1
|
Sourugeon Y, Boffa A, Perucca Orfei C, de Girolamo L, Magalon J, Sánchez M, Tischer T, Filardo G, Laver L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models: A systematic review by the ESSKA Orthobiologic Initiative. Part 3: Umbilical cord, placenta, and other sources for cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2025; 33:1695-1708. [PMID: 39302089 DOI: 10.1002/ksa.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This systematic review aimed to investigate in animal models the presence of disease-modifying effects driven by non-bone marrow-derived and non-adipose-derived products, with a particular focus on umbilical cord and placenta-derived cell-based therapies for the intra-articular injective treatment of osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science and Embase) according to PRISMA guidelines. The results were synthesised to investigate disease-modifying effects in preclinical animal studies comparing injectable umbilical cord, placenta, and other sources-derived products with OA controls. The risk of bias was assessed using the SYRCLE tool. RESULTS A total of 80 studies were included (2314 animals). Cell therapies were most commonly obtained from the umbilical cord in 33 studies and placenta/amniotic tissue in 18. Cell products were xenogeneic in 61 studies and allogeneic in the remaining 19 studies. Overall, 25/27 (92.6%) of studies on umbilical cord-derived products documented better results compared to OA controls in at least one of the following outcomes: macroscopic, histological and/or immunohistochemical findings, with 19/22 of studies (83.4%) show positive results at the cartilage level and 4/6 of studies (66.7%) at the synovial level. Placenta-derived injectable products documented positive results in 13/16 (81.3%) of the studies, 12/15 (80.0%) at the cartilage level, and 2/4 (50.0%) at the synovial level, but 2/16 studies (12.5%) found overall worse results than OA controls. Other sources (embryonic, synovial, peripheral blood, dental pulp, cartilage, meniscus and muscle-derived products) were investigated in fewer preclinical studies. The risk of bias was low in 42% of items, unclear in 49%, and high in 9% of items. CONCLUSION Interest in cell-based injectable therapies for OA treatment is soaring, particularly for alternatives to bone marrow and adipose tissue. While expanded umbilical cord mesenchymal stem cells reported auspicious disease-modifying effects in preventing OA progression in animal models, placenta/amniotic tissue also reported deleterious effects on OA joints. Lower evidence has been found for other cellular sources such as embryonic, synovial, peripheral blood, dental-pulp, cartilage, meniscus, and muscle-derived products. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Yosef Sourugeon
- Division of Surgery, Orthopaedics Department, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Jeremy Magalon
- INSERM, NRA, C2VN, Aix Marseille University, Marseille, France
- SAS Remedex, Marseille, France
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus, Erlangen, Germany
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Surgery, Service of Orthopaedics and Traumatology, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Lior Laver
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (IsraelInstitute of Technology), Haifa, Israel
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
| |
Collapse
|
2
|
Shi Y, Zhang J, Li Y, Feng C, Shao C, Shi Y, Fang J. Engineered mesenchymal stem/stromal cells against cancer. Cell Death Dis 2025; 16:113. [PMID: 39971901 PMCID: PMC11839947 DOI: 10.1038/s41419-025-07443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Mesenchymal stem/stromal cells (MSCs) have garnered attention for their potential in cancer therapy due to their ability to home to tumor sites. Engineered MSCs have been developed to deliver therapeutic proteins, microRNAs, prodrugs, chemotherapy drugs, and oncolytic viruses directly to the tumor microenvironment, with the goal of enhancing therapeutic efficacy while minimizing off-target effects. Despite promising results in preclinical studies and clinical trials, challenges such as variability in delivery efficiency and safety concerns persist. Ongoing research aims to optimize MSC-based cancer eradication and immunotherapy, enhancing their specificity and efficacy in cancer treatment. This review focuses on advancements in engineering MSCs for tumor-targeted therapy.
Collapse
Affiliation(s)
- Yuzhu Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jia Zhang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200025, China.
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Lee SW, Lim YJ, Kim HY, Kim W, Park WT, Ma MJ, Lee J, Seo MS, Kim YI, Park S, Choi SK, Lee GW. Immortalization of epidural fat-derived mesenchymal stem cells: In vitro characterization and adipocyte differentiation potential. World J Stem Cells 2025; 17:98777. [PMID: 39866894 PMCID: PMC11752455 DOI: 10.4252/wjsc.v17.i1.98777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers. However, their clinical applications are limited due to cell senescence and limited accessibility of EF. Although many studies have attempted to establish an immortalized, stable SC line, the characteristics of immortalized EF-MSCs remain to be clarified. AIM To establish and analyze stable immortalized EF-MSCs. METHODS The phenotypes of EF-MSCs were analyzed using optical microscopy. Cell immortalization was performed using lentiviral vectors. The biomolecular characteristics of the cells were analyzed by immunoblotting, quantitative PCR, and proteomics. RESULTS The immortalized EF-MSCs demonstrated a significantly extended lifespan compared to the control group, with well-preserved adipogenic potential and SC surface marker expression. Introduction of human telomerase reverse transcriptase genes markedly increased the lifespan of EF-MSCs. Proteomics analysis revealed substantial increase in the expression of DNA replication pathway components in immortalized EF-MSCs. CONCLUSION Immortalized EF-MSCs exhibited significantly enhanced proliferative capacity, retained adipogenic potential, and upregulated the expression of DNA replication pathway components.
Collapse
Affiliation(s)
- Seoung-Woo Lee
- Core Protein Resources Center, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, South Korea
| | - Hee-Yeon Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Wansoo Kim
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, South Korea
| | - Min-Jung Ma
- Laboratory of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Junho Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, Kyungpook National University, Daegu 41566, South Korea
| | | | - Sangbum Park
- Michigan State University, Institute for Quantitative Health Science & Engineering, East Lansing, MI 48824, United States
| | - Seong-Kyoon Choi
- Core Protein Resources Center, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu 42415, South Korea.
| |
Collapse
|
4
|
Aranguren S, Cole H, Dargan LJ, Sarlo M, Choi S, Satapathy I, de Vasconcellos JF. Recent advances in the regulatory and non-coding RNA biology of osteogenic differentiation: biological functions and significance for bone healing. Front Cell Dev Biol 2025; 12:1483843. [PMID: 39834390 PMCID: PMC11743950 DOI: 10.3389/fcell.2024.1483843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Injuries associated with contemporary life, such as automobile crashes and sports injuries, can lead to large numbers of traumatic neuromuscular injuries that are intimately associated with bone fractures. Regulatory and non-coding RNAs play essential roles in multiple cellular processes, including osteogenic differentiation and bone healing. In this review, we discuss the most recent advances in our understanding of the regulatory and non-coding RNA biology of osteogenic differentiation in stem, stromal and progenitor cells. We focused on circular RNAs, small nucleolar RNAs and PIWI-interacting RNAs and comprehensively summarized their biological functions as well as discussed their significance for bone healing and tissue regeneration.
Collapse
|
5
|
Badralmaa Y, Natarajan V. Aberrant Wnt/β-catenin signaling in the mesenchymal stem cells of LZTFL1-depleted mice leads to increased adipogenesis, with implications for obesity. J Biol Chem 2025; 301:108057. [PMID: 39662832 PMCID: PMC11770550 DOI: 10.1016/j.jbc.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Obesity is one of the main clinical characteristics associated with the heterogeneous genetic disorder Bardet-Biedl syndrome (BBS). Leucine zipper transcription factor like 1 (LZTFL1) is a member of the BBS gene family. Our work showed that Lztfl1knockout (LZKO) mice display the obesity phenotype as early as 3 months of age. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into various cell types, including adipocytes. To understand the role of LZTFL1 in adipogenesis, we analyzed MSCs isolated from LZKO mouse compact bones (CB-MSCs). Compared to wildtype (WT), LZKO CB-MSCs had elongated primary cilia with tapered tips and increased levels of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor that favors adipogenesis, and nuclear glucocorticoid receptor (GR), a transcription factor involved in Pparg activation. Also, LZKO CB-MSCs had a lower level of total β-catenin, a core factor of the antiadipogenic canonical Wnt/b-catenin signaling pathway involved in limiting the nuclear localization of GR. Interaction between caveolin1 (CAV1) and LRP6, the main receptor for canonical Wnt signaling, is known to be critical for Wnt pathway activation and β-catenin stabilization. Compared to WT cells, LZKO cells had elevated total, cell-surface, and lipid-raft-associated LRP6 and reduced CAV1, strongly indicating alterations in the components of the Wnt-signaling pathway. We show that in the absence of LZTFL1, adipogenesis-restraining Wnt/β-catenin signaling is inhibited, and adipogenesis-favorable factors are stimulated in CB-MSCs, leading to enhanced adipogenesis. Evidence provided here could help in understanding the mechanism and molecular basis of obesity in LZTFL1-defective patients.
Collapse
Affiliation(s)
- Yunden Badralmaa
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
| |
Collapse
|
6
|
Yang Q, Zhou Y, Farooq W, Liu Q, Duan J, Xing L, Wu C, Dong L. The immunomodulatory effects of Mesenchymal stem cells on THP-1-derived macrophages against Mycobacterium tuberculosis H37Ra infection. Tuberculosis (Edinb) 2025; 150:102593. [PMID: 39709721 DOI: 10.1016/j.tube.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Immune imbalance is crucial in tuberculosis pathogenesis and may be modulated by mesenchymal stem cells (MSCs). However, how MSCs regulate the host's response to Mycobacterium tuberculosis (Mtb) is unclear. METHODS Human umbilical cord-derived MSCs were co-cultured with Mtb-infected THP-1 macrophages. The intracellular release of ROS in macrophages was measured by DCFH-DA. Cytokine expression was measured by RT-qPCR, apoptosis by Annexin V/PI assay, and pyroptosis markers by Western blotting. Differentially expressed genes (DEGs) in Mtb-infected THP-1 co-cultured with or without MSCs were identified by RNA-seq and potential signaling pathways were analyzed through bioinformatics. RESULTS The fibroblastic morphology of MSCs exhibited 95 % positivity for CD73, CD90, and CD105, while the positivity rate for negative marker HLA-DR was less than 2 %. In Mtb-infected THP-1 macrophages, co-culturing with MSCs increased ROS release, cytokines expression (IL-1β, IL-6, TNF-α), apoptosis, and pyroptosis markers (NLRP3, Caspase-1, and GSDMD). Comparative transcriptome analysis identified 347 up-regulated and 291 down-regulated DEGs, primarily associated with receptor-ligand interactions and enriched in cytokine signaling pathways including JAK-STAT, TNF, ferroptosis, and autophagy. CONCLUSION MSCs could enhance the macrophages' immune response to Mtb by activating immune receptors and inflammatory signaling pathways.
Collapse
Affiliation(s)
- Qianwei Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, and Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Yiqun Zhou
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, and Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Waqas Farooq
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, and Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qimiao Liu
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, and Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jinhui Duan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Li Xing
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, and Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, and Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Li Dong
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, and Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
7
|
Silva Couto P, Stibbs DJ, Rotondi MC, Khalife R, Wolf D, Takeuchi Y, Rafiq QA. Biological differences between adult and perinatal human mesenchymal stromal cells and their impact on the manufacturing processes. Cytotherapy 2024; 26:1429-1441. [PMID: 38970611 DOI: 10.1016/j.jcyt.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
The biological properties of human mesenchymal stromal cells (hMSCs) have been explored in over a thousand clinical trials in the last decade. Although hMSCs can be isolated from multiple sources, the degree of biological similarity between cell populations from these sources remains to be determined. A comparative study was performed investigating the growth kinetics and functionality of hMSCs isolated from adipose tissue (AT), bone marrow (BM) and umbilical cord tissue (UCT) expanded in monolayer over five passages. Adult hMSCs (AT, BM) had a slower proliferation ability than the UCT-hMSCs, with no apparent differences in their glucose consumption profile. BM-hMSCs produced higher concentrations of endogenous vascular endothelial growth factor (VEGF) compared to AT- and UCT-hMSCs. This study also revealed that UCT-hMSCs were more efficiently transduced by a lentiviral vector carrying a VEGF gene than their adult counterparts. Following cellular immunophenotypic characterization, no differences across the sources were found in the expression levels of the typical markers used to identify hMSCs. This work established a systematic approach for cell source selection depending on the hMSC's intended clinical application.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, University College London, London, UK
| | - Dale J Stibbs
- Department of Biochemical Engineering, University College London, London, UK
| | - Marco C Rotondi
- Department of Biochemical Engineering, University College London, London, UK
| | - Rana Khalife
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK; Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare products Regulatory Agency, Potters Bar, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
8
|
Bhatta MP, Won GW, Lee SH, Choi SH, Oh CH, Moon JH, Hoang HH, Lee J, Lee SD, Park JI. Determination of adipogenesis stages of human umbilical cord-derived mesenchymal stem cells using three-dimensional label-free holotomography. Methods 2024; 231:204-214. [PMID: 39395684 DOI: 10.1016/j.ymeth.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Adipogenesis involves complex changes in gene expression, morphology, and cytoskeletal organization. However, the quantitative analysis of live cell images to identify their stages through morphological markers is limited. Distinct adipogenesis markers on human umbilical cord-derived mesenchymal stem cells (UC-MSCs) were identified through holotomography, a label-free live cell imaging technique. In the MSC-to-preadipocyte transition, the nucleus-to-cytoplasm ratio (0.080 vs. 0.052) and lipid droplet (LD) refractive index variation decreased (0.149 % vs. 0.061 %), whereas the LD number (20 vs. 65) increased. This event was also accompanied by the downregulation and upregulation of THY1 and Preadipocyte Factor-1 (PREF-1), respectively. In the preadipocyte to immature adipocyte shift, cell sphericity (0.20 vs. 0.43) and LD number (65 vs. 200) surged, large LDs (>10 μm3) appeared, and the major axis of the cell was reduced (143.7 μm vs. 83.12 μm). These findings indicate features of preadipocyte and immature adipocyte stages, alongside the downregulation of PREF-1 and upregulation of Peroxisome Proliferator-Activated Receptor gamma (PPARγ). In adipocyte maturation, along with PPARγ and Fatty Acid-Binding Protein 4 upregulation, cell compactness (0.15 vs. 0.29) and sphericity (0.43 vs. 0.59) increased, and larger LDs (>30 μm3) formed, marking immature and mature adipocyte stages. The study highlights the distinct adipogenic morphological biomarkers of adipogenesis stages in UC-MSCs, providing potential applications in biomedical and clinical settings, such as fostering innovative medical strategies for treating metabolic disease.
Collapse
Affiliation(s)
- Mahesh Prakash Bhatta
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gun-Woo Won
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seung Hoon Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Seung-Hyeon Choi
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Cheong-Hae Oh
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ji Hyun Moon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | | | | | - Sang Do Lee
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
| |
Collapse
|
9
|
Kurniawan M, Ramli Y, Putri ND, Harris S, Rasyid A, Mesiano T, Hidayat R. Mesenchymal stem cells therapy for chronic ischemic stroke-a systematic review. ASIAN BIOMED 2024; 18:194-203. [PMID: 39483715 PMCID: PMC11524678 DOI: 10.2478/abm-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Stroke represents a significant global health issue, primarily in the form of ischemic stroke. Despite the availability of therapeutic interventions, the recovery from chronic stroke, occurring 3 months post-initial stroke, poses substantial challenges. A promising avenue for post-acute stroke patients is mesenchymal stem cells (MSCs) therapy, which is derived from various sources and is globally recognized as the most utilized and extensively studied stem cell therapy. This systematic review, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, aims to synthesize evidence regarding the impact of MSCs therapy on patients with chronic ischemic stroke. Employing an advanced search strategy across databases such as PubMed, PubMed Central, Google Scholar, the Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrial.gov, a total of 70 studies were identified, with 4studies meeting the inclusion criteria. Although positive outcomes were observed in terms of efficacy and safety, certain limitations, such as small sample sizes, study heterogeneity, and the absence of placebo groups, undermine the overall strength of the evidence. It is crucial to address these limitations in future research, highlighting the importance of larger sample sizes, standardized methodologies, and comparative trials to improve the assessment of MSCs' efficacy and safety. Moving forward, key priorities include exploring underlying mechanisms, determining optimal administration modes and dosages, and conducting comparative trials. By addressing these aspects, we can propel MSCs therapies toward greater efficacy, safety, and applicability across diverse patient populations.
Collapse
Affiliation(s)
- Mohammad Kurniawan
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Yetty Ramli
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Nadira Deanda Putri
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Salim Harris
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Al Rasyid
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Taufik Mesiano
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Rakhmad Hidayat
- Department of Neurology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| |
Collapse
|
10
|
Wu SH, Yu JH, Liao YT, Chou PH, Wen MH, Hsueh KK, Wang JP. Comparison of infant bone marrow- and umbilical cord-derived mesenchymal stem cells in multilineage differentiation. Regen Ther 2024; 26:837-849. [PMID: 39430580 PMCID: PMC11488484 DOI: 10.1016/j.reth.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
We compared infant bone marrow-derived mesenchymal stem cells (infant BMSCs) with umbilical cord-derived mesenchymal stem cells (UCSCs) by assessing multilineage differentiation. Proliferation was gauged through changes in cell numbers and doubling time. Senescence-related genes (p16, p21, and p53), senescence-associated β-galactosidase (SA-β-gal), and γH2AX immunofluorescence determined senescence presence. Superoxide dismutases (SODs) and genes related to various differentiations were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Differentiation was confirmed through histochemical, immunohistochemical, and immunofluorescence staining. Infant BMSCs surpassed UCSCs in proliferation. Infant BMSCs exhibited lower senescence-related gene expression at late passages, upregulated antioxidant enzymes during early passages, and reduced SA-β-gal staining. Chondrogenic gene expression (SOX9, COL2, and COL10) was enhanced in infant BMSCs, along with improved immunohistochemical staining. Infant BMSCs showed higher expression of osteogenic (ALP and OCN) and adipogenic (PPARγ and LPL) genes, confirmed by histochemical staining. However, UCSCs had higher expression of tenogenic genes (MMP3, SCX, DCN, and TNC). Hepatogenic differentiation potential was similar, with no significant difference in hepatogenic gene expression (ALB and TAT). Compared to UCSCs, infant BMSCs demonstrated superior proliferation, reduced senescence, increased antioxidant capacity, and enhanced differentiation potential toward chondrogenic, osteogenic, and adipogenic lineages.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Huei Yu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yu-Ting Liao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Hsin Chou
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hsuan Wen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuang-Kai Hsueh
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone Organoids: Recent Advances and Future Challenges. Adv Healthc Mater 2024; 13:e2302088. [PMID: 38079529 DOI: 10.1002/adhm.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Bone defects stemming from tumorous growths, traumatic events, and diverse conditions present a profound conundrum in clinical practice and research. While bone has the inherent ability to regenerate, substantial bone anomalies require bone regeneration techniques. Bone organoids represent a new concept in this field, involving the 3D self-assembly of bone-associated stem cells guided in vitro with or without extracellular matrix material, resulting in a tissue that mimics the structural, functional, and genetic properties of native bone tissue. Within the scientific panorama, bone organoids ascend to an esteemed status, securing significant experimental endorsement. Through a synthesis of current literature and pioneering studies, this review offers a comprehensive survey of the bone organoid paradigm, delves into the quintessential architecture and ontogeny of bone, and highlights the latest progress in bone organoid fabrication. Further, existing challenges and prospective directions for future research are identified, advocating for interdisciplinary collaboration to fully harness the potential of this burgeoning domain. Conclusively, as bone organoid technology continues to mature, its implications for both clinical and research landscapes are poised to be profound.
Collapse
Affiliation(s)
- Ding Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yihan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
12
|
Arki MK, Moeinabadi-Bidgoli K, Niknam B, Mohammadi P, Hassan M, Hossein-Khannazer N, Vosough M. Immunomodulatory performance of GMP-compliant, clinical-grade mesenchymal stromal cells from four different sources. Heliyon 2024; 10:e24948. [PMID: 38312681 PMCID: PMC10835001 DOI: 10.1016/j.heliyon.2024.e24948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Inflammatory and autoimmune diseases are among the most challenging disorders for health care professionals that require systemic immune suppression which associates with various side effects. Mesenchymal stromal cells (MSCs) are capable of regulating immune responses, mainly through paracrine effects and cell-cell contact. Since MSCs are advanced therapy medicinal products (ATMPs), they must follow Good Manufacturing Practice (GMP) regulations to ensure their safety and efficacy. In this study, we evaluated the immunomodulatory effects of GMP-compliant clinical grade MSCs obtained from four different sources (bone marrow, adipose tissue, Wharton's Jelly, and decidua tissue) on allogeneic peripheral blood mononuclear cells (PBMCs). Our results revealed that WJ-MSCs were the most successful group in inhibiting PBMC proliferation as confirmed by BrdU analysis. Moreover, WJ-MSCs were the strongest group in enhancing the regulatory T cell population of PBMCs. WJ-MSCs also had the highest secretory profile of prostaglandin E2 (PGE-2), anti-inflammatory cytokine, while interleukin-10 (IL-10) secretion was highest in the DS-MSC group. DS-MSCs also had the lowest secretion of IL-12 and IL-17 inflammatory cytokines. Transcriptome analysis revealed that WJ-MSCs had the lowest expression of IL-6, while DS-MSCs were the most potent group in the expression of immunomodulatory factors such as hepatocyte growth factor (HGF) and transforming growth factor-β (TGF- β). Taken together, our results indicated that GMP-compliant Wharton's Jelly and decidua-derived MSCs showed the best immunomodulatory performance considering paracrine factors.
Collapse
Affiliation(s)
- Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Niknam
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Mohammadi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83, Stockholm, Sweden
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83, Stockholm, Sweden
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Carnieri MV, Garcia DDF, Voltolini R, Volpato N, Mafra M, Bernardelli EA, Stimamiglio MA, Rebelatto CK, Correa A, Berti LF, Marcon BH. Cytocompatible and osteoconductive silicon oxycarbide glass scaffolds 3D printed by DLP: a potential material for bone tissue regeneration. Front Bioeng Biotechnol 2024; 11:1297327. [PMID: 38239914 PMCID: PMC10794595 DOI: 10.3389/fbioe.2023.1297327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Bone lesions affect individuals of different age groups, compromising their daily activities and potentially leading to prolonged morbidity. Over the years, new compositions and manufacturing technologies were developed to offer customized solutions to replace injured tissue and stimulate tissue regeneration. This work used digital light processing (DPL) technology for three-dimensional (3D) printing of porous structures using pre-ceramic polymer, followed by pyrolysis to obtain SiOC vitreous scaffolds. The SiOC scaffolds produced had an amorphous structure (compatible with glass) with an average porosity of 72.69% ± 0.99, an average hardness of 935.1 ± 71.0 HV, and an average maximum flexural stress of 7.8 ± 1.0 MPa, similar to cancellous bone tissue. The scaffolds were not cytotoxic and allowed adult stem cell adhesion, growth, and expansion. After treatment with osteoinductive medium, adult stem cells in the SiOC scaffolds differentiated to osteoblasts, assuming a tissue-like structure, with organization in multiple layers and production of a dense fibrous matrix rich in hydroxyapatite. The in vitro analyses supported the hypothesis that the SiOC scaffolds produced in this work were suitable for use as a bone substitute for treating critically sized lesions, with the potential to stimulate the gradual process of regeneration of the native tissue. The data obtained stimulate the continuity of studies with the SiOC scaffolds developed in this work, paving the way for evaluating safety and biological activity in vivo.
Collapse
Affiliation(s)
- Matheus Versão Carnieri
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Daniele de Freitas Garcia
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| | - Rafael Voltolini
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Neri Volpato
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Marcio Mafra
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Euclides Alexandre Bernardelli
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| | | | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal Do Parana, Curitiba, Brazil
| | - Bruna Hilzendeger Marcon
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
- Confocal and Eletronic Microscopy Facility (RPT07C), Carlos Chagas Institute—FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
14
|
Naeem A, Waseem A, Siddiqui AJ, Ray B, Sinha R, Khan AQ, Haque R, Raza SS. Focusing on the cytokine storm in the battle against COVID-19: the rising role of mesenchymal-derived stem cells. Stem Cells 2024:191-207. [DOI: 10.1016/b978-0-323-95545-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Li J, Wu Z, Zhao L, Liu Y, Su Y, Gong X, Liu F, Zhang L. The heterogeneity of mesenchymal stem cells: an important issue to be addressed in cell therapy. Stem Cell Res Ther 2023; 14:381. [PMID: 38124129 PMCID: PMC10734083 DOI: 10.1186/s13287-023-03587-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
With the continuous improvement of human technology, the medical field has gradually moved from molecular therapy to cellular therapy. As a safe and effective therapeutic tool, cell therapy has successfully created a research boom in the modern medical field. Mesenchymal stem cells (MSCs) are derived from early mesoderm and have high self-renewal and multidirectional differentiation ability, and have become one of the important cores of cell therapy research by virtue of their immunomodulatory and tissue repair capabilities. In recent years, the application of MSCs in various diseases has received widespread attention, but there are still various problems in the treatment of MSCs, among which the heterogeneity of MSCs may be one of the causes of the problem. In this paper, we review the correlation of MSCs heterogeneity to provide a basis for further reduction of MSCs heterogeneity and standardization of MSCs and hope to provide a reference for cell therapy.
Collapse
Affiliation(s)
- Jingxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Li Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030600, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yazhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xueyan Gong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Fancheng Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
16
|
Ning J, Zhang L, Xie H, Chai L, Yao J. Decoding the multifaceted signatures and transcriptomic characteristics of stem cells derived from apical papilla and dental pulp of human supernumerary teeth. Cell Biol Int 2023; 47:1976-1986. [PMID: 37641425 DOI: 10.1002/cbin.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Supernumerary teeth are advantaged sources for high-quality stem cell preparation from both apical papilla (SCAP-Ss) and dental pulp (DPSCs). However, the deficiency of the systematic and detailed comparison of the biological and transcriptomic characteristics of the aforementioned stem cells largely hinders their application in regenerative medicine. Herein, we collected supernumerary teeth for SCAP-S and DPSC isolation and identification by utilizing multiple biological tests (e.g., growth curve, cell cycle and apoptosis, adipogenic and osteogenic differentiation, and quantitative real-time polymerase chain reaction). Furthermore, we took advantage of transcriptome sequencing and multifaceted bioinformatic analyses to dissect the similarities and diversities between them. In this study, we found that SCAP-Ss and DPSCs showed indistinctive signatures in morphology and immunophenotypes, whereas with diversity in cell vitality and multi-lineage differentiation as well as gene expression profiling and differentially expressed genes-associated gene ontology and signaling pathways. Collectively, our data indicated the diversity of the multifaceted signatures of human supernumerary teeth-derived stem cells both at the cellular and molecular levels, which also supplied new references for SCAP-Ss serving as splendid alternative stem cell sources for regenerative medicine purposes.
Collapse
Affiliation(s)
- Juan Ning
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Leisheng Zhang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor & Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
- Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Jiangxi Research Center of Stem Cell Engineering, Shangrao, China
| | - Hanjing Xie
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lian Chai
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Yao
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Ren K, Vickers R, Murillo J, Ruparel NB. Revolutionizing orofacial pain management: the promising potential of stem cell therapy. FRONTIERS IN PAIN RESEARCH 2023; 4:1239633. [PMID: 38028430 PMCID: PMC10679438 DOI: 10.3389/fpain.2023.1239633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Orofacial pain remains a significant health issue in the United States. Pain originating from the orofacial region can be composed of a complex array of unique target tissue that contributes to the varying success of pain management. Long-term use of analgesic drugs includes adverse effects such as physical dependence, gastrointestinal bleeding, and incomplete efficacy. The use of mesenchymal stem cells for their pain relieving properties has garnered increased attention. In addition to the preclinical and clinical results showing stem cell analgesia in non-orofacial pain, studies have also shown promising results for orofacial pain treatment. Here we discuss the outcomes of mesenchymal stem cell treatment for pain and compare the properties of stem cells from different tissues of origin. We also discuss the mechanism underlying these analgesic/anti-nociceptive properties, including the role of immune cells and the endogenous opioid system. Lastly, advancements in the methods and procedures to treat patients experiencing orofacial pain with mesenchymal stem cells are also discussed.
Collapse
Affiliation(s)
- Ke Ren
- Department of Pain and Neural Sciences, University of Maryland, Baltimore, MD, United States
| | - Russel Vickers
- Clinical Stem Cells Pty Ltd., Sydney, NSW, Australia
- Oral Health Center, School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Glycomics, Griffith University Queensland, Southport, QLD, Australia
| | - Josue Murillo
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nikita B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
18
|
Liang Z, He Y, Tang H, Li J, Cai J, Liao Y. Dedifferentiated fat cells: current applications and future directions in regenerative medicine. Stem Cell Res Ther 2023; 14:207. [PMID: 37605289 PMCID: PMC10441730 DOI: 10.1186/s13287-023-03399-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 08/23/2023] Open
Abstract
Stem cell therapy is the most promising treatment option for regenerative medicine. Therapeutic effect of different stem cells has been verified in various disease model. Dedifferentiated fat (DFAT) cells, derived from mature adipocytes, are induced pluripotent stem cells. Compared with ASCs and other stem cells, the DFAT cells have unique advantageous characteristics in their abundant sources, high homogeneity, easily harvest and low immunogenicity. The DFAT cells have shown great potential in tissue engineering and regenerative medicine for the treatment of clinical problems such as cardiac and kidney diseases, autoimmune disease, soft and hard tissue defect. In this review, we summarize the current understanding of DFAT cell properties and focus on the relevant practical applications of DFAT cells in cell therapy in recent years.
Collapse
Affiliation(s)
- Zhuokai Liang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufei He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haojing Tang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Rebelatto CLK, Boldrini-Leite LM, Daga DR, Marsaro DB, Vaz IM, Jamur VR, de Aguiar AM, Vieira TB, Furman BP, Aguiar CO, Brofman PRS. Quality Control Optimization for Minimizing Security Risks Associated with Mesenchymal Stromal Cell-Based Product Development. Int J Mol Sci 2023; 24:12955. [PMID: 37629136 PMCID: PMC10455270 DOI: 10.3390/ijms241612955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been considered a therapeutic strategy in regenerative medicine because of their regenerative and immunomodulatory properties. The translation of MSC-based products has some challenges, such as regulatory and scientific issues. Quality control should be standardized and optimized to guarantee the reproducibility, safety, and efficacy of MSC-based products to be administered to patients. The aim of this study was to develop MSC-based products for use in clinical practice. Quality control assays include cell characterization, cell viability, immunogenicity, and cell differentiation; safety tests such as procoagulant tissue factor (TF), microbiological, mycoplasma, endotoxin, genomic stability, and tumorigenicity tests; and potency tests. The results confirm that the cells express MSC markers; an average cell viability of 96.9%; a low expression of HLA-DR and costimulatory molecules; differentiation potential; a high expression of TF/CD142; an absence of pathogenic microorganisms; negative endotoxins; an absence of chromosomal abnormalities; an absence of genotoxicity and tumorigenicity; and T-lymphocyte proliferation inhibition potential. This study shows the relevance of standardizing the manufacturing process and quality controls to reduce variability due to the heterogeneity between donors. The results might also be useful for the implementation and optimization of new analytical techniques and automated methods to improve safety, which are the major concerns related to MSC-based therapy.
Collapse
Affiliation(s)
- Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Lidiane Maria Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Debora Regina Daga
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Daniela Boscaro Marsaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Valderez Ravaglio Jamur
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Alessandra Melo de Aguiar
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute—Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| | - Thalita Bastida Vieira
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Bianca Polak Furman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Cecília Oliveira Aguiar
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
20
|
Lin T, Yang Y, Chen X. A review of the application of mesenchymal stem cells in the field of hematopoietic stem cell transplantation. Eur J Med Res 2023; 28:268. [PMID: 37550742 PMCID: PMC10405442 DOI: 10.1186/s40001-023-01244-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment for many malignant hematological diseases. Mesenchymal stem cells (MSCs) are nonhematopoietic stem cells with strong self-renewal ability and multidirectional differentiation potential. They have the characteristics of hematopoietic support, immune regulation, tissue repair and regeneration, and homing. Recent studies have shown that HSCT combined with MSC infusion can promote the implantation of hematopoietic stem cells and enhance the reconstruction of hematopoietic function. Researchers have also found that MSCs have good preventive and therapeutic effects on acute and chronic graft-versus-host disease (GVHD), but there is still a lack of validation in large-sample randomized controlled trials. When using MSCs clinically, it is necessary to consider their dose, source, application time, application frequency and other relevant factors, but the specific impact of the above factors on the efficacy of MSCs still needs further clinical trial research. This review introduces the clinical roles of MSCs and summarizes the most recent progress concerning the use of MSCs in the field of HSCT, providing references for the later application of the combination of MSCs and HSCT in hematological diseases.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yunfan Yang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xinchuan Chen
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Vialle EN, Fracaro L, Barchiki F, Dominguez AC, Arruda ADO, Olandoski M, Brofman PRS, Kuniyoshi Rebelatto CL. Human Adipose-Derived Stem Cells Reduce Cellular Damage after Experimental Spinal Cord Injury in Rats. Biomedicines 2023; 11:biomedicines11051394. [PMID: 37239065 DOI: 10.3390/biomedicines11051394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition without an effective therapy. Cellular therapies are among the promising treatment strategies. Adult stem cells, such as mesenchymal stem cells, are often used clinical research for their immunomodulatory and regenerative potential. This study aimed to evaluate the effect of human adipose tissue-derived stem cells (ADSC) infusion through the cauda equina in rats with SCI. The human ADSC from bariatric surgery was isolated, expanded, and characterized. Wistar rats were subjected to blunt SCI and were divided into four groups. Two experimental groups (EG): EG1 received one ADSC infusion after SCI, and EG2 received two infusions, the first one after SCI and the second infusion seven days after the injury. Control groups (CG1 and CG2) received infusion with a culture medium. In vivo, cell tracking was performed 48 h and seven days after ADSC infusion. The animals were followed up for 40 days after SCI, and immunohistochemical quantification of myelin, neurons, and astrocytes was performed. Cellular tracking showed cell migration towards the injury site. ADSC infusion significantly reduced neuronal loss, although it did not prevent the myelin loss or enhance the area occupied by astrocytes compared to the control group. The results were similar when comparing one or two cell infusions. The injection of ADSC distal to the injured area was shown to be a safe and effective method for cellular administration in spinal cord injury.
Collapse
Affiliation(s)
- Emiliano Neves Vialle
- Spine Surgery Group, Cajuru University Hospital, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Alejandro Correa Dominguez
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute-Fiocruz, Rio de Janeiro 21941-599, Brazil
| | - André de Oliveira Arruda
- Spine Surgery Group, Cajuru University Hospital, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
| | - Marcia Olandoski
- Department of Biostatistics, School of Medicine, Catholic University of Paraná, Curitiba 80215-030, Brazil
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
22
|
Calcat-I-Cervera S, Rendra E, Scaccia E, Amadeo F, Hanson V, Wilm B, Murray P, O'Brien T, Taylor A, Bieback K. Harmonised culture procedures minimise but do not eliminate mesenchymal stromal cell donor and tissue variability in a decentralised multicentre manufacturing approach. Stem Cell Res Ther 2023; 14:120. [PMID: 37143116 PMCID: PMC10161493 DOI: 10.1186/s13287-023-03352-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs), commonly sourced from adipose tissue, bone marrow and umbilical cord, have been widely used in many medical conditions due to their therapeutic potential. Yet, the still limited understanding of the underlying mechanisms of action hampers clinical translation. Clinical potency can vary considerably depending on tissue source, donor attributes, but importantly, also culture conditions. Lack of standard procedures hinders inter-study comparability and delays the progression of the field. The aim of this study was A- to assess the impact on MSC characteristics when different laboratories, performed analysis on the same MSC material using harmonised culture conditions and B- to understand source-specific differences. METHODS Three independent institutions performed a head-to-head comparison of human-derived adipose (A-), bone marrow (BM-), and umbilical cord (UC-) MSCs using harmonised culture conditions. In each centre, cells from one specific tissue source were isolated and later distributed across the network to assess their biological properties, including cell expansion, immune phenotype, and tri-lineage differentiation (part A). To assess tissue-specific function, angiogenic and immunomodulatory properties and the in vivo biodistribution were compared in one expert lab (part B). RESULTS By implementing a harmonised manufacturing workflow, we obtained largely reproducible results across three independent laboratories in part A of our study. Unique growth patterns and differentiation potential were observed for each tissue source, with similar trends observed between centres. Immune phenotyping verified expression of typical MSC surface markers and absence of contaminating surface markers. Depending on the established protocols in the different laboratories, quantitative data varied slightly. Functional experiments in part B concluded that conditioned media from BM-MSCs significantly enhanced tubulogenesis and endothelial migration in vitro. In contrast, immunomodulatory studies reported superior immunosuppressive abilities for A-MSCs. Biodistribution studies in healthy mice showed lung entrapment after administration of all three types of MSCs, with a significantly faster clearance of BM-MSCs. CONCLUSION These results show the heterogeneous behaviour and regenerative properties of MSCs as a reflection of intrinsic tissue-origin properties while providing evidence that the use of harmonised culture procedures can reduce but do not eliminate inter-lab and operator differences.
Collapse
Affiliation(s)
- Sandra Calcat-I-Cervera
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany
| | - Eleonora Scaccia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany
| | - Francesco Amadeo
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Vivien Hanson
- Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
23
|
El-Husseiny HM, Kaneda M, Mady EA, Yoshida T, Doghish AS, Tanaka R. Impact of Adipose Tissue Depot Harvesting Site on the Multilineage Induction Capacity of Male Rat Adipose-Derived Mesenchymal Stem Cells: An In Vitro Study. Int J Mol Sci 2023; 24:7513. [PMID: 37108673 PMCID: PMC10138771 DOI: 10.3390/ijms24087513] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, substantial attention has been paid toward adipose-derived mesenchymal stem cells (AdMSCs) as a potential therapy in tissue engineering and regenerative medicine applications. Rat AdMSCs (r-AdMSCs) are frequently utilized. However, the influence of the adipose depot site on the multilineage differentiation potential of the r-AdMSCs is still ambiguous. Hence, the main objective of this study was to explore the influence of the adipose tissue harvesting location on the ability of r-AdMSCs to express the stem-cell-related markers and pluripotency genes, as well as their differentiation capacity, for the first time. Herein, we have isolated r-AdMSCs from the inguinal, epididymal, peri-renal, and back subcutaneous fats. Cells were compared in terms of their phenotype, immunophenotype, and expression of pluripotency genes using RT-PCR. Additionally, we investigated their potential for multilineage (adipogenic, osteogenic, and chondrogenic) induction using special stains confirmed by the expression of the related genes using RT-qPCR. All cells could positively express stem cell marker CD 90 and CD 105 with no significant in-between differences. However, they did not express the hematopoietic markers as CD 34 and CD 45. All cells could be induced successfully. However, epididymal and inguinal cells presented the highest capacity for adipogenic and osteogenic differentiation (21.36-fold and 11.63-fold for OPN, 29.69-fold and 26.68-fold for BMP2, and 37.67-fold and 22.35-fold for BSP, respectively, in epididymal and inguinal cells (p < 0.0001)). On the contrary, the subcutaneous cells exhibited a superior potential for chondrogenesis over the other sites (8.9-fold for CHM1 and 5.93-fold for ACAN, (p < 0.0001)). In conclusion, the adipose tissue harvesting site could influence the differentiation capacity of the isolated AdMSCs. To enhance the results of their employment in various regenerative cell-based therapies, it is thus vital to take the collection site selection into consideration.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Sciences, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
24
|
Panero AJ, Everts PA, Nakagawa H, Sussman W, Qin X. Basic Science of Allograft Orthobiologics. Phys Med Rehabil Clin N Am 2023; 34:49-61. [DOI: 10.1016/j.pmr.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Fracaro L, Hochuli AHD, Selenko AH, Capriglione LGA, Brofman PRS, Senegaglia AC. Mesenchymal stromal cells derived from exfoliated deciduous teeth express neuronal markers before differentiation induction. J Appl Oral Sci 2023; 31:e20220489. [PMID: 37075387 PMCID: PMC10118381 DOI: 10.1590/1678-7757-2022-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. METHODOLOGY Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and βIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. RESULTS SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and βIII-tubulin; the fluorescent signal intensity was significantly higher in βIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. CONCLUSION SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.
Collapse
Affiliation(s)
- Letícia Fracaro
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Agner Henrique Dorigo Hochuli
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Ana Helena Selenko
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | | | - Paulo Roberto Slud Brofman
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Alexandra Cristina Senegaglia
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| |
Collapse
|
26
|
Azizidoost S, Farzaneh M. MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes. Curr Stem Cell Res Ther 2023; 18:27-34. [PMID: 35466882 DOI: 10.2174/1574888x17666220422094150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is defined as a class of disorders affecting the heart and blood vessels. Cardiomyocytes and endothelial cells play important roles in cardiac regeneration and heart repair. However, the proliferating capacity of cardiomyocytes is limited. To overcome this issue, mesenchymal stem cells (MSCs) have emerged as an alternative strategy for CVD therapy. MSCs can proliferate and differentiate (or trans-differentiate) into cardiomyocytes. Several in vitro and in vivo differentiation protocols have been used to obtain MSCs-derived cardiomyocytes. It was recently investigated that microRNAs (miRNAs) by targeting several signaling pathways, including STAT3, Wnt/β-catenin, Notch, and TBX5, play a crucial role in regulating cardiomyocytes' differentiation of MSCs. In this review, we focused on the role of miRNAs in the differentiation of MSCs into cardiomyocytes.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Wang DH, Chen JS, Hou R, Li Y, An JH, He P, Cai ZG, Liang XH, Liu YL. Comparison of transcriptome profiles of mesenchymal stem cells derived from umbilical cord and bone marrow of giant panda (Ailuropoda melanoleuca). Gene X 2022; 845:146854. [DOI: 10.1016/j.gene.2022.146854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
|
28
|
El-Husseiny HM, Mady EA, Helal MAY, Tanaka R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet Sci 2022; 9:648. [PMID: 36423096 PMCID: PMC9698002 DOI: 10.3390/vetsci9110648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
The introduction of new regenerative therapeutic modalities in the veterinary practice has recently picked up a lot of interest. Stem cells are undifferentiated cells with a high capacity to self-renew and develop into tissue cells with specific roles. Hence, they are an effective therapeutic option to ameliorate the ability of the body to repair and engineer damaged tissues. Currently, based on their facile isolation and culture procedures and the absence of ethical concerns with their use, mesenchymal stem cells (MSCs) are the most promising stem cell type for therapeutic applications. They are becoming more and more well-known in veterinary medicine because of their exceptional immunomodulatory capabilities. However, their implementation on the clinical scale is still challenging. These limitations to their use in diverse affections in different animals drive the advancement of these therapies. In the present article, we discuss the ability of MSCs as a potent therapeutic modality for the engineering of different animals' tissues including the heart, skin, digestive system (mouth, teeth, gastrointestinal tract, and liver), musculoskeletal system (tendons, ligaments, joints, muscles, and nerves), kidneys, respiratory system, and eyes based on the existing knowledge. Moreover, we highlighted the promises of the implementation of MSCs in clinical use in veterinary practice.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Mahmoud A. Y. Helal
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
29
|
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, Masoumi S, Rabbani A, Kompani F, Hedayati Asl AA, Abbasi Kakroodi F, Jaroughi N, Mohseni Meybodi MA, Setoodeh A, Abbasi F, Hosseini SE, Moeini Nia F, Salman Yazdi R, Navabi R, Hajizadeh-Saffar E, Baharvand H. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther 2022; 13:264. [PMID: 35725652 PMCID: PMC9208234 DOI: 10.1186/s13287-022-02941-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background Type-1 diabetes (T1D) occurs following autoimmune-induced pancreatic beta cells death. Among several treatment modalities, mesenchymal stem cells (MSCs) transplantation is promising for autoimmune disorders due to immunomodulation, regeneration, and migration to damaged tissue upon systemic injection. This study assessed the safety and efficacy of intravenous injection of autologous bone marrow-derived MSCs in newly diagnosed T1D patients. Methods After receiving informed consent, 21 patients who met the study criteria were enrolled and randomly assigned to receive either MSCs or placebo. Each patient in the experimental group received two doses of MSCs and was followed for at least one-year post-transplantation. Results The results have shown that this transplantation is safe and significantly reduces the number of hypoglycemic episodes. MSCs transplantation improved glycated hemoglobin (HbA1c), shifted serum cytokine patterns from pro-inflammatory to anti-inflammatory, increased the number of regulatory T-cells in the peripheral blood, and improved quality of life. Early transplantation of MSCs significantly improved HbA1c and C-peptide levels and shifted pro-inflammatory cytokines to anti-inflammatory cytokines. Also, exercise combined with MSCs transplantation improved glycemic and immunologic indices. Conclusions Taken together, autologous MSC transplantation is safe and effective, and its early transplantation is a promising treatment in newly diagnosed T1D children suffering from hypoglycemic episodes. Trial registration: This clinical trial was registered at the Iranian Registry of Clinical Trials (IRCT) with the identifier IRCT ID: IRCT2016070428786N1 registered on August 20, 2016 (Retrospectively registered) (https://en.irct.ir/trial/23256) and at the U.S. National Institutes of Health (ClinicalTrials.gov) with the related identifier NCT04078308 registered on September 6, 2019 (Retrospectively registered). (https://clinicaltrials.gov/ct2/show/NCT04078308). Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02941-w.
Collapse
Affiliation(s)
- Mahmoud Izadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Safdar Masoumi
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kompani
- Division of Hematology and Oncology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Hedayati Asl
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Hematology-Oncology and Stem Cell Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbasi Kakroodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Ali Mohseni Meybodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Aria Setoodeh
- Division of Pediatrics Endocrinology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abbasi
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moeini Nia
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
30
|
Yang K, Lu R, Lu J, Fan S, Zhang Q, Lou Z, Ma Y, Lu G, Pan R, Zhang J. Phenotypic and Functional Characterizations of Mesenchymal Stem/Stromal Cells Isolated From Human Cranial Bone Marrow. Front Neurosci 2022; 16:909256. [PMID: 35747205 PMCID: PMC9209782 DOI: 10.3389/fnins.2022.909256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are adult stem cells that were originally isolated from bone marrow. In contrast to long bone-derived MSCs that have been extensively characterized, our knowledge regarding to MSCs isolated from flat bones (e.g., cranial bones) remain less clear. In this study, MSCs were purified from human cranial bone marrow (CB-MSCs) and their transdifferentiation capacity and immunomodulatory functions were further characterized. Phenotypic analysis of CB-MSCs demonstrated high expression of CD73, CD90, and CD105 while negative for CD14, CD34, and HLA-DR. Further in vitro differentiation assay shown that CB-MSCs capable of differentiating into cell types of mesenchymal origin (i.e., adipocytes, osetoblasts, and chondrocytes) and collectively, these results indicated that cells isolated from cranial bone marrow in this study are bona fide MSCs according to the minimal criteria proposed by the International Society for Cellular Therapy. Following in vitro expansion, single colony-derived CB-MSCs (scCB-MSCs) were obtained and confocal microscopy analysis further revealed functional heterogeneity within primary CB-MSCs. Specifically, obtained scCB-MSCs exhibited GABA progenitor features, as determined by olig2 and nestin. As expect, scCB-MSCs were readily induced to differentiate into GABAergic neuron-like cells. Furthermore, immunomodulatory roles of scCB-MSCs were evaluated following co-culture with human peripheral blood lymphocytes and results shown that co-culturing with scCB-MSCs significantly suppressed lymphocyte proliferation and promoted differentiation of lymphocytes into regulatory T cells but not Th1/Th17 phenotype. Overall, our results indicated that CB-MSCs exhibited clonal heterogeneity with marked propensity to differentiate into neural-like cells and this might represent promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaichuang Yang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ruijie Lu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shucai Fan
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang Zhang
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
| | - Zijian Lou
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Yuyuan Ma
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Gang Lu
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- *Correspondence: Ruolang Pan
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Jianmin Zhang
| |
Collapse
|
31
|
Oliveira Pereira C, Pillonetto DV, Borgonovo T, Rebelatto CLK, Barbosa ML, Finger MC, Nichele S, Trennepohl J, Loth G, Bonfim C. Somatic mosaicism in patients with Fanconi anaemia: Proposal of alternative tissue for inconclusive diagnoses. Int J Lab Hematol 2022; 44:900-906. [PMID: 35644995 DOI: 10.1111/ijlh.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Fanconi anaemia (FA) is a rare genetic disorder marked by progressive bone marrow failure, chromosomal fragility, and increased cancer susceptibility. Laboratory diagnosis includes chromosomal instability test and mutation investigation. A total of 15%-25% of all patients may have somatic mosaicism, characterized by two distinct haematopoietic cell populations, one resistant and one sensitive to agents that induce chromosomal breakage, which complicates the diagnosis by a high incidence of reverted cells leading to inconclusive or false-negative results. The study aimed to evaluate the use of bone marrow stromal mesenchymal cells (BM-MSCs) as an alternative, non-haematopoietic tissue for diagnosis. METHODS Bone marrow mesenchymal stromal cells from 12 patients with positive diepoxybutane (DEB) tests were cultivated and analysed by cytogenetics and mutation investigation. RESULTS The DEB test was performed at 0.1 and 0.01 μg/ml concentrations, with an index ranging from 0.24 to 1.00. At higher concentration, the metaphases number was lower, probably due to toxicity. Regarding the molecular investigation, all the mutations previously found in peripheral blood were identified on BM-MSC. CONCLUSION This study demonstrated the possibility of using BM-MSCs as an alternative tissue for cytogenetic and molecular investigation. Future tests using an intermediate DEB concentration may lead to an optimal protocol that could be non-toxic to cells but provides conclusive results.
Collapse
Affiliation(s)
- Camila Oliveira Pereira
- Unidade Laboratório de Análises Clínicas, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Daniela Vandresen Pillonetto
- Unidade Laboratório de Análises Clínicas, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Tamara Borgonovo
- Unidade Laboratório de Análises Clínicas, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Miriam Lacerda Barbosa
- Unidade Laboratório de Análises Clínicas, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Cristina Finger
- Unidade Laboratório de Análises Clínicas, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Samantha Nichele
- Unidade de Transplante de Medula Óssea, Oncologia e Hematologia do Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Joanna Trennepohl
- Unidade de Transplante de Medula Óssea, Oncologia e Hematologia do Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gisele Loth
- Unidade de Transplante de Medula Óssea, Oncologia e Hematologia do Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Carmem Bonfim
- Unidade de Transplante de Medula Óssea, Oncologia e Hematologia do Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
32
|
Yen BL, Liu K, Sytwu H, Yen M. Clinical implications of differential functional capacity between tissue‐specific human mesenchymal stromal/stem cells. FEBS J 2022. [DOI: 10.1111/febs.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/30/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- B. Linju Yen
- Regenerative Medicine Research Group Institute of Cellular & System Medicine National Health Research Institutes (NHRI) Zhunan Taiwan
- Department of Obstetrics & Gynecology Cathay General Hospital Shiji New Taipei City Taiwan
| | - Ko‐Jiunn Liu
- National Institute of Cancer Research NHRI Zhunan Taiwan
- Institute of Clinical Pharmacy & Pharmaceutical Sciences National Cheng Kung University Tainan Taiwan
- School of Medical Laboratory Science and Biotechnology Taipei Medical University Taiwan
| | - Huey‐Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology NHRI Zhunan Taiwan
- Graduate Institute of Microbiology & Immunology National Defense Medical Center Taipei Taiwan
| | - Men‐Luh Yen
- Department of Obstetrics & Gynecology National Taiwan University (NTU) Hospital & College of Medicine NTU Taipei Taiwan
| |
Collapse
|
33
|
Kim MJ, Moon W, Heo J, Lim S, Lee SH, Jeong JY, Lee SJ. Optimization of adipose tissue-derived mesenchymal stromal cells transplantation for bone marrow repopulation following irradiation. World J Stem Cells 2022; 14:245-263. [PMID: 35432736 PMCID: PMC8968216 DOI: 10.4252/wjsc.v14.i3.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone marrow (BM) suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation. Despite concerted efforts, there is no definitive treatment method available. Recent studies have reported using mesenchymal stromal cells (MSCs), but their therapeutic effects are contested. AIM We administered and examined the effects of various amounts of adipose-derived MSCs (ADSCs) in mice with radiation-induced BM suppression. METHODS Mice were divided into three groups: Normal control group, irradiated (RT) group, and stem cell-treated group following whole-body irradiation (WBI). Mouse ADSCs (mADSCs) were transplanted into the peritoneal cavity either once or three times at 5 × 105 cells/200 μL. The white blood cell count and the levels of, plasma cytokines, BM mRNA, and BM surface markers were compared between the three groups. Human BM-derived CD34+ hematopoietic progenitor cells were co-cultured with human ADSCs (hADSCs) or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro. RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants. Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells. Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice. CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Biochemistry, Cancer Research Institute Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Jeonghoon Heo
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Sangwook Lim
- Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Seung-Hyun Lee
- Department of General Surgery, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Cancer Research Institute Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea
| | - Sang Joon Lee
- Department of Ophthalmology, Gospel Hospital, Kosin University College of Medicine, Seo-gu 49267, Busan, South Korea.
| |
Collapse
|
34
|
Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng 2022; 16:6. [PMID: 35331305 PMCID: PMC8951709 DOI: 10.1186/s13036-022-00286-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Certain polymeric materials such as polyurethanes (PUs) are the most prevalent class of used biomaterials in regenerative medicine and have been widely explored as vascular substitutes in several animal models. It is thought that PU-based biomaterials possess suitable hemo-compatibility with comparable performance related to the normal blood vessels. Despite these advantages, the possibility of thrombus formation and restenosis limits their application as artificial functional vessels. In this regard, various surface modification approaches have been developed to enhance both hemo-compatibility and prolong patency. While critically reviewing the recent advances in vascular tissue engineering, mainly PU grafts, this paper summarizes the application of preferred cell sources to vascular regeneration, physicochemical properties, and some possible degradation mechanisms of PU to provide a more extensive perspective for future research.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Davaran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Rebelatto CLK, Senegaglia AC, Franck CL, Daga DR, Shigunov P, Stimamiglio MA, Marsaro DB, Schaidt B, Micosky A, de Azambuja AP, Leitão CA, Petterle RR, Jamur VR, Vaz IM, Mallmann AP, Carraro Junior H, Ditzel E, Brofman PRS, Correa A. Safety and long-term improvement of mesenchymal stromal cell infusion in critically COVID-19 patients: a randomized clinical trial. Stem Cell Res Ther 2022; 13:122. [PMID: 35313959 PMCID: PMC8935270 DOI: 10.1186/s13287-022-02796-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/20/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND COVID-19 is a multisystem disease that presents acute and persistent symptoms, the postacute sequelae (PASC). Long-term symptoms may be due to consequences from organ or tissue injury caused by SARS-CoV-2, associated clotting or inflammatory processes during acute COVID-19. Various strategies are being chosen by clinicians to prevent severe cases of COVID-19; however, a single treatment would not be efficient in treating such a complex disease. Mesenchymal stromal cells (MSCs) are known for their immunomodulatory properties and regeneration ability; therefore, they are a promising tool for treating disorders involving immune dysregulation and extensive tissue damage, as is the case with COVID-19. This study aimed to assess the safety and explore the long-term efficacy of three intravenous doses of UC-MSCs (umbilical cord MSCs) as an adjunctive therapy in the recovery and postacute sequelae reduction caused by COVID-19. To our knowledge, this is one of the few reports that presents the longest follow-up after MSC treatment in COVID-19 patients. METHODS This was a phase I/II, prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Seventeen patients diagnosed with COVID-19 who require intensive care surveillance and invasive mechanical ventilation-critically ill patients-were included. The patient infusion was three doses of 5 × 105 cells/kg UC-MSCs, with a dosing interval of 48 h (n = 11) or placebo (n = 6). The evaluations consisted of a clinical assessment, viral load, laboratory testing, including blood count, serologic, biochemical, cell subpopulation, cytokines and CT scan. RESULTS The results revealed that in the UC-MSC group, there was a reduction in the levels of ferritin, IL-6 and MCP1-CCL2 on the fourteen day. In the second month, a decrease in the levels of reactive C-protein, D-dimer and neutrophils and an increase in the numbers of TCD3, TCD4 and NK lymphocytes were observed. A decrease in extension of lung damage was observed at the fourth month. The improvement in all these parameters was maintained until the end of patient follow-up. CONCLUSIONS UC-MSCs infusion is safe and can play an important role as an adjunctive therapy, both in the early stages, preventing severe complications and in the chronic phase with postacute sequelae reduction in critically ill COVID-19 patients. Trial registration Brazilian Registry of Clinical Trials (ReBEC), UTN code-U1111-1254-9819. Registered 31 October 2020-Retrospectively registered, https://ensaiosclinicos.gov.br/rg/RBR-3fz9yr.
Collapse
Affiliation(s)
- Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil.
- Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil.
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
- Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil
| | | | - Debora Regina Daga
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil
| | - Patrícia Shigunov
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, PR, Brazil
| | - Marco Augusto Stimamiglio
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, PR, Brazil
| | - Daniela Boscaro Marsaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil
| | - Bruna Schaidt
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Andressa Micosky
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
| | | | | | | | - Valderez Ravaglio Jamur
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
| | | | | | | | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica Do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba, PR, 80215-901, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil
| | - Alejandro Correa
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro, Brazil
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, PR, Brazil
| |
Collapse
|
36
|
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16:47-61. [PMID: 34236594 PMCID: PMC8688675 DOI: 10.1007/s12079-021-00635-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The osteogenic lineage commitment of MSCs is controlled by cell-cell interactions, paracrine factors, mechanical signals, hormones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphogenetic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified for therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Sachin Thomas
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
37
|
Treatment of Chronic Kidney Disease with Extracellular Vesicles from Mesenchymal Stem Cells and CD133 + Expanded Cells: A Comparative Preclinical Analysis. Int J Mol Sci 2022; 23:ijms23052521. [PMID: 35269664 PMCID: PMC8910174 DOI: 10.3390/ijms23052521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by structural abnormalities and the progressive loss of kidney function. Extracellular vesicles (EVs) from human umbilical cord tissue (hUCT)-derived mesenchymal stem cells (MSCs) and expanded human umbilical cord blood (hUCB)-derived CD133+ cells (eCD133+) maintain the characteristics of the parent cells, providing a new form of cell-free treatment. We evaluated the effects of EVs from hUCT-derived MSCs and hUCB-derived CD133+ cells on rats with CDK induced by an adenine-enriched diet. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The animals were randomized and divided into the MSC-EV group, eEPC-EV group and control group. Infusions occurred on the seventh and 14th days after CKD induction. Evaluations of kidney function were carried out by biochemical and histological analyses. Intense labeling of the α-SMA protein was observed when comparing the control with MSC-EVs. In both groups treated with EVs, a significant increase in serum albumin was observed, and the increase in cystatin C was inhibited. The results indicated improvements in renal function in CKD, demonstrating the therapeutic potential of EVs derived from MSCs and eCD133+ cells and suggesting the possibility that in the future, more than one type of EV will be used concurrently.
Collapse
|
38
|
Harness EM, Mohamad-Fauzi N, Murray JD. MSC therapy in livestock models. Transl Anim Sci 2022; 6:txac012. [PMID: 35356233 PMCID: PMC8962450 DOI: 10.1093/tas/txac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great value as therapeutic tools in a wide array of applications in regenerative medicine. The wide repertoire of cell functions regarding tissue regeneration, immunomodulation, and antimicrobial activity makes MSC-based therapy a strong candidate for treatment options in a variety of clinical conditions and should be studied to expand the current breadth of knowledge surrounding their physiological properties and therapeutic benefits. Livestock models are an appropriate resource for testing the efficacy of MSC therapies for their use in biomedical research and can be used to improve both human health and animal agriculture. Agricultural animal models such as pigs, cattle, sheep, and goats have grown in popularity for in vivo research relative to small animal models due to their overlapping similarities in structure and function that more closely mimic the human body. Cutaneous wound healing, bone regeneration, osteoarthritis, ischemic reperfusion injury, and mastitis recovery represent a few examples of the types of disease states that may be investigated in livestock using MSC-based therapy. Although the cost of agricultural animals is greater than small animal models, the information gained using livestock as a model holds great value for human applications, and in some cases, outcompetes the weight of information gained from rodent models. With emerging fields such as exosome-based therapy, proper in vivo models will be needed for testing efficacy and translational practice, i.e., livestock models should be strongly considered as candidates. The potential for capitalizing on areas that have crossover benefits for both agricultural economic gain and improved health of the animals while minimizing the gap between translational research and clinical practice are what make livestock great choices for experimental MSC models.
Collapse
Affiliation(s)
- E M Harness
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
| | - N Mohamad-Fauzi
- Institute of Biological Sciences, Faculty of Science
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, MALAYSIA
| | - J D Murray
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
- Department of Population Health and Reproduction, University of California, Davis, One Shields Ave, Davis, CA, USA
| |
Collapse
|
39
|
Interleukin 21 Receptor Affects Adipogenesis of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Int 2022; 2022:4930932. [PMID: 35047041 PMCID: PMC8763493 DOI: 10.1155/2022/4930932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Dysfunctions in adipose tissue cells are responsible for several obesity-related metabolic diseases. Understanding the process of adipocyte formation is thus fundamental for understanding these diseases. The adipocyte differentiation of adipose-derived stem/stromal cells (ADSCs) showed a reduction in the mRNA level of the interleukin 21 receptor (IL21R) during this process. Although the receptor has been associated with metabolic diseases, few studies have examined its function in stem cells. In this study, we used confocal immunofluorescence assays to determine that IL21R colocalizes with mitochondrial protein ATP5B, ALDH4A1, and the nucleus of human ADSCs. We demonstrated that silencing and overexpression of IL21R did not affect the cell proliferation and mitochondrial activity of ADSCs. However, IL21R silencing did reduce ADSC adipogenic capacity. Further studies are needed to understand the mechanism involved between IL21R and the adipogenic differentiation process.
Collapse
|
40
|
Nguyen LT, Tran NT, Than UTT, Nguyen MQ, Tran AM, Do PTX, Chu TT, Nguyen TD, Bui AV, Ngo TA, Hoang VT, Hoang NTM. Optimization of human umbilical cord blood-derived mesenchymal stem cell isolation and culture methods in serum- and xeno-free conditions. Stem Cell Res Ther 2022; 13:15. [PMID: 35012671 PMCID: PMC8751356 DOI: 10.1186/s13287-021-02694-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although umbilical cord blood (UCB) is identified as a source of mesenchymal stem cells (MSCs) with various advantages, the success in cell isolation is volatile. Therefore, it is necessary to optimize methods of cord blood-derived MSC (UCB-MSC) isolation and culture. In this study, we evaluated the efficiency of UCB-MSC isolation and expansion using different commercially available serum- and xeno-free media and investigated the capacity of autologous serum and plasma as a supplement to support cell proliferation. Additionally, we defined the presence of multilineage-differentiating stress-enduring (Muse) cells in the UCB-MSC population. Functions of UCB-MSC in in vitro angiogenesis processes and anti-cancer were also verified. METHODS Mononuclear cells were isolated using density gradient separation and cultured in four commercial media kits, as well as four surface coating solutions. UCB-MSCs were characterized and tested on tube formation assay, and co-cultured with SK-MEL cells in a transwell system. RESULTS The results showed that only StemMACS™ MSC Expansion Media is more appropriate to isolate and culture UCB-MSCs. The cells exhibited a high cell proliferation rate, CFU forming capability, MSC surface marker expression, trilineage differentiate potential, and chromosome stability. In addition, the culture conditions with autologous serum coating and autologous plasma supplement enhanced cell growth and colony forming. This cell population contained Muse cells at rate of 0.3%. Moreover, UCB-MSCs could induce the tube formation of human umbilical vein endothelial cells and inhibit more than 50% of SK-MEL cell growth. CONCLUSIONS UCB-MSCs could be high-yield isolated and expanded under serum- and xeno-free conditions by using the StemMACS™ MSC Expansion Media kit. Autologous serum coating and plasma supplement enhanced cell proliferation. These UCB-MSCs had effected the tube formation process and an anti-cancer impact.
Collapse
Affiliation(s)
- Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Nghia Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, Korea
| | - Uyen Thi Trang Than
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Minh Quang Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Anh Minh Tran
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Phuong Thi Xuan Do
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thao Thi Chu
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Tu Dac Nguyen
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Anh Viet Bui
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Tien Anh Ngo
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Van Thanh Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam. .,VNU University of Science, Vietnam National University, Hanoi, Vietnam. .,Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam.
| |
Collapse
|
41
|
Wang Q, Gao Z, Guo K, Lu J, Wang F, Wu T, Huang Y, Wu D. Human Umbilical Cord Wharton Jelly Cells Treatment Prevents Osteoporosis Induced by D-Galactose. Int J Clin Pract 2022; 2022:4593443. [PMID: 35936064 PMCID: PMC9328953 DOI: 10.1155/2022/4593443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
METHODS Sixteen male mice were randomly divided into 4 groups: control (ordinary feeding), D-gal (D-galactose) group, D-gal + MSC (human umbilical cord Wharton jelly cells), and D-gal + MSC-TNFα groups. Except for the control group (fed with same amount of saline solution), other mice received gastric feeding of 250 mg/kg D-galactose every day for 8 weeks. TNFα (10 ng/mL for 24 h) cocultured or noncocultured HUCWJCs (5 × 105) were suspended in 0.1 ml of sterile PBS and injected into tail veins every other week in D-gal + MSC-TNFα and D-gal + MSC groups, respectively, and only 0.1 ml of sterile PBS for control and D-gal groups. The bone mass was detected by qPCR, ELISA, microcomputed tomography (μCT), and hematoxylin-eosin staining. Proliferation, apoptosis, and differentiation of periosteal-derived osteoblasts (POB) were assessed. Transwell assay and scratch healing were performed to detect POB migration and invasion ability. The effect of HUCWJCs on POB signaling pathway expression was evaluated by immunoblotting. RESULTS The malondialdehyde (MDA) in serum was higher and superoxide dismutase (SOD) was lower in the D-gal group compared to the other groups (p < 0.05). Mice in D-gal group showed significantly decreased bone mass when compared to the control group, while HUCWJCs treatment partially rescued the phenotype, as demonstrated by μCT and histology (p < 0.05). Mechanically, HUCWJCs treatment partially promoted proliferation and migration and decreased apoptosis of POB induced by oxidative stress via activating the mitogen-activated protein kinase (MAPK) signaling pathway. CONCLUSION HUCWJCs can prevent the progression of osteoporosis by inhibiting oxidative stress, which may act by regulating osteoblasts fate through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Zhiqiang Gao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Tongde Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| |
Collapse
|
42
|
Panero AJ, Hirahara AM, Podesta L, Jamali AA, Andersen W, Smith AA. Allograft Tissues. ATLAS OF INTERVENTIONAL ORTHOPEDICS PROCEDURES 2022:89-101. [DOI: 10.1016/b978-0-323-75514-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Effect of biomolecules derived from human platelet-rich plasma on the ex vivo expansion of human adipose-derived mesenchymal stem cells for clinical applications. Biologicals 2021; 75:37-48. [PMID: 34785135 DOI: 10.1016/j.biologicals.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Mesenchymal stem cells are a tool in cell therapies but demand a large cell number per treatment, for that, suitable culture media is required which contains fetal bovine serum (FBS). However, for cell-based therapy applications, the use of FBS is problematic. Several alternatives to FBS have been explored, including human derivatives from platelet-rich plasma (hD-PRP). Although various studies have evaluated the impact of hD-PRP on MSC proliferation and differentiation, few of them have assessed their influence on processes, such as metabolism and gene expression. Here, we cultured human adipose-derived MSCs (hAD-MSCs) in media supplemented with either 10% hD-PRP (hD-PRP-SM) or 10% FBS (FBS-SM) in order to characterize them and evaluate the effect of hD-PRP on cell metabolism, gene expression of associated regenerative factors, as well as chromosome stability during cell expansion. We found that hAD-MSCs cultured in hD-PRP-SM have a greater cell elongation but express similar surface markers; in addition, hD-PRP-SM promoted a significant osteogenic differentiation in the absence of differentiation medium and increased the growth rate, maintaining chromosomal stability. In terms of cell metabolic profile, hAD-MSC behavior did not reveal any differences between both culture conditions. Conversely, significant differences in collagen I and angiopoietin 2 expression were observed between both conditions. The present results suggest that hD-PRP may influence hAD-MSC behavior.
Collapse
|
44
|
Abud APR, Paschoal ACC, Kuligovski C, Caruso RRB, Dallagiovanna B, de Aguiar AM. Using inhibition of the adipogenesis of adipose-derived stem cells in vitro for toxicity prediction. MethodsX 2021; 8:101515. [PMID: 34754786 PMCID: PMC8564732 DOI: 10.1016/j.mex.2021.101515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
In vitro stem cell models are used as alternatives to animal models and are important tools for cytotoxicity studies. Researchers can determine the effects of test substances on human cells by evaluating cell viability and differentiation. Here, we describe an in vitro model to quantify adipogenesis based on the Nile red staining of specific lipid droplets and the emission of basic lipids from human adipose tissue-derived mesenchymal stromal cells (AD-MSCs) in the presence of test substances. This assay allows for the prediction of toxicity based on the inhibition of adipogenesis in vitro in a 96-well format. The differentiation of a progenitor cell into a specialized cell, the adipocyte, is easy to monitor and quantify, making this a simple assay. The fluorescence staining of nuclei and lipid droplets is measured after 14 days of cell differentiation to determine cell number and assess cell differentiation using high-content imaging analysis, thus allowing for the identification of chemicals that impact differentiation. We also describe a protocol to assess adipocyte differentiation by fluorescence intensity using a multiplate reader.Researchers can utilize the protocol described here for many purposes to evaluate in vitro adipogenesis. With this method, it is possible to reduce the use of animals.
Collapse
Affiliation(s)
- Ana Paula Ressetti Abud
- Rede de Plataformas Tecnológicas FIOCRUZ - Bioensaios com Métodos alternativos em Citotoxicidade, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil
| | - Ariane Caroline Campos Paschoal
- Laboratório de Biologia Básica de Células-Tronco, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil.,Grupo Boticário, Pesquisa and Desenvolvimento, Avenida Rui Barbosa, 4110, São José dos Pinhais, PR 83055-320, Brazil
| | - Crisciele Kuligovski
- Laboratório de Biologia Básica de Células-Tronco, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil
| | - Rodrigo Rêgo Barros Caruso
- Laboratório de Ciências e Tecnologias Aplicadas à Saúde, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil.,Current Address: Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos. Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil
| | - Bruno Dallagiovanna
- Laboratório de Biologia Básica de Células-Tronco, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil
| | - Alessandra Melo de Aguiar
- Rede de Plataformas Tecnológicas FIOCRUZ - Bioensaios com Métodos alternativos em Citotoxicidade, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil.,Laboratório de Biologia Básica de Células-Tronco, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, PR 81350-010, Brazil
| |
Collapse
|
45
|
Biagini G, Senegaglia AC, Pereira T, Berti LF, Marcon BH, Stimamiglio MA. 3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Front Bioeng Biotechnol 2021; 9:700862. [PMID: 34568295 PMCID: PMC8455839 DOI: 10.3389/fbioe.2021.700862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering is a branch of regenerative medicine, which comprises the combination of biomaterials, cells and other bioactive molecules to regenerate tissues. Biomaterial scaffolds act as substrate and as physical support for cells and they can also reproduce the extracellular matrix cues. Although tissue engineering applications in cellular therapy tend to focus on the use of specialized cells from particular tissues or stem cells, little attention has been paid to endothelial progenitors, an important cell type in tissue regeneration. We combined 3D printed poly(lactic acid) scaffolds comprising two different pore sizes with human adipose-derived stromal cells (hASCs) and expanded CD133+ cells to evaluate how these two cell types respond to the different architectures. hASCs represent an ideal source of cells for tissue engineering applications due to their low immunogenicity, paracrine activity and ability to differentiate. Expanded CD133+ cells were isolated from umbilical cord blood and represent a source of endothelial-like cells with angiogenic potential. Fluorescence microscopy and scanning electron microscopy showed that both cell types were able to adhere to the scaffolds and maintain their characteristic morphologies. The porous PLA scaffolds stimulated cell cycle progression of hASCs but led to an arrest in the G1 phase and reduced proliferation of expanded CD133+ cells. Also, while hASCs maintained their undifferentiated profile after 7 days of culture on the scaffolds, expanded CD133+ cells presented a reduction of the von Willebrand factor (vWF), which affected the cells’ angiogenic potential. We did not observe changes in cell behavior for any of the parameters analyzed between the scaffolds with different pore sizes, but the 3D environment created by the scaffolds had different effects on the cell types tested. Unlike the extensively used mesenchymal stem cell types, the 3D PLA scaffolds led to opposite behaviors of the expanded CD133+ cells in terms of cytotoxicity, proliferation and immunophenotype. The results obtained reinforce the importance of studying how different cell types respond to 3D culture systems when considering the scaffold approach for tissue engineering.
Collapse
Affiliation(s)
- Giuliana Biagini
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| | | | - Tarciso Pereira
- Department of Mechanical Engineering, Post Graduate Program in Biomedical Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Post Graduate Program in Biomedical Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Bruna Hilzendeger Marcon
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| |
Collapse
|
46
|
A Comparative Study of the Effect of Anatomical Site on Multiple Differentiation of Adipose-Derived Stem Cells in Rats. Cells 2021; 10:cells10092469. [PMID: 34572123 PMCID: PMC8465004 DOI: 10.3390/cells10092469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from adipose tissue are evolved into various cell-based regenerative approaches. Adipose-derived stem cells (ASCs) isolated from rats are commonly used in tissue engineering studies. Still, there is a gap in knowledge about how the harvest locations influence and guide cell differentiation. This study aims to investigate how the harvesting site affects stem-cell-specific surface markers expression, pluripotency, and differentiation potential of ASCs in female Sprague Dawley rats. ASCs were extracted from the adipose tissue of the peri-ovarian, peri-renal, and mesenteric depots and were compared in terms of cell morphology. MSCs phenotype was validated by cell surfaces markers using flow cytometry. Moreover, pluripotent gene expression of Oct4, Nanog, Sox2, Rex-1, and Tert was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). ASCs multipotency was evaluated by specific histological stains, and the results were confirmed by quantitative polymerase chain reaction (RT-qPCR) expression analysis of specific genes. There was a non-significant difference detected in the cell morphology and immunophenotype between different harvesting sites. ASCs from multiple locations were significantly varied in their capacity to differentiate into adipocytes, osteoblastic cells, and chondrocytes. To conclude, depot selection is a critical element that should be considered when using ASCs in tissue-specific cell-based regenerative therapies research.
Collapse
|
47
|
Menshikov M, Zubkova E, Stafeev I, Parfyonova Y. Autophagy, Mesenchymal Stem Cell Differentiation, and Secretion. Biomedicines 2021; 9:biomedicines9091178. [PMID: 34572364 PMCID: PMC8467641 DOI: 10.3390/biomedicines9091178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSC) are multipotent cells capable to differentiate into adipogenic, osteogenic, and chondrogenic directions, possessing immunomodulatory activity and a capability to stimulate angiogenesis. A scope of these features and capabilities makes MSC a significant factor of tissue homeostasis and repair. Among factors determining the fate of MSC, a prominent place belongs to autophagy, which is activated under different conditions including cell starvation, inflammation, oxidative stress, and some others. In addition to supporting cell homeostasis by elimination of protein aggregates, and non-functional and damaged proteins, autophagy is a necessary factor of change in cell phenotype on the process of cell differentiation. In present review, some mechanisms providing participation of autophagy in cell differentiation are discussed
Collapse
|
48
|
Comparative evaluation of pathways and gene expression profile similarity in differentiated stem cells versus normal adult cells in seven human tissues. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Prządka P, Buczak K, Frejlich E, Gąsior L, Suliga K, Kiełbowicz Z. The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders. Biomolecules 2021; 11:1141. [PMID: 34439807 PMCID: PMC8391453 DOI: 10.3390/biom11081141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine is a dynamically developing field of human and veterinary medicine. The animal model was most commonly used for mesenchymal stem cells (MSCs) treatment in experimental and preclinical studies with a satisfactory therapeutic effect. Year by year, the need for alternative treatments in veterinary medicine is increasing, and other applications for promising MSCs and their biological derivatives are constantly being sought. There is also an increase in demand for other methods of treating disease states, of which the classical treatment methods did not bring the desired results. Cell therapy can be a realistic option for treating human and animal diseases in the near future and therefore additional research is needed to optimize cell origins, numbers, or application methods in order to standardize the treatment process and assess its effects. The aim of the following work was to summarize available knowledge about stem cells in veterinary medicine and their possible application in the treatment of chosen musculoskeletal disorders in dogs and horses.
Collapse
Affiliation(s)
- Przemysław Prządka
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| | - Krzysztof Buczak
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| | - Ewelina Frejlich
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Ludwika Gąsior
- Vets & Pets Veterinary Clinic, Zakladowa 11N, 50-231 Wroclaw, Poland;
| | - Kamil Suliga
- Student Veterinary Surgical Society “LANCET”, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwaldzki 51, 50-366 Wroclaw, Poland;
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| |
Collapse
|
50
|
Zhang L, Chi Y, Wei Y, Zhang W, Wang F, Zhang L, Zou L, Song B, Zhao X, Han Z. Bone marrow-derived mesenchymal stem/stromal cells in patients with acute myeloid leukemia reveal transcriptome alterations and deficiency in cellular vitality. Stem Cell Res Ther 2021; 12:365. [PMID: 34174939 PMCID: PMC8233618 DOI: 10.1186/s13287-021-02444-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background State-of-the-art advances have indicated the pivotal characteristics of bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) in hematopoietic microenvironment as well as coordinate contribution to hematological malignancies. However, the panoramic view and detailed dissection of BM-MSCs in patients with acute myeloid leukemia (AML-MSCs) remain obscure. Methods For the purpose, we isolated and identified AML-MSCs together with healthy donor-derived HD-MSCs from the bone marrow mononuclear cells (BM-MNCs) by using the standard density gradient centrifugation based on clinical diagnosis and cellular phenotypic analysis. Subsequently, we systematically compared the potential similarities and discrepancy both at the cellular and molecular levels via flow cytometry, multilineage differentiation, chromosome karyotyping, cytokine quantification, and transcriptome sequencing and bioinformatic analysis including single-nucleotide polymorphism (SNP), gene ontology (GO), HeatMap, principal component analysis (PCA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). Results On the one hand, AML-MSCs exhibited undistinguishable signatures in cytomorphology, surface biomarker expression pattern, stemness, chromosome karyotype, and chondrogenesis as HD-MSCs, whereas with impaired adipogenesis, enhanced osteogenesis, and variations in cytokine expression pattern. On the other hand, with the aid of genomic and bioinformatic analyses, we verified that AML-MSCs displayed multidimensional discrepancy with HD-MSCs both in genome-wide gene expression profiling and genetic variation spectrum. Simultaneously, the deficiency of cellular vitality including proliferation and apoptosis in AML-MSCs was largely rescued by JAK-STAT signaling inhibition. Conclusions Overall, our findings elucidated that AML-MSCs manifested multifaceted alterations in biological signatures and molecular genetics, and in particular, the deficiency of cellular vitality ascribed to over-activation of JAK-STAT signal, which collectively provided systematic and overwhelming new evidence for decoding the pathogenesis of AML and exploring therapeutic strategies in future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02444-0.
Collapse
Affiliation(s)
- Leisheng Zhang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, 550004, China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China. .,Department of Neurosurgery, The First Affiliated Hospital & Qianfoshan Hospital of Shandong First Medical University, Ji-nan, 250014, China.
| | - Ying Chi
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yimeng Wei
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenxia Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Linglin Zou
- Department of oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Baoquan Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xing Zhao
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, 550004, China.
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China.
| |
Collapse
|