular environment through different mechanisms facilitating intercellular communication. Therefore, understanding miRNAs mediated regulatory mechanisms during gametogenesis and embryogenesis provides further insights about the molecular mechanisms underlying oocyte/sperm formation, early embryo development, and implantation. Thus, this review highlights the role of miRNAs in mammalian gametogenesis and embryogenesis and summarizes recent findings about miRNA-mediated post-transcriptional regulatory mechanisms occurring during early mammalian development.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
| | - Michael Hoelker
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, 53639 Königswinter, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Tsige Hailay
- Institute of Animal Sciences, Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (D.S.-W.); (M.H.); (E.T.); (T.H.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO 80523, USA;
- Correspondence: ; Tel.: +1-530-564-2806
| |
Collapse
|
40
|
Gross N, Strillacci MG, Peñagaricano F, Khatib H. Characterization and functional roles of paternal RNAs in 2-4 cell bovine embryos. Sci Rep 2019; 9:20347. [PMID: 31889064 PMCID: PMC6937301 DOI: 10.1038/s41598-019-55868-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Embryos utilize oocyte-donated RNAs until they become capable of producing RNAs through embryonic genome activation (EGA). The sperm's influence over pre-EGA RNA content of embryos remains unknown. Recent studies have revealed that sperm donate non-genomic components upon fertilization. Thus, sperm may also contribute to RNA presence in pre-EGA embryos. The first objective of this study was to investigate whether male fertility status is associated with the RNAs present in the bovine embryo prior to EGA. A total of 65 RNAs were found to be differentially expressed between 2-4 cell bovine embryos derived from high and low fertility sires. Expression patterns were confirmed for protein phosphatase 1 regulatory subunit 36 (PPP1R36) and ataxin 2 like (ATXN2L) in three new biological replicates. The knockdown of ATXN2L led to a 22.9% increase in blastocyst development. The second objective of this study was to characterize the parental origin of RNAs present in pre-EGA embryos. Results revealed 472 sperm-derived RNAs, 2575 oocyte-derived RNAs, 2675 RNAs derived from both sperm and oocytes, and 663 embryo-exclusive RNAs. This study uncovers an association of male fertility with developmentally impactful RNAs in 2-4 cell embryos. This study also provides an initial characterization of paternally-contributed RNAs to pre-EGA embryos. Furthermore, a subset of 2-4 cell embryo-specific RNAs was identified.
Collapse
Affiliation(s)
- Nicole Gross
- University of Wisconsin, Department of Animal Sciences, Madison, WI, 53706, USA
| | | | | | - Hasan Khatib
- University of Wisconsin, Department of Animal Sciences, Madison, WI, 53706, USA.
| |
Collapse
|
41
|
Lin X, Pavani KC, Smits K, Deforce D, Heindryckx B, Van Soom A, Peelman L. Bta-miR-10b Secreted by Bovine Embryos Negatively Impacts Preimplantation Embryo Quality. Front Genet 2019; 10:757. [PMID: 31507632 PMCID: PMC6713719 DOI: 10.3389/fgene.2019.00757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox A1 (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin–Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Katrien Smits
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
42
|
Lin X, Beckers E, Mc Cafferty S, Gansemans Y, Joanna Szymańska K, Chaitanya Pavani K, Catani JP, Van Nieuwerburgh F, Deforce D, De Sutter P, Van Soom A, Peelman L. Bovine Embryo-Secreted microRNA-30c Is a Potential Non-invasive Biomarker for Hampered Preimplantation Developmental Competence. Front Genet 2019; 10:315. [PMID: 31024625 PMCID: PMC6459987 DOI: 10.3389/fgene.2019.00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Recently, secreted microRNAs (miRNAs) have received a lot of attention since they may act as autocrine factors. However, how secreted miRNAs influence embryonic development is still poorly understood. We identified 294 miRNAs, 114 known, and 180 novel, in the conditioned medium of individually cultured bovine embryos. Of these miRNAs, miR-30c and miR-10b were much more abundant in conditioned medium of slow cleaving embryos compared to intermediate cleaving ones. MiR-10b, miR-novel-44, and miR-novel-45 were higher expressed in the conditioned medium of degenerate embryos compared to blastocysts, while the reverse was observed for miR-novel-113 and miR-novel-139. Supplementation of miR-30c mimics into the culture medium confirmed the uptake of miR-30c mimics by embryos and resulted in increased cell apoptosis, as also shown after delivery of miR-30c mimics in Madin-Darby bovine kidney cells (MDBKs). We also demonstrated that miR-30c directly targets Cyclin-dependent kinase 12 (CDK12) through its 3′ untranslated region (3′-UTR) and inhibits its expression. Overexpression and downregulation of CDK12 revealed the opposite results of the delivery of miRNA-30c mimics and inhibitor. The significant down-regulation of several tested DNA damage response (DDR) genes, after increasing miR-30c or reducing CDK12 expression, suggests a possible role for miR-30c in regulating embryo development through DDR pathways.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Beckers
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Séan Mc Cafferty
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | - João Portela Catani
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Petra De Sutter
- Department of Uro-Gynaecology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
43
|
A miR-511-binding site SNP in the 3'UTR of IGF-1 gene is associated with proliferation and apoptosis of PK-15 cells. In Vitro Cell Dev Biol Anim 2019; 55:323-330. [PMID: 30945114 DOI: 10.1007/s11626-019-00329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) is a functional candidate gene for pig growth and development due to its crucial role in the growth axis of growth hormone-IGF-1. Considering that the 3' untranslated region (3'UTR) of gene may affect its expression, we analyzed the effect of a single-nucleotide polymorphism (SNP) (rs34142920, c.674C > T) on gene expression, cell proliferation, and apoptosis and the possible related molecular mechanisms in PK-15 cells. The SNP was found in the 3'UTR of IGF-1 in Bama Xiang pig in previous investigations. Results showed that the SNP was located at the target site binding to microRNA (miR-511). The 3'UTR of IGF-1 gene with C allele significantly downregulated the expression of IGF-1 gene compared with that of the gene with T allele by luciferase assay. miR-511 was transfected into porcine kidney cell line (PK-15 cells) to reveal its effects on cells and whether or not it targets IGF-1. The expression levels of IGF-1 at mRNA and protein levels were remarkably downregulated. miR-511 significantly inhibited cell proliferation and promoted cell apoptosis by downregulating the phosphorylation level of AKT and ERK1/2. This finding confirmed that miR-511 inhibits proliferation and promotes apoptosis by downregulating the IGF-1 in PK-15 cells.
Collapse
|
44
|
Martinez RM, Hauser R, Liang L, Mansur A, Adir M, Dioni L, Racowsky C, Bollati V, Baccarelli AA, Machtinger R. Urinary concentrations of phenols and phthalate metabolites reflect extracellular vesicle microRNA expression in follicular fluid. ENVIRONMENT INTERNATIONAL 2019; 123:20-28. [PMID: 30481674 PMCID: PMC6343661 DOI: 10.1016/j.envint.2018.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Phenols and phthalates are potential endocrine disrupting chemicals (EDCs) that are associated with adverse health outcomes. These EDCs dysregulate a number of biomolecules and pathways, including microRNAs. MicroRNAs can be carried in transport systems called extracellular vesicles (EVs) that are present in most biofluids. EVs in the follicular fluid, which fills the ovarian follicle and influences oocyte developmental competency, carry microRNAs (EV-miRNAs) that have been associated with In Vitro Fertilization (IVF) outcomes. However, it remains unclear whether EDCs affect EV-miRNAs in follicular fluid. OBJECTIVES This study sought to determine whether urinary concentrations of phenols and phthalates biomarkers are associated with EV-miRNAs expression in follicular fluid collected from women undergoing IVF treatment. METHODS This cross-sectional study included 130 women recruited between January 2014 and August 2016 in a tertiary university-affiliated hospital. Participants provided urine samples during ovarian stimulation and on the day of oocyte retrieval. We assessed urinary concentrations of five phenols, eight phthalate metabolites, and one phthalate alternative metabolite. EV-miRNAs were isolated from follicular fluid and their expression profiles were measured using the TaqMan Open Array® Human microRNA panel. We fitted multivariable linear regression models and principal component analysis to examine associations between individual and molar sums of exposure biomarkers and EV-miRNAs. RESULTS Of 754 miRNAs tested, we detected 133 EV-miRNAs in the microRNA array which expressed in at least 50% of the follicular fluid samples. After adjusting for multiple testing, we identified eight EV-miRNAs associated with individual phenols and phthalate metabolites, as well as molar ΣDEHP that met a q < 0.10 false-discovery rate (FDR) threshold. Hsa-miR-125b, hsa-miR-106b, hsa-miR-374a, and hsa-miR15b was associated with mono(2-ethylhexyl) phthalate concentrations, hsa-let-7c with concentrations mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), and the sum of metabolites of di(2-ethylhexyl) phthalate, hsa-miR-24 with mono-n-butyl phthalate concentrations, hsa-miR-19a with cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH), and hsa-miR-375 with ethyl paraben concentrations. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, gene targets and pathways of these EV-miRNAs were predicted in silico and 17 KEGG FDR-significant pathways related to follicular development and oocyte competence were identified. CONCLUSIONS Our results show that urinary concentrations of select phenol and phthalate metabolites are correlated with altered EV-miRNAs expression in follicular fluid. These findings may provide insight regarding the molecular mechanisms underlying adverse effects of phenol and phthalate exposure on female fertility.
Collapse
Affiliation(s)
- Rosie M Martinez
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Laboratory of Precision Environmental Biosciences, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, NY, New York 10032, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Abdallah Mansur
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan 52561 and, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Michal Adir
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan 52561 and, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Laura Dioni
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
| | - Andrea A Baccarelli
- Laboratory of Precision Environmental Biosciences, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, NY, New York 10032, USA
| | - Ronit Machtinger
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan 52561 and, Sackler School of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
45
|
Cai H, Zhu XX, Li ZF, Zhu YP, Lang JH. MicroRNA Dysregulation and Steroid Hormone Receptor Expression in Uterine Tissues of Rats with Endometriosis during the Implantation Window. Chin Med J (Engl) 2018; 131:2193-2204. [PMID: 30203794 PMCID: PMC6144856 DOI: 10.4103/0366-6999.240808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Estrogen receptor (ER) and progesterone receptor (PR) are involved in endometriosis, but the involvement of microRNAs (miRNAs) is unknown. The aim of the study was to explore the correlation between miRNA and ER/PR in uterine tissues of rats with endometriosis during the implantation window. Methods: Twenty female Sprague-Dawley rats were randomized in three groups: endometriosis (n = 7), fat tissue control (n = 6), and normal (n = 7) groups. The female rats were mated and sacrificed on day 5 (implantation). Uterine tissues were obtained for hematoxylin-eosin staining, immunohistochemistry, and miRNA expression. Reverse transcription polymerase chain reaction (RT-PCR) was used to validate the expression of rno-miR-29c-3p, rno-miR-34c-5p, rno-miR-141-5p, rno-miR-24-1-5p, and rno-miR-490-5p. Results: The 475 miRNAs were found to differentially express between the endometriosis and normal control groups, with 127 being upregulated and 348 being downregulated. Expression of five miRNAs (rno-miR-29c-3p, rno-miR-34c-5p, rno-miR-141-5p, rno-miR-24-1-5p, and rno-miR-490-5p) were validated by RT-PCR and found to be differentially expressed among the three groups. Expression of ER and PR proteins (immunohistochemistry) in the glandular epithelium and endometrial stroma was significantly different among the three groups (all P < 0.05). Five miRNAs were involved in pathways probably taking part in implantation and fertility. Conclusions: The results suggested that miRNAs, ER, and PR could play important roles in the embryo implantation period of rats with endometriosis. These miRNAs might play a role in endometrial receptivity in endometriosis.
Collapse
Affiliation(s)
- Han Cai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100005, China
| | - Xin-Xin Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100005, China
| | - Zhan-Fei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100005, China
| | - Ya-Pei Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100005, China
| | - Jing-He Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100005, China
| |
Collapse
|
46
|
Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, Bollati V, Baccarelli AA, Hauser R, Machtinger R. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep 2018; 8:17036. [PMID: 30451969 PMCID: PMC6242846 DOI: 10.1038/s41598-018-35379-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Encapsulated microRNAs (i.e., miRNAs within the extracellular vesicles, i.e., EV-miRNAs) have been detected in follicular fluid in both animal and human studies and different profiles have been associated with IVF cycle characteristics. However, limited studies to date have investigated other IVF outcomes, including fertilization status and embryo quality on day three". In this cohort, we performed a cross-sectional analysis on 126 women who contributed follicular fluid from a single follicle during a single IVF cycle. One hundred and ninety-two EV-miRNAs were assessed by univariable fold-change and multivariable logistic regression analyses. Hsa-miR-92a and hsa-miR-130b, were over-expressed in follicular fluid samples from oocytes that failed to fertilize compared to those that were normally fertilized. Additionally, hsa-miR-888 was over-expressed and hsa-miR-214 and hsa-miR-454 were under-expressed in samples that resulted in impaired day-3 embryo quality compared to top-quality day-3 embryos. After adjusting for confounders as BMI, smoking and total motile sperm, associations of these EV-miRNAs remained significant. In-silico KEGG pathway analyses assigned the identified EV-miRNAs to pathways of follicular growth and development, cellular signaling, oocyte meiosis, and ovarian function. Our findings suggest that EV-miRNAs may play a role in pathways of ovarian function and follicle development, which could be essential for understanding the molecular mechanisms that could lead to a successful pregnancy and birth.
Collapse
Affiliation(s)
- Rosie M Martinez
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
- Laboratory of Precision Environmental Biosciences, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, 10032, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Laura Dioni
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milano, Italy
| | - Abdallah Mansur
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan, 52561, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Adir
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan, 52561, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milano, Italy
| | - Andrea A Baccarelli
- Laboratory of Precision Environmental Biosciences, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, 10032, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Ronit Machtinger
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan, 52561, Israel.
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
47
|
Khatib H, Gross N. Symposium review: Embryo survival-A genomic perspective of the other side of fertility. J Dairy Sci 2018; 102:3744-3753. [PMID: 30293848 DOI: 10.3168/jds.2018-15252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023]
Abstract
The majority of embryonic loss in cattle occurs within the first 3 to 4 wk of pregnancy, and there are currently no accurate predictors of pregnancy outcome. Existing embryo quality assessment methods include morphological evaluation and embryo biopsy. These methods are not accurate and carry some health risks to the developing embryo, respectively. Therefore, there is need to identify noninvasive biomarkers such as microRNA that can predict embryo quality and pregnancy outcome. Furthermore, researchers need a better understanding of the dynamic interaction between the mother and the embryo. The transcriptome of the uterus shows plasticity that depends on the embryo type so that the expression level of some genes for in vivo embryos would be different from that of in vitro-produced embryos. Similarly, the embryonic transcriptome and epigenome change in response to different environmental factors such as stress, diet, disease, and physiological status of the mother. This embryo-mother crosstalk could be better understood by investigating the molecular signaling that occurs at different stages of embryonic development. Although transcriptomics is a useful tool to assess the roles of genes and pathways in embryo quality and maternal receptivity, it does not provide the exact functions of these genes, and it shows correlation rather than causality. Therefore, an in-depth functional genomic analysis is needed for better understanding of the molecular mechanisms controlling embryo development. In this review, we discuss recent genomic technologies such as RNA interference, gapmer technology, and genome editing techniques used in humans and livestock to elucidate the molecular mechanisms of genes affecting embryo development.
Collapse
Affiliation(s)
- H Khatib
- Department of Animal Sciences, University of Wisconsin, Madison 53706.
| | - N Gross
- Department of Animal Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|
48
|
Wrenzycki C. Gene expression analysis and in vitro production procedures for bovine preimplantation embryos: Past highlights, present concepts and future prospects. Reprod Domest Anim 2018; 53 Suppl 2:14-19. [DOI: 10.1111/rda.13260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Christine Wrenzycki
- Chair for Molecular Reproductive Medicine; Clinic for Veterinary Obstetrics; Gynecology and Andrology of Large and Small Animals; Faculty of Veterinary Medicine; Justus-Liebig-University Giessen; Giessen Germany
| |
Collapse
|
49
|
Pasquariello R, Fernandez-Fuertes B, Strozzi F, Pizzi F, Mazza R, Lonergan P, Gandolfi F, Williams JL. Profiling bovine blastocyst microRNAs using deep sequencing. Reprod Fertil Dev 2018; 29:1545-1555. [PMID: 27623773 DOI: 10.1071/rd16110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are known to control several reproductive functions, including oocyte maturation, implantation and early embryonic development. Recent advances in deep sequencing have allowed the analysis of all miRNAs of a sample. However, when working with embryos, due to the low RNA content, miRNA profiling is challenging because of the relatively large amount of total RNA required for library preparation protocols. In the present study we compared three different procedures for RNA extraction and prepared libraries using pools of 30 bovine blastocysts. In total, 14 of the 15 most abundantly expressed miRNAs were common to all three procedures. Furthermore, using miRDeep discovery and annotation software (Max Delbrück Center), we identified 1363 miRNA sequences, of which bta-miR-10b and bta-miR-378 were the most abundant. Most of the 179 genes identified as experimentally validated (86.6%) or predicted targets (13.4%) were associated with cancer canonical pathways. We conclude that reliable analysis of bovine blastocyst miRNAs can be achieved using the procedures described herein. The repeatability of the results across different procedures and independent replicates, as well as their consistency with results obtained in other species, support the biological relevance of these miRNAs and of the gene pathways they modulate in early embryogenesis.
Collapse
Affiliation(s)
- R Pasquariello
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territori, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - B Fernandez-Fuertes
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - F Strozzi
- Parco Tecnologico Padano, Via Einstein Albert, 26900, Lodi, Italy
| | - F Pizzi
- Istituto di Biologia e Biotecnologia Agraria - Consiglio Nazionale delle Ricerche, Via Einstein Albert, 26900, Lodi, Italy
| | - R Mazza
- Associazione Italiana Allevatori, Via Bergamo 292, 26100, Cremona, Italy
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - F Gandolfi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territori, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - J L Williams
- School of Animal and Veterinary Sciences, Faculty of Science, University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|
50
|
Abstract
Failure of embryo implantation is a major limiting factor in early pregnancy and assisted reproduction. Determinants of implantation include the embryo viability, the endometrial receptivity, and embryo-maternal interactions. Multiple molecules are involved in the regulation of implantation, but their specific regulatory mechanisms remain unclear. MicroRNA (miRNA), functioning as the transcriptional regulator of gene expression, has been widely reported to be involved in embryo implantation. Recent studies reveal that miRNAs not only act inside the cells, but also can be released by cells into the extracellular environment through multiple packaging forms, facilitating intercellular communication and providing indicative information associated with physiological and pathological conditions. The discovery of extracellular miRNAs shed new light on implantation studies. MiRNAs provide new mechanisms for embryo-maternal communication. Moreover, they may serve as non-invasive biomarkers for embryo selection and assessment of endometrial receptivity in assisted reproduction, which improves the accuracy of evaluation while reducing the mechanical damage to the tissue. In this review, we discuss the involvement of miRNAs in embryo implantation from several aspects, focusing on the role of extracellular miRNAs and their potential applications in assisted reproductive technologies (ART) to promote fertility efficiency.
Collapse
Affiliation(s)
- Jingjie Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Shaoyu Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|