1
|
Sharma VK, Singh A, Srivastava SK, Kumar V, Gardi NL, Nalwa A, Dinda AK, Chattopadhyay P, Yadav S. Increased expression of platelet-derived growth factor associated protein-1 is associated with PDGF-B mediated glioma progression. Int J Biochem Cell Biol 2016; 78:194-205. [PMID: 27448842 DOI: 10.1016/j.biocel.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
The current treatment therapies available for malignant gliomas are inadequate. There is an urgent need to develop more effective therapies by characterizing the molecular pathogenesis of the disease. Over expression of platelet-derived growth factor (PDGF) ligands and receptors have been reported in malignant gliomas. Platelet-derived growth factor associated protein-1 (PDAP-1) is reported to modulate the mitogenic activity of PDGF ligands, but to date, there is no information concerning its role in PDGF-mediated glioma cell proliferation. This study aimed to characterize the role of PDAP-1 in PDGF-mediated glioma proliferation. The expression of PDAP-1 was observed to be significantly increased (p<0.05) in grade IV glioma tissue and cell lines compared to grade III. siRNA-mediated knockdown of PDAP-1 reduced the expression of PDGF-B and its downstream genes (Akt1/Protein kinase B (PKB) and phosphoinositide-dependent kinase-1 (PDK1) by up to 50%. In PDAP-1 knockdown glioma cells, more than a twofold reduction was also observed in the level of phosphorylated Akt. Interestingly, knockdown of PDAP-1 in combination with PDGF-B antibody inhibited glioma cell proliferation through activation of Caspase 3/7 and 9. We also demonstrate that PDAP-1 co-localizes with PDGF-B in the cytoplasm of glioma cells, and an interaction between both of the proteins was established. Collectively, these findings suggest that the expression of PDAP-1 is associated with disease malignancy, and its inhibition reduced the proliferation of malignant glioma cells through down-regulation of PDGF-B/Akt/PDK1 signaling. Thus, this study establishes PDAP-1 as an effecter of PDGF signaling in glioma cells and suggests that it could also be a promising therapeutic target.
Collapse
Affiliation(s)
- Vinay Kumar Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anand Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Vignesh Kumar
- Proteomics and Structural Biology Unit, Institute of genomics and Integrative Biology, New Delhi 110025, India
| | - Nilesh Laxman Gardi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Aasma Nalwa
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Abstract
Glial tumors have demonstrated abilities to sustain growth via recruitment of glial progenitor cells (GPCs), which is believed to be driven by chemotactic cues. Previous studies have illustrated that mouse GPCs of different genetic backgrounds are able to replicate the dispersion pattern seen in the human disease. How GPCs with genetic backgrounds transformed by tumor paracrine signaling respond to extracellular cues via migration is largely unexplored, and remains a limiting factor in utilizing GPCs as therapeutic targets. In this study, we utilized a microfluidic device to examine the chemotaxis of three genetically-altered mouse GPC populations towards tumor conditioned media, as well as towards three growth factors known to initiate the chemotaxis of cells excised from glial tumors: Hepatocyte Growth Factor (HGF), Platelet-Derived Growth Factor-BB (PDGF-BB), and Transforming Growth Factor-α (TGF-α). Our results illustrate that GPC types studied exhibited chemoattraction and chemorepulsion by different concentrations of the same ligand, as well as enhanced migration in the presence of ultra-low ligand concentrations within environments of high concentration gradient. These findings contribute towards our understanding of the causative and supportive roles that GPCs play in tumor growth and reoccurrence, and also point to GPCs as potential therapeutic targets for glioma treatment.
Collapse
|
3
|
Assanah MC, Bruce JN, Suzuki SO, Chen A, Goldman JE, Canoll P. PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia 2009; 57:1835-47. [DOI: 10.1002/glia.20895] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Thaker NG, Pollack IF. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies. Expert Rev Neurother 2009; 9:1815-36. [PMID: 19951140 PMCID: PMC2819818 DOI: 10.1586/ern.09.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient's tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG.
Collapse
Affiliation(s)
- Nikhil G Thaker
- Doris Duke Clinical Research Fellow, Departments of Neurosurgery, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260 and 6 Oakwood Place, Voorhees, NJ 08043, USA Tel.: +1 856 392 4727 Fax: +1 412 692 5921
| | - Ian F Pollack
- Department of Neurosurgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Brain Tumor Center, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh, Pittsburgh, PA 15213, USA Tel.: +1 412 692 5881 Fax: +1 412 692 5921
| |
Collapse
|
5
|
Ozer BH, Wiepz GJ, Bertics PJ. Activity and cellular localization of an oncogenic glioblastoma multiforme-associated EGF receptor mutant possessing a duplicated kinase domain. Oncogene 2009; 29:855-64. [PMID: 19915609 PMCID: PMC2820599 DOI: 10.1038/onc.2009.385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A mutation of the epidermal growth factor receptor (EGFR) that results in a tandem kinase domain duplication (TKD-EGFR) has been described in glioblastoma multiforme biopsies and cell lines. Although the TKD-EGFR confers tumorigenicity, little is known about the molecular underpinnings of receptor dysregulation. Therefore, we transfected B82L mouse fibroblast cells devoid of endogenous EGFR to determine the molecular mechanisms of receptor activation when expressed in cells as well as the contribution of each duplicated kinase domain to receptor phosphorylation. The TKD-EGFR displayed chronically elevated basal autophosphorylation at five known phosphotyrosine sites. The chronically phosphorylated TKD-EGFR was also resistant to competitive inhibition of ligand-binding compared with wild-type EGFR (WT-EGFR) and showed undetectable levels of basal dimerization, suggesting the TKD-EGFR escapes known mechanisms of receptor downregulation. Immunofluorescence analyses revealed a substantial portion of the TKD-EGFR resides in the cytosol in an activated state, although surface-localized subsets of the receptor retain ligand responsiveness. Kinase activity-deficient knockouts of the N-terminal or the C-terminal kinase domains generated TKD-EGFRs that recapitulate the autophosphorylation/localization patterns of a constitutively activated receptor versus a WT-like EGFR, respectively. Investigation of the molecular activity of the TKD-EGFR yields evidence for a unique mechanism of constitutive activity and dual kinase domain activation.
Collapse
Affiliation(s)
- B H Ozer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
6
|
Rao RC, Boyd J, Padmanabhan R, Chenoweth JG, McKay RD. Efficient serum-free derivation of oligodendrocyte precursors from neural stem cell-enriched cultures. Stem Cells 2009; 27:116-25. [PMID: 18403757 DOI: 10.1634/stemcells.2007-0205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligodendrocytes derived in the laboratory from stem cells have been proposed as a treatment for acute and chronic injury to the central nervous system. Platelet-derived growth factor (PDGF) receptor alpha (PDGFRalpha) signaling is known to regulate oligodendrocyte precursor cell numbers both during development and adulthood. Here, we analyze the effects of PDGFRalpha signaling on central nervous system (CNS) stem cell-enriched cultures. We find that AC133 selection for CNS progenitors acutely isolated from the fetal cortex enriches for PDGF-AA-responsive cells. PDGF-AA treatment of fibroblast growth factor 2-expanded CNS stem cell-enriched cultures increases nestin(+) cell number, viability, proliferation, and glycolytic rate. We show that a brief exposure to PDGF-AA rapidly and efficiently permits the derivation of O4(+) oligodendrocyte-lineage cells from CNS stem cell-enriched cultures. The derivation of oligodendrocyte-lineage cells demonstrated here may support the effective use of stem cells in understanding fate choice mechanisms and the development of new therapies targeting this cell type.
Collapse
Affiliation(s)
- Rajesh C Rao
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
7
|
Canoll P, Goldman JE. The interface between glial progenitors and gliomas. Acta Neuropathol 2008; 116:465-77. [PMID: 18784926 PMCID: PMC2759726 DOI: 10.1007/s00401-008-0432-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 01/28/2023]
Abstract
The mammalian brain and spinal cord contain heterogeneous populations of cycling, immature cells. These include cells with stem cell-like properties as well as progenitors in various stages of early glial differentiation. This latter population is distributed widely throughout gray and white matter and numerically represents an extremely large cell pool. In this review, we discuss the possibility that the glial progenitors that populate the adult CNS are one source of gliomas. Indeed, the marker phenotypes, morphologies, and migratory properties of cells in gliomas strongly resemble glial progenitors in many ways. We review briefly some salient features of normal glial development and then examine the similarities and differences between normal progenitors and cells in gliomas, focusing on the phenotypic plasticity of glial progenitors and the responses to growth factors in promoting proliferation and migration of normal and glioma cells, and discussing known mutational changes in gliomas in the context of how these might affect the proliferative and migratory behaviors of progenitors. Finally, we will discuss the "cancer stem cell" hypothesis in light of the possibility that glial progenitors can generate gliomas.
Collapse
Affiliation(s)
- Peter Canoll
- Department of Pathology, Division of Neuropathology, Columbia University, 630 W. 168th St., New York, NY 10032, USA
| | - James E. Goldman
- Department of Pathology, Division of Neuropathology, Columbia University, 630 W. 168th St., New York, NY 10032, USA
| |
Collapse
|
8
|
Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, Kun LE, Friedman H, Packer R, Banerjee A, Geyer JR, Goldman S, Poussaint TY, Krasin MJ, Wang Y, Hayes M, Murgo A, Weiner S, Boyett JM. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol 2007; 9:145-60. [PMID: 17293590 PMCID: PMC1871662 DOI: 10.1215/15228517-2006-031] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/08/2006] [Indexed: 01/13/2023] Open
Abstract
This study estimated the maximum tolerated dose (MTD) of imatinib with irradiation in children with newly diagnosed brainstem gliomas, and those with recurrent malignant intracranial gliomas, stratified according to use of enzyme-inducing anticonvulsant drugs (EIACDs). In the brainstem glioma stratum, imatinib was initially administered twice daily during irradiation, but because of possible association with intratumoral hemorrhage (ITH) was subsequently started two weeks after irradiation. The protocol was also amended to exclude children with prior hemorrhage. Twenty-four evaluable patients received therapy before the amendment, and three of six with a brainstem tumor experienced dose-limiting toxicity (DLT): one had asymptomatic ITH, one had grade 4 neutropenia and, one had renal insufficiency. None of 18 patients with recurrent glioma experienced DLT. After protocol amendment, 3 of 16 patients with brainstem glioma and 2 of 11 patients with recurrent glioma who were not receiving EIACDs experienced ITH DLTs, with three patients being symptomatic. In addition to the six patients with hemorrhages during the DLT monitoring period, 10 experienced ITH (eight patients were symptomatic) thereafter. The recommended phase II dose for brainstem gliomas was 265 mg/m(2). Three of 27 patients with brainstem gliomas with imaging before and after irradiation, prior to receiving imatinib, had new hemorrhage, excluding their receiving imatinib. The MTD for recurrent high-grade gliomas without EIACDs was 465 mg/m(2), but the MTD was not established with EIACDs, with no DLTs at 800 mg/m(2). In summary, recommended phase II imatinib doses were determined for children with newly diagnosed brainstem glioma and recurrent high-grade glioma who were not receiving EIACDs. Imatinib may increase the risk of ITH, although the incidence of spontaneous hemorrhages in brainstem glioma is sufficiently high that this should be considered in studies of agents in which hemorrhage is a concern.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Uht RM, Amos S, Martin PM, Riggan AE, Hussaini IM. The protein kinase C-eta isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene 2006; 26:2885-93. [PMID: 17146445 DOI: 10.1038/sj.onc.1210090] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the highest grade of astrocytoma. GBM pathogenesis has been linked to receptor tyrosine kinases and kinases further down signal-transduction pathways - in particular, members of the protein kinase C (PKC) family. The expression and activity of various PKC isoforms are increased in malignant astrocytomas, but not in non-neoplastic astrocytes. This suggests that PKC activity contributes to tumor progression. The level of PKC-eta expressed correlates with the degree of phorbol-12-myristate-13-acetate (PMA)-induced proliferation of two glioblastoma cell lines, U-1242 MG and U-251 MG. Normally, U-1242 cells do not express PKC-eta, and PMA inhibits their proliferation. Conversely, PMA increases proliferation of U-1242 cells that are stably transfected with PKC-eta (U-1242-PKC-eta). PMA treatment also stimulates proliferation of U-251 cells, which express PKC-eta. Here, we determined that extracellular signal-regulated kinase (ERK) and Elk-1 are downstream targets of PKC-eta. Elk-1-mediated transcriptional activity correlates with the PKC-eta-mediated mitogenic response. Pretreatment of U-1242-PKC-eta cells with inhibitors of PKC or MAPK/ERK kinase (MEK) (bisindolyl maleimide (BIM) or U0126, respectively) blocked both PMA-induced Elk-1 transcriptional activity and PMA-stimulated proliferation. An overexpressed dominant-negative PKC-eta reduced the mitogenic response in U-251 cells, as did reduction of Elk-1 by small interfering RNA. Taken together, these results strongly suggest that PKC-eta-mediated glioblastoma proliferation involves MEK/mitogen-activated protein (MAP) kinase phosphorylation, activation of ERK and subsequently of Elk-1. Elk-1 target genes involved in GBM proliferative responses have yet to be identified.
Collapse
Affiliation(s)
- R M Uht
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Malignant astrocytic gliomas, referred to as astrocytomas, represent the most commonly diagnosed adult primary brain tumor. These tumors are characterized by unrelenting growth that is often resistant to chemotherapy and radiation therapy. Tumor expansion into the healthy surrounding brain tissue produces severe and often fatal consequences. In this study, we examine the potential for the neuregulin-1/erbB receptor signaling cascade to contribute to this process by modulating glioma cell growth. Using antibodies specific for the erbB receptors, we demonstrate the expression patterns for the erbB2, erbB3, and erbB4 receptors in human glioma biopsy samples. We then verify receptor expression in a panel of human glioma cell lines. Next, we investigate the status of the erbB2 and erbB3 receptors in the human glioma cell lines and find that they are constitutively tyrosine-phosphorylated and heterodimerized. Subsequently, we demonstrate that theses same cell lines express membrane bound and released forms of neuregulins, the erbB receptor ligands, suggesting a possible autocrine or paracrine signaling network. Furthermore, we show that exogenous activation of erbB2 and erbB3 receptors in U251 glioma cells by recombinant Nrg-1beta results in enhanced glioma cell growth under conditions of serum-deprivation. This enhancement is due to an increase in cell survival rather than an increase in cell proliferation and is dependent on the activation of erbB2 and phosphatidylinositol-3 kinase (PI3K). Moreover, Nrg-1beta activates an inhibitor of apoptosis, Akt, implying a possible role for this kinase in mediating Nrg-1beta effects in gliomas. This data suggests that glioma cells may use autocrine or paracrine neuregulin-1/erbB receptor signaling to enhance cell survival under conditions where growth would otherwise be limited.
Collapse
Affiliation(s)
- Patricia S Ritch
- Department of Neurobiology, Civitan International Research Center, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
11
|
Takeuchi H, Kanzawa T, Kondo Y, Kondo S. Inhibition of platelet-derived growth factor signalling induces autophagy in malignant glioma cells. Br J Cancer 2004; 90:1069-75. [PMID: 14997209 PMCID: PMC2409632 DOI: 10.1038/sj.bjc.6601605] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malignant gliomas highly coexpress platelet-derived growth factor (PDGF) and its receptor, suggesting the presence of an autocrine loop. Therefore, disruption of PDGF ligand/receptor complex represents a promising strategy for the treatment of malignant gliomas. However, the mechanisms of the antitumour effect exerted by the inhibition of PDGF-mediated cell growth remain unclear. In the present study, using anti-PDGF neutralising antibody, we investigated the effect of the inhibition of PDGF signalling on malignant glioma U87-MG, D54, and T98G cells with high levels of PDGF-A and -B. As a control, normal fibroblast MRC5 cells expressing low levels of PDGF-A and -B were used. Treatment with anti-PDGF neutralising antibody did not affect the expressions of PDGF-A, PDGF-B, and Akt, but suppressed the level of phosphorylated Akt in tumour cells, indicating the inhibition of PDGF signalling. The cell viability of all malignant glioma cells tested in this study was significantly inhibited in a time-dependent manner following the treatment compared to that of fibroblast cells (P<0.02 to <0.05). The antitumour effect of anti-PDGF antibody was suppressed by the activation of Akt and enhanced by the downregulation of Akt. Interestingly, the inhibition of PDGF signalling induced the development of acidic vesicular organelles and the autophagosome membrane association of the microtubule-associated protein light chain 3, which are characteristic of autophagy, in malignant glioma cells, while apoptotic cell death was not observed. Together these findings imply a new concept of autophagy for PDGF autocrine inhibition in malignant gliomas.
Collapse
Affiliation(s)
- H Takeuchi
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - T Kanzawa
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - Y Kondo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
| | - S Kondo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 64, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
12
|
Beech DJ, Madan AK, Aliabadi-Wahle S, Hays AN, Long WP. Synchronous Occurrence of Glioblastoma Multiforme and Esophageal Adenocarcinoma. Am Surg 2003. [DOI: 10.1177/000313480306900211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Synchronous malignancies are rare occurrences for which there may be a genetic link between two cancers or which may be simply coincidental. Although glioblastoma multiforme and esophageal adenocarcinoma have few clinical similarities there are no known biochemical or genetic links between the two malignancies. This case discussion details the synchronous occurrences of these two lesions and highlights possible clinical, biochemical, and genetic commonalities.
Collapse
Affiliation(s)
- Derrick J. Beech
- Section of Surgical Oncology, Department of Surgery, University of Tennessee—Memphis
| | - Atul K. Madan
- Department of Surgery, Rush University, Chicago, Illinois
| | | | | | - William P. Long
- Department of Pathology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
13
|
Acevedo-Duncan M, Pearlman J, Zachariah B. Sensitivity of human glioma U-373MG cells to radiation and the protein kinase C inhibitor, calphostin C. Cell Prolif 2001; 34:31-41. [PMID: 11284917 PMCID: PMC6496374 DOI: 10.1046/j.1365-2184.2001.00194.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the radiosensitivity of the grade III human glioma cell line U-373MG by investigating the effects of radiation and the specific protein kinase C inhibitor, calphostin C on the cell cycle and cell proliferation. Irradiated glioma U-373MG cells progressed through G1-S and underwent an arrest in G2-M phase. The radiosensitivity of U-373MG cells to graded doses of either photons or electrons was determine by microculture tetrazolium assay. The data was fitted to the linear-quadratic model. The proliferation curves demonstrated that U-373MG cells appear to be highly radiation resistant since 8 Gy was required to achieve 50% cell mortality. Compared to radiation alone, exposure to calphostin C (250 nM) 1 h prior to radiation decreased the proliferation of U-373MG by 76% and calphostin C provoked a weakly synergistic effect in concert with radiation. Depending on the time of application following radiation, calphostin C produced an additive or less than additive effect on cell proliferation. We postulate that the enhanced radiosensitivity observed when cells are exposed to calphostin C prior to radiation may be due to direct or indirect inhibition of protein kinase C isozymes required for cell cycle progression.
Collapse
Affiliation(s)
- M Acevedo-Duncan
- James A. Haley Veterans Hospital, and Department of Chemistry, University of South Florida, Tampa 33612, USA.
| | | | | |
Collapse
|
14
|
Tsai JC, Hsiao YY, Teng LJ, Chen CT, Kao MC. Comparative study on the ALA photodynamic effects of human glioma and meningioma cells. Lasers Surg Med 2000; 24:296-305. [PMID: 10327048 DOI: 10.1002/(sici)1096-9101(1999)24:4<296::aid-lsm7>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to compare the differential susceptibility to photodynamic therapy (PDT) mediated damage in human U-105MG glioma cells and CH-157MN meningioma cells in vitro using 5-amino-levulinic acid (ALA) as photosensitizer, and to determine if growth factors would enhance PDT-mediated damage of these cells. STUDY DESIGN/MATERIALS AND METHODS U-105MG or CH-157MN cells were irradiated with polychromatic light in the presence of ALA. A Xenon lamp (150 W) was used as the light source. For the study on the effect of growth factor on ALA-PDT, cells were cultured in serum free medium for 24 hours. Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), or platelet derived growth factor BB (PDGF-BB) was added to achieve a final concentration of 50 ng/ml. 30 minutes later, cells were incubated with ALA (100 microg/ml) for 24 hours, washed, and irradiated with light (11 J/cm2). MTT tetrazolium assays were performed 24 hours after light irradiation. RESULTS The inhibition of metabolic cellular function in U-105MG cells by ALA depended on both light energy density and ALA concentration. The susceptibility to ALA-PDT was profoundly lower for CH-157MN meningioma cells than U-105MG glioma cells. When incubated with ALA (100 microg/ml), U-105MG cells exhibited an LD50 around 8 J/cm2 of light irradiation, whereas that of CH-157MN cells was more than 25 J/cm2. EGF, bFGF, or PDGF-BB did not have any effects on the susceptibility of these two cell lines to ALA-PDT. CONCLUSION ALA-PDT was more effective in killing U-105MG glioma cells than CH-157MN meningioma cells. The differential susceptibility was likely due to differential accumulation of PpIX in these cells. EGF, bFGF, or PDGF-BB did not have stimulatory or inhibitory effect on the efficiency of ALA-PDT.
Collapse
Affiliation(s)
- J C Tsai
- Laser Medicine Research Center, College of Medicine, National Taiwan University, Taipei.
| | | | | | | | | |
Collapse
|
15
|
Pollack IF, Bredel M, Erff M, Hamilton AD, Sebti SM. Inhibition of Ras and related guanosine triphosphate-dependent proteins as a therapeutic strategy for blocking malignant glioma growth: II--preclinical studies in a nude mouse model. Neurosurgery 1999; 45:1208-14; discussion 1214-5. [PMID: 10549939 DOI: 10.1097/00006123-199911000-00039] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Preliminary studies have demonstrated that the Ras family and related guanosine triphosphate-dependent proteins are overactivated in malignant gliomas and that inhibition of the activation of such proteins, by blockade of their post-translational processing, reduces tumor cell growth in vitro. The current study evaluates the utility of this therapeutic strategy in vivo, using preclinical glioma model systems. METHODS We examined the efficacy against U-87 human malignant glioma cells, in both subcutaneous and intracranial nude mouse models, of selective peptidomimetic inhibitors of farnesyltransferase (FTI-276) and geranylgeranyltransferase (GGTI-297), which are involved in critical steps in the post-translational processing of Ras and related guanosine triphosphate-dependent proteins. For the subcutaneous model, 2 x 10(5) U-87 cells were implanted; after measurable tumors were detected on Day 7, animals were treated with either FTI-276, GGTI-297, or vehicle, administered by continuous infusion for 7 days. Differences in tumor volumes among the treatment groups were examined for significance using a Student's t test. For the intracranial model, 2 x 10(5) U-87 cells were implanted in the right frontal lobe and treatment was initiated on Day 7. In initial studies, animals received a 7-day course of either FTI-276, GGTI-297, or vehicle. In subsequent studies, a 28-day treatment period was used. Comparisons of survival times among treatment groups were performed using a rank-sum test. RESULTS Although the two agents exhibited comparable antiproliferative activities in previous in vitro studies, an obvious difference in efficacy was apparent in this study. Whereas the geranylgeranyltransferase inhibitor failed to improve survival rates, compared with those observed for control animals, in either the subcutaneous or intracranial model, the farnesyltransferase inhibitor produced objective regression of tumor growth in the subcutaneous model and significant prolongation of survival times in the intracranial model, without apparent toxicity. In the subcutaneous model, tumor volumes for the control, GGTI-297-treated, and FTI-276-treated animals on Day 28 after implantation were 621+/-420, 107+/-104, and 18.5+/-12.7 mm3, respectively (P < 0.05). In the 7-day-treated intracranial model, survival times for the control, GGTI-297-treated, and FTI-276-treated groups were 27.7+/-2.9, 29.8+/-2.1, and 43.6+/-2.7 days, respectively (P < 0.001). In the 28-day-treated intracranial model, survival times for the control, GGTI-297-treated, and FTI-276-treated groups were 29.2+/-3.7, 28.3+/-3.9, and 58.7+/-6.2 days, respectively, with five of six animals in the latter group surviving more than 55 days after tumor implantation (P < 0.001). CONCLUSION These studies demonstrate that farnesyltransferase inhibition is effective in diminishing the growth of human glioma cells in vivo. Evaluation of this treatment approach in clinical trials is warranted.
Collapse
Affiliation(s)
- I F Pollack
- Department of Neurosurgery, University of Pittsburgh Cancer Institute Brain Tumor Center, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
16
|
Bredel M, Pollack IF. The p21-Ras signal transduction pathway and growth regulation in human high-grade gliomas. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:232-49. [PMID: 10209234 DOI: 10.1016/s0165-0173(98)00057-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deregulated p21-Ras function, as a result of mutation, overexpression or growth factor-induced overactivation, contributes to at least 30% of human cancer. This article reviews the potential role of the p21-Ras family of GTPases in the regulation of growth of high-grade gliomas and describes how targeting this oncoprotein clinically may provide a novel strategy to counteract glioma proliferation. The application of strategies directed at selectively opposing the deregulated signal transduction pathway of high-grade gliomas may be of potential therapeutic benefit and may offer a whole new arsenal of antineoplastic agents to be included in the multimodal treatment of these challenging neoplasms.
Collapse
Affiliation(s)
- M Bredel
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
17
|
Abstract
The goal of this work was to determine the molecular basis for the induction of tumour vascularization and progression by injury. Magnetic resonance imaging (MRI) studies demonstrated that administration of wound fluid derived from cutaneous injuries in pigs reduced the lag for vascularization and initiation of growth of C6 glioma spheroids, implanted in nude mice, and accelerated tumour doubling time. The former effect can be attributed to the angiogenic capacity of wound fluid as detected in vivo by MRI, and in vitro in promoting endothelial cell proliferation. The latter effect, namely the induced rate of tumour growth, is consistent with the angiogenic activity of wound fluid as well as with the finding that wound fluid was directly mitogenic to the tumour cells, and accelerated growth of C6 glioma in spheroid culture. Of the multiple growth factors present in wound fluid, two key factors, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) and platelet-derived growth factor (PDGF), were identified as the dominant mitogens for C6 glioma, and inhibition of their activity using specific neutralizing antibodies suppressed the mitogenic effect of wound fluid on DNA synthesis in C6 glioma. This study suggests that the stimulatory effect of injury on tumour progression can possibly be attenuated by therapeutic targeting directed against a limited number of specific growth factors.
Collapse
Affiliation(s)
- R Abramovitch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
18
|
Bredel M, Pollack IF, Freund JM, Rusnak J, Lazo JS. Protein kinase C inhibition by UCN-01 induces apoptosis in human glioma cells in a time-dependent fashion. J Neurooncol 1999; 41:9-20. [PMID: 10222418 DOI: 10.1023/a:1006047025425] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies in our laboratory have shown that UCN-01 (7-hydroxystaurosporine), which is a derivative of the non-selective protein kinase inhibitor staurosporine that exhibits relative selectivity for protein kinase C (PKC), is a potent inhibitor of glioma growth in in vitro and in vivo models. This agent exhibits both cytotoxic and cytostatic effects, depending on the time period of drug exposure. In the present study, we examined whether UCN-01-induced cytotoxicity correlated with the induction of apoptosis, and characterized further the time course of this process as a prelude to application of UCN-01 in clinical trials. We first demonstrated that the cytotoxic effects of UCN-01 were associated with the induction of morphological features of apoptosis. Secondly, we identified electrophoretic features of apoptosis semiquantitatively at a series of time points using field inversion gel electrophoresis. These studies showed a peak in the induction of high-molecular-weight DNA fragmentation after 3-6 days of drug treatment. Thirdly, we measured the percentage of cells undergoing apoptosis at various time points using a terminal transferase-catalyzed in situ end-labeling technique, which confirmed a time- and concentration-dependent increase in apoptotic cell numbers. This correlated with a progressive decrease in the percentage of cells that were viable as assessed by trypan blue exclusion. Cell killing peaked within 2-4 days after beginning UCN-01 treatment, but continued at a lower level in the ensuing days. Taken together, these studies demonstrated that extended periods of exposure to UCN-01 are needed for optimal manifestation of cytotoxic effects against glioma cells, a factor that must be taken into consideration in the design of future clinical trials with this agent for malignant gliomas.
Collapse
Affiliation(s)
- M Bredel
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
19
|
McKay JS, Blakemore WF, Franklin RJ. Trapidil-mediated inhibition of CNS remyelination results from reduced numbers and impaired differentiation of oligodendrocytes. Neuropathol Appl Neurobiol 1998; 24:498-506. [PMID: 9888160 DOI: 10.1046/j.1365-2990.1998.00148.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a previous study, we described the inhibitory effects of the growth factor-antagonist, trapidil, on spontaneously occurring oligodendrocyte remyelination in the rat spinal cord following lysolecithin-induced demyelination [30]. The objective of the present study was to further investigate the mechanisms of trapidil-mediated impairment of remyelination and thus obtain greater insight into the steps at which growth factors may be involved in remyelination. To this end, an ultrastructural analysis of the cellular composition of lesions from control and trapidil-treated animals was undertaken. Demyelination was created in the dorsal funiculus of 6-week-old female rats by the injection of 1.0 microliter of 1% lysolecithin. The animals received daily intraperitoneal injections of trapidil (80 mg/kg) or saline for 21 days, beginning on the day of lesion induction. Quantitative electron microscopic examination of lesions from both groups of animals showed that trapidil-treated lesions had reduced numbers of oligodendrocytes (P = 0.02) with a higher relative proportion of immature phenotypes, but increased numbers of microglia (P = 0.0009) and dystrophic axons (P0.02). In addition, the numbers of myelin lamellae around remyelinated axons were fewer in trapidil-treated animals. These results suggest that trapidil-mediated impairment of CNS remyelination is due to a blockage of growth factor-mediated proliferation and/or recruitment of remyelinating cells. Furthermore, the presence of oligodendrocytes with a more immature phenotype and the decreased thickness of the myelin sheaths of remyelination in the trapidil-treated animals indicate an impairment of growth factor-mediated differentiation.
Collapse
Affiliation(s)
- J S McKay
- MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| | | | | |
Collapse
|
20
|
Bredel M, Pollack IF, Freund JM, Hamilton AD, Sebti SM. Inhibition of Ras and related G-proteins as a therapeutic strategy for blocking malignant glioma growth. Neurosurgery 1998; 43:124-31; discussion 131-2. [PMID: 9657198 DOI: 10.1097/00006123-199807000-00081] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Preliminary studies have demonstrated that the Ras family and related guanosine 5'-triphosphate-dependent proteins (G-proteins) are overactivated in malignant gliomas and may function as indirect mediators of glial transformation initiated by deregulated upstream signaling elements. We postulated that inhibiting the activation of such proteins might represent a promising strategy for blocking the aberrant proliferation of these tumors. METHODS AND RESULTS Accordingly, we examined the therapeutic efficacy against malignant glioma cells in vitro of a series of selective peptidomimetic inhibitors of farnesylation (FTI-277) and geranylgeranylation (GGTI-286 and GGTI-298), which are critical steps in the post-translational processing (prenylation) of these proteins. We first defined concentration-response relationships for each of these agents, using MTS-based cell proliferation assays in the established malignant glioma cell lines U-87 and LN-Z308 and the low-passage malignant glioma cell line SG-388. FTI-277, GGTI-286, and GGTI-298 each produced a striking concentration-dependent antiproliferative effect on the glioma cell lines, with the median effective dose ranging from 2.5 to 15.5 micromol/L. We then assessed the effect of prenylation inhibition on cell viability using clonogenic growth assays. This demonstrated a steady drop in the number of colonies with increasing drug concentrations for all three inhibitors. Third, we examined whether the cytotoxic effects of one of these inhibitors (GGTI-298) were associated with the induction of apoptosis using a terminal transferase-catalyzed in situ end-labeling technique. This approach showed a time-dependent increase in apoptotic cell numbers, which correlated with a progressive decrease in the percentage of cells that were viable as assessed by trypan blue exclusion. CONCLUSION Our studies demonstrated that FTI-277, GGTI-286, and GGTI-298 each yielded significant antiproliferative effects in human malignant glioma cells in vitro at low micromolar concentrations, which have been achievable in vivo without major systemic toxicity. Extended periods of drug treatment produced cytotoxicity in the tumor cells, which correlated with the induction of apoptosis. We conclude that inhibition of Ras and related G-proteins offers a promising approach for blocking glioma proliferation that justifies further investigation in vivo.
Collapse
Affiliation(s)
- M Bredel
- Department of Neurosurgery, University of Pittsburgh Cancer Institute Brain Tumor Center, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
21
|
Canute GW, Longo SL, Longo JA, Shetler MM, Coyle TE, Winfield JA, Hahn PJ. The hydroxyurea-induced loss of double-minute chromosomes containing amplified epidermal growth factor receptor genes reduces the tumorigenicity and growth of human glioblastoma multiforme. Neurosurgery 1998; 42:609-16. [PMID: 9526995 DOI: 10.1097/00006123-199803000-00031] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE We investigated whether the hydroxyurea-induced loss of double-minute chromosomes containing amplified epidermal growth factor receptor (EGFR) genes would lead to a loss of tumorigenicity of a glioblastoma multiforme cell line. METHODS Glioblastoma multiforme cells were treated in vitro with 0 (HU0) or 100 micromol/L (HU100) hydroxyurea and then injected into the flanks of nude mice. Survival and tumor volumes were evaluated. Pulsed-field gel electrophoresis, Southern blot hybridization, and slot-blot analysis were used to determine EGFR amplification levels. Flow cytometry and immunofluorescent staining were used for cell-cycle analysis and EGFR protein expression. RESULTS Prior to injection, HU100 cells lost 95% of their amplified EGFR genes and developed into tumors 6 weeks after injection versus 3 weeks for HU0 cells. Mice with HU100 tumors had a median survival of 62 days versus 43 days for control mice with HU0 tumors. Pulse-field gel electrophoresis analysis showed that HU100 tumors had reamplified the EGFR gene as double-minute chromosomes of the same size as those originally present before hydroxyurea treatment. When HU100 cells were cultured in the absence of hydroxyurea, the EGFR gene also reamplified. HU100 cells grew at less than half the rate of untreated HU0 control cells in culture and showed a decreased number of cells entering the cell cycle. Immunofluorescent staining of HU150 (150 micromol/L) cells showed decreased EGFR protein expression. CONCLUSION The EGFR gene is important for tumorigenicity in mice and growth in culture. Hydroxyurea induces the loss of double-minute chromosome-amplified EGFR genes against a selection gradient and significantly delays the onset of tumors. These results support the potential use of low-dose hydroxyurea for the treatment of human glioblastoma multiforme.
Collapse
Affiliation(s)
- G W Canute
- Department of Neurosurgery, State University of New York Health Science Center, Syracuse 13210, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Numerous in vivo methodologies have documented the invasive behavior of glioma cells through normal brain parenchyma. Glioma cell locomotion has also been assessed with a number of in vitro assays including the Boyden chamber and other chemotaxis assays, colloidal gold cell tracking, analysis of migration of cells tumor cells from spheroids, confrontation cultures of glioma cells with aggregates of non-neoplastic tissue, time-lapse video microscopy, electron microscopic examination of the cytomorphologic correlates of cell motility, the radial dish assay, and quantitative enzyme immunoassay of proteins associated with invasion (e.g. laminin). Several of these techniques have been specifically modified to assess the effects of cytokines on glioma cell motility in vitro. Cytokines studied utilizing these methods include: epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), the bb dimer of platelet-derived growth factor (PDGFbb), nerve growth factor (NGF), interleukin 2 (IL-2), transforming growth factors alpha and beta 1 (TGF alpha and TGFstraat1), and tumor necrosis factor alpha (TNF alpha). This review summarizes the investigational methods used to evaluate random and directional glioma cell motility and invasion in vivo and in vitro. The roles of specific mitogens as motogens, as evaluated with these methods are then presented.
Collapse
Affiliation(s)
- M R Chicoine
- Washington University School of Medicine, Department of Neurological Surgery, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
23
|
Di Rocco F, Carroll RS, Zhang J, Black PM. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 1998; 42:341-6. [PMID: 9482185 DOI: 10.1097/00006123-199802000-00080] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Platelet-derived growth factor (PDGF) induces cellular proliferation and differentiation by activating intracellular signaling mechanisms via their cognate receptors. In previous studies, we demonstrated that human brain tumors such as meningiomas, astrocytomas, medulloblastomas, and ependymomas expressed the messenger ribonucleic acid for the PDGF subunits and their receptors. In the present study, we investigated the expression of the messenger ribonucleic acid PDGF A and B chains and the PDGF alpha and beta receptors in 17 cases of oligodendrogliomas. METHODS Measurements of messenger ribonucleic acid levels were obtained using radioactive complementary deoxyribonucleic acid probes. Protein expression was analyzed with specific antibodies. RESULTS Sixteen of 17 tumors expressed the PDGF A subunit and all the PDGF alpha receptors. Furthermore, all the tumors expressed PDGF B and PDGF beta receptor subunits. CONCLUSION The results of this study suggest that oligodendrogliomas may have an autocrine loop stimulated by the interaction of PDGF and its receptor simultaneously produced by these tumors.
Collapse
Affiliation(s)
- F Di Rocco
- Neurosurgical Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
24
|
Bredel M, Pollack IF. The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurochir (Wien) 1998; 139:1000-13. [PMID: 9442212 DOI: 10.1007/bf01411552] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present article reviews the role of the second messenger enzyme protein kinase C (PKC) in the growth regulation of high-grade gliomas, and evaluates the efficacy of therapeutic strategies directed against PKC for blocking the proliferation of these malignancies in in vitro and in vivo models. The translation of such strategies to the treatment of patients with malignant gliomas may provide a novel approach for improving the otherwise grim outlook associated with these neoplasms.
Collapse
Affiliation(s)
- M Bredel
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | | |
Collapse
|
25
|
Campbell JW, Pollack IF. Growth factors in gliomas: antisense and dominant negative mutant strategies. J Neurooncol 1997; 35:275-85. [PMID: 9440025 DOI: 10.1023/a:1005820701709] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antisense and dominant negative mutant strategies were developed as 'magic bullets' to suppress the function of a particular gene while preserving the remaining cellular activities. While experience with these techniques has dispelled some of the 'magic', these strategies remain useful for understanding the function of particular gene products. Antisense strategies involve the administration of either a synthetic oligodeoxynucleotide or a plasmid construct which produces a sequence that is complementary to the DNA or mRNA of the gene of interest. Antisense binding should inhibit transcription or translation of the gene, and thus decrease synthesis of the protein for which the gene encodes. Conversely, dominant negative mutations inhibit activity of a gene product by encoding for a second protein which suppresses the function of the gene of interest. For example, a single mutant subunit in a multimeric protein might allow normal assembly of the protein while inhibiting its activity. The use of these techniques for investigating the role of various growth factor pathways in glial neoplasia and their potential therapeutic applications are reviewed below.
Collapse
Affiliation(s)
- J W Campbell
- Department of Neurological Surgery, Children's Hospital of Pittsburgh, PA, USA
| | | |
Collapse
|
26
|
Abstract
Numerous in vivo methodologies have documented the invasive behavior of glioma cells through normal brain parenchyma. Glioma cell locomotion has also been assessed with a number of in vitro assays including the Boyden chamber and other chemotaxis assays, colloidal gold cell tracking, analysis of migration of cells tumor cells from spheroids, confrontation cultures of glioma cells with aggregates of non-neoplastic tissue, time-lapse video microscopy, electron microscopic examination of the cytomorphologic correlates of cell motility, the radial dish assay, and quantitative enzyme immunoassay of proteins associated with invasion (e.g. laminin). Several of these techniques have been specifically modified to assess the effects of cytokines on glioma cell motility in vitro. Cytokines studied utilizing these methods include: epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), the bb dimer of platelet-derived growth factor (PDGFbb), nerve growth factor (NGF), interleukin 2 (IL-2), transforming growth factors alpha and beta 1 (TGF alpha and TGFstraat1), and tumor necrosis factor alpha (TNF alpha). This review summarizes the investigational methods used to evaluate random and directional glioma cell motility and invasion in vivo and in vitro. The roles of specific mitogens as motogens, as evaluated with these methods are then presented.
Collapse
Affiliation(s)
- M R Chicoine
- Washington University School of Medicine, Department of Neurological Surgery, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
27
|
Abstract
The last ten years have seen rapid progress in both our understanding of the normal progression and control of gliogenesis and in the laboratory techniques necessary to sustain and study most glial cell types, including progenitor cells of both type-1 astrocyte (T1A) and oligodendrocyte-type-2 astrocyte (T2A) lineage. These studies have direct relevance for the lineage analysis of human gliomas, optimizing in vitro glioma models, and suggesting potentially fertile new grounds for glioma biology research. We do not yet known whether malignant transformation occurs only in mature glia that then 'de-differentiate' into cells with glial precursor phenotypes and behavior characteristics, whether neoplastic transformation occurs in O-2A progenitor cells, or whether both mechanisms may occur in different patients. However, preliminary results suggest that astrocytomas can arise from two different glial lineages, that oligodendrogliomas and mixed oligo-astrocytomas arise exclusively from the O-2A lineage, and that medulloblastomas may also have a connection with the O-2A lineage. An ontogeny-based glioma classification system may lead to better prognostic patient data and better predict patient response to treatment than currently available classification systems. Available data from the study of developmental glial biology raises serious doubts about the fidelity and relevance of in vitro glioma models that rely on culture media supplemented with animal serum and suggest that relying on chemically-defined media conditioned by astrocytes may be the better research strategy. Findings from the study of normal gliogenesis also suggest that growth factors are likely to act as much more than simple mitogens in glioma biology. Potentially fertile areas of research for glioma biology include studying the cooperative effect of multiple growth factors, potential growth factor effects as survival factors, inhibitors of differentiation, and differentiation inducers, and studying potential positive humoral feedback loops between glioma cells and normal glial cells, as well as normal non-glial cells, within and surrounding each glioma.
Collapse
Affiliation(s)
- M E Linskey
- Neurosciences Department, Naval Medical Center, San Diego, CA 92134-5000, USA
| |
Collapse
|
28
|
Glazer RI. Protein kinase C as a target for cancer therapy. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:235-8. [PMID: 9212917 DOI: 10.1089/oli.1.1997.7.235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R I Glazer
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
29
|
Morford LA, Boghaert ER, Brooks WH, Roszman TL. Insulin-like growth factors (IGF) enhance three-dimensional (3D) growth of human glioblastomas. Cancer Lett 1997; 115:81-90. [PMID: 9097982 DOI: 10.1016/s0304-3835(97)04717-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human glioblastomas (gliomas) are characterized as rapidly growing brain tumors which are highly invasive but rarely metastatic. Human gliomas synthesize and secrete increased levels of insulin-like growth factors (IGFs) as well as expressing increased numbers of IGF receptors when compared to normal brain tissue. These observations suggest the existence of an IGF-mediated autocrine mechanism for glioma growth regulation. The purpose of this study was to examine the effect of human recombinant IGF (hrIGF) treatment on the in vitro growth of human glioma monolayer and three-dimensional (3D) multicellular spheroid cultures. The data demonstrate that hrIGF-I treatment of glioma cell lines slightly enhanced tumor monolayer proliferation as measured by [(3)H]thymidine incorporation. In contrast, treatment of glioma spheroids with hrIGF-I or hrDes(1-3)IGF-I, the truncated brain form of IGF-I, dramatically enhanced 3D tumor growth with a 1.5-2-fold reduction in spheroid doubling time (FRSDT). In addition, IGF-treated glioma spheroids were more densely packed than spheroids grown in media alone with no observed necrosis. These data suggest that IGFs will dramatically enhance glioma proliferation when 3D cell-cell contact occurs. This observed enhancement suggests that IGFs both synthesized in the brain and systemically support rapid proliferation of gliomas in vivo.
Collapse
Affiliation(s)
- L A Morford
- Department of Microbiology and Immunology, University of Kentucky, Chandler Medical Center, Lexington 40536-0084, USA
| | | | | | | |
Collapse
|
30
|
Jennings MT, Hart CE, Commers PA, Whitlock JA, Martincic D, Maciunas RJ, Moots PL, Shehab TM. Transforming growth factor beta as a potential tumor progression factor among hyperdiploid glioblastoma cultures: evidence for the role of platelet-derived growth factor. J Neurooncol 1997; 31:233-54. [PMID: 9049853 DOI: 10.1023/a:1005767616500] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among early-passage, near-diploid gliomas in vitro, transforming growth factor type beta (TGF beta) has been previously shown to be an autocrine growth inhibitor. In contrast, hyperdiploid (> or = 57 chromosomes/metaphase) glioblastoma multiforme (HD-GM) cultures were autocrinely stimulated by the TGF beta. The mechanism of this 'conversion' from autocrine inhibitor to mitogen is not understood; previous studies have suggested that platelet-derived growth factor (PDGF) might be modulated by TGF beta. The similar expression of TGF beta types 1-3, PDGF-AA; -BB, as well as the PDGF receptor alpha and beta subunits (a/beta PDGFR) between biopsies of the HD-GM and near-diploid, TGF beta-inhibited glioblastomas (GM) by immunohistochemistry did not explain the discrepancy in their regulatory responses. Flow cytometry demonstrated that TGF beta's mitogenic effect was selective for the aneuploid subpopulations of two of three selected HD-GM cultures, while the diploid cells were inhibited. Among the HD-GM, TGF beta 1 induced the RNA of PDGF-A, c-sis and TGF beta 1. The amount of PDGF-AA secreted following TGF beta treatment was sufficient to stimulate the proliferation of a HD-GM culture. Antibodies against PDGF-AA, -BB, -AB, alpha PDGFR and/or beta PDGFR subunits effectively neutralized TGF beta's induction of DNA synthesis among the HD-GM cell lines, indicating that PDGF served as the principal mediator of TGF beta's growth stimulatory effect. By comparison, TGF beta induced only the RNA of PDGF-A and TGF beta 1 among the near-diploid GM, c-sis was not expressed at all. However, the amount of PDGF-A which was secreted in response to TGF beta 1 was insufficient to prevent TGF beta's arrest of the near-diploid cultures in G1 phase. Thus, the emergence of hyperdiploidy was associated with qualitative and quantitative differences in TGF beta's modulation of PDGF-A and c-sis, which provided a mechanism by which the aneuploid glioma cells might achieve 'clonal dominance'. We hypothesize that TGF beta may serve as an autocrine promoter of GM progression by providing a selective advantage to the hyperdiploid subpopulation through the loss of a tumor suppressor gene which mediates TGF beta's inhibitory effect.
Collapse
Affiliation(s)
- M T Jennings
- Department of Neurology, Vanderbilt School of Medicine, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pollack IF, Kawecki S. The effect of calphostin C, a potent photodependent protein kinase C inhibitor, on the proliferation of glioma cells in vitro. J Neurooncol 1997; 31:255-66. [PMID: 9049854 DOI: 10.1023/a:1005729626354] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies have suggested that the proliferation of malignant gliomas may result from activation of protein kinase C (PKC)-mediated pathways; conversely, inhibition of PKC may provide a strategy for blocking tumor growth. In the current studies, we examined the effect of a novel PKC inhibitor, calphostin C, which is a selective, highly potent, photo-activatable inhibitor of the PKC regulatory domain, on the proliferation and viability of three established and three low-passage malignant glioma cell lines, four low-passage low-grade glioma cell lines, and in adult human and neonatal rat non-neoplastic astrocyte cell lines in vitro. Under light-treated conditions, calphostin C consistently inhibited cell proliferation in each of the tumor cell lines and in the neonatal rat astrocyte cell line with a 50% effective concentration of 30 to 50 ng/ml (40 to 60 nm), which was comparable to the previously reported median inhibitory concentration (IC50) for PKC inhibition by calphostin C. Complete elimination of proliferation was achieved at concentrations of 50 to 100 ng/ml (60 to 125 nM). Cell viability decreased sharply with calphostin C concentrations of 100 to 300 ng/ml (125 to 380 nM). In contrast, under light-shielded conditions, calphostin C had a comparatively modest effect on cell proliferation and viability, with a median effective concentration of approximately 300 ng/ml. No significant inhibition of proliferation was noted in the non-neoplastic adult astrocyte cell line under either light-treated or light-shielded conditions. These findings provide further evidence that PKC may play an essential role in mediating the proliferation of both benign and malignant glioma cells in vitro and may also contribute to the proliferation of non-neoplastic immature astrocytes. Light-sensitive inhibition of proliferation and viability by agents such as calphostin C may provide a novel strategy for applying photodynamic therapy to the treatment of neoplastic glial cells.
Collapse
Affiliation(s)
- I F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | |
Collapse
|
32
|
McKay JS, Blakemore WF, Franklin RJM. The effects of the growth factor-antagonist, trapidil, on remyelination in the CNS. Neuropathol Appl Neurobiol 1997. [DOI: 10.1111/j.1365-2990.1997.tb01185.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Van der Ven LT, Van Buul-Offers SC, Gloudemans T, Roholl PJ, Sussenbach JS, Den Otter W. Histamine-stimulated expression of insulin-like growth factors in human glioma cells. Br J Cancer 1997; 75:1091-7. [PMID: 9099954 PMCID: PMC2222785 DOI: 10.1038/bjc.1997.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioma tumour growth is associated with the expression of insulin-like growth factors I and II (IGFs) and of both type I and type II IGF receptors. It has also been shown that IGFs can stimulate proliferation of cultured glioma cells. We previously reported that histamine too can stimulate the growth of glioma cells in vitro. In this report, we study whether the histamine-induced growth of G47 glioma cells is mediated by the IGFs. We found that histamine stimulates the expression of both IGF-I and IGF-II mRNAs, as determined by a semiquantitative in situ hybridization analysis. Furthermore, incubation of G47 cells with histamine also induced cellular immunostaining for IGF-II. It could be shown that IGF-I-stimulated proliferation is inhibited by IGFBP-3, which decreases the availability of IGFs for binding to the IGF receptors, and by beta-galactosidase, which may decrease IGF binding to the type II IGF receptor, but is not inhibited by the anti-type I IGF receptor monoclonal antibody alphaIR3. However, neither IGFBP-3 nor beta-galactosidase nor alphaIR3 inhibited the histamine-induced proliferation. These results show that the growth-stimulatory effect of histamine is accompanied by the induction of IGFs. This histamine-induced growth stimulation is not mediated by activation of cell surface IGF receptors, although intracrine activation of type II IGF receptors may be involved.
Collapse
Affiliation(s)
- L T Van der Ven
- Department of Functional Morphology, Veterinary Faculty Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Canute GW, Longo SL, Longo JA, Winfield JA, Nevaldine BH, Hahn PJ. Hydroxyurea Accelerates the Loss of Epidermal Growth Factor Receptor Genes Amplified As Double-minute Chromosomes in Human Glioblastoma Multiforme. Neurosurgery 1996. [DOI: 10.1227/00006123-199611000-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Canute GW, Longo SL, Longo JA, Winfield JA, Nevaldine BH, Hahn PJ. Hydroxyurea accelerates the loss of epidermal growth factor receptor genes amplified as double-minute chromosomes in human glioblastoma multiforme. Neurosurgery 1996; 39:976-83. [PMID: 8905754 DOI: 10.1097/00006123-199611000-00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE We sought to determine whether hydroxyurea could accelerate the loss of amplified epidermal growth factor receptor (EGFR) genes from glioblastoma multiforme (GBM). There is good reason to think that elimination of amplified EGFR genes from GBMs will negatively impact tumor growth. Hydroxyurea has previously been shown to induce the loss of amplified genes from extrachromosomal double minutes (dmin) but not from chromosomal homogeneously staining regions. METHODS Pulsed-field gel electrophoresis and Southern blot hybridization were used to demonstrate EGFR genes amplified as dmin. Giemsa-stained metaphase spreads were prepared in an attempt to visualize dmin. A GBM cell line containing amplified EGFR genes was treated continuously in vitro with 0 to 150 mumol/L hydroxyurea, and slot blot analysis was used to show the loss of amplified EGFR genes. RESULTS Amplified EGFR genes were found on dmin in 4 of 11 (36%) fresh human GBM biopsy specimens. None of the GBMs contained EGFR genes amplified as homogeneously staining regions. Amplified dmin were not microscopically visible when stained with Giemsa because of their small size. Slot blot analysis showed that these low doses of hydroxyurea accelerated the loss of amplified EGFR genes in a dose- and time-dependent fashion. Pulsed-field gel electrophoresis and Southern blot analysis confirmed that EGFR gene loss was accompanied by amplified dmin loss in a dose-dependent fashion. CONCLUSION These studies suggest the potential use of low-dose hydroxyurea in the treatment of GBMs.
Collapse
Affiliation(s)
- G W Canute
- Department of Neurosurgery, State University of New York Health Science Center, Syracuse, USA
| | | | | | | | | | | |
Collapse
|
36
|
Pollack IF, Kawecki S, Lazo JS. Blocking of glioma proliferation in vitro and in vivo and potentiating the effects of BCNU and cisplatin: UCN-01, a selective protein kinase C inhibitor. J Neurosurg 1996; 84:1024-32. [PMID: 8847567 DOI: 10.3171/jns.1996.84.6.1024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Seven-hydroxystaurosporine (UCN-01) is a derivative of the nonselective protein kinase inhibitor staurosporine that exhibits significant selectivity for protein kinase C (PKC) in comparison to a variety of other intracellular kinases and appears to be well tolerated in vivo at concentrations sufficient to achieve effective inhibition of PKC. Because recent studies have indicated that the proliferation of malignant gliomas may result from activation of PKC-mediated pathways and, conversely, may be inhibited by blocking PKC, the authors examined the efficacy of this agent as an inhibitor of proliferation in three established and three low-passage malignant glioma cell lines in vitro. A striking inhibition of proliferation was produced by UCN-01 in each of the cell lines, with a median effective concentration of 20 to 100 nM, which correlated with the median in vitro PKC inhibitory concentration of 20 to 60 nM for this agent in the U-87 and SG-388 glioma cell lines. Inhibition-recovery studies of clonogenic activity indicated that UCN-01 had both cytostatic and cytotoxic effects on the treated cells. Proliferation resumed after short-term (6- and 24-hour) exposures to this agent; in contrast, with longer exposures, recovery of proliferative activity was severely compromised. In addition, UCN-01 enhanced the inhibition of glioma cell proliferation achieved with conventional chemotherapeutic agents, exhibiting synergistic effects with cisplatin and additive effects with 1,3-bis(2-chloroethyl)-1-nitrosourea. In vivo studies in which UCN-01 was administered by continuous intraperitoneal infusion in subcutaneous and intracranial intraparenchymal nude rat models demonstrated significant activity against U-87 glioma xenografts at dose levels that were well tolerated. It is concluded that UCN-01 is an effective agent for the inhibition of glioma proliferation in vitro and in vivo and has potential for clinical applicability in the treatment of human gliomas.
Collapse
Affiliation(s)
- I F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | |
Collapse
|
37
|
Baltuch GH, Yong VW. Signal transduction for proliferation of glioma cells in vitro occurs predominantly through a protein kinase C-mediated pathway. Brain Res 1996; 710:143-9. [PMID: 8963653 DOI: 10.1016/0006-8993(95)01395-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous work has demonstrated that glioma cells have very high protein kinase C (PKC) enzyme activity when compared to non-malignant glia, and that their PKC activity correlates with their proliferation rate. The purpose of this study was to determine whether the elevated PKC activity in glioma is secondary to an autonomously active PKC isoform implying oncogenic transformation, or whether this activity is driven by upstream ligand-receptor tyrosine kinase interactions. We treated established human glioma cell lines A172, U563 or U251 with either the highly selective PKC inhibitor CGP 41 251, or with genistein, a tyrosine kinase inhibitor. The proliferation rate and PKC activity of all the glioma lines was reduced by CGP 41 251; the IC50 values for inhibiting cell proliferation corresponded to the IC50v values for inhibition of PKC activity. Genistein also inhibited cell proliferation, with IC50 proliferation values approximating those for inhibition of tyrosine kinase activity in cell free protein extracts. Importantly, in genistein-treated cells, downstream PKC enzyme activity was dose dependently reduced such that the correlation coefficient for effects of genistein on proliferation rate and PKC activity was 0.92. These findings suggest that upstream tyrosine kinase linked events, rather than an autonomously functioning PKC, result in the high PKC activity observed in glioma. Finally, fetal calf serum (FCS) evoked a strong mitogenic effect on glioma cell lines. This mitogenic activity was completely blocked by CGP 41 251, suggesting that although the many mitogens in FCS for glioma cells signal initially through genistein-inhibitable tyrosine kinases, they ultimately channel through a PKC-dependent pathway. We conclude that proliferative signal transduction in glioma cells occurs through a predominantly PKC-dependent pathway and that selectively targeting this enzyme provides an approach to glioma therapy.
Collapse
Affiliation(s)
- G H Baltuch
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | |
Collapse
|
38
|
Jachimczak P, Hessdörfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U. Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 1996; 65:332-7. [PMID: 8575854 DOI: 10.1002/(sici)1097-0215(19960126)65:3<332::aid-ijc10>3.0.co;2-c] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transforming growth factors-beta 1 and -beta 2 (TGF-beta 1 and -beta 2) are important growth-regulatory proteins for astroglial neoplasms. We analyzed their role in tumor-cell proliferation in 12 glioma cell lines, employing phosphorothioate antisense oligodeoxynucleotides (S-ODNs, 14 mer), specifically targeted against the coding sequences of TGF-beta 1-mRNA and TGF-beta 2-mRNA. TGF-beta 1-S-ODNs inhibited cell proliferation in 5 of 12 gliomas, whereas TGF-beta 2-S-ODNs reduced the cell proliferation in all glioma cell lines, compared to nonsense-S-ODN-treated and S-ODN-untreated cells as controls. The efficacy and specificity of antisense effects was validated by Northern-blot analysis and determination of protein concentrations in culture supernatants (ELISA). Exogenous hrTGF-beta 1 either stimulated or inhibited the cell lines, whereas pnTGF-beta 2 stimulated the proliferation of most glioma cells. Blocking the extracellular pathway of TGF-beta by neutralizing antibodies only slightly inhibited those cell lines, which were markedly stimulated by TGF-betas. As the effects of TGF-beta 2-S-ODNs were much stronger than those of TGF-beta neutralizing antibodies, we postulate that the endogenously produced TGF-beta 2 control glioma-cell proliferation, in part by an intracellular loop.
Collapse
Affiliation(s)
- P Jachimczak
- Department of Neurology, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Oude Weernink PA, Verheul E, Kerkhof E, van Veelen CW, Rijksen G. Inhibitors of protein tyrosine phosphorylation reduce the proliferation of two human glioma cell lines. Neurosurgery 1996; 38:108-13; discussion 113-4. [PMID: 8747958 DOI: 10.1097/00006123-199601000-00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Epidermal growth factor (EGF) and platelet-derived growth (PDGF) are suggested to be involved in the proliferation of human gliomas. We examined the effects of these growth factors on two human malignant glioma cell lines. Treatment of the A172 glioblastoma and the Hs683 glioma cell line with EGF and PDGF resulted in the tyrosine autophosphorylation, and hence activation, of the respective growth factor receptors. In addition, both cell lines responded to EGF and PDGF with increased deoxyribonucleic acid (DNA) synthesis. Because the intrinsic protein tyrosine kinase activity of this class of growth factor receptors is indispensable for their functioning, we tested the effects of specific protein tyrosine kinase inhibitors on growth factor-induced DNA synthesis and glioma cell proliferation. Genistein inhibited both EGF- and PDGF-stimulated autophosphorylation of the receptors and induction of DNA synthesis. However, genistein seemed to be cytotoxic to the cells. The tyrphostins RG 50875 and RG 13022 dose-dependently inhibited DNA synthesis induced by EGF, PDGF, and serum. RG 13022 completely blocked the EGF- and PDGF-induced DNA synthesis at a concentration of 50 mumol/L. The tyrphostins showed no selectivity in blocking either EGF or PDGF signaling. With concentrations up to mumol/L, no cytotoxic side effects of the tyrphostins were observed. Both tyrphostins also inhibit serum-driven cell growth in a dose-dependent manner. These results support the hypothesis that activated protein tyrosine kinase receptors are involved in the proliferation of A172 and Hs683 glioma cells. Selective inhibitors of protein tyrosine kinases, therefore, might have the potential to contribute to the treatment of growth factor-dependent gliomas.
Collapse
Affiliation(s)
- P A Oude Weernink
- Laboratory for Medical Enzymology, University Hospital Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Hoffman R, Burns WW, Paper DH. Selective inhibition of cell proliferation and DNA synthesis by the polysulphated carbohydrate l-carrageenan. Cancer Chemother Pharmacol 1995; 36:325-34. [PMID: 7628052 DOI: 10.1007/bf00689050] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
l-Carrageenan is a polysulphated carbohydrate that antagonises some heparin-binding growth factors. We assessed the effect of l-carrageenan on the proliferation of a panel of cell lines, some of which require heparin-binding growth factors for mitogenesis. The importance of growth factor antagonism for the anti-proliferative activity was also determined. Cell proliferation was determined by cell counts and a tetrazolium dye (MTT) assay, and DNA synthesis was determined by thymidine incorporation. The proliferation of the basic fibroblast growth factor (bFGF)-dependent endothelial cell line FBHE was inhibited by daily administration of l-carrageenan in a dose-dependent manner [concentration inhibiting cell growth by 50% (IC50 value), approx. 0.5 microgram/ml]. However, excess bFGF did not reverse the inhibitory effect. DNA synthesis was completely inhibited by concentrations of l-carrageenan that nonetheless allowed significant protein synthesis to occur. The proliferation of the androgen-dependent prostate-carcinoma cell line LNCaP was also inhibited by l-carrageenan (IC50 value, 5.5 micrograms/ml) and the cells were arrested at the G1/S boundary. l-Carrageenan inhibited DNA synthesis in MCF-7 cells stimulated by bFGF and transforming growth factor alpha (TGF alpha) but not in those stimulated by insulin-like growth factor 1 (IGF-1). Blocking IGF-1-mediated DNA synthesis with anti-IGF-1 receptor antibody alpha IR3 enhanced the inhibitory activity of l-carrageenan against MCF-7 cells grown in serum. A number of other transformed and non-transformed cell lines were either partially inhibited or not inhibited by l-carrageenan. l-Carrageenan had low anti-coagulant activity. l-Carrageenan is a selective anti-proliferative agent and warrants further investigation for anti-angiogenic therapy (in view of its activity against endothelial cells) and for the treatment of androgen-dependent prostate cancer.
Collapse
Affiliation(s)
- R Hoffman
- Clinical Oncology and Radiotherapeutics Unit, MRC Centre, Cambridge, UK
| | | | | |
Collapse
|
41
|
Chicoine MR, Madsen CL, Silbergeld DL. Modification of Human Glioma Locomotion In Vitro by Cytokines EGF, bFGF, PDGFbb, NGF, and TNFα. Neurosurgery 1995. [DOI: 10.1227/00006123-199506000-00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Michael R. Chicoine
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Cynthia L. Madsen
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel L. Silbergeld
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
42
|
Modification of Human Glioma Locomotion In Vitro by Cytokines EGF, bFGF, PDGFbb, NGF, and TNF?? Neurosurgery 1995. [DOI: 10.1097/00006123-199506000-00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Tsai JC, Goldman CK, Gillespie GY. Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 1995; 82:864-73. [PMID: 7714613 DOI: 10.3171/jns.1995.82.5.0864] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) is an endothelial cell-specific mitogen that is structurally related to platelet-derived growth factor (PDGF). Vascular endothelial growth factor/vascular permeability factor induces angiogenesis in vivo and may play a critical role in tumor angiogenesis. Using immunohistochemical analysis, the authors demonstrated the presence of VEGF/VPF protein in surgical specimens of glioblastoma multiforme and cultured glioma cells. By means of an enzyme-linked immunosorbent assay (ELISA) of cell supernatants, the authors showed that VEGF/VPF is variably secreted by all nine cultured human malignant glioma cell lines (CH-235MG, D-37MG, D-54MG, D-65MG, U-87MG, U-105MG, U-138MG, U-251MG, U-373MG) and by a single meningioma cell line (CH-157MN). An immunocytochemical survey of these cell lines revealed a cytoplasmic and cell-surface distribution of VEGF/VPF. In the U-105MG glioma cell line, VEGF/VPF secretion was induced with physiological concentrations of epidermal growth factor, PDGF-BB, or basic fibroblast growth factor, but not with PDGF-AA. Moreover, it was observed that activation of convergent growth factor signaling pathways led to increased glioma VEGF secretion. Similar results were obtained using these growth factor combinations in the D-54MG glioma cell line. The data obtained suggest a potential role for VEGF/VPF in tumor hypervascularity and peritumoral edema. These observations may lead to development of new therapeutic strategies.
Collapse
Affiliation(s)
- J C Tsai
- Department of Surgery, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
44
|
Glial Differentiation. Neurosurgery 1995. [DOI: 10.1097/00006123-199501000-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Linskey ME, Gilbert MR. Glial differentiation: a review with implications for new directions in neuro-oncology. Neurosurgery 1995; 36:1-21; discussion 21-2. [PMID: 7708144 DOI: 10.1227/00006123-199501000-00001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Major advances in cell culture techniques, immunology, and molecular biology during the last 10 years have led to significant progress in understanding the process of normal glial differentiation. This article summarizes our current understanding of the cellular and molecular basis of glial differentiation based on data obtained in cell culture and reviews current hypotheses regarding the transcriptional control of the gene switching that controls differentiation. Understanding normal glial differentiation has potentially far-reaching implications for developing new forms of treatment for patients with glial neoplasms. If oncogenesis truly involves a blockage or a short circuiting of the differentiation process in adult glial progenitor cells, or if it results from dedifferentiation of previously mature cells, then a clear understanding of differentiation may provide a key to understanding and potentially curtailing malignancy. Differentiation agents represent a relatively new class of drugs that effect cellular gene transcription at the nuclear level, probably through alterations in chromatin configuration and/or differential gene induction. These exciting new agents may provide a means of preventing the dedifferentiation of low-grade gliomas or inducing malignant glioma cells to differentiate with minimal toxicity. In the future, genetic therapy has the potential of more specifically rectifying the defect in genetic control that led to oncogenesis in any given tumor.
Collapse
Affiliation(s)
- M E Linskey
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pennsylvania
| | | |
Collapse
|
46
|
Yokota M, Peterson JW, Tani E, Yamaura I. The immunohistochemical distribution of protein kinase C isozymes is altered in the canine brain and basilar artery after subarachnoid hemorrhage. Neurosci Lett 1994; 180:171-4. [PMID: 7700574 DOI: 10.1016/0304-3940(94)90514-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of subarachnoid hemorrhage on immunoreactivities of protein kinase C isozymes (alpha, beta, gamma) were studied in canine brain and basilar artery. Mild and severe constriction of the basilar artery was shown 2 days and 7 days after hemorrhage, respectively. In control brain tissues, the isozymes showed distinct distributions and following hemorrhage, reactive astrocytes with protein kinase C alpha staining emerged in the surface of the pons and hippocampus. The control basilar artery showed protein kinase C alpha staining and its staining was decreased on day 7, consistent with the result of immunoblot. Our results demonstrated that subarachnoid hemorrhage induces gliosis with heavy protein kinase C alpha staining and down-regulation of protein kinase C in the artery.
Collapse
Affiliation(s)
- M Yokota
- Department of Neurosurgery, Hyogo College of Medicine, Japan
| | | | | | | |
Collapse
|
47
|
Todo T, Fahlbusch R. Involvement of protein kinase C in growth regulation of human meningioma cells. Acta Neurochir (Wien) 1994; 131:282-8. [PMID: 7754836 DOI: 10.1007/bf01808628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to investigate the possible role of protein kinase C (PKC)-mediated signal pathways in growth regulation of meningiomas, we examined the effect of two PKC-activating phorbol esters, 12-O-tetradecanoyl-13-phorbol acetate (TPA) and phorbol 12, 13-dibutyrate (PDBu), and PKC inhibitor, staurosporine, on cell proliferation using low-passage human meningioma cells in culture. TPA (0.1 to 100 ng/ml) caused a dose-dependent stimulation of cell proliferation in six of eight meningioma cultures. At optimal concentrations of TPA, the cell growth ranged from 113% to 251% versus control. In contrast, PDBu (0.1 to 100 ng/ml) caused a significant inhibition of cell proliferation in three of five meningioma cultures. At optimal concentrations of PDBu, the cell growth ranged from 52% to 79% of control. Staurosporine exhibited a stimulation of cell proliferation (135% to 178%) in three of four meningioma cultures studied at a concentration of 10(-10) to 10(-9)M, although a tendency of growth inhibition was observed at a lower concentration. A time course of DNA synthesis in response to TPA, assessed by [3H] thymidine incorporation studies, revealed a time- and dose-dependent stimulation and/or inhibition which further depended on the serum concentration of the growth medium used. The overall results indicate that PKC-mediated signal pathways are closely involved in growth regulation of human meningioma cells. The results further suggest that the signalling processes consist of complex mechanisms which await to be elucidated.
Collapse
Affiliation(s)
- T Todo
- Department of Neurosurgery, International Medical Center of Japan, Tokyo
| | | |
Collapse
|
48
|
Vertosick FT, Selker RG, Randall MS, Kristofik MP, Rehn T. A comparison of the relative chemosensitivity of human gliomas to tamoxifen and n-desmethyltamoxifen in vitro. J Neurooncol 1994; 19:97-103. [PMID: 7964994 DOI: 10.1007/bf01306450] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tamoxifen has been shown to inhibit the proliferation of human gliomas in vitro. This inhibition is independent of tamoxifen's known anti-estrogenic properties. Tamoxifen is an inhibitor of protein kinase C (PKC), a calcium- and phospholipid-dependent serine kinase which plays a critical role in the proliferation of certain cell lines. Gliomas overexpress PCK, and their growth rate is coupled to the level of this key enzyme. As such, the effect of tamoxifen may be mediated by its inhibitory effect on PKC. To further investigate this possibility, we compared the chemosensitivity of cultured glioma lines to both tamoxifen and N-desmethyltamoxifen (DMT). DMT is the major metabolite of tamoxifen in humans and is a ten-fold more potent inhibitor of PKC. Seven lines were tested using the standard MTT assay, which quantitates metabolically active cells colorimetrically using a tetrazolium dye. Four of the seven lines were also tested using a tritiated thymidine uptake assay. In the MTT assay, all seven lines showed significantly greater sensitivity to DMT, while three of the four lines tested in the thymidine uptake assay were more sensitive to DMT. Correlation between the two assays was good. The dose of tamoxifen required to produce a 50% inhibition of optical absorbance or thymidine uptake (ID50) was typically five- to ten-fold greater than the ID50 for DMT, approximating the relative strength of the two compounds as PKC inhibitors. In addition to providing some support for the ypothesis that triphenylethylenes inhibit gliomas via PKC inhibition, these findings have clinical significance.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F T Vertosick
- Center for Neuro-Oncology, West Penn Hospital, Pittsburgh
| | | | | | | | | |
Collapse
|
49
|
Pedersen PH, Ness GO, Engebraaten O, Bjerkvig R, Lillehaug JR, Laerum OD. Heterogeneous response to the growth factors [EGF, PDGF (bb), TGF-alpha, bFGF, IL-2] on glioma spheroid growth, migration and invasion. Int J Cancer 1994; 56:255-61. [PMID: 8314309 DOI: 10.1002/ijc.2910560219] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of 5 different growth factors [EGF, PDGF(bb), TGF-alpha, bFGF and IL-2] were studied on tumour spheroids obtained from 5 different human glioma cell lines (U-251MG, D-263MG, D-37MG, D-54MG, GaMG). The expression of EGF and PDGF receptors as well as the endogenous production of TGF-alpha and PDGF were studied by Northern blot analyses. After growth-factor-exposure, tumour spheroid volume growth, and directional cell migration from the spheroids were studied. In addition, tumour-cell invasion was studied in vitro, where foetal rat-brain aggregates were used as a target for the tumour cells. In all the assays a common stimulator for most of the cell lines was EGF. The other growth factors had a more heterogeneous stimulatory effect. Tumour-cell invasion, cell growth and cell migration are biological properties which are not necessarily related to each other. This may explain why the tumours often responded differently to the growth factors in the various assay systems. Two of the cell lines studied were non-invasive (U-251MG, D-263MG). It is shown that these were stimulated both in the directional migration assay and in the spheroid-volume-growth assay. However, their non-invasive behaviour was not influenced by the growth factors studied.
Collapse
Affiliation(s)
- P H Pedersen
- Gade Institute, Department of Pathology, Haukeland Hospital, University of Bergen, Norway
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- G J Pilkington
- Department of Neuropathology, Institute of Psychiatry, London, U.K
| | | |
Collapse
|