1
|
Bruinjé TC, Campora L, Van Winters B, LeBlanc SJ. Effects of systemic or uterine endotoxin challenge in Holstein cows at 5 or 40 days postpartum on clinical responses, uterine and systemic inflammation, and milk yield. J Dairy Sci 2024; 107:7392-7404. [PMID: 38754820 DOI: 10.3168/jds.2023-24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
Our objective was to investigate the effects of intravenous (IV) or intrauterine (IU) lipopolysaccharide (LPS) challenge at 5 or 40 d postpartum (DPP) on clinical signs, systemic and uterine inflammation, dry matter intake (DMI), and milk yield (MY). Holstein cows at 5 DPP (n = 23) or at 40 DPP (n = 24) were blocked by parity and randomly assigned to 1 of 3 treatments: (1) IV-LPS (0.0625 μg/kg BW [5 DPP] or 0.1 μg/kg BW [40 DPP] over 1h), (2) IU-LPS (100 μg [5 DPP] or 300 μg [40 DPP] in 20 mL of saline), or (3) 20 mL of saline IU (IU-SAL; same for 5 and 40 DPP). The proportion of polymorphonuclear (PMN) cells was measured by endometrial cytology at d -1, 1, 4, and 7 relative to treatment. Blood haptoglobin (Hp), serum amyloid A (SAA), and LPS-binding protein (LBP), DMI, and MY were measured from d -1 through d 7. Data were analyzed separately for each DPP group in multivariable linear regression models accounting for repeated measures. Both DPP groups showed increases in rectal temperature and heart and respiratory rates, and decrease in rumination rate following IV-LPS, but not following IU-LPS. At 5 DPP, endometrial PMN proportion was similar in IU-LPS and IU-SAL. Serum Hp was unaffected by LPS challenge, SAA was greater in IV-LPS from 12 h to 24 h after challenge, and LBP was greater in IV-LPS from 8 h to 24 h. At 40 DPP, PMN was greater in IU-LPS (37 ± 4%) than in IU-SAL (15 ± 4%) 1 d after LPS challenge. Serum Hp was greater from 24 h to 72 h after challenge in IV-LPS than in the other groups, SAA was greater in IV-LPS from 6 h to 48 h, and LBP was greater in IV-LPS from 8 h to 24 h. At both 5 and 40 DPP, treatment did not affect DMI, but MY was lesser in IV-LPS cows at 12 h and 24 h than in IU-SAL or IU-LPS. The IV-LPS challenge resulted in more pronounced changes in clinical signs and acute phase protein (APP) concentrations than IU-LPS or IU-SAL at 40 DPP, but more subtle or inconsistent changes at 5 DPP. These may be due to the different doses of LPS used at 5 and 40 DPP or possibly due to the high variation in baseline clinical signs and APP observed in all groups at 5 DPP. The IU-LPS increased uterine PMN 1 d after challenge at 40 DPP but not at 5 DPP. At each time, IU-LPS did not produce changes in clinical signs or markers of systemic inflammation.
Collapse
Affiliation(s)
- Tony C Bruinjé
- Department of Population Medicine, University of Guelph, Guelph, Canada N1G 2W1
| | - Lucio Campora
- Department of Population Medicine, University of Guelph, Guelph, Canada N1G 2W1
| | - Bryn Van Winters
- Department of Population Medicine, University of Guelph, Guelph, Canada N1G 2W1
| | - Stephen J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, Canada N1G 2W1.
| |
Collapse
|
2
|
Opgenorth J, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, Rhoads RP, McMillan RP, McGill JL, Baumgard LH. Intramammary lipopolysaccharide challenge in early- versus mid-lactation dairy cattle: Immune, production, and metabolic responses. J Dairy Sci 2024; 107:6252-6267. [PMID: 38460880 DOI: 10.3168/jds.2023-24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Study objectives were to compare the immune response, metabolism, and production following intramammary LPS (IMM LPS) administration in early and mid-lactation cows. Early (E-LPS; n = 11; 20 ± 4 DIM) and mid- (M-LPS; n = 10; 155 ± 40 DIM) lactation cows were enrolled in an experiment consisting of 2 periods (P). During P1 (5 d) cows were fed ad libitum and baseline data were collected, including liver and muscle biopsies. At the beginning of P2 (3 d) cows received 10 mL of sterile saline containing 10 µg of LPS from Escherichia coli O111:B4/mL into the left rear quarter of the mammary gland, and liver and muscle biopsies were collected at 12 h after LPS. Tissues were analyzed for metabolic flexibility, which measures substrate switching capacity from pyruvic acid to palmitic acid oxidation. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature was assessed hourly for the first 12 h after LPS and every 6 h thereafter for the remainder of P2. All cows developed a febrile response following LPS, but E-LPS had a more intense fever than M-LPS cows (0.7°C at 5 h after LPS). Blood samples were collected at 0, 3, 6, 9, 12, 24, 36, 48, and 72 h after LPS for analysis of systemic inflammation and metabolism parameters. Total serum Ca decreased after LPS (26% at 6 h nadir) but did not differ by lactation stage (LS). Circulating neutrophils decreased, then increased after LPS in both LS, but E-LPS had exaggerated neutrophilia (56% from 12 to 48 h) compared with M-LPS. Haptoglobin increased after LPS (15-fold) but did not differ by LS. Many circulating cytokines were increased after LPS, and IL-6, IL-10, TNF-α, MCP-1, and IP-10 were further augmented in E-LPS compared with M-LPS cows. Relative to P1, all cows had reduced milk yield (26%) and DMI (14%) on d 1 that did not differ by LS. Somatic cell score increased rapidly in response to LPS regardless of LS and gradually decreased from 18 h onwards. Milk component yields decreased after LPS. However, E-LPS had increased fat (11%) and tended to have increased lactose (8%) yield compared with M-LPS cows throughout P2. Circulating glucose was not affected by LPS. Nonesterified fatty acids (NEFA) decreased in E-LPS (29%) but not M-LPS cows. β-Hydroxybutyrate slightly increased (14%) over time after LPS regardless of LS. Insulin increased after LPS in all cows, but E-LPS had blunted hyperinsulinemia (52%) compared with M-LPS cows. Blood urea nitrogen increased after LPS, and the relative change in BUN was elevated in E-LPS cows compared with M-LPS cows (36% and 13%, respectively, from 9 to 24 h). During P1, metabolic flexibility was increased in liver and muscle in early lactating cows compared with mid-lactation cows, but 12 h after LPS, metabolic flexibility was reduced and did not differ by LS. In conclusion, IMM LPS caused severe immune activation, and E-LPS cows had a more intense inflammatory response compared with M-LPS cows, but the effects on milk synthesis was similar between LS. Some parameters of the E-LPS metabolic profile suggest continuation of metabolic adjustments associated with early lactation to support both a robust immune system and milk synthesis.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - R P Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - R P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
3
|
Opgenorth J, Mayorga EJ, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, McGill JL, Baumgard LH. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. I: The immune and inflammatory responses. J Dairy Sci 2024; 107:6225-6239. [PMID: 38428491 DOI: 10.3168/jds.2023-24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Cows in early lactation (EL) are purportedly immune suppressed, which renders them more susceptible to disease. Thus, the study objective was to compare key biomarkers of immune activation from i.v. LPS between EL and mid-lactation (ML) cows. Multiparous EL (20 ± 2 DIM; n = 11) and ML (131 ± 31 DIM; n = 12) cows were enrolled in a 2 × 2 factorial design and assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered a single LPS bolus from Escherichia coli O55:B5 (0.09 µg/kg of BW), or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. After LPS administration, cows were intensely evaluated for 3 d to analyze their response and recovery to LPS. Rectal temperature increased in LPS relative to PF cows (1.1°C in the first 9 h), and the response was more severe in EL-LPS relative to ML-LPS cows (2.3 vs. 1.3°C increase at 4 h post-LPS; respectively). Respiration rate increased only in EL-LPS cows (47% relative to ML-LPS in the first hour post-LPS). Circulating tumor necrosis factor-α, IL-6, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, and IFN-γ-inducible protein-10 increased within the first 6 h after LPS and these changes were exacerbated in EL-LPS relative to ML-LPS cows (6.3-fold, 4.8-fold, 57%, 93%, 10%, and 61%, respectively). All cows administered LPS had decreased circulating iCa relative to PF cows (34% at the 6 h nadir), but the hypocalcemia was more severe in EL-LPS than ML-LPS cows (14% at 6 h nadir). In response to LPS, neutrophils decreased regardless of LS, then increased into neutrophilia by 24 h in all LPS relative to PF cows (2-fold); however, the neutrophilic phase was augmented in EL- compared with ML-LPS cows (63% from 24 to 72 h). Lymphocytes and monocytes rapidly decreased then gradually returned to baseline in LPS cows regardless of LS; however, monocytes were increased (57%) at 72 h in EL-LPS relative to ML-LPS cows. Platelets were reduced (46%) in LPS relative to PF cows throughout the 3-d following LPS, and from 24 to 48 h, platelets were further decreased (41%) in EL-LPS compared with ML-LPS. During the 3-d following LPS, serum amyloid A (SAA), LPS-binding protein (LBP), and haptoglobin (Hp) increased in LPS compared with PF groups (9-fold, 72%, and 153-fold, respectively), and the LBP and Hp responses were more exaggerated in EL-LPS than ML-LPS cows (85 and 79%, respectively) whereas the SAA response did not differ by LS. Thus, our data indicates that EL immune function does not appear "suppressed," and in fact many aspects of the immune response are seemingly functionally robust.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
4
|
Trefz FM, Balmer M, Peters LM, Bruckmaier RM, Meylan M. Association of results of the glutaraldehyde coagulation test with plasma acute phase protein concentrations and hematologic findings in hospitalized cows. Front Vet Sci 2024; 11:1404809. [PMID: 38962710 PMCID: PMC11220118 DOI: 10.3389/fvets.2024.1404809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction The glutaraldehyde test (GAT) allows for animal-side semi-quantitative estimation of fibrinogen and gamma-globulin concentrations in blood samples of adult cattle and therefore detection of inflammatory disease conditions. However, the test has potential limitations, especially due to the latency period until sufficiently high fibrinogen and/or gamma-globulin concentrations are reached. The aim of the present study was therefore to assess the association between results of GAT with other inflammatory markers including hematologic variables, fibrinogen, plasma haptoglobin and serum amyloid A (SAA) concentrations. Methods For the purpose of this prospective observational study, a convenience sample of 202 cows with a broad range of inflammatory and non-inflammatory clinical conditions was included. The GAT was run on EDTA blood, fibrinogen was measured using the Clauss and the heat precipitation method, and commercially available ELISA tests were used for determination of plasma haptoglobin and SAA concentrations. Results Shortened GAT coagulation times were more closely correlated to serum globulin (rs = -0.72) than to plasma fibrinogen concentrations measured with the heat precipitation (rs = -0.64) and the Clauss method (rs = -0.70). Cows with a markedly (≤3 min) or moderately (4-6 min) shortened coagulation time had higher (p < 0.001) plasma haptoglobin and SAA concentrations than cows with a negative test result. Total leukocyte, monocyte and neutrophil concentrations did not differ significantly between groups. An identified cut-off for the GAT coagulation time of ≤14 min had a sensitivity and specificity of 54.4 and 100%, respectively, for the prediction of an inflammatory state based on clinical findings and/or increased plasma haptoglobin or SAA concentrations. Discussion In conclusion, this study demonstrates considerable diagnostic agreement between positive GAT results and increased plasma concentrations of haptoglobin and SAA. Despite high specificity, the test lacks sensitivity in case of acute inflammatory conditions indicating that plasma acute phase protein concentrations and hematologic findings can provide additional diagnostic information if the GAT is negative.
Collapse
Affiliation(s)
- Florian M. Trefz
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre of Veterinary Clinical Medicine, Ludwig-Maximilians-Universität (LMU) München, Oberschleißheim, Germany
| | - Martina Balmer
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laureen M. Peters
- Clinical Diagnostic Laboratory, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Seemann L, Frahm J, Kersten S, Bühler S, Meyer U, Visscher C, Huber K, Dänicke S. Dietary L-carnitine supplementation modifies blood parameters of mid-lactating dairy cows during standardized lipopolysaccharide-induced inflammation. Front Immunol 2024; 15:1390137. [PMID: 38807585 PMCID: PMC11130594 DOI: 10.3389/fimmu.2024.1390137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
L-carnitine, available as feed additive, is essential for the beta-oxidation of free fatty acids in the mitochondrial matrix. It provides energy to immune cells and may positively impact the functionality of leukocytes during the acute phase response, a situation of high energy demand. To test this hypothesis, German Holstein cows were assigned to a control group (CON, n = 26) and an L-carnitine supplemented group (CAR, n = 27, rumen-protected L-carnitine product: 125 g/cow/d, corresponded to total L-carnitine intake: 25 g/cow/d, supplied with concentrate) and received an intravenous bolus injection of lipopolysaccharides (LPS, 0.5 µg/kg body weight, E. coli) on day 111 postpartum as a model of standardized systemic inflammation. Blood samples were collected from day 1 ante injectionem until day 14 post injectionem (pi), with frequent sampling through an indwelling venous catheter from 0.5 h pi to 12 h pi. All parameters of the white blood cell count responded significantly to LPS, while only a few parameters were affected by L-carnitine supplementation. The mean eosinophil count, as well as the percentage of basophils were significantly higher in CAR than in CON over time, which may be due to an increased membrane stability. However, phagocytosis and production of reactive oxygen species by leukocytes remained unchanged following L-carnitine supplementation. In conclusion, although supplementation with 25 g L-carnitine per cow and day resulted in increased proportions of specific leukocyte populations, it had only minor effects on the functional parameters studied in mid-lactating dairy cows during LPS-induced inflammation, and there was no evidence of direct improvement of immune functionality.
Collapse
Affiliation(s)
- Leonie Seemann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Christian Visscher
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Korinna Huber
- Department of Functional Anatomy of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
6
|
Ji G, Zhang J, Feng X, Sheng H, Hu H, Li F, Ma Y, Hu Y, Na R, Yang W, Ma Y. Analysis of blood biochemistry and non-targeted metabolomics of endometritis in dairy cows. Anim Reprod Sci 2024; 264:107460. [PMID: 38564886 DOI: 10.1016/j.anireprosci.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The incidence of bovine endometritis, which has a negative impact on the reproduction of dairy cows, has been recently increasing. In this study, the differential markers and metabolites of healthy cows and cows with endometritis were analyzed by measuring blood biochemical indicators and immune factors using biochemical and enzyme-linked immunosorbent assay kits combined with nontargeted metabolomics. The LC-QTOF platform was used to evaluate the serum metabolomics of healthy cows and cows with endometritis after 21-27 days of calving. The results showed that glucose, free fatty acid, calcium, sodium, albumin, and alanine aminotransferase levels were significantly lower in the serum of cows with endometritis than in healthy cows (P < 0.05). However, the serum potassium, interleukin-1, interleukin-6, and tumor necrosis factor levels were significantly higher in cows with endometritis (P < 0.05). In addition, the serum metabolome data analysis of the two groups showed that the expression of 468 metabolites was significantly different (P < 0.05), of which 291 were upregulated and 177 were downregulated. These metabolites were involved in 78 metabolic pathways, including amino acid, nucleotide, carbohydrate, lipid, and vitamin metabolism pathways; signal transduction pathways, and other biological pathways. Taken together, negative energy balance and immune activation, which are related to local abnormalities in amino acid, lipid, and carbohydrate metabolism, were the important causes of endometritis in dairy cows. Metabolites such as glucose, carnosine, dehydroascorbic acid, L-malic acid, tetrahydrofolic acid, and UDP-glucose may be used as key indicators in the hematological diagnosis and treatment of endometritis in dairy cows.
Collapse
Affiliation(s)
- Guoshang Ji
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Junxing Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hui Sheng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Honghong Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yamei Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Rina Na
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wenfei Yang
- Ningxia Xin' ao Agriculture and Animal Husbandry Co., Ltd., Lingwu 750406, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
7
|
Hernandez LL, McArt JAA. Perspective: Transient postparturient hypocalcemia-A lactation-induced phenomenon of high-producing dairy cows. J Dairy Sci 2023; 106:8177-8180. [PMID: 37641345 DOI: 10.3168/jds.2023-23355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/25/2023] [Indexed: 08/31/2023]
Abstract
Milk fever is one of the most historically relevant diseases of dairy cows. It is caused by tremendous calcium (Ca) expenditure at the initiation of lactation, so severe that cows can no longer stand and, if left untreated, die. Fortunately, through prepartum nutritional improvements, this version of clinical hypocalcemia is rare in the United States. Nonetheless, the opinion that all versions of postpartum hypocalcemia are detrimental remains pervasive, which is particularly significant given that 50% of cows are subclinically hypocalcemic after calving. This has led to a variety of available management and treatment strategies, ranging from prepartum dietary programs to postpartum Ca gels and boluses, targeted at preventing hypocalcemia in dairy cows. Recent research has determined that postpartum dairy cows can experience different types of subclinical hypocalcemia: transient, persistent, or delayed. We now know cows experiencing transient hypocalcemia as part of the homeorhetic adaptation to lactation are the highest milk producers in modern dairy herds, whereas cows with hypocalcemia several days after calving experience disease and losses in milk production. Therefore, it is wrong to assume all postpartum hypocalcemia is detrimental and that treatment of all cases is considered necessary and beneficial. Research indicates that milk synthesis at the onset of lactation contributes to immediate postpartum hypocalcemia, and that the mammary gland is a critical factor in management of Ca homeostasis. However, cows differ in their ability to manage this phenomenon, and it is possible that immediate postpartum influences such as dry matter intake, inflammation, and immune activation affect appropriate Ca regulation in the days following calving.
Collapse
Affiliation(s)
- Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - Jessica A A McArt
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| |
Collapse
|
8
|
Jermann PM, Wagner LA, Fritsche D, Gross JJ, Wellnitz O, Bruckmaier RM. Acute phase reaction to lipopolysaccharide-induced mastitis in early lactation dairy cows fed nitrogenic, glucogenic, or lipogenic diets. J Dairy Sci 2023; 106:9879-9891. [PMID: 37678770 DOI: 10.3168/jds.2023-23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
The availability of certain macronutrients is likely to influence the capacity of the immune system. Therefore, we investigated the acute phase response to intramammary (i.mam.) lipopolysaccharide (LPS) in dairy cows fed a nitrogenic diet (n = 10) high in crude protein, a glucogenic diet (n = 11) high in carbohydrates and glucogenic precursors, or a lipogenic diet (n = 11) high in lipids. Thirty-two dairy cows were fed one of the dietary concentrates directly after calving until the end of trial at 27 ± 3 days in milk (mean ± standard deviation). In wk 3 of lactation, 20 µg of LPS was i.mam. injected in one quarter, and sterile NaCl (0.9%) in the contralateral quarter. Milk samples of the LPS-challenged and control quarter were taken hourly from before (0 h) until 9 h after LPS challenge and analyzed for milk amyloid A (MAA), haptoglobin (HP), and IL-8. In addition, blood samples were taken in the morning, and composite milk samples at morning and evening milkings, from 1 d before until 3 d after LPS challenge, and again on d 9, to determine serum amyloid A (SAA) and HP in blood, and MAA and HP in milk. The mRNA abundance of various immunological and metabolic factors in blood leukocytes was quantified by quantitative reverse-transcription PCR from samples taken at -18, -1, 6, 9, and 23 h relative to LPS application. The dietary concentrates did not affect any of the parameters in blood, milk, and leukocytes. The IL-8 was increased from 2 h, HP from 2 to 3 h, and MAA from 6 h relative to the LPS administration in the milk of the challenged quarter and remained elevated until 9 h. The MAA and HP were also increased at 9 h after LPS challenge in whole-udder composite milk, whereas HP and SAA in blood were increased only after 23 h. All 4 parameters were decreased again on d 9. Similar for all groups, the mRNA abundance of HP and the heat shock protein family A increased after the LPS challenge, whereas the mRNA expression of the tumor necrosis factor α and the leukocyte integrin β 2 subunit (CD18) were decreased at 6 h after LPS challenge. The glucose transporter (GLUT)1 mRNA abundance decreased after LPS, whereas that of the GLUT3 increased, and that of the GLUT4 was not detectable. The mRNA abundance of GAPDH was increased at 9 h after LPS and remained elevated. The acute phase protein response was detected earlier in milk compared with blood indicating mammary production. However, immunological responses to LPS were not affected by the availability of specific macronutrients provided by the different diets.
Collapse
Affiliation(s)
- P M Jermann
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - L A Wagner
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - D Fritsche
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
9
|
LeBlanc SJ. Relationship of peripartum inflammation with reproductive health in dairy cows. JDS COMMUNICATIONS 2023; 4:230-234. [PMID: 37360118 PMCID: PMC10285243 DOI: 10.3168/jdsc.2022-0328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 06/28/2023]
Abstract
Failure of a robust but well-regulated immune response may result in reproductive tract inflammatory disease, such as metritis, purulent vaginal discharge, or endometritis. Metritis is consistently associated with reduced diversity of the uterine microbiome. Similarly, purulent vaginal discharge at 4 to 6 wk postpartum is strongly associated with bacterial infection of the uterus. Conversely, the microbiome of healthy cows and those with subclinical endometritis is generally similar, so endometritis is thought to be a consequence of dysregulation of inflammation rather than changes in uterine microbiota. There is an emerging concept that inflammation is not only a reaction to injury or disease but that it can be a consequence of or precursor to metabolic disturbances. The degree of systemic inflammation is associated with the level of trauma and bacterial contamination of the uterus or mammary gland, the degree of fat mobilization and release of nonesterified fatty acids, and perhaps leaky gut, all of which result in the release of proinflammatory cytokines. Therefore, uterine inflammation may be exacerbated by systemic inflammation, but may also contribute to heightened systemic inflammation in transition cows. However, clarity and progress are limited by a lack of validated criteria to quantify systemic inflammation and to identify its sources.
Collapse
|
10
|
Cazanga V, Palma C, Casanova T, Rojas D, Barrera K, Valenzuela C, Acevedo A, Ascui-Gac G, Pérez-Jeldres T, Pérez-Fernández R. Modulation of the Acute Inflammatory Response Induced by the Escherichia coli Lipopolysaccharide through the Interaction of Pentoxifylline and Florfenicol in a Rabbit Model. Antibiotics (Basel) 2023; 12:antibiotics12040639. [PMID: 37107001 PMCID: PMC10135147 DOI: 10.3390/antibiotics12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Experimental reports have demonstrated that florfenicol (FFC) exerts potent anti-inflammatory effects, improving survival in a murine endotoxemia model. Considering the anti-inflammatory and immunomodulatory properties of pentoxifylline (PTX) as an adjuvant to enhance the efficacy of antibiotics, the anti-inflammatory effects of the interaction FFC/PTX over the E. coli Lipopolysaccharide (LPS)-induced acute inflammatory response was evaluated in rabbits. METHODS Twenty-five clinically healthy New Zealand rabbits (3.8 ± 0.2 kg body weight: bw), were distributed into five experimental groups. Group 1 (control): treated with 1 mL/4 kg bw of 0.9% saline solution (SS) intravenously (IV). Group 2 (LPS): treated with an IV dose of 5 µg/kg of LPS. Group 3 (pentoxifylline (PTX) + LPS): treated with an oral dose of 30 mg/kg PTX, followed by an IV dose of 5 µg/kg of LPS 45 min after PTX. Group 4 (Florfenicol (FFC) + LPS): treated with an IM dose of 20 mg/kg of FFC, followed by an IV dose of 5 µg/kg of LPS 45 min after FFC administration. Group 5 (PTX + FFC + LPS): treated with an oral dose of 30 mg/kg of PTX, followed by an IM dose of 20 mg/kg of FFC, and, 45 min after an IV dose of 5 µg/kg of LPS was administered. The anti-inflammatory response was evaluated through changes in plasma levels of interleukins (TNF-α, IL-1β and IL-6), C-reactive protein (CRP), and body temperature. RESULTS It has been shown that each drug produced a partial inhibition over the LPS-induced increase in TNF-α, IL-1β, and CRP. When both drugs were co-administered, a synergistic inhibitory effect on the IL-1β and CRP plasma concentrations was observed, associated with a synergic antipyretic effect. However, the co-administration of PTX/FFC failed to modify the LPS-induced increase in the TNF-α plasma concentrations. CONCLUSIONS We concluded that the combination of FFC and PTX in our LPS sepsis models demonstrates immunomodulatory effects. An apparent synergistic effect was observed for the IL-1β inhibition, which peaks at three hours and then decreases. At the same time, each drug alone was superior in reducing TNF-α levels, while the combination was inferior. However, the peak of TNF-α in this sepsis model was at 12 h. Therefore, in rabbits plasma IL-1β and TNF-α could be regulated independently, thus, further research is needed to explore the effects of this combination over a more prolonged period.
Collapse
Affiliation(s)
- Victoria Cazanga
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Cristina Palma
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Tomás Casanova
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Daniela Rojas
- Veterinary Pathology Laboratory, Department of Pathology and Preventive Medicine, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Karin Barrera
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Cristhian Valenzuela
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Aracelly Acevedo
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Gabriel Ascui-Gac
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, California University, San Diego, CA 92182, USA
| | - Tamara Pérez-Jeldres
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rubén Pérez-Fernández
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| |
Collapse
|
11
|
Chandler TL, Westhoff TA, Behling-Kelly EL, Sipka AS, Mann S. Eucalcemia during lipopolysaccharide challenge in postpartum dairy cows: I. Clinical, inflammatory, and metabolic response. J Dairy Sci 2023; 106:3586-3600. [PMID: 36935239 DOI: 10.3168/jds.2022-22774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/27/2022] [Indexed: 03/19/2023]
Abstract
Hypocalcemia induced by immune activation is a conserved response across mammalian species; however, administration of Ca is discouraged in other species as it is associated with increased morbidity and mortality. Early postpartum cows experience a decrease in circulating Ca concentration following acute inflammation. Corrective Ca therapy during the transition period, particularly in dairy cows experiencing acute disease, is common practice. However, the effect of Ca administration on the inflammatory response during acute immune activation is unknown. Our objective was to compare the clinical, inflammatory, and metabolic response to an intravenous (IV) lipopolysaccharide (LPS) challenge between postpartum cows infused, or not, with IV Ca to maintain eucalcemia. Cows (n = 14, 8 ± 1 d in milk) were enrolled in a matched-pair randomized controlled design to receive IV Ca (IVCa) or sterile 0.9% NaCl (CTRL) during an IV LPS challenge (0.040 or 0.045 µg of LPS/kg of body weight over 1 h). Ionized Ca (iCa) was monitored cow-side, and IV Ca infusion was adjusted in a eucalcemic clamp for 12 h following the start of LPS infusion. Cows were monitored during the 24 h following challenge and serial blood samples were collected to quantify concentrations of glucose, β-hydroxybutyrate, nonesterified fatty acids, urea nitrogen, cytokines, acute-phase proteins, and cortisol. Blood iCa concentration decreased to 0.87 ± 0.03 mM in CTRL during challenge, and by design, iCa concentration was maintained within 3% of baseline in IVCa. Body temperature, heart rate, and respiratory rate were monitored for 24 h following the start of challenge and did not differ between groups. A treatment × time interaction was identified such that serum cortisol concentrations increased in both groups at 2 h but decreased to a greater extent at 6 h in IVCa compared with CTRL. Rumination time (min/h) over the first 12 h following challenge was greater in IVCa, but total rumination time in the 24 h following challenge did not differ from CTRL. Serum glucose and nonesterified fatty acid concentrations decreased, and β-hydroxybutyrate and urea nitrogen concentrations increased over time, but did not differ between groups. Acute leukopenia occurred in both groups at 4 h before leukocytosis was observed at 24 h with total white blood cell counts returning to baseline within 72 h. Plasma concentrations of tumor necrosis factor (TNF) and interleukin-10 (IL-10) increased within 1 h following the start of challenge and did not differ between groups. Serum haptoglobin and serum amyloid A concentrations increased within the 24 h following challenge and were elevated through 72 h but did not differ between groups. Eucalcemia during the acute systemic inflammatory response did not alter the TNF or IL-10 cytokine response, or the acute-phase protein SAA and haptoglobin response in this LPS challenge model; however, eucalcemia was associated with a more rapid decline in cortisol response and greater rumination time in the first 12 h following challenge. We did not find evidence that eucalcemia exacerbated the inflammatory response in early postpartum cows, but Ca administration may alter the clinical response to acute systemic inflammation.
Collapse
Affiliation(s)
- T L Chandler
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| | - T A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - E L Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - A S Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Chandler TL, Westhoff TA, LaPierre PA, Frizzarini W, Hernandez LL, Overton TR, Mann S. Eucalcemia during lipopolysaccharide challenge in postpartum dairy cows: II. Calcium dynamics. J Dairy Sci 2023; 106:3601-3614. [PMID: 37002137 DOI: 10.3168/jds.2022-22775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/10/2022] [Indexed: 03/31/2023]
Abstract
Hypocalcemia induced by immune activation is a conserved response among mammals. Early postpartum cows will experience decreased circulating Ca concentrations following acute immune activation; however, the cause for decreased Ca concentration is unknown. Our objectives were to (1) describe Ca dynamics following an intravenous (IV) LPS challenge in early postpartum cows, and (2) compare inflammatory-induced changes in Ca dynamics between IV Ca-treated cows and control cows. Cows (n = 14, 8 ± 1 d in milk) were enrolled in a matched-pair randomized controlled design to receive IV Ca (IVCa) in a eucalcemic clamp for 12 h, or 0.9% NaCl (CTRL) following an IV LPS infusion (0.040 or 0.045 µg of LPS/kg of body weight over 1 h). During the 24 h following LPS infusion, circulating concentrations of parathyroid hormone and serotonin were measured, serum and urine samples were collected to calculate urinary fractional excretion of Ca (FECa), and fecal samples were collected to calculate Ca apparent digestibility (ADCa) using amylase-treated and ash-corrected undigested neutral detergent fiber after 240 h (uNDFom240) as an internal marker. Changes in Ca intake and milk Ca secretion were also quantified and compared with baseline values. Cows were fasted during challenge and dry matter intake was 20 ± 5% less than baseline values on the day of challenge and did not differ between groups. On the day of challenge, milk Ca concentration increased, but milk yield decreased such that total Ca secreted in milk did not change from baseline. Urine FECa was low overall, but an interaction of treatment and time was identified such that FECa increased in IVCa but decreased in CTRL. Concentrations of parathyroid hormone increased and serotonin decreased following challenge. Fecal dry matter decreased from baseline, but did not differ between 6, 12, and 24 h, and did not differ between groups. An interaction of treatment and time was identified for ADCa and apparent digestibility of dry matter such that digestibility was decreased in CTRL but not IVCa at 6 h. Acute immune activation induced hypocalcemia in CTRL, and although urinary Ca excretion was not a primary cause, it is unclear to what degree hypocalcemia was due to altered ADCa. Eucalcemia appeared to alter adaptations in Ca homeostasis during immune activation as FECa was increased in IVCa animals.
Collapse
Affiliation(s)
- T L Chandler
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| | - T A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - P A LaPierre
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - W Frizzarini
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706
| | - L L Hernandez
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706
| | - T R Overton
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
13
|
Chandler T, Westhoff T, Overton T, Lock A, Van Amburgh M, Sipka A, Mann S. Lipopolysaccharide challenge following intravenous amino acid infusion in postpartum dairy cows: I. Production, metabolic, and hormonal responses. J Dairy Sci 2022; 105:4593-4610. [DOI: 10.3168/jds.2021-21226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
|