1
|
Zhao L, Wei Y, Liu Q, Cai J, Mo X, Tang X, Wang X, Qin L, Liang Y, Cao J, Huang C, Lu Y, Zhang T, Luo L, Rong J, Wu S, Jin W, Guan Q, Teng K, Li Y, Qin J, Zhang Z. Association between multiple-heavy-metal exposures and systemic immune inflammation in a middle-aged and elderly Chinese general population. BMC Public Health 2024; 24:1192. [PMID: 38679723 PMCID: PMC11057124 DOI: 10.1186/s12889-024-18638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Exposure to heavy metals alone or in combination can promote systemic inflammation. The aim of this study was to investigate potential associations between multiple plasma heavy metals and markers of systemic immune inflammation. METHODS Using a cross-sectional study, routine blood tests were performed on 3355 participants in Guangxi, China. Eight heavy metal elements in plasma were determined by inductively coupled plasma mass spectrometry. Immunoinflammatory markers were calculated based on peripheral blood WBC and its subtype counts. A generalised linear regression model was used to analyse the association of each metal with the immunoinflammatory markers, and the association of the metal mixtures with the immunoinflammatory markers was further assessed using weighted quantile sum (WQS) regression. RESULTS In the single-metal model, plasma metal Fe (log10) was significantly negatively correlated with the levels of immune-inflammatory markers SII, NLR and PLR, and plasma metal Cu (log10) was significantly positively correlated with the levels of immune-inflammatory markers SII and PLR. In addition, plasma metal Mn (log10 conversion) was positively correlated with the levels of immune inflammatory markers NLR and PLR. The above associations remained after multiple corrections. In the mixed-metal model, after WQS regression analysis, plasma metal Cu was found to have the greatest weight in the positive effects of metal mixtures on SII and PLR, while plasma metals Mn and Fe had the greatest weight in the positive effects of metal mixtures on NLR and LMR, respectively. In addition, blood Fe had the greatest weight in the negative effects of the metal mixtures for SII, PLR and NLR. CONCLUSION Plasma metals Cu and Mn were positively correlated with immunoinflammatory markers SII, NLR and PLR. While plasma metal Fe was negatively correlated with immunoinflammatory markers SII, NLR, and PLR.
Collapse
Affiliation(s)
- Linhai Zhao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yanfei Wei
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Qiumei Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Xiaoting Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xuexiu Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lidong Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yujian Liang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiejing Cao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuwu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yufu Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tiantian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lei Luo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiahui Rong
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Songju Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wenjia Jin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qinyi Guan
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kaisheng Teng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - You Li
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
3
|
Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr 2022; 127:214-232. [PMID: 33641685 PMCID: PMC8047403 DOI: 10.1017/s0007114521000738] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The importance of Zn for human health becomes obvious during Zn deficiency. Even mild insufficiencies of Zn cause alterations in haematopoiesis and immune functions, resulting in a proinflammatory phenotype and a disturbed redox metabolism. Although immune system malfunction has the most obvious effect, the functions of several tissue cell types are disturbed if Zn supply is limiting. Adhesion molecules and tight junction proteins decrease, while cell death increases, generating barrier dysfunction and possibly organ failure. Taken together, Zn deficiency both weakens the resistance of the human body towards pathogens and at the same time increases the danger of an overactive immune response that may cause tissue damage. The case numbers of Corona Virus Disease 19 (COVID-19) are still increasing, which is causing enormous problems for health systems and economies. There is an urgent need to reduce both the number of severe cases and the resulting deaths. While therapeutic options are still under investigation, and first vaccines have been approved, cost-effective ways to reduce the likelihood of or even prevent infection, and the transition from mild symptoms to more serious detrimental disease, are highly desirable. Nutritional supplementation might be an effective option to achieve these aims. In this review, we discuss known Zn deficiency effects in the context of an infection with Severe Acute Respiratory Syndrome-Coronavirus-2 and its currently known pathogenic mechanisms and elaborate on how severe pre-existing Zn deficiency may pre-dispose patients to a severe progression of COVID-19. First published clinical data on the association of Zn homoeostasis with COVID-19 and registered studies in progress are listed.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| |
Collapse
|
4
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
5
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
7
|
Sakakibara Y, Sato S, Shirato K, Arai N, Aritoshi S, Ogawa-Nakata N, Kawashima Y, Someya Y, Akimoto S, Jinde M, Shiraishi A, Ideno H, Tachiyashiki K, Imaizumi K. Dietary zinc-deficiency and its recovery responses in the thermogenesis of rats. J Toxicol Sci 2011; 36:681-5. [DOI: 10.2131/jts.36.681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yuko Sakakibara
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
- Japan Society for the Promotion of Science
| | - Ken Shirato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Natsuko Arai
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Shoko Aritoshi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Naho Ogawa-Nakata
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | | | - Yui Someya
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Shunta Akimoto
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Manabu Jinde
- School of Medicine, University of Occupational and Environmental Health, Japan
| | | | - Hisashi Ideno
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Kaoru Tachiyashiki
- Department of Natural and Living Sciences, Graduate School of Education, Joetsu University of Education
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
- Global COE Doctoral Program, Graduate School of Sport Sciences, Waseda University
| |
Collapse
|