1
|
Vikström A, Holmlund P, Holmgren M, Wåhlin A, Zarrinkoob L, Malm J, Eklund A. Establishing the distribution of cerebrovascular resistance using computational fluid dynamics and 4D flow MRI. Sci Rep 2024; 14:14585. [PMID: 38918589 PMCID: PMC11199643 DOI: 10.1038/s41598-024-65431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Cerebrovascular resistance (CVR) regulates blood flow in the brain, but little is known about the vascular resistances of the individual cerebral territories. We present a method to calculate these resistances and investigate how CVR varies in the hemodynamically disturbed brain. We included 48 patients with stroke/TIA (29 with symptomatic carotid stenosis). By combining flow rate (4D flow MRI) and structural computed tomography angiography (CTA) data with computational fluid dynamics (CFD) we computed the perfusion pressures out from the circle of Willis, with which CVR of the MCA, ACA, and PCA territories was estimated. 56 controls were included for comparison of total CVR (tCVR). CVR were 33.8 ± 10.5, 59.0 ± 30.6, and 77.8 ± 21.3 mmHg s/ml for the MCA, ACA, and PCA territories. We found no differences in tCVR between patients, 9.3 ± 1.9 mmHg s/ml, and controls, 9.3 ± 2.0 mmHg s/ml (p = 0.88), nor in territorial CVR in the carotid stenosis patients between ipsilateral and contralateral hemispheres. Territorial resistance associated inversely to territorial brain volume (p < 0.001). These resistances may work as reference values when modelling blood flow in the circle of Willis, and the method can be used when there is need for subject-specific analysis.
Collapse
Affiliation(s)
- Axel Vikström
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden.
| | - Petter Holmlund
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Madelene Holmgren
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Laleh Zarrinkoob
- Department of Diagnostics and Intervention, Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Caddy HT, Thomas HJ, Kelsey LJ, Smith KJ, Doyle BJ, Green DJ. Comparison of computational fluid dynamics with transcranial Doppler ultrasound in response to physiological stimuli. Biomech Model Mechanobiol 2024; 23:255-269. [PMID: 37805938 PMCID: PMC10902019 DOI: 10.1007/s10237-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Cerebrovascular haemodynamics are sensitive to multiple physiological stimuli that require synergistic response to maintain adequate perfusion. Understanding haemodynamic changes within cerebral arteries is important to inform how the brain regulates perfusion; however, methods for direct measurement of cerebral haemodynamics in these environments are challenging. The aim of this study was to assess velocity waveform metrics obtained using transcranial Doppler (TCD) with flow-conserving subject-specific three-dimensional (3D) simulations using computational fluid dynamics (CFD). Twelve healthy participants underwent head and neck imaging with 3 T magnetic resonance angiography. Velocity waveforms in the middle cerebral artery were measured with TCD ultrasound, while diameter and velocity were measured using duplex ultrasound in the internal carotid and vertebral arteries to calculate incoming cerebral flow at rest, during hypercapnia and exercise. CFD simulations were developed for each condition, with velocity waveform metrics extracted in the same insonation region as TCD. Exposure to stimuli induced significant changes in cardiorespiratory measures across all participants. Measured absolute TCD velocities were significantly higher than those calculated from CFD (P range < 0.001-0.004), and these data were not correlated across conditions (r range 0.030-0.377, P range 0.227-0.925). However, relative changes in systolic and time-averaged velocity from resting levels exhibited significant positive correlations when the distinct techniques were compared (r range 0.577-0.770, P range 0.003-0.049). Our data indicate that while absolute measures of cerebral velocity differ between TCD and 3D CFD simulation, physiological changes from resting levels in systolic and time-averaged velocity are significantly correlated between techniques.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Hannah J Thomas
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Kurt J Smith
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory, University of Victoria, Victoria, Canada
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia.
- School of Engineering, The University of Western Australia, Perth, Australia.
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Fico BG, Miller KB, Rivera-Rivera LA, Corkery AT, Pearson AG, Loggie NA, Howery AJ, Rowley HA, Johnson KM, Johnson SC, Wieben O, Barnes JN. Cerebral hemodynamics comparison using transcranial doppler ultrasound and 4D flow MRI. Front Physiol 2023; 14:1198615. [PMID: 37304825 PMCID: PMC10250020 DOI: 10.3389/fphys.2023.1198615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Age-related changes in cerebral hemodynamics are controversial and discrepancies may be due to experimental techniques. As such, the purpose of this study was to compare cerebral hemodynamics measurements of the middle cerebral artery (MCA) between transcranial Doppler ultrasound (TCD) and four-dimensional flow MRI (4D flow MRI). Methods: Twenty young (25 ± 3 years) and 19 older (62 ± 6 years) participants underwent two randomized study visits to evaluate hemodynamics at baseline (normocapnia) and in response to stepped hypercapnia (4% CO2, and 6% CO2) using TCD and 4D flow MRI. Cerebral hemodynamic measures included MCA velocity, MCA flow, cerebral pulsatility index (PI) and cerebrovascular reactivity to hypercapnia. MCA flow was only assessed using 4D flow MRI. Results: MCA velocity between the TCD and 4D flow MRI methods was positively correlated across the normocapnia and hypercapnia conditions (r = 0.262; p = 0.004). Additionally, cerebral PI was significantly correlated between TCD and 4D flow MRI across the conditions (r = 0.236; p = 0.010). However, there was no significant association between MCA velocity using TCD and MCA flow using 4D flow MRI across the conditions (r = 0.079; p = 0.397). When age-associated differences in cerebrovascular reactivity using conductance were compared using both methodologies, cerebrovascular reactivity was greater in young adults compared to older adults when using 4D flow MRI (2.11 ± 1.68 mL/min/mmHg/mmHg vs. 0.78 ± 1.68 mL/min/mmHg/mmHg; p = 0.019), but not with TCD (0.88 ± 1.01 cm/s/mmHg/mmHg vs. 0.68 ± 0.94 cm/s/mmHg/mmHg; p = 0.513). Conclusion: Our results demonstrated good agreement between the methods at measuring MCA velocity during normocapnia and in response to hypercapnia, but MCA velocity and MCA flow were not related. In addition, measurements using 4D flow MRI revealed effects of aging on cerebral hemodynamics that were not apparent using TCD.
Collapse
Affiliation(s)
- Brandon G. Fico
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Kathleen B. Miller
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam T. Corkery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew G. Pearson
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicole A. Loggie
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J. Howery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Howard A. Rowley
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin M. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jill N. Barnes
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Aristova M, Pang J, Ma Y, Ma L, Berhane H, Rayz V, Markl M, Schnell S. Accelerated dual-venc 4D flow MRI with variable high-venc spatial resolution for neurovascular applications. Magn Reson Med 2022; 88:1643-1658. [PMID: 35754143 PMCID: PMC9392495 DOI: 10.1002/mrm.29306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Dual-velocity encoded (dual-venc or DV) 4D flow MRI achieves wide velocity dynamic range and velocity-to-noise ratio (VNR), enabling accurate neurovascular flow characterization. To reduce scan time, we present interleaved dual-venc 4D Flow with independently prescribed, prospectively undersampled spatial resolution of the high-venc (HV) acquisition: Variable Spatial Resolution Dual Venc (VSRDV). METHODS A prototype VSRDV sequence was developed based on a Cartesian acquisition with eight-point phase encoding, combining PEAK-GRAPPA acceleration with zero-filling in phase and partition directions for HV. The VSRDV approach was optimized by varying z, the zero-filling fraction of HV relative to low-venc, between 0%-80% in vitro (realistic neurovascular model with pulsatile flow) and in vivo (n = 10 volunteers). Antialiasing precision, mean and peak velocity quantification accuracy, and test-retest reproducibility were assessed relative to reference images with equal-resolution HV and low venc (z = 0%). RESULTS In vitro results for all z demonstrated an antialiasing true positive rate at least 95% for R PEAK - GRAPPA $$ {R}_{\mathrm{PEAK}-\mathrm{GRAPPA}} $$ = 2 and 5, with no linear relationship to z (p = 0.62 and 0.13, respectively). Bland-Altman analysis for z = 20%, 40%, 60%, or 80% versus z = 0% in vitro and in vivo demonstrated no bias >1% of venc in mean or peak velocity values at any R ZF $$ {R}_{\mathrm{ZF}} $$ . In vitro mean and peak velocity, and in vivo peak velocity, had limits of agreement within 15%. CONCLUSION VSRDV allows up to 34.8% scan time reduction compared to PEAK-GRAPPA accelerated DV 4D Flow MRI, enabling large spatial coverage and dynamic range while maintaining VNR and velocity measurement accuracy.
Collapse
Affiliation(s)
- Maria Aristova
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jianing Pang
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- MR R&D and CollaborationsSiemens Medical Solutions USA Inc.ChicagoILUSA
| | - Yue Ma
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Liliana Ma
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Haben Berhane
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical EngineeringNorthwestern University McCormick School of EngineeringEvanstonIllinoisUSA
| | - Vitaliy Rayz
- Weldon School of Biomedical EngineeringPurdue University College of EngineeringWest LafayetteIndianaUSA
| | - Michael Markl
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical EngineeringNorthwestern University McCormick School of EngineeringEvanstonIllinoisUSA
| | - Susanne Schnell
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Institut für PhysikUniversität GreifswaldGreifswaldGermany
| |
Collapse
|
5
|
Mahinrad S, Tan CO, Ma Y, Aristova M, Milstead AL, Lloyd‐Jones D, Schnell S, Markl M, Sorond FA. Intracranial Blood Flow Quantification by Accelerated Dual-venc 4D Flow MRI: Comparison With Transcranial Doppler Ultrasound. J Magn Reson Imaging 2022; 56:1256-1264. [PMID: 35146822 PMCID: PMC9363520 DOI: 10.1002/jmri.28115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Dual-venc 4D flow MRI, recently introduced for the assessment of intracranial hemodynamics, may provide a promising complementary approach to well-established tools such as transcranial Doppler ultrasound (TCD) and overcome some of their disadvantages. However, data comparing intracranial flow measures from dual-venc 4D flow MRI and TCD are lacking. PURPOSE To compare cerebral blood flow velocity measures derived from dual-venc 4D flow MRI and TCD. STUDY TYPE Prospective cohort. SUBJECTS A total of 25 healthy participants (56 ± 4 years old, 44% female). FIELD STRENGTH/SEQUENCE A 3 T/dual-venc 4D flow MRI using a time-resolved three-dimensional phase-contrast sequence with three-dimensional velocity encoding. ASSESSMENT Peak velocity measurements in bilateral middle cerebral arteries (MCA) were quantified from dual-venc 4D flow MRI and TCD. The MRI data were quantified by two independent observers (S.M and Y.M.) and TCD was performed by a trained technician (A.L.M.). We assessed the agreement between 4D flow MRI and TCD measures, and the interobserver agreement of 4D flow MRI measurements. STATISTICAL TESTS Peak velocity from MRI and TCD was compared using Bland-Altman analysis and coefficient of variance. Intraclass correlation coefficient (ICC) was used to assess MRI interobserver agreement. A P value < 0.05 was considered statistically significant. RESULTS There was excellent interobserver agreement in dual-venc 4D flow MRI-based measurements of peak velocity in bilateral MCA (ICC = 0.97 and 0.96 for the left and right MCA, respectively). Dual-venc 4D flow MRI significantly underestimated peak velocity in the left and right MCA compared to TCD (bias = 0.13 [0.59, -0.33] m/sec and 0.15 [0.47, -0.17] m/sec, respectively). The coefficient of variance between dual-venc 4D flow MRI and TCD measurements was 26% for the left MCA and 22% for the right MCA. DATA CONCLUSION There was excellent interobserver agreement for the assessment of MCA peak velocity using dual-venc 4D flow MRI, and ≤20% under-estimation compared with TCD. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Can Ozan Tan
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cerebrovascular Research LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Yue Ma
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of RadiologyShengjing Hospital of China Medical UniversityChina
| | - Maria Aristova
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Andrew L. Milstead
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Donald Lloyd‐Jones
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Susanne Schnell
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Institute of Physics, Department of Medical PhysicsUniversity of GreifswaldGermany
| | - Michael Markl
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Farzaneh A. Sorond
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
6
|
Ha SY, Kang Y, Lee HJ, Hwang M, Baik J, Park S. Intracranial Flow Velocity Quantification Using Non-Contrast Four-Dimensional Flow MRI: A Prospective Comparative Study with Transcranial Doppler Ultrasound. Diagnostics (Basel) 2021; 12:diagnostics12010023. [PMID: 35054190 PMCID: PMC8774649 DOI: 10.3390/diagnostics12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Four-dimensional (4D) flow magnetic resonance imaging (MRI) allows three-dimensional velocity encoding to measure blood flow in a single scan, regardless of the intracranial artery direction. We compared blood flow velocity quantification by non-contrast 4D flow MRI and by transcranial Doppler ultrasound (TCD), the most widely used modality for measuring velocity. Twenty-two patients underwent both TCD and non-contrast 4D flow MRI. The mean time interval between TCD and non-contrast 4D flow MRI was 0.7 days. Subsegmental velocities were measured bilaterally in the middle cerebral and basilar arteries using TCD and non-contrast 4D flow MRI. Intracranial velocity measurements using TCD and non-contrast 4D flow MRI demonstrated a strong correlation in the bilateral M1, especially at the proximal segment (right r = 0.74, left r = 0.78; all p < 0.001). Mean velocities acquired with 4D flow MRI were approximately 8 to 10% lower than those acquired with TCD according to the location of M1. Intracranial arterial flow measurements estimated using non-contrast 4D flow MRI and TCD showed strong correlation. 4D flow MRI enables simultaneous assessment of vascular morphology and quantitative hemodynamic measurement, providing three-dimensional blood flow visualization. 4D flow MRI is a clinically useful sequence with a promising role in cerebrovascular disease.
Collapse
Affiliation(s)
- Sam-Yeol Ha
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea; (S.-Y.H.); (S.P.)
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Yeonah Kang
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea; (H.-J.L.); (J.B.)
- Correspondence: ; Tel.: +82-51-797-0340; Fax: +82-51-797-0379
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea; (H.-J.L.); (J.B.)
| | | | - Jiyeon Baik
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea; (H.-J.L.); (J.B.)
- Department of Radiology, Good Gang-An Hospital, Busan 48265, Korea
| | - Seongho Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea; (S.-Y.H.); (S.P.)
| |
Collapse
|
7
|
Morgan AG, Thrippleton MJ, Wardlaw JM, Marshall I. 4D flow MRI for non-invasive measurement of blood flow in the brain: A systematic review. J Cereb Blood Flow Metab 2021; 41:206-218. [PMID: 32936731 PMCID: PMC8369999 DOI: 10.1177/0271678x20952014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 01/25/2023]
Abstract
The brain's vasculature is essential for brain health and its dysfunction contributes to the onset and development of many dementias and neurological disorders. While numerous in vivo imaging techniques exist to investigate cerebral haemodynamics in humans, phase-contrast magnetic resonance imaging (MRI) has emerged as a reliable, non-invasive method of quantifying blood flow within intracranial vessels. In recent years, an advanced form of this method, known as 4D flow, has been developed and utilised in patient studies, where its ability to capture complex blood flow dynamics within any major vessel across the acquired volume has proved effective in collecting large amounts of information in a single scan. While extremely promising as a method of examining the vascular system's role in brain-related diseases, the collection of 4D data can be time-consuming, meaning data quality has to be traded off against the acquisition time. Here, we review the available literature to examine 4D flow's capabilities in assessing physiological and pathological features of the cerebrovascular system. Emerging techniques such as dynamic velocity-encoding and advanced undersampling methods, combined with increasingly high-field MRI scanners, are likely to bring 4D flow to the forefront of cerebrovascular imaging studies in the years to come.
Collapse
Affiliation(s)
- Alasdair G Morgan
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
| | - Michael J Thrippleton
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at The University of Edinburgh,
Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
8
|
Rivera-Rivera LA, Cody KA, Eisenmenger L, Cary P, Rowley HA, Carlsson CM, Johnson SC, Johnson KM. Assessment of vascular stiffness in the internal carotid artery proximal to the carotid canal in Alzheimer's disease using pulse wave velocity from low rank reconstructed 4D flow MRI. J Cereb Blood Flow Metab 2021; 41:298-311. [PMID: 32169012 PMCID: PMC8370001 DOI: 10.1177/0271678x20910302] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical evidence shows vascular factors may co-occur and complicate the expression of Alzheimer's disease (AD); yet, the pathologic mechanisms and involvement of different compartments of the vascular network are not well understood. Diseases such as arteriosclerosis diminish vascular compliance and will lead to arterial stiffness, a well-established risk factor for cardiovascular morbidity. Arterial stiffness can be assessed using pulse wave velocity (PWV); however, this is usually done from carotid-to-femoral artery ratios. To probe the brain vasculature, intracranial PWV measures would be ideal. In this study, high temporal resolution 4D flow MRI was used to assess transcranial PWV in 160 subjects including AD, mild cognitive impairment (MCI), healthy controls, and healthy subjects with apolipoprotein ɛ4 positivity (APOE4+) and parental history of AD dementia (FH+). High temporal resolution imaging was achieved by high temporal binning of retrospectively gated data using a local-low rank approach. Significantly higher transcranial PWV in AD dementia and MCI subjects was found when compared to old-age-matched controls (AD vs. old-age-matched controls: P <0.001, AD vs. MCI: P = 0.029, MCI vs. old-age-matched controls P = 0.013). Furthermore, vascular changes were found in clinically healthy middle-age adults with APOE4+ and FH+ indicating significantly higher transcranial PWV compared to controls (P <0.001).
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
| | - Karly A Cody
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Paul Cary
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| |
Collapse
|
9
|
Yuan S, Jordan LC, Davis LT, Cogswell PM, Lee CA, Patel NJ, Waddle SL, Juttukonda M, Sky Jones R, Griffin A, Donahue MJ. A cross-sectional, case-control study of intracranial arterial wall thickness and complete blood count measures in sickle cell disease. Br J Haematol 2020; 192:769-777. [PMID: 33326595 DOI: 10.1111/bjh.17262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
In sickle cell disease (SCD), cerebral oxygen delivery is dependent on the cerebral vasculature's ability to increase blood flow and volume through relaxation of the smooth muscle that lines intracranial arteries. We hypothesised that anaemia extent and/or circulating markers of inflammation lead to concentric macrovascular arterial wall thickening, visible on intracranial vessel wall magnetic resonance imaging (VW-MRI). Adult and pediatric SCD (n = 69; age = 19.9 ± 8.6 years) participants and age- and sex-matched control participants (n = 38; age = 22.2 ± 8.9 years) underwent 3-Tesla VW-MRI; two raters measured basilar and bilateral supraclinoid internal carotid artery (ICA) wall thickness independently. Mean wall thickness was compared with demographic, cerebrovascular and haematological variables. Mean vessel wall thickness was elevated (P < 0·001) in SCD (1·07 ± 0·19 mm) compared to controls (0·97 ± 0·07 mm) after controlling for age and sex. Vessel wall thickness was higher in participants on chronic transfusions (P = 0·013). No significant relationship between vessel wall thickness and flow velocity, haematocrit, white blood cell count or platelet count was observed; however, trends (P < 0·10) for wall thickness increasing with decreasing haematocrit and increasing white blood cell count were noted. Findings are discussed in the context of how anaemia and circulating inflammatory markers may impact arterial wall morphology.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Petrice M Cogswell
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Chelsea A Lee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer L Waddle
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meher Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Sky Jones
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison Griffin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Maxa KM, Hoffman C, Rivera-Rivera LA, Motovylyak A, Turski PA, Mitchell CKC, Ma Y, Berman SE, Gallagher CL, Bendlin BB, Asthana S, Sager MA, Hermann BP, Johnson SC, Cook DB, Wieben O, Okonkwo OC. Cardiorespiratory Fitness Associates with Cerebral Vessel Pulsatility in a Cohort Enriched with Risk for Alzheimer's Disease. Brain Plast 2020; 5:175-184. [PMID: 33282680 PMCID: PMC7685671 DOI: 10.3233/bpl-190096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND There is increasing evidence that vascular disease risk factors contribute to evolution of the dementia syndrome of Alzheimer's disease (AD). One important measure of cerebrovascular health is pulsatility index (PI) which is thought to represent distal vascular resistance, and has previously been reported to be elevated in AD clinical syndrome. Physical inactivity has emerged as an independent risk factor for cardiovascular disease. OBJECTIVE This study aims to examine the relationship between a measure of habitual physical activity, cardiorespiratory fitness (CRF), and PI in the large cerebral vessels. METHODS Ninety-two cognitively-healthy adults (age = 65.34±5.95, 72% female) enrolled in the Wisconsin Registry for Alzheimer's Prevention participated in this study. Participants underwent 4D flow brain MRI to measure PI in the internal carotid artery (ICA), basilar artery, middle cerebral artery (MCA), and superior sagittal sinus. Participants also completed a self-report physical activity questionnaire. CRF was calculated using a previously-validated equation that incorporates sex, age, body-mass index, resting heart rate, and self-reported physical activity. A series of linear regression models adjusted for age, sex, APOE4 status, and 10-year atherosclerotic cardiovascular disease risk were used to analyze the relationship between CRF and PI. RESULTS Inverse associations were found between CRF and mean PI in the inferior ICA (p = .001), superior ICA (p = .035), and basilar artery (p = .040). No other cerebral vessels revealed significant associations between CRF and PI (p≥.228). CONCLUSIONS Higher CRF was associated with lower PI in several large cerebral vessels. Since increased pulsatility has been associated with poor brain health and reported in persons with AD, this suggests that aerobic fitness might provide protection against cerebrovascular changes related to the progression of AD clinical syndrome.
Collapse
Affiliation(s)
- Kaitlin M. Maxa
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carson Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Leonardo A. Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alice Motovylyak
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Patrick A. Turski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carol K. C. Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sara E. Berman
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW-Madison Medical Scientist and Neuroscience Training Programs, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L. Gallagher
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A. Sager
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
11
|
Wu Y, Shaughnessy G, Hoffman CA, Oberstar EL, Schafer S, Schubert T, Ruedinger KL, Davis BJ, Mistretta CA, Strother CM, Speidel MA. Quantification of Blood Velocity with 4D Digital Subtraction Angiography Using the Shifted Least-Squares Method. AJNR Am J Neuroradiol 2018; 39:1871-1877. [PMID: 30213811 PMCID: PMC6177311 DOI: 10.3174/ajnr.a5793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/11/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE 4D-DSA provides time-resolved 3D-DSA volumes with high temporal and spatial resolutions. The purpose of this study is to investigate a shifted least squares method to estimate the blood velocity from the 4D DSA images. Quantitative validation was performed using a flow phantom with an ultrasonic flow probe as ground truth. Quantification of blood velocity in human internal carotid arteries was compared with measurements generated from 3D phase-contrast MR imaging. MATERIALS AND METHODS The centerlines of selected vascular segments and the time concentration curves of each voxel along the centerlines were determined from the 4D-DSA dataset. The temporal shift required to achieve a minimum difference between any point and other points along the centerline of a segment was calculated. The temporal shift as a function of centerline point position was fit to a straight line to generate the velocity. The proposed shifted least-squares method was first validated using a flow phantom study. Blood velocities were also estimated in the 14 ICAs of human subjects who had both 4D-DSA and phase-contrast MR imaging studies. Linear regression and correlation analysis were performed on both the phantom study and clinical study, respectively. RESULTS Mean velocities of the flow phantom calculated from 4D-DSA matched very well with ultrasonic flow probe measurements with 11% relative root mean square error. Mean blood velocities of ICAs calculated from 4D-DSA correlated well with phase-contrast MR imaging measurements with Pearson correlation coefficient r = 0.835. CONCLUSIONS The availability of 4D-DSA provides the opportunity to use the shifted least-squares method to estimate velocity in vessels within a 3D volume.
Collapse
Affiliation(s)
- Y Wu
- From the Departments of Medical Physics (Y.W., G.S., C.A.H., C.A.M., M.A.S.)
| | - G Shaughnessy
- From the Departments of Medical Physics (Y.W., G.S., C.A.H., C.A.M., M.A.S.)
| | - C A Hoffman
- From the Departments of Medical Physics (Y.W., G.S., C.A.H., C.A.M., M.A.S.)
| | | | | | - T Schubert
- Radiology (C.A.M., C.M.S., T.S.).,Department of Radiology and Nuclear Medicine (T.S.), Basel University Hospital, Basel, Switzerland
| | | | - B J Davis
- Biomedical Engineering (E.L.O., K.L.R., B.J.D.)
| | - C A Mistretta
- From the Departments of Medical Physics (Y.W., G.S., C.A.H., C.A.M., M.A.S.).,Radiology (C.A.M., C.M.S., T.S.)
| | | | - M A Speidel
- From the Departments of Medical Physics (Y.W., G.S., C.A.H., C.A.M., M.A.S.).,Medicine (M.A.S.), University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
12
|
Groen D, Richardson RA, Coy R, Schiller UD, Chandrashekar H, Robertson F, Coveney PV. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements. Front Physiol 2018; 9:721. [PMID: 29971012 PMCID: PMC6018476 DOI: 10.3389/fphys.2018.00721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
We present a validation study comparing results from a patient-specific lattice-Boltzmann simulation to transcranial Doppler (TCD) velocity measurements in four different planes of the middle cerebral artery (MCA). As part of the study, we compared simulations using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the viability of using downscaled velocities to reduce the required resolution. Simulations with unscaled velocities predict the maximum flow velocity with an error of less than 9%, independent of the rheology model chosen. The accuracy of the simulation predictions worsens considerably when simulations are run at reduced velocity, as is for example the case when inflow velocities from healthy individuals are used on a vascular model of a stroke patient. Our results demonstrate the importance of using directly measured and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude that localized TCD measurements together with predictive simulations can be used to obtain flow estimates with high fidelity over a larger region, and reduce the need for more invasive flow measurement procedures.
Collapse
Affiliation(s)
- Derek Groen
- Department of Computer Science, Brunel University London, London, United Kingdom
| | - Robin A Richardson
- Centre for Computational Science, University College London, London, United Kingdom
| | - Rachel Coy
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
| | - Ulf D Schiller
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, United States.,School of Health Research, Clemson University, Clemson, SC, United States
| | - Hoskote Chandrashekar
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Fergus Robertson
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Peter V Coveney
- Centre for Computational Science, University College London, London, United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Mikhail Kellawan J, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J Cereb Blood Flow Metab 2017; 37:2025-2034. [PMID: 27406213 PMCID: PMC5464698 DOI: 10.1177/0271678x16659497] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inability to quantify cerebral blood flow and changes in macrocirculation cross-sectional area in all brain regions impedes robust insight into hypoxic cerebral blood flow control. We applied four-dimensional flow magnetic resonance imaging to quantify cerebral blood flow (ml • min-1) and cross-sectional area (mm2) simultaneously in 11 arteries. In healthy adults, blood pressure, O2 Saturation (SpO2), and end-tidal CO2 were measured at baseline and steady-state hypoxia (FiO2 = 0.11). We investigated left and right: internal carotid, vertebral, middle, anterior, posterior cerebral arteries, and basilar artery. Hypoxia (SpO2 = 80±2%) increased total cerebral blood flow from 621±38 to 742±50 ml • min-1 ( p < 0.05). Hypoxia increased cerebral blood flow, except in the right posterior cerebral arteries. Hypoxia increased cross-sectional area in the anterior arteries (left and right internal carotid arteries, left and right middle, p < 0.05; left and right anterior p = 0.08) but only the right vertebral artery of the posterior circulation. Nonetheless, relative cerebral blood flow distribution and vascular reactivity (Δ%cerebral blood flow • ΔSpO2-1) were not different between arteries. Collectively, moderate hypoxia: (1) increased cerebral blood flow, but relative distribution remains similar to normoxia, (2) evokes similar vascular reactivity between 11 arteries, and (3) increased cross-sectional area primarily in the anterior arteries. This study provides the first wide-ranging, quantitative, functional and structural data regarding intracranial arteries during hypoxia in humans, highlighting cerebral blood flow regulation of microcirculation and macrocirculation differs between anterior and posterior circulation.
Collapse
Affiliation(s)
- J Mikhail Kellawan
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| | - John W Harrell
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| | - Alejandro Roldan-Alzate
- 2 Departments of Medical Physics, University of Wisconsin - Madison, WI, USA.,3 Departments of Radiology, University of Wisconsin - Madison, WI, USA
| | - Oliver Wieben
- 2 Departments of Medical Physics, University of Wisconsin - Madison, WI, USA.,3 Departments of Radiology, University of Wisconsin - Madison, WI, USA
| | - William G Schrage
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
14
|
Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, Carlsson CM, Johnson SC, Wieben O. Changes in intracranial venous blood flow and pulsatility in Alzheimer's disease: A 4D flow MRI study. J Cereb Blood Flow Metab 2017; 37:2149-2158. [PMID: 27492950 PMCID: PMC5464708 DOI: 10.1177/0271678x16661340] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion may be important indicators of cerebrovascular health in aging and diseases of aging such as Alzheimer's disease. Noninvasive markers that assess these characteristics may be helpful in the study of co-occurrence of these diseases and potential additive and interacting effects. In this study, 4D flow MRI was used to measure intra-cranial flow features with cardiac-gated phase contrast MRI in cranial arteries and veins. Mean blood flow and pulsatility index as well as the transit time of the peak flow from the middle cerebral artery to the superior sagittal sinus were measured in a total of 104 subjects comprising of four groups: (a) subjects with Alzheimer's disease, (b) age-matched controls, (c) subjects with mild cognitive impairment, and (d) a group of late middle-aged with parental history of sporadic Alzheimer's disease. The Alzheimer's disease group exhibited: a significant decrease in mean blood flow in the superior sagittal sinus, transverse sinus, middle cerebral artery, and internal carotid arteries; a significant decrease of the peak and end diastolic blood flow in the middle cerebral artery and superior sagittal sinus; a faster transmission of peak flow from the middle cerebral artery to the superior sagittal sinus and increased pulsatility index along the carotid siphon.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sara E Berman
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
15
|
Bouillot P, Delattre BMA, Brina O, Ouared R, Farhat M, Chnafa C, Steinman DA, Lovblad KO, Pereira VM, Vargas MI. 3D phase contrast MRI: Partial volume correction for robust blood flow quantification in small intracranial vessels. Magn Reson Med 2017; 79:129-140. [PMID: 28244132 DOI: 10.1002/mrm.26637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE Recent advances in 3D-PCMRI (phase contrast MRI) sequences allow for measuring the complex hemodynamics in cerebral arteries. However, the small size of these vessels vs spatial resolution can lead to non-negligible partial volume artifacts, which must be taken into account when computing blood flow rates. For this purpose, we combined the velocity information provided by 3D-PCMRI with vessel geometry measured with 3DTOF (time of flight MRI) or 3DRA (3D rotational angiography) to correct the partial volume effects in flow rate assessments. METHODS The proposed methodology was first tested in vitro on cylindrical and patient specific vessels subject to fully controlled pulsatile flows. Both 2D- and 3D-PCMRI measurements using various spatial resolutions ranging from 20 to 1.3 voxels per vessel diameter were analyzed and compared with flowmeter baseline. Second, 3DTOF, 2D- and 3D-PCMRI measurements were performed in vivo on 35 patients harboring internal carotid artery (ICA) aneurysms indicated for endovascular treatments requiring 3DRA imaging. RESULTS The in vitro 2D- and 3D-PCMRI mean flow rates assessed with partial volume correction showed very low sensitivity to the acquisition resolution above ≈2 voxels per vessel diameter while uncorrected flow rates deviated critically when decreasing the spatial resolution. 3D-PCMRI flow rates measured in vivo in ICA agreed very well with 2D-PCMRI data and a good flow conservation was observed at the C7 bifurcation. Globally, partial volume correction led to 10-15% lower flow rates than uncorrected values as those reported in most of the published studies on intracranial flows. CONCLUSION Partial volume correction may improve the accuracy of PCMRI flow rate measurements especially in small vessels such as intracranial arteries. Magn Reson Med 79:129-140, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pierre Bouillot
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratory for Hydraulic Machines (LMH), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte M A Delattre
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Olivier Brina
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Rafik Ouared
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mohamed Farhat
- Laboratory for Hydraulic Machines (LMH), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christophe Chnafa
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | - Karl-Olof Lovblad
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vitor M Pereira
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Maria I Vargas
- Division of Neuroradiology, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Rivera-Rivera LA, Turski P, Johnson KM, Hoffman C, Berman SE, Kilgas P, Rowley HA, Carlsson CM, Johnson SC, Wieben O. 4D flow MRI for intracranial hemodynamics assessment in Alzheimer's disease. J Cereb Blood Flow Metab 2016; 36:1718-1730. [PMID: 26661239 PMCID: PMC5076787 DOI: 10.1177/0271678x15617171] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion play important roles in the transport of waste metabolites out of the brain. Impaired vasomotion results in reduced driving force for the perivascular/glymphatic clearance of beta-amyloid. Noninvasive cerebrovascular characteristic features that potentially assess these transport mechanisms are mean blood flow (MBF) and pulsatility index (PI). In this study, 4D flow MRI was used to measure intra-cranial flow features, particularly MBF, PI, resistive index (RI) and cross-sectional area in patients with Alzheimer's disease (AD), mild cognitive impairment and in age matched and younger cognitively healthy controls. Three-hundred fourteen subjects participated in this study. Volumetric, time-resolved phase contrast (PC) MRI data were used to quantify hemodynamic parameters from 11 vessel segments. Anatomical variants of the Circle of Willis were also cataloged. The AD population reported a statistically significant decrease in MBF and cross-sectional area, and also an increase in PI and RI compared to age matched cognitively healthy control subjects. The 4D flow MRI technique used in this study provides quantitative measurements of intracranial vessel geometry and the velocity of flow. Cerebrovascular characteristics features of vascular health such as pulsatility index can be extracted from the 4D flow MRI data.
Collapse
Affiliation(s)
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Carson Hoffman
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sara E Berman
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Phillip Kilgas
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
17
|
Abstract
OBJECTIVE Comprehensive assessment of abdominal hemodynamics is crucial for many clinical diagnoses but is challenged by a tremendous complexity of anatomy, normal physiology, and a wide variety of pathologic abnormalities. This article introduces 4D flow MRI as a powerful technique for noninvasive assessment of the hemodynamics of abdominal vascular territories. CONCLUSION Four-dimensional flow MRI provides clinicians with a more extensive and straightforward approach to evaluate disorders that affect blood flow in the abdomen. This review presents a series of clinical cases to illustrate the utility of 4D flow MRI in the comprehensive assessment of the abdominal circulation.
Collapse
|
18
|
Bannas P, Roldán-Alzate A, Johnson KM, Woods MA, Ozkan O, Motosugi U, Wieben O, Reeder SB, Kramer H. Longitudinal Monitoring of Hepatic Blood Flow before and after TIPS by Using 4D-Flow MR Imaging. Radiology 2016; 281:574-582. [PMID: 27171019 DOI: 10.1148/radiol.2016152247] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose To demonstrate the feasibility of four-dimensional (4D)-flow magnetic resonance (MR) imaging for noninvasive longitudinal hemodynamic monitoring of hepatic blood flow before and after transjugular intrahepatic portosystemic shunt (TIPS) placement. Materials and Methods The institutional review board approved this prospective Health Insurance Portability and Accountability Act compliant study with written informed consent. Four-dimensional-flow MR imaging was performed in seven patients with portal hypertension and refractory ascites before and 2 and 12 weeks after TIPS placement by using a time-resolved three-dimensional radial phase-contrast acquisition. Flow and peak velocity measurements were obtained in the superior mesenteric vein (SMV), splenic vein (SV), portal vein (PV), and the TIPS. Flow volumes and peak velocities in each vessel, as well as the ratio of in-stent to PV flow, were compared before and after TIPS placement by using analysis of variance. Results Flow volumes significantly increased in the SMV (0.24 L/min; 95% confidence interval [CI]: 0.07, 0.41), SV (0.31 L/min; 95% CI: 0.07, 0.54), and PV (0.88 L/min; 95% CI: 0.06, 1.70) after TIPS placement (all P < .05), with no significant difference between the first and second post-TIPS placement acquisitions (all P > .11). Ascites resolved in six of seven patients. In those with resolved ascites, the TIPS-to-PV flow ratio was 0.8 ± 0.2 and 0.9 ± 0.2 at the two post-TIPS time points, respectively, while the observed ratios were 4.6 and 4.3 in the patient with refractory ascites at the two post-TIPS time points, respectively. In this patient, 4D-flow MR imaging demonstrated arterio-portal-venous shunting, with draining into the TIPS. Conclusion Four-dimensional-flow MR imaging is feasible for noninvasive longitudinal hemodynamic monitoring of hepatic blood flow before and after TIPS placement. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Peter Bannas
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Alejandro Roldán-Alzate
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Kevin M Johnson
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Michael A Woods
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Orhan Ozkan
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Utaroh Motosugi
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Oliver Wieben
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Scott B Reeder
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| | - Harald Kramer
- From the Departments of Radiology (P.B., A.R.A., M.A.W., O.O., U.M., O.W., S.B.R., H.K.), Medical Physics (K.M.J., O.W., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and Mechanical Engineering (A.R.A.) University of Wisconsin-Madison, Madison, Wis
| |
Collapse
|
19
|
Turski P, Scarano A, Hartman E, Clark Z, Schubert T, Rivera L, Wu Y, Wieben O, Johnson K. Neurovascular 4DFlow MRI (Phase Contrast MRA): emerging clinical applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40809-016-0019-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging. Neuroradiology 2016; 58:521-31. [PMID: 26882908 DOI: 10.1007/s00234-016-1661-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. METHODS Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. RESULTS In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). CONCLUSION PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA.
Collapse
|
21
|
Turk M, Zaletel M, Pretnar Oblak J. Characteristics of Cerebral Hemodynamics in Patients with Ischemic Leukoaraiosis and New Ultrasound Indices of Ischemic Leukoaraiosis. J Stroke Cerebrovasc Dis 2016; 25:977-84. [PMID: 26898773 DOI: 10.1016/j.jstrokecerebrovasdis.2015.12.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The diagnosis of ischemic leukoaraiosis (ILA) is based on head magnetic resonance imaging (MRI) and exclusion of other causes of white matter hyperintensities (WMHs). Recent studies have shown increased arterial stiffness and diminished carotid flow in ILA patients. So far, there are very little data on intracerebral hemodynamic parameters in ILA. Due to the specific structure of the intracranial arteries, our aim was to investigate intracerebral hemodynamic parameters in ILA patients and, possibly, to find a reliable ultrasound index of combined intra- and extracranial cerebral arteries. METHODS We compared different hemodynamic parameters in the middle cerebral artery (MCA) and local carotid stiffness parameters in 53 ILA patients to 40 gender and risk factor-matched controls with normal head MRI. The ILA diagnosis was based on head MRI and exclusion of other causes of WMH. In addition, we introduced new ischemic leukoariosis indices (ILAi) that are ratios of carotid stiffness parameters and MCA mean blood flow velocity. The diagnostic significance of ILAi for the prediction of ILA was analyzed. RESULTS We found significantly lower diastolic, systolic, and mean MCA blood flow velocities and increased carotid stiffness in the ILA group (P ≤ .05). All ILAi significantly differed between the groups (P < .05), were significantly associated with ILA (P < .01), and were sensitive and specific for predicting ILA (P < .05). CONCLUSION MCA blood flow velocities in ILA patients are lower compared to risk factor-matched controls. A combination of lower velocities and increased carotid stiffness represented as ILAi could have a potential diagnostic value for ILA.
Collapse
Affiliation(s)
- Monika Turk
- Department of Vascular Neurology and Intensive Neurological Therapy, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Marjan Zaletel
- Department of Vascular Neurology and Intensive Neurological Therapy, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Janja Pretnar Oblak
- Department of Vascular Neurology and Intensive Neurological Therapy, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Wu C, Honarmand AR, Schnell S, Kuhn R, Schoeneman SE, Ansari SA, Carr J, Markl M, Shaibani A. Age-Related Changes of Normal Cerebral and Cardiac Blood Flow in Children and Adults Aged 7 Months to 61 Years. J Am Heart Assoc 2016; 5:e002657. [PMID: 26727967 PMCID: PMC4859381 DOI: 10.1161/jaha.115.002657] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/22/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cerebral and cardiac blood flow are important to the pathophysiology and development of cerebro- and cardiovascular diseases. The purpose of this study was to investigate the age dependence of normal cerebral and cardiac hemodynamics in children and adults over a broad range of ages. METHODS AND RESULTS Overall, 52 children (aged 0.6-17.2 years) and 30 adults (aged 19.2-60.7 years) without cerebro- and cardiovascular diseases were included in this study. Intracranial 4-dimensional flow and cardiac 2-dimensional phase-contrast magnetic resonance imaging were performed for all participants to measure flow parameters in the major intracranial vessels and aorta. Total cerebral blood flow (TCBF), cardiac and cerebral indexes, brain volume, and global cerebral perfusion (TCBF/brain volume) were evaluated. Flow analysis revealed that TCBF increased significantly from age 7 months to 6 years (P<0.001) and declined thereafter (P<0.001). Both cardiac and cerebral indices declined with age (P<0.001). The ratio of TCBF to ascending aortic flow declined rapidly until age 18 years (P<0.001) and remained relatively stable thereafter. Age-related changes of cerebral vascular peak velocities exhibited a trend similar to TCBF. By comparison, aortic peak velocities maintained relatively high levels in children and declined with age in adults (P<0.001). TCBF significantly correlated with brain volume in adults (P=0.005) and in 2 pediatric subgroups, aged <7 years (P<0.001) and 7 to 18 years (P=0.039). CONCLUSIONS Cerebral and cardiac flow parameters are highly associated with age. The findings collectively highlight the importance of age-matched control data for the characterization of intracranial and cardiac hemodynamics.
Collapse
Affiliation(s)
- Can Wu
- Department of Biomedical EngineeringMcCormick School of EngineeringNorthwestern UniversityEvanstonIL
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
| | - Amir R. Honarmand
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
| | - Susanne Schnell
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
| | - Ryan Kuhn
- Department of Medical ImagingAnn & Robert H. Lurie Children's Hospital of ChicagoIL
| | | | - Sameer A. Ansari
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL
- Department of NeurologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
| | - James Carr
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
| | - Michael Markl
- Department of Biomedical EngineeringMcCormick School of EngineeringNorthwestern UniversityEvanstonIL
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
| | - Ali Shaibani
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL
- Department of Medical ImagingAnn & Robert H. Lurie Children's Hospital of ChicagoIL
| |
Collapse
|
23
|
McGah PM, Nerva JD, Morton RP, Barbour MC, Levitt MR, Mourad PD, Kim LJ, Aliseda A. In vitro validation of endovascular Doppler-derived flow rates in models of the cerebral circulation. Physiol Meas 2015; 36:2301-17. [PMID: 26450643 PMCID: PMC4684705 DOI: 10.1088/0967-3334/36/11/2301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study presents validation of endovascular Doppler velocimetry-based volumetric flow rate measurements conducted in a pulsatile flow loop simulating conditions in both the internal carotid and basilar artery. In vitro models of cerebral vessels, each containing an aneurysm, were fabricated from patient anatomies extracted from 3D rotational angiography. Flow velocity measurements were collected with three different experimental techniques: an endovascular Doppler wire, Particle Image Velocimetry, and a time-resolved ultrasonic flow meter. Womersley's theory of pulsatile flow in a cylindrical vessel was used to compute time-resolved volumetric flow rates from the endovascular Doppler velocity. The volumetric flow rates computed from the Doppler measurements were compared to those from the Particle Image Velocimetry profile measurements, and the direct measurements from the ultrasonic flow meter. The study establishes confidence intervals for any systematic or random errors associated with the wire-derived flow rates as benchmarked to the other two modalities. There is an approximately 10% random error in the Doppler-derived peak and time-averaged flow rates. There is a measurable uniform bias, about 15% too low, in the time-averaged Doppler-derived flow rates. There is also a small proportional bias in the peak systolic Doppler-derived flow rates. Potential sources of error are also discussed.
Collapse
Affiliation(s)
- P M McGah
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, US
| | - J D Nerva
- Department of Neurological Surgery, Harborview Medical Center, 325 9th Ave, Box 359924, Seattle, Washington, US
| | - R P Morton
- Department of Neurological Surgery, Harborview Medical Center, 325 9th Ave, Box 359924, Seattle, Washington, US
| | - M C Barbour
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, US
| | - M R Levitt
- Department of Neurological Surgery, Harborview Medical Center, 325 9th Ave, Box 359924, Seattle, Washington, US
| | - P D Mourad
- Department of Neurological Surgery, Harborview Medical Center, 325 9th Ave, Box 359924, Seattle, Washington, US
| | - L J Kim
- Department of Neurological Surgery, Harborview Medical Center, 325 9th Ave, Box 359924, Seattle, Washington, US
| | - A Aliseda
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, US
| |
Collapse
|
24
|
Chang W, Huang M, Chien A. Emerging techniques for evaluation of the hemodynamics of intracranial vascular pathology. Neuroradiol J 2015; 28:19-27. [PMID: 25924168 DOI: 10.15274/nrj-2014-10115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advances in imaging modalities have improved the assessment of intracranial hemodynamics using non-invasive techniques. This review examines new imaging modalities and clinical applications of currently available techniques, describes pathophysiology and future directions in hemodynamic analysis of intracranial stenoses, aneurysms and arteriovenous malformations and explores how hemodynamic analysis may have prognostic value in predicting clinical outcomes and assist in risk stratification. The advent of new technologies such as pseudo-continuous arterial spin labeling, accelerated magnetic resonance angiography (MRA) techniques, 4D digital subtraction angiography, and improvements in clinically available techniques such as phase-contrast MRA may change the landscape of vascular imaging and modify current clinical practice guidelines.
Collapse
Affiliation(s)
| | | | - Aichi Chien
- UCLA Department of Radiology; Los Angeles, CA, USA
| |
Collapse
|
25
|
Chang W, Wu Y, Johnson K, Loecher M, Wieben O, Edjlali M, Oppenheim C, Roca P, Hald J, Aagaard-Kienitz B, Niemann D, Mistretta C, Turski P. Fast contrast-enhanced 4D MRA and 4D flow MRI using constrained reconstruction (HYPRFlow): potential applications for brain arteriovenous malformations. AJNR Am J Neuroradiol 2015; 36:1049-55. [PMID: 25698624 DOI: 10.3174/ajnr.a4245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/29/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE HYPRFlow is a novel imaging strategy that provides fast, high-resolution contrast-enhanced time-resolved images and measurement of the velocity of the entire cerebrovascular system. Our hypothesis was that the images obtained with this strategy are of adequate diagnostic image quality to delineate the major components of AVMs. MATERIALS AND METHODS HYPRFlow and 3D TOF scans were obtained in 21 patients with AVMs with correlative DSA examinations in 14 patients. The examinations were scored for image quality and graded by using the Spetzler-Martin criteria. Mean arterial transit time and overlap integrals were calculated from the dynamic image data. Volume flow rates in normal arteries and AVM feeding arteries were measured from the phase contrast data. RESULTS HYPRFlow was equivalent to 3D-TOF in delineating normal arterial anatomy, arterial feeders, and nidus size and was concordant with DSA for AVM grading and venous drainage in 13 of the 14 examinations. Mean arterial transit time on the AVM side was 0.49 seconds, and on the normal contralateral side, 2.53 seconds with P < .001. Across all 21 subjects, the mean arterial volume flow rate in the M1 segment ipsilateral to the AVM was 4.07 ± 3.04 mL/s; on the contralateral M1 segment, it was 2.09 ± 0.64 mL/s. The mean volume flow rate in the largest feeding artery to the AVM was 3.86 ± 2.74 mL/s. CONCLUSIONS HYPRFlow provides an alternative approach to the MRA evaluation of AVMs, with the advantages of increased coverage, 0.75-second temporal resolution, 0.68-mm isotropic spatial resolution, and quantitative measurement of flow in 6 minutes.
Collapse
Affiliation(s)
- W Chang
- From the Department of Radiology (W.C.), University of California, Los Angeles, Los Angeles, California
| | - Y Wu
- Medical Physics (Y.W., K.J., M.L., O.W., C.M.), University of Wisconsin School of Medicine, Madison, Wisconsin
| | - K Johnson
- Medical Physics (Y.W., K.J., M.L., O.W., C.M.), University of Wisconsin School of Medicine, Madison, Wisconsin
| | - M Loecher
- Medical Physics (Y.W., K.J., M.L., O.W., C.M.), University of Wisconsin School of Medicine, Madison, Wisconsin
| | - O Wieben
- Medical Physics (Y.W., K.J., M.L., O.W., C.M.), University of Wisconsin School of Medicine, Madison, Wisconsin
| | - M Edjlali
- Department of Radiology (M.E., C.O., P.R.), Université Paris-Descartes, Paris, France
| | - C Oppenheim
- Department of Radiology (M.E., C.O., P.R.), Université Paris-Descartes, Paris, France
| | - P Roca
- Department of Radiology (M.E., C.O., P.R.), Université Paris-Descartes, Paris, France
| | - J Hald
- Department of Radiology (J.H.), Rikshospitalet, Oslo, Norway
| | | | | | - C Mistretta
- Medical Physics (Y.W., K.J., M.L., O.W., C.M.), University of Wisconsin School of Medicine, Madison, Wisconsin
| | - P Turski
- Departments of Radiology (B.A.-K., P.T.)
| |
Collapse
|
26
|
Edjlali M, Roca P, Rabrait C, Trystram D, Rodriguez-Régent C, Johnson KM, Wieben O, Turski P, Meder JF, Naggara O, Oppenheim C. MR selective flow-tracking cartography: a postprocessing procedure applied to four-dimensional flow MR imaging for complete characterization of cranial dural arteriovenous fistulas. Radiology 2013; 270:261-8. [PMID: 24029646 DOI: 10.1148/radiol.13130507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the feasibility of a selective flow-tracking cartographic procedure applied to four-dimensional (4D) flow imaging and to demonstrate its usefulness in the characterization of dural arteriovenous fistulas (DAVFs). MATERIALS AND METHODS Institutional review board approval was obtained, and all patients provided written informed consent. Eight patients (nine DAVFs) underwent 3.0-T magnetic resonance (MR) imaging and digital subtraction angiography (DSA). Imaging examinations were performed within 24 hours of each other. 4D flow MR imaging was performed by using a 4D radial phase-contrast vastly undersampled isotropic projection reconstruction pulse sequence with an isotropic spatial resolution of 0.86 mm (5 minutes 35 seconds). Two radiologists independently reviewed images from MR flow-tracking cartography and reported the location of arterial feeder vessels and the venous drainage type and classified DAVFs according to the risk of rupture (Cognard classification). These results were compared with those at DSA. Quadratic weighted κ statistics with their 95% confidence intervals (CIs) were used to test intermodality agreement in the identification of arterial feeder vessels, draining veins, and Cognard classification. RESULTS Interreader agreement for shunt location on MR images was perfect (κ = 1), with good-to-excellent interreader agreement for arterial feeder vessel identification (κ = 0.97; 95% CI = 0.92, 1.0), and matched in all cases with shunt location defined at DSA. There was good-to-excellent agreement between MR cartography and DSA in the definition of the main feeding arteries (κ = 0.92; 95% CI = 0.83, 1.0), presence of retrograde flow in dural sinuses (κ = 1), presence of retrograde cortical venous drainage (κ = 1), presence of venous ectasia (κ = 1), and final Cognard classification of DAVFs (κ = 1, standard error = 0.35). CONCLUSION MR selective flow-tracking cartography enabled the noninvasive characterization of cranial DAVFs.
Collapse
Affiliation(s)
- Myriam Edjlali
- From the Department of Morphologic and Functional Imaging, Université Paris Descartes, INSERM UMR 894, Hôpital Sainte Anne, 1 rue Cabanis, 75014 Paris, France (M.E., P.R., D.T., C. Rodriguez-Régent, J.F.M., O.N., C.O.), Clinical Science Development Group, GE Healthcare, Buc, France (C. Rabrait); and Departments of Medical Physics (K.M.J., O.W., P.T.) and Radiology (P.T.), University of Wisconsin, Madison, Wis
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wåhlin A, Ambarki K, Birgander R, Wieben O, Johnson KM, Malm J, Eklund A. Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging. AJNR Am J Neuroradiol 2013; 34:1740-5. [PMID: 23493888 DOI: 10.3174/ajnr.a3442] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE 4D PCMRI can be used to quantify pulsatile hemodynamics in multiple cerebral arteries. The aim of this study was to compare 4D PCMRI and 2D PCMRI for assessments of pulsatile hemodynamics in major cerebral arteries. MATERIALS AND METHODS We scanned the internal carotid artery, the anterior cerebral artery, the basilar artery, and the middle cerebral artery in 10 subjects with a single 4D and multiple 2D PCMRI acquisitions by use of a 3T system and a 32-channel head coil. We assessed the agreement regarding net flow and the volume of arterial pulsatility (ΔV) for all vessels. RESULTS 2D and 4D PCMRI produced highly correlated results, with r = 0.86 and r = 0.95 for ΔV and net flow, respectively (n = 69 vessels). These values increased to r = 0.93 and r = 0.97, respectively, during investigation of a subset of measurements with <5% variation in heart rate between the 4D and 2D acquisition (n = 31 vessels). Significant differences were found for ICA and MCA net flow (P = .004 and P < .001, respectively) and MCA ΔV (P = .006). However, these differences were attenuated and no longer significant when the subset with stable heart rate (n = 31 vessels) was analyzed. CONCLUSIONS 4D PCMRI provides a powerful methodology to measure pulsatility of the larger cerebral arteries from a single acquisition. A large part of differences between measurements was attributed to physiologic variations. The results were consistent with 2D PCMRI.
Collapse
Affiliation(s)
- A Wåhlin
- Department of Radiation Sciences
| | | | | | | | | | | | | |
Collapse
|
28
|
Levitt MR, McGah PM, Aliseda A, Mourad PD, Nerva JD, Vaidya SS, Morton RP, Ghodke BV, Kim LJ. Cerebral aneurysms treated with flow-diverting stents: computational models with intravascular blood flow measurements. AJNR Am J Neuroradiol 2013; 35:143-8. [PMID: 23868162 DOI: 10.3174/ajnr.a3624] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Computational fluid dynamics modeling is useful in the study of the hemodynamic environment of cerebral aneurysms, but patient-specific measurements of boundary conditions, such as blood flow velocity and pressure, have not been previously applied to the study of flow-diverting stents. We integrated patient-specific intravascular blood flow velocity and pressure measurements into computational models of aneurysms before and after treatment with flow-diverting stents to determine stent effects on aneurysm hemodynamics. MATERIALS AND METHODS Blood flow velocity and pressure were measured in peri-aneurysmal locations by use of an intravascular dual-sensor pressure and Doppler velocity guidewire before and after flow-diverting stent treatment of 4 unruptured cerebral aneurysms. These measurements defined inflow and outflow boundary conditions for computational models. Intra-aneurysmal flow rates, wall shear stress, and wall shear stress gradient were calculated. RESULTS Measurements of inflow velocity and outflow pressure were successful in all 4 patients. Computational models incorporating these measurements demonstrated significant reductions in intra-aneurysmal wall shear stress and wall shear stress gradient and a trend in reduced intra-aneurysmal blood flow. CONCLUSIONS Integration of intravascular dual-sensor guidewire measurements of blood flow velocity and blood pressure provided patient-specific computational models of cerebral aneurysms. Aneurysm treatment with flow-diverting stents reduces blood flow and hemodynamic shear stress in the aneurysm dome.
Collapse
|
29
|
Wentland AL, Grist TM, Wieben O. Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol 2013; 20:699-704. [PMID: 23510798 DOI: 10.1016/j.acra.2012.12.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/08/2012] [Accepted: 12/08/2012] [Indexed: 01/09/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to assess the repeatability and internal consistency of flow measurements in the renal arteries and pararenal aorta with the use of standard two-dimensional (2D) and novel four-dimensional (4D) phase contrast (PC) magnetic resonance imaging (MRI). MATERIALS AND METHODS Ten healthy volunteers were imaged with a radially undersampled 4D PC technique centered over the renal arteries and with four 2D PC slices placed in the supra/infrarenal aorta and the left/right renal arteries; this MRI exam was performed twice on each subject. Flow measurements in all four vessels were computed from 2D and 4D PC data sets. Student's t-tests (P < .05) were used to assess differences between in-flow (suprarenal aorta) and out-flow (infrarenal aorta + left renal artery + right renal artery) for the 2D and 4D techniques, to compare in- and out-flow, and to compare repeated measurements of 2D and 4D flow measurements. RESULTS No significant differences were found in repeated measurements of 2D (P = .15) or 4D (P = .39) data. No significant difference was found between 2D (3.4 ± 2.8 mL/cardiac cycle) and 4D (3.5 ± 2.7 mL/cardiac cycle) in- and out-flow differences (P = .88). Out-flow was greater than in-flow for 2D measurements (P = .003); no difference was found for 4D measurements. CONCLUSION The 2D and 4D techniques demonstrated strong repeatability and internal consistency of flow measurements in the renal arteries and pararenal aorta.
Collapse
|
30
|
Abstract
Traditionally, magnetic resonance imaging (MRI) of flow using phase contrast (PC) methods is accomplished using methods that resolve single-directional flow in two spatial dimensions (2D) of an individual slice. More recently, three-dimensional (3D) spatial encoding combined with three-directional velocity-encoded phase contrast MRI (here termed 4D flow MRI) has drawn increased attention. 4D flow MRI offers the ability to measure and to visualize the temporal evolution of complex blood flow patterns within an acquired 3D volume. Various methodological improvements permit the acquisition of 4D flow MRI data encompassing individual vascular structures and entire vascular territories such as the heart, the adjacent aorta, the carotid arteries, abdominal, or peripheral vessels within reasonable scan times. To subsequently analyze the flow data by quantitative means and visualization of complex, three-directional blood flow patterns, various tools have been proposed. This review intends to introduce currently used 4D flow MRI methods, including Cartesian and radial data acquisition, approaches for accelerated data acquisition, cardiac gating, and respiration control. Based on these developments, an overview is provided over the potential this new imaging technique has in different parts of the body from the head to the peripheral arteries.
Collapse
Affiliation(s)
- Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
31
|
Harloff A, Zech T, Wegent F, Strecker C, Weiller C, Markl M. Comparison of blood flow velocity quantification by 4D flow MR imaging with ultrasound at the carotid bifurcation. AJNR Am J Neuroradiol 2013; 34:1407-13. [PMID: 23413247 DOI: 10.3174/ajnr.a3419] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE 4D flow MR imaging is an emerging technique that allows visualization and quantification of 3D blood flow in vivo. However, representative studies evaluating its accuracy are lacking. Therefore, we compared blood flow quantification by using 4D flow MR imaging with US within the carotid bifurcation. MATERIALS AND METHODS Thirty-two healthy volunteers (age 25.3 ± 3.4 years) and 20 patients with ≥50% ICA stenosis (age 67.7 ± 7.4 years) were examined preoperatively and postoperatively by use of 4D flow MR imaging, with complete coverage of the left and right carotid bifurcation. Blood flow velocities were assessed with standardized 2D analysis planes distributed along the CCA and the ICA and were compared with US at baseline and postoperatively in patients. In addition, we tested reproducibility and interobserver agreement of 4D MR imaging in 10 volunteers. RESULTS Overall, 101 CCAs and 79 ICAs were available for comparison. MR imaging underestimated (P < .05) systolic CCA and ICA blood flow velocity by 26% (0.79 ± 0.29 m/s vs 1.06 ± 0.31 m/s) and 19% (0.72 ± 0.21 m/s vs 0.89 ± 0.27 m/s) compared with US. Diastolic blood flow velocities were similar for MR imaging and US (differences, 9% and 3%, respectively; not significant). Reproducibility and interobserver agreement of 4D flow MR imaging was excellent. CONCLUSIONS 4D flow MR imaging allowed for an accurate measurement of blood flow velocities in the carotid bifurcation of both volunteers and patients with only moderate underestimation compared with US. Thus, 4D flow MR imaging seems promising for a future combination with MRA to comprehensively assess ICA stenosis and related hemodynamic changes.
Collapse
Affiliation(s)
- A Harloff
- Department of Neurology, University Hospital, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology 2012; 55:389-98. [PMID: 23143179 DOI: 10.1007/s00234-012-1103-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023]
Abstract
INTRODUCTION 4D phase contrast MR imaging (4D PC MRI) has been introduced for spatiotemporal evaluation of intracranial hemodynamics in various cerebrovascular diseases. However, it still lacks validation with standards of reference. Our goal was to compare blood flow quantification derived from 4D PC MRI with transcranial ultrasound and 2D PC MRI. METHODS Velocity measurements within large intracranial arteries [internal carotid artery (ICA), basilar artery (BA), and middle cerebral artery (MCA)] were obtained in 20 young healthy volunteers with 4D and 2D PC MRI, transcranial Doppler sonography (TCD), and transcranial color-coded duplex sonography (TCCD). Maximum velocities at peak systole (PSV) and end diastole (EDV) were compared using regression analysis and Bland-Altman plots. RESULTS Correlation of 4D PC MRI measured velocities was higher in comparison with TCD (r = 0.49-0.66) than with TCCD (0.35-0.44) and 2D PC MRI (0.52-0.60). In mid-BA and ICA C7 segment, a significant correlation was found with TCD (0.68-0.81 and 0.65-0.71, respectively). No significant correlation was found in carotid siphon. On average over all volunteers, PSVs and EDVs in MCA were minimally underestimated compared with TCD/TCCD. Minimal overestimation of velocities was found compared to TCD in mid-BA and ICA C7 segment. CONCLUSION 4D PC MRI appears as valid alternative for intracranial velocity measurement consistent with previous reference standards, foremost with TCD. Spatiotemporal averaging effects might contribute to vessel size-dependent mild underestimation of velocities in smaller (MCA), and overestimation in larger-sized (BA and ICA) arteries, respectively. Complete spatiotemporal flow analysis may be advantageous in anatomically complex regions (e.g. carotid siphon) relative to restrictions of ultrasound techniques.
Collapse
|
33
|
Schneiders JJ, Ferns SP, van Ooij P, Siebes M, Nederveen AJ, van den Berg R, van Lieshout J, Jansen G, vanBavel E, Majoie CB. Comparison of phase-contrast MR imaging and endovascular sonography for intracranial blood flow velocity measurements. AJNR Am J Neuroradiol 2012; 33:1786-90. [PMID: 22576898 DOI: 10.3174/ajnr.a3142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Local hemodynamic information may help to stratify rupture risk of cerebral aneurysms. Patient-specific modeling of cerebral hemodynamics requires accurate data on BFV in perianeurysmal arteries as boundary conditions for CFD. The aim was to compare the BFV measured with PC-MR imaging with that obtained by using intra-arterial Doppler sonography and to determine interpatient variation in intracranial BFV. MATERIALS AND METHODS In 10 patients with unruptured intracranial aneurysms, BFV was measured in the cavernous ICA with PC-MR imaging in conscious patients before treatment, and measured by using an intra-arterial Doppler sonography wire when the patient was anesthetized with either propofol (6 patients) or sevoflurane (4 patients). RESULTS Both techniques identified a pulsatile blood flow pattern in cerebral arteries. PSV differed >50 cm/s between patients. A mean velocity of 41.3 cm/s (95% CI, 39.3-43.3) was measured with PC-MR imaging. With intra-arterial Doppler sonography, a mean velocity of 29.3 cm/s (95% CI, 25.8-32.8) was measured with the patient under propofol-based intravenous anesthesia. In patients under sevoflurane-based inhaled anesthesia, a mean velocity of 44.9 cm/s (95% CI, 40.6-49.3) was measured. CONCLUSIONS We showed large differences in BFV between patients, emphasizing the importance of using patient-specific hemodynamic boundary conditions in CFD. PC-MR imaging measurements of BFV in conscious patients were comparable with those obtained with the intra-arterial Doppler sonography when the patient was anesthetized with a sevoflurane-based inhaled anesthetic.
Collapse
Affiliation(s)
- J J Schneiders
- Department of Radiology, Academic Medical Center, University of Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang W, Loecher MW, Wu Y, Niemann DB, Ciske B, Aagaard-Kienitz B, Kecskemeti S, Johnson KM, Wieben O, Mistretta C, Turski P. Hemodynamic changes in patients with arteriovenous malformations assessed using high-resolution 3D radial phase-contrast MR angiography. AJNR Am J Neuroradiol 2012; 33:1565-72. [PMID: 22499844 DOI: 10.3174/ajnr.a3010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arteriovenous malformations have a high lifetime risk of hemorrhage; however, treatment carries a significant risk of morbidity and mortality, including permanent neurologic sequelae. WSS and other hemodynamic parameters are altered in patients with symptomatic AVMs, and analysis of hemodynamics may have value in stratifying patients into different risk groups. In this study, we examined hemodynamic data from patients with stable symptoms and those who presented with acute symptoms to identify trends which may help in risk stratification. MATERIALS AND METHODS Phase-contrast MRA using a radial readout (PC-VIPR) is a fast, high-resolution technique that can acquire whole-brain velocity-encoded angiograms with scan times of approximately 5 minutes. Ten patients with AVMs were scanned using PC-VIPR; velocity, area, flow, and WSS in vessels feeding the AVMs and normal contralateral vessels were calculated using velocity data from the phase-contrast acquisition. RESULTS Patients with an asymptomatic presentation or mild symptoms (n = 4) had no significant difference in WSS in feeding vessels compared with normal contralateral vessels, whereas patients presenting with hemorrhage, severe headaches/seizures, or focal neurologic deficits (n = 6) had significantly higher WSS in feeding vessels compared with contralateral vessels. CONCLUSIONS In this study, we demonstrate that estimates of WSS and other hemodynamic parameters can be obtained noninvasively in patients with AVMs in clinically useful imaging times. Variation in WSS between feeders and normal vessels appears to relate to the clinical presentation of the patient. Further analysis of hemodynamic changes may improve characterization and staging of AVM patients, when combined with existing risk factors.
Collapse
Affiliation(s)
- W Chang
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Campeau NG, Huston J. Vascular disorders--magnetic resonance angiography: brain vessels. Neuroimaging Clin N Am 2012; 22:207-33, x. [PMID: 22548929 DOI: 10.1016/j.nic.2012.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance angiography (MRA) of the brain obtained at 3 T imaging has made a significant clinical impact. MRA benefits from acquisition at higher magnetic field strength because of higher available signal-to-noise ratio and improved relative background suppression due to magnetic field strength-related T1 lengthening. Parallel imaging techniques are ideally suited for high-field MRA. Many of the developments that have made 3 T MRA of the brain successful can be regarded as enabling technologies that are essential for further development of 7 T MRA, which brings additional challenges.
Collapse
Affiliation(s)
- Norbert G Campeau
- Division of Neuroradiology, Mayo Clinic, West 2 Mayo Building, 200 First Street Southwest, Rochester, MN 55905, USA.
| | | |
Collapse
|
36
|
Carlsson M, Töger J, Kanski M, Bloch KM, Ståhlberg F, Heiberg E, Arheden H. Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson 2011; 13:55. [PMID: 21970399 PMCID: PMC3213199 DOI: 10.1186/1532-429x-13-55] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 10/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three-dimensional time-resolved (4D) phase-contrast (PC) CMR can visualize and quantify cardiovascular flow but is hampered by long acquisition times. Acceleration with SENSE or k-t BLAST are two possibilities but results on validation are lacking, especially at 3 T. The aim of this study was therefore to validate quantitative in vivo cardiac 4D-acquisitions accelerated with parallel imaging and k-t BLAST at 1.5 T and 3 T with 2D-flow as the reference and to investigate if field strengths and type of acceleration have major effects on intracardiac flow visualization. METHODS The local ethical committee approved the study. 13 healthy volunteers were scanned at both 1.5 T and 3 T in random order with 2D-flow of the aorta and main pulmonary artery and two 4D-flow sequences of the heart accelerated with SENSE and k-t BLAST respectively. 2D-image planes were reconstructed at the aortic and pulmonary outflow. Flow curves were calculated and peak flows and stroke volumes (SV) compared to the results from 2D-flow acquisitions. Intra-cardiac flow was visualized using particle tracing and image quality based on the flow patterns of the particles was graded using a four-point scale. RESULTS Good accuracy of SV quantification was found using 3 T 4D-SENSE (r2 = 0.86, -0.7 ± 7.6%) and although a larger bias was found on 1.5 T (r2 = 0.71, -3.6 ± 14.8%), the difference was not significant (p = 0.46). Accuracy of 4D k-t BLAST for SV was lower (p < 0.01) on 1.5 T (r2 = 0.65, -15.6 ± 13.7%) compared to 3 T (r2 = 0.64, -4.6 ± 10.0%). Peak flow was lower with 4D-SENSE at both 3 T and 1.5 T compared to 2D-flow (p < 0.01) and even lower with 4D k-t BLAST at both scanners (p < 0.01). Intracardiac flow visualization did not differ between 1.5 T and 3 T (p = 0.09) or between 4D-SENSE or 4D k-t BLAST (p = 0.85). CONCLUSIONS The present study showed that quantitative 4D flow accelerated with SENSE has good accuracy at 3 T and compares favourably to 1.5 T. 4D flow accelerated with k-t BLAST underestimate flow velocities and thereby yield too high bias for intra-cardiac quantitative in vivo use at the present time. For intra-cardiac 4D-flow visualization, however, 1.5 T and 3 T as well as SENSE or k-t BLAST can be used with similar quality.
Collapse
Affiliation(s)
- Marcus Carlsson
- Dept. of Clinical Physiology, Lund University and Skane University Hospital, Lund, Sweden
| | - Johannes Töger
- Dept. of Clinical Physiology, Lund University and Skane University Hospital, Lund, Sweden
| | - Mikael Kanski
- Dept. of Clinical Physiology, Lund University and Skane University Hospital, Lund, Sweden
| | - Karin Markenroth Bloch
- Philips Healthcare, Lund, Sweden
- Dept. of Radiation Physics, Lund University, Lund, Sweden
| | | | - Einar Heiberg
- Dept. of Clinical Physiology, Lund University and Skane University Hospital, Lund, Sweden
| | - Håkan Arheden
- Dept. of Clinical Physiology, Lund University and Skane University Hospital, Lund, Sweden
| |
Collapse
|
37
|
Levitt MR, Kim LJ. Noninvasive cerebral blood flow velocity measurements using fast, high-resolution magnetic resonance angiography. World Neurosurg 2011; 76:8-10. [PMID: 21839929 DOI: 10.1016/j.wneu.2011.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Mistretta CA. Sub-Nyquist acquisition and constrained reconstruction in time resolved angiography. Med Phys 2011; 38:2975-85. [PMID: 21815371 PMCID: PMC3125079 DOI: 10.1118/1.3589132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 11/07/2022] Open
Abstract
In 1980 DSA provided a real time series of digitally processed angiographic images that facilitated and reduced the risk of angiographic procedures. This technique has become an enabling technology for interventional radiology. Initially it was hoped that intravenous DSA could eliminate the need for arterial injections. However the 2D nature of the images resulted in overlap of vessels and repeat injections were often required. Ultimately the use of smaller arterial catheters and reduced iodine injections resulted in significant reduction in complications. During the next two decades time resolved MR DSA angiographic methods were developed that produced time series of 3D images. These 4D displays were initially limited by tradeoffs in temporal and spatial resolution when acquisitions obeying the Nyquist criteria were employed. Then substantial progress was made in the implementation of undersampled non-Cartesian acquisitions such as VIPR and constrained reconstruction methods such as HYPR, which removed this tradeoff and restored SNR usually lost by accelerated techniques. Recently, undersampled acquisition and constrained reconstruction have been applied to generate time series of 3D x-ray DSA volumes reconstructed using rotational C-arm acquisition completing a 30 year evolution from DSA to 4D DSA. These 4D DSA volumes provide a flexible series of roadmaps for interventional procedures and solve the problem of vessel overlap for intravenous angiography. Full time-dependent behavior can be visualized in three dimensions. When a biplane system is used, 4D fluoroscopy is also possible, enabling the interventionalist to track devices in vascular structures from any angle without moving the C-arm gantrys. Constrained reconstruction methods have proved useful in a broad range of medical imaging applications, where substantial acquisition accelerations and dose reductions have been reported.
Collapse
Affiliation(s)
- Charles A Mistretta
- University of Wisconsin International Center for Accelerated Medical Imaging, Department of Medical Physics, The University of Wisconsin, Madison, Wisconsin 53704, USA.
| |
Collapse
|
39
|
Chang W, Frydrychowicz A, Kecskemeti S, Landgraf B, Johnson K, Wu Y, Wieben O, Mistretta C, Turski P. The effect of spatial resolution on wall shear stress measurements acquired using radial phase contrast magnetic resonance angiography in the middle cerebral arteries of healthy volunteers. Preliminary results. Neuroradiol J 2011; 24:115-20. [PMID: 24059578 DOI: 10.1177/197140091102400116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/03/2011] [Indexed: 11/15/2022] Open
Abstract
We have recently implemented radial phase-contrast techniques that allow high resolution angiograms with velocity information to be acquired within clinically-useful imaging times. 10 healthy volunteers were scanned using PC-VIPR and PC-SOS, two high resolution phase-contrast techniques at spatial resolutions of 0.67×0.67×0.67 mm(3) and 0.4×0.4×1 mm(3) respectively. The velocity measurements from the two acquisitions were imported into a custom Matlab runtime environment that automatically calculated WSS values using Green's Theorem and B-spline interpolation. Time average axial WSS was 1.069 N/m(2) (95% confidence interval: 0.8628< x < 1.276) in the left and right middle cerebral arteries of the 10 healthy volunteers (n=20) when scanned by PC-VIPR, and 1.670 N/m(2) when scanned by PC-SOS (95% confidence interval: 1.395 < x < 1.946). This difference in means was statistically significant (p < 0.002). Previous investigators have found that higher spatial resolution results in higher WSS measurements because smaller voxel size results in fewer partial volume effects. This was true in our study as well. In this study, we found that PC-SOS has significantly higher spatial resolution than PC-VIPR and this followed in the WSS measurements. Higher in-plane spatial resolution allows WSS calculations to be performed more accurately because of increased precision near the vessel boundary.
Collapse
Affiliation(s)
- W Chang
- Department of Medical Physics; Department of Radiology; University of Wisconsin School of Medicine and Public Health; Madison, Wisconsin, USA -
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Frydrychowicz A, François CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol 2011; 80:24-35. [PMID: 21333479 DOI: 10.1016/j.ejrad.2011.01.094] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
Unlike other magnetic resonance angiographic techniques, phase contrast imaging (PC-MRI) offers co-registered morphologic images and velocity data within a single acquisition. While the basic principle of PC-MRI dates back almost 3 decades, novel time-resolved three-dimensional PC-MRI (4D PC-MRI) approaches have become increasingly researched over the past years. So-called 4D PC-MRI includes three-directional velocity encoding in a three-dimensional imaging volume over time, thereby providing the opportunity to comprehensively analyze human hemodynamics in vivo. Moreover, its large volume coverage offers the option to study systemic hemodynamic effects. Additionally, this offers the possibility to re-visit flow in any location of interest without being limited to predetermined two-dimensional slices. The attention received for hemodynamic research is partially based on flow-based theories of atherogenesis and arterial remodeling. 4D PC-MRI can be used to calculate flow-related vessel wall parameters and may hence serve as a diagnostic tool in preemptive medicine. Furthermore, technical improvements including the availability of sufficient computing power, data storage capabilities, and optimized acceleration schemes for data acquisition as well as comprehensive image processing algorithms have largely facilitated recent research progresses. We will present an overview of the potential of this relatively young imaging paradigm. After acquisition and processing the data in morphological and phase difference images, various visualization strategies permit the qualitative analysis of hemodynamics. A multitude of quantitative parameters such as pulse wave velocities and estimates of wall shear stress which might serve as future biomarkers can be extracted. Thereby, exciting new opportunities for vascular imaging and diagnosis are available.
Collapse
Affiliation(s)
- Alex Frydrychowicz
- Department of Radiology, University of Wisconsin - Madison, United States.
| | | | | |
Collapse
|