1
|
Tai Z, Connelly CR, Kuczynski Lange S, Foley N, De Leon Rivera J, Lozano S, Nett RJ. A scoping review to determine if adverse human health effects are associated with use of organophosphates for mosquito control. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae130. [PMID: 39425905 DOI: 10.1093/jme/tjae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Organophosphate insecticides are widely used for adult mosquito control. Although proven effective in reducing mosquito populations and limiting arbovirus transmission, public concern exists regarding potential human health effects associated with organophosphate exposure. The aim of this scoping review was to describe any reported human health conditions associated with organophosphates during their use for adult mosquito control in the United States and Canada. Original peer-reviewed articles published in English language journals from 1 January 2000 to 22 May 2024, were obtained by searching from the databases MEDLINE, EMBASE, Agricultural & Environmental Science Collection, CAB Abstracts, and Scopus. The search identified 6,154 screened articles. Following an independent review, 10 studies were identified that described human health conditions associated with organophosphate exposure during adult mosquito control applications. Of the 10 included studies, only two articles were published within the last 11 years (2013 to 22 May 2024). Three types of study design were represented in the included studies: cohort (n = 5), case study (n = 1), and risk assessment (n = 4). The included studies could not determine causality between exposure to adulticides and development of illness or adverse impacts. Exposure to organophosphates did not contribute to an observed increase in metabolic toxicity, hospitalization rates, or self-reported symptoms and exposure. The available and limited evidence indicates that organophosphates can be used safely to control nuisance mosquitoes or mosquitoes that transmit arboviruses. Continued research regarding the human health effects associated with organophosphate applications for adult mosquito control could help evaluate the basis of the public's concerns and inform public health decision-making.
Collapse
Affiliation(s)
- Zoe Tai
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - C Roxanne Connelly
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Suzanne Kuczynski Lange
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Nicole Foley
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Juan De Leon Rivera
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Saul Lozano
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Randall J Nett
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
2
|
Lopez K, Harbison J, Irwin P, Erkapic A, Holub R, Blanco C, Paskewitz S, Clifton M, Bartholomay L. Extreme resistance to S-methoprene in field-collected Culex pipiens (Diptera: Culicidae) across the Chicago, IL region. Sci Rep 2024; 14:18001. [PMID: 39097646 PMCID: PMC11297970 DOI: 10.1038/s41598-024-69066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Insect growth regulators, like S-methoprene, are heavily relied upon worldwide for larval mosquito chemical control due to their target specificity and long-lasting effects. In this study, susceptibility to S-methoprene was evaluated in Culex pipiens, a globally important vector species. Populations from 14 sites throughout the Chicago area with a long history of S-methoprene use and two sites with minimal use in Wisconsin were examined. Using a bioassay methodology and probit analyses, LC50 and LC90 values were calculated and compared to a susceptible laboratory strain to develop resistance ratios, then categorized for resistance intensity. The resistance ratios observed required the addition of another category, termed 'extreme' resistance, indicating resistance ratios greater than 100. 'Low' to 'extreme' levels of resistance to S-methoprene were detected throughout Illinois populations, with resistance ratios ranging from 2.33 to 1010.52. Resistance was not detected in populations where S-methoprene pressure has been very limited. These 'extreme' resistance ratios observed have never been documented in a wild vector species mosquito population. The relationships between historical S-methoprene use, resistance detected with laboratory bioassays, and the potential for field product failure remain unclear. However, the profound resistance detected here demonstrates a potential critical threat to protecting public health from mosquito-borne diseases.
Collapse
Affiliation(s)
- Kristina Lopez
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- North Shore Mosquito Abatement District, Northfield, IL, USA
| | - Justin Harbison
- North Shore Mosquito Abatement District, Northfield, IL, USA
- Department of Public Health Sciences, Loyola University Chicago, Chicago, IL, USA
| | - Patrick Irwin
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- Northwest Mosquito Abatement District, Wheeling, IL, USA
| | | | - Robert Holub
- Desplaines Valley Mosquito Abatement District, Lyons, IL, USA
| | | | - Susan Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Clifton
- North Shore Mosquito Abatement District, Northfield, IL, USA.
| | - Lyric Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Bellekom B, Lewis OT, Hackett TD. Latitudinal and anthropogenic effects on the structuring of networks linking blood-feeding flies and their vertebrate hosts. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:675-682. [PMID: 37261902 PMCID: PMC10946476 DOI: 10.1111/mve.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Biting flies (Diptera) transmit pathogens that cause many important diseases in humans as well as domestic and wild animals. The networks of feeding interactions linking these insects to their hosts, and how they vary geographically and in response to human land-use, are currently poorly documented but are relevant to understanding cross-species disease transmission. We compiled a database of biting Diptera-host interactions from the literature to investigate how key interaction network metrics vary latitudinally and with human land-use. Interaction evenness and H2' (a measure of the degree of network specificity) did not vary significantly with latitude. Compared to near-natural habitats, interaction evenness was significantly lower in agricultural habitats, where networks were dominated by relatively few species pairs, but there was no evidence that the presence of humans and their domesticated animals within networks led to systematic shifts in network structure. We discuss the epidemiological relevance of these results and the implications for predicting and mitigating future spill-over events.
Collapse
Affiliation(s)
- Ben Bellekom
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
4
|
Holcomb KM, Nguyen C, Komar N, Foy BD, Panella NA, Baskett ML, Barker CM. Predicted reduction in transmission from deployment of ivermectin-treated birdfeeders for local control of West Nile virus. Epidemics 2023; 44:100697. [PMID: 37348378 PMCID: PMC10529638 DOI: 10.1016/j.epidem.2023.100697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Ivermectin (IVM)-treated birds provide the potential for targeted control of Culex mosquitoes to reduce West Nile virus (WNV) transmission. Ingestion of IVM increases mosquito mortality, which could reduce WNV transmission from birds to humans and in enzootic maintenance cycles affecting predominantly bird-feeding mosquitoes and from birds to humans. This strategy might also provide an alternative method for WNV control that is less hampered by insecticide resistance and the logistics of large-scale pesticide applications. Through a combination of field studies and modeling, we assessed the feasibility and impact of deploying IVM-treated birdfeed in residential neighborhoods to reduce WNV transmission. We first tracked 105 birds using radio telemetry and radio frequency identification to monitor their feeder usage and locations of nocturnal roosts in relation to five feeder sites in a neighborhood in Fort Collins, Colorado. Using these results, we then modified a compartmental model of WNV transmission to account for the impact of IVM on mosquito mortality and spatial movement of birds and mosquitoes on the neighborhood level. We found that, while the number of treated lots in a neighborhood strongly influenced the total transmission potential, the arrangement of treated lots in a neighborhood had little effect. Increasing the proportion of treated birds, regardless of the WNV competency status, resulted in a larger reduction in infection dynamics than only treating competent birds. Taken together, model results indicate that deployment of IVM-treated feeders could reduce local transmission throughout the WNV season, including reducing the enzootic transmission prior to the onset of human infections, with high spatial coverage and rates of IVM-induced mortality in mosquitoes. To improve predictions, more work is needed to refine estimates of daily mosquito movement in urban areas and rates of IVM-induced mortality. Our results can guide future field trials of this control strategy.
Collapse
Affiliation(s)
- Karen M Holcomb
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States.
| | - Chilinh Nguyen
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States; Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Nicholas Komar
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Brian D Foy
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nicholas A Panella
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, CA, United States
| | - Christopher M Barker
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
5
|
Ward MJ, Sorek-Hamer M, Vemuri KK, DeFelice NB. Statistical Tools for West Nile Virus Disease Analysis. Methods Mol Biol 2023; 2585:171-191. [PMID: 36331774 DOI: 10.1007/978-1-0716-2760-0_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV) is the most widespread arbovirus in the world and endemic to much of the United States. Its range continues to expand as land use patterns change, creating more habitable environments for the mosquito vector. Though WNV is endemic, the year-to-year risk is highly variable, thus making it difficult to understand the risk for human spillover events. Abatement districts monitor for infected mosquitoes to help understand these potential risks and to help guide our understanding of the risk posed by these observed infected mosquitoes. Creating optimal monitoring networks will provide more informed decision-making tools for abatement districts and policy makers. Investment in these monitoring networks that capture robust observations on mosquito infection rates will allow for environmentally informed inference systems to help guide decision-making and WNV risk. In turn, enhanced decision-making tools allow for faster response times of more targeted and economical surveillance and mosquito population reduction efforts and the overall reduction of WNV transmission. Here we discuss the data streams, their processing, and specifically three ways to calculate WNV infection rates in mosquitoes.
Collapse
Affiliation(s)
- Matthew J Ward
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meytar Sorek-Hamer
- Environmental Analytics Group (USRA), NASA Ames Research Center, Moffett Field, CA, USA
| | - Krishna Karthik Vemuri
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas B DeFelice
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Global Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Amdouni J, Conte A, Ippoliti C, Candeloro L, Tora S, Sghaier S, Hassine TB, Fakhfekh EA, Savini G, Hammami S. Culex pipiens distribution in Tunisia: Identification of suitable areas through Random Forest and MaxEnt approaches. Vet Med Sci 2022; 8:2703-2715. [PMID: 36005907 PMCID: PMC9677390 DOI: 10.1002/vms3.897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Tunisia has experienced several West Nile virus (WNV) outbreaks since 1997. Yet, there is limited information on the spatial distribution of the main WNV mosquito vector Culex pipiens suitability at the national level. OBJECTIVES In the present study, our aim was to predict and evaluate the potential and current distribution of Cx. pipiens in Tunisia. METHODS To this end, two species distribution models were used, i.e. MaxEnt and Random Forest. Occurrence records for Cx. pipiens were obtained from adult and larvae sampled in Tunisia from 2014 to 2017. Climatic and human factors were used as predictors to model the Cx. pipiens geographical distribution. Mean decrease accuracy and mean decrease Gini indices were calculated to evaluate the importance of the impact of different environmental and human variables on the probability distribution of Cx. pipiens. RESULTS Suitable habitats were mainly distributed next to oases, in the north and eastern part of the country. The most important predictor was the population density in both models. The study found out that the governorates of Monastir, Nabeul, Manouba, Ariana, Bizerte, Gabes, Medenine and Kairouan are at highest epidemic risk. CONCLUSIONS The potential distribution of Cx. pipiens coincides geographically with the observed distribution of the disease in humans in Tunisia. Our study has the potential for driving control effort in the fight against West Nile vector in Tunisia.
Collapse
Affiliation(s)
- Jihane Amdouni
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de TunisieTunisTunisie
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Luca Candeloro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Susanna Tora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Soufien Sghaier
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de TunisieTunisTunisie
| | - Thameur Ben Hassine
- Ecole Nationale de Médecine Vétérinaire de Sidi ThabetUniv. ManoubaIRESATunisie
| | - Emna Ayari Fakhfekh
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de TunisieTunisTunisie
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Salah Hammami
- Ecole Nationale de Médecine Vétérinaire de Sidi ThabetUniv. ManoubaIRESATunisie
| |
Collapse
|
7
|
Evaluation of the effectiveness of the California mosquito-borne virus surveillance & response plan, 2009–2018. PLoS Negl Trop Dis 2022; 16:e0010375. [PMID: 35533207 PMCID: PMC9119623 DOI: 10.1371/journal.pntd.0010375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/19/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Local vector control and public health agencies in California use the California Mosquito-Borne Virus Surveillance and Response Plan to monitor and evaluate West Nile virus (WNV) activity and guide responses to reduce the burden of WNV disease. All available data from environmental surveillance, such as the abundance and WNV infection rates in Culex tarsalis and the Culex pipiens complex mosquitoes, the numbers of dead birds, seroconversions in sentinel chickens, and ambient air temperatures, are fed into a formula to estimate the risk level and associated risk of human infections. In many other areas of the US, the vector index, based only on vector mosquito abundance and infection rates, is used by vector control programs to estimate the risk of human WNV transmission. We built models to determine the association between risk level and the number of reported symptomatic human disease cases with onset in the following three weeks to identify the essential components of the risk level and to compare California’s risk estimates to vector index. Risk level calculations based on Cx. tarsalis and Cx. pipiens complex levels were significantly associated with increased human risk, particularly when accounting for vector control area and population, and were better predictors than using vector index. Including all potential environmental components created an effective tool to estimate the risk of WNV transmission to humans in California.
Collapse
|
8
|
Holcomb KM, Nguyen C, Foy BD, Ahn M, Cramer K, Lonstrup ET, Mete A, Tell LA, Barker CM. Effects of ivermectin treatment of backyard chickens on mosquito dynamics and West Nile virus transmission. PLoS Negl Trop Dis 2022; 16:e0010260. [PMID: 35333866 PMCID: PMC9012369 DOI: 10.1371/journal.pntd.0010260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/15/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Vector control strategies typically rely on pesticides to target mosquitoes involved in enzootic and zoonotic transmission of West Nile virus (WNV). Nevertheless, increasing insecticide resistance and a desire to reduce pesticide usage provide the impetus for developing alternative strategies. Ivermectin (IVM), an antiparasitic drug which is widely used in human and veterinary medicine, is a potential alternative for targeted control because Culex mosquitoes experience increased mortality following ingestion of IVM in bloodmeals. Methodology/Principal findings We conducted a randomized field trial to investigate the impact of treating backyard chicken flocks with IVM in urban neighborhoods across Davis, California on mosquito populations and WNV transmission dynamics. We observed a significant reduction in WNV seroconversions in treated vs. untreated chickens, suggesting a reduction in WNV transmission intensity around treated flocks. We also detected a reduction in parity rates of Cx. tarsalis near treated vs. untreated flocks and increased mortality in wild mosquitoes following a bloodmeal on treated chickens (IVM serum concentration > 5ng/mL) vs. chickens with IVM serum concentrations < 5 ng/mL. However, we did not find a significant difference in abundance or infection prevalence in mosquitoes between treatment groups associated with the reductions in seroconversions. Mosquito immigration from surrounding larval habitat, relatively low WNV activity in the study area, and variable IVM serum concentrations likely contributed to uncertainty about the impact. Conclusions/Significance Taken together, our results point to a reduction in WNV transmission due to the impact of IVM on Culex mosquito populations and support the ongoing investigation of oral administration of IVM to wild birds for local control of WNV transmission, although further work is needed to optimize dosing and understand effects on entomological endpoints. Current mosquito control strategies aimed to prevent pathogen transmission to humans have limited ability to target mosquitoes involved in amplification and spillover transmission of pathogens like West Nile virus (WNV). Additionally, growing prevalence of insecticide resistance in mosquito populations limit the efficacy of these insecticide-based control strategies. Ivermectin (IVM) provides an alternative avenue for control by increasing the mortality of mosquitoes that ingest this drug in bloodmeals. Therefore, IVM treatment of avian species that account for the majority of mosquito bloodmeals during the WNV transmission season could be an effective control strategy. Building on pilot studies indicating the efficacy and feasibility of IVM-deployment for WNV control, we performed a randomized field trial to investigate the impact of IVM-treatment of backyard chickens on local population dynamics of Culex mosquitoes and WNV transmission. We were able to link changes in mosquito populations to reduction in WNV transmission, as measured by chicken seroconversions, through IVM-induced mortality in mosquitoes. However, further work is needed to identify the impact of treatment on mosquito abundance and infection prevalence to fully attribute observed changes to IVM administration. Overall, our results support IVM treatment as a potentially effective alternative to insecticide-based vector control strategies and one that can be used to target WNV transmission on the local scale.
Collapse
Affiliation(s)
- Karen M. Holcomb
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Chilinh Nguyen
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michelle Ahn
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Kurt Cramer
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Emma T. Lonstrup
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Asli Mete
- California Animal Health and Food Safety Lab, Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Lisa A. Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christopher M. Barker
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Snyder RE, Cooksey GS, Kramer V, Jain S, Vugia DJ. West Nile Virus-Associated Hospitalizations, California, 2004-2017. Clin Infect Dis 2021; 73:441-447. [PMID: 32525967 DOI: 10.1093/cid/ciaa749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is the most commonly reported mosquito-borne disease in the USA. California reports more WNV disease than any other state. METHODS We identified WNV-associated hospitalizations from 2004 through 2017 in California and estimated hospitalization incidence using Patient Discharge Data. We described demographic, geographic, and clinical characteristics of WNV hospitalizations; identified risk factors for in-hospital death; and tabulated hospitalization charges. RESULTS From 2004 through 2017, 3109 Californians were hospitalized with WNV (median, 214 patients/year; range, 72-449). The majority were male (1983; 63.8%) and aged ≥60 years (1766; 56.8%). The highest median annual hospitalization rate (0.88 hospitalizations/100 000 persons) was in the Central Valley, followed by southern California (0.59 hospitalizations/100 000 persons). Most patients (2469; 79.4%) had ≥1 underlying condition, including hypertension, cardiovascular disease, diabetes, chronic kidney disease, or immunosuppression due to medications or disease. Median hospitalization length of stay was 12 days (interquartile range, 6-23 days). During hospitalization, 1317 (42%) patients had acute respiratory failure and/or sepsis/septic shock, 772 (24.8%) experienced acute kidney failure, and 470 (15.1%) had paralysis; 272 (8.8%) patients died. Nearly 47% (1444) of patients were discharged for additional care. During these 14 years, $838 680 664 (mean $59.9 million/year) was charged for WNV hospitalizations, 73.9% through government payers at a median charge of $142 321/patient. CONCLUSIONS WNV-associated hospitalizations were substantial and costly in California. Hospitalization incidence was higher in males, elderly persons, and patients with underlying conditions. WNV persists as a costly and severe public health threat in California.
Collapse
Affiliation(s)
- Robert E Snyder
- Infectious Diseases Branch, Division of Communicable Disease Control, California Department of Public Health, Sacramento and Richmond, California, USA
| | - Gail Sondermeyer Cooksey
- Infectious Diseases Branch, Division of Communicable Disease Control, California Department of Public Health, Sacramento and Richmond, California, USA
| | - Vicki Kramer
- Infectious Diseases Branch, Division of Communicable Disease Control, California Department of Public Health, Sacramento and Richmond, California, USA
| | - Seema Jain
- Infectious Diseases Branch, Division of Communicable Disease Control, California Department of Public Health, Sacramento and Richmond, California, USA
| | - Duc J Vugia
- Infectious Diseases Branch, Division of Communicable Disease Control, California Department of Public Health, Sacramento and Richmond, California, USA
| |
Collapse
|
10
|
Danforth ME, Fischer M, Snyder RE, Lindsey NP, Martin SW, Kramer VL. Characterizing Areas with Increased Burden of West Nile Virus Disease in California, 2009-2018. Vector Borne Zoonotic Dis 2021; 21:620-627. [PMID: 34077676 PMCID: PMC8380797 DOI: 10.1089/vbz.2021.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that can cause severe neurological disease in humans, for which there is no treatment or vaccine. From 2009 to 2018, California has reported more human disease cases than any other state in the United States. We sought to identify smaller geographic areas within the 10 California counties with the highest number of WNV cases that accounted for disproportionately large numbers of human cases from 2009 to 2018. Eleven areas, consisting of groups of high-burden ZIP codes, were identified in nine counties within southern California and California's Central Valley. Despite containing only 2% of California's area and 17% of the state's population, these high-burden ZIP codes accounted for 44% of WNV cases reported and had a mean annual incidence that was 2.4 times the annual state incidence. Focusing mosquito control and public education efforts in these areas would lower WNV disease burden.
Collapse
Affiliation(s)
- Mary E. Danforth
- California Department of Public Health, Sacramento, California, USA
| | - Marc Fischer
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Robert E. Snyder
- California Department of Public Health, Sacramento, California, USA
| | - Nicole P. Lindsey
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Stacey W. Martin
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Vicki L. Kramer
- California Department of Public Health, Sacramento, California, USA
| |
Collapse
|
11
|
Curren EJ, Shankar MB, Fischer M, Meltzer MI, Staples JE, Gould CV. Cost effectiveness and impact of a targeted age- and incidence-based West Nile virus vaccine strategy. Clin Infect Dis 2021; 73:1565-1570. [PMID: 34117746 DOI: 10.1093/cid/ciab540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is the leading cause of arboviral disease in the United States and is associated with significant morbidity and mortality. A previous analysis found that a vaccination program targeting persons aged ≥60 years was more cost effective than universal vaccination, but costs remained high. METHODS We used a mathematical Markov model to evaluate cost-effectiveness of an age- and incidence-based WNV vaccination program. We grouped states and large counties (≥100,000 persons aged ≥60 years) by median annual WNV incidence rates from 2004 to 2017 for persons aged ≥60 years. We defined WNV incidence thresholds, in increments of 0.5 cases per 100,000 persons ≥60 years. We calculated potential cost per WNV vaccine-prevented case and per quality adjusted life years (QALYs) saved. RESULTS Vaccinating persons aged ≥60 years in states with an annual incidence of WNV neuroinvasive disease of ≥0.5 per 100,000 resulted in approximately half the cost per health outcome averted compared to vaccinating persons aged ≥60 years in all the contiguous United States. This approach could potentially prevent 37% of all neuroinvasive disease cases and 63% of WNV-related deaths nationally. Employing such a threshold at a county-level further improved cost-effectiveness ratios while preventing 19% and 30% of WNV-related neuroinvasive disease cases and deaths, respectively. CONCLUSIONS An age- and incidence-based WNV vaccination program could be a more cost-effective strategy than an age-based program while still having a substantial impact on lowering WNV-related morbidity and mortality.
Collapse
Affiliation(s)
- Emily J Curren
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, USA.,Epidemic Intelligence Service, CDC, Atlanta, Georgia, USA
| | | | - Marc Fischer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, USA
| | - Martin I Meltzer
- Division of Preparedness and Emerging Infections, CDC, Atlanta, Georgia, USA
| | - J Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, USA
| | - Carolyn V Gould
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Ronca SE, Ruff JC, Murray KO. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl Trop Dis 2021; 15:e0009190. [PMID: 33956816 PMCID: PMC8101735 DOI: 10.1371/journal.pntd.0009190] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
After the unexpected arrival of West Nile virus (WNV) in the United States in 1999, the mosquito-borne virus quickly spread throughout North America. Over the past 20 years, WNV has become endemic, with sporadic epizootics. Concerns about the economic impact of infection in horses lead to the licensure of an equine vaccine as early as 2005, but few advances regarding human vaccines or treatments have since been made. There is a high level of virus transmission in hot/humid, subtropical climates, and high morbidity that may disproportionately affect vulnerable populations including the homeless, elderly, and those with underlying health conditions. Although WNV continues to cause significant morbidity and mortality at great cost, funding and research have declined in recent years. These factors, combined with neglect by policy makers and amenability of control measures, indicate that WNV has become a neglected tropical disease.
Collapse
Affiliation(s)
- Shannon E. Ronca
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeanne C. Ruff
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kristy O. Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Peper ST, Jones AC, Webb CR, Lacy M, Presley SM. Consideration of Vector-Borne and Zoonotic Diseases during Differential Diagnosis. South Med J 2021; 114:277-282. [PMID: 33942111 PMCID: PMC8061336 DOI: 10.14423/smj.0000000000001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Recognition and reporting of vector-borne and zoonotic disease (VBZD) cases is largely dependent upon the consideration of such diseases by healthcare practitioners during the initial diagnosis and ordering of specific confirmative diagnostic tests. This study was conducted to assess the general knowledge and understanding of VBZD transmission and clinical presentation. METHODS Healthcare practitioners were surveyed to determine the extent of training and educational experiences they received relative to VBZDs, and their likelihood to consider such diseases during differential diagnoses. In addition, an assessment of their knowledge of arthropod species that may transmit VBZD pathogens was conducted. RESULTS Having postprofessional school training relevant to VBZDs significantly influenced diagnostic accuracy for such disease cases based on the presented clinical signs and symptoms. CONCLUSIONS The prevalence of VBZDs in the United States likely is significantly underestimated. The authors suggest the enhancement of VBZD-focused education as an important initiative that would significantly improve timely diagnosis, treatment, and, ultimately, prevention of these diseases.
Collapse
|
14
|
Abstract
In this paper, we study and explore two control strategies to decrease the spread of Zika virus in the human and mosquito populations. The control strategies that we consider in this study are awareness and spraying campaigns. We solve several optimal control problems relying on a mathematical epidemic model of Zika that considers both human and mosquito populations. The first control strategy is broad and includes using information campaigns, encouraging people to use bednetting, wear long-sleeve shirts, or similar protection actions. The second control is more specific and relies on spraying insecticides. The control system relies on a Zika mathematical model with control functions. To develop the optimal control problem, we use Pontryagins’ maximum principle, which is numerically solved as a boundary value problem. For the mathematical model of the Zika epidemic, we use parameter values extracted from real data from an outbreak in Colombia. We study the effect of the costs related to the controls and infected populations. These costs are important in real life since they can change the outcomes and recommendations for health authorities dramatically. Finally, we explore different options regarding which control measures are more cost-efficient for society.
Collapse
|
15
|
Ouhoummane N, Tchouaket E, Lowe AM, Fortin A, Kairy D, Vibien A, Kovitz-Lensch J, Tannenbaum TN, Milord F. Economic Burden of West Nile Virus Disease, Quebec, Canada, 2012-2013. Emerg Infect Dis 2020; 25:1943-1950. [PMID: 31538563 PMCID: PMC6759276 DOI: 10.3201/eid2510.181608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The economic burden of West Nile virus (WNV) infection is not known for Canada. We sought to describe the direct and indirect costs of WNV infection in the province of Quebec, Canada, up to 2 years after onset of signs and symptoms. We conducted a retrospective cohort study that included WNV cases reported during 2012 and 2013. For 90 persons infected with WNV, persons with encephalitis accounted for the largest proportion of total cost: a median cost of $21,332 per patient compared with $8,124 for West Nile meningitis (p = 0.0004) and $192 for West Nile fever (p<0.0001). When results were extrapolated to all reported WNV patients, the estimated total cost for 124 symptomatic cases was ≈$1.7 million for 2012 and that for 31 symptomatic cases was ≈$430,000 for 2013. Our study provides information for the government to make informed decisions regarding public health policies and infectious diseases prevention and control programs.
Collapse
|
16
|
Day CA, Richards SL, Reiskind MH, Doyle MS, Byrd BD. Context-Dependent Accuracy of the BG-Counter Remote Mosquito Surveillance Device in North Carolina. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:74-80. [PMID: 33647123 DOI: 10.2987/19-6903.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is a clear need for improved vector surveillance approaches that are affordable, labor efficient, and safer than traditional methods. The BG-Counter (Biogents USA, Moorefield, WV) is a device for remotely monitoring mosquito activity in combination with the BG-Sentinel (Biogents USA), a widely used trap for the collection of host-seeking mosquitoes. The BG-Counter uses a wireless connection to provide real-time counts of mosquitoes captured by the BG-Sentinel, allowing users to remotely monitor mosquito populations. This study tested the effectiveness of the BG-Counter in 5 North Carolina counties. A total of 96 trap-days resulted in the collection of >45,000 individual mosquitoes representing 35 species. Aedes albopictus was the most common species collected in all counties, except for New Hanover County where Culex nigripalpus was the most common. The mean daily accuracy ranged from 80.1% (New Hanover County) to 9.4% (Jackson County). There was a significant linear relationship between the actual number of mosquitoes collected and the device counts at all sites except Jackson County, the site with the lowest relative mosquito abundance compared with nontarget organisms. A linear regression of daily BG-Counter accuracy and the daily proportion of mosquitoes to the total number of arthropods collected revealed a significant positive linear relationship, supporting the premise that the BG-Counter is less effective when the relative abundance of mosquitoes is low. Mosquito surveillance programs using the BG-Counter should recognize its context-dependent accuracy and routinely evaluate the accuracy of the device based on local conditions.
Collapse
Affiliation(s)
- Corey A Day
- Vector-Borne Infectious Disease Laboratory, Environmental Health Sciences Program, Western Carolina University, Cullowhee, NC 28723
| | - Stephanie L Richards
- Environmental Health Science Program, East Carolina University, Department of Health Education and Promotion, 3403 Carol Belk Building, 300 Curry Court, Greenville, NC 27858
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7623, Raleigh, NC 27695
| | - Michael S Doyle
- Communicable Disease Branch, North Carolina Division of Public Health, North Carolina Department of Health and Human Services, 1902 Mail Service Center, Raleigh, NC 27699-1902
| | - Brian D Byrd
- Vector-Borne Infectious Disease Laboratory, Environmental Health Sciences Program, Western Carolina University, Cullowhee, NC 28723
| |
Collapse
|
17
|
Shing E, Wang J, Nelder MP, Parpia C, Gubbay JB, Loeb M, Kristjanson E, Marchand-Austin A, Moore S, Russell C, Sider D, Sander B. The direct healthcare costs attributable to West Nile virus illness in Ontario, Canada: a population-based cohort study using laboratory and health administrative data. BMC Infect Dis 2019; 19:1059. [PMID: 31847823 PMCID: PMC6918579 DOI: 10.1186/s12879-019-4596-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/24/2019] [Indexed: 11/27/2022] Open
Abstract
Background West Nile virus (WNV) is a mosquito-borne flavivirus, first detected in the Western Hemisphere in 1999 and spread across North America over the next decade. Though endemic in the most populous areas of North America, few studies have estimated the healthcare costs associated with WNV. The objective of this study was to determine direct healthcare costs attributable to WNV illness in Ontario, Canada. Methods We conducted a cost-of-illness study on incident laboratory confirmed and probable WNV infected subjects identified from the provincial laboratory database from Jan 1, 2002 through Dec 31, 2012. Infected subjects were linked to health administrative data and matched to uninfected subjects. We used phase-of-care methods to calculate costs for 3 phases of illness: acute infection, continuing care, and final care prior to death. Mean 10-day attributable costs were reported in 2014 Canadian dollars, per capita. Sensitivity analysis was conducted to test the impact of WNV neurologic syndromes on healthcare costs. Results One thousand five hundred fifty-one laboratory confirmed and probable WNV infected subjects were ascertained; 1540 (99.3%) were matched to uninfected subjects. Mean age of WNV infected subjects was 49.1 ± 18.4 years, 50.5% were female. Mean costs attributable to WNV were $1177 (95% CI: $1001, $1352) for acute infection, $180 (95% CI: $122, $238) for continuing care, $11,614 (95% CI: $5916, $17,313) for final care - acute death, and $3199 (95% CI: $1770, $4627) for final care - late death. Expected 1-year costs were $13,648, adjusted for survival. Three hundred seventeen infected subjects were diagnosed with at least one neurologic syndrome and greatest healthcare costs in acute infection were associated with encephalitis ($4710, 95% CI: $3770, $5650). Conclusions WNV is associated with increased healthcare resource utilization across all phases of care. High-quality studies are needed to understand the health system impact of vector-borne diseases and evaluate the cost effectiveness of novel WNV interventions.
Collapse
Affiliation(s)
- Emily Shing
- Public Health Ontario, Toronto, Ontario, Canada.
| | - John Wang
- Public Health Ontario, Toronto, Ontario, Canada.,ICES, Toronto, Ontario, Canada
| | | | | | | | - Mark Loeb
- Department of Pathology and Molecular Medicine; Department of Health Research, Evidence, and Impact; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | - Doug Sider
- Public Health Ontario, Toronto, Ontario, Canada
| | - Beate Sander
- Public Health Ontario, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,ICES, Toronto, Ontario, Canada.,Toronto Health Economics and Technology Assessment (THETA) Collaborative, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Limaye VS, Max W, Constible J, Knowlton K. Estimating the Health-Related Costs of 10 Climate-Sensitive U.S. Events During 2012. GEOHEALTH 2019; 3:245-265. [PMID: 32159045 PMCID: PMC7007172 DOI: 10.1029/2019gh000202] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/30/2019] [Accepted: 07/25/2019] [Indexed: 05/14/2023]
Abstract
Climate change threatens human health, but there remains a lack of evidence on the economic toll of climate-sensitive public health impacts. We characterize human mortality and morbidity costs associated with 10 climate-sensitive case study events spanning 11 US states in 2012: wildfires in Colorado and Washington, ozone air pollution in Nevada, extreme heat in Wisconsin, infectious disease outbreaks of tick-borne Lyme disease in Michigan and mosquito-borne West Nile virus in Texas, extreme weather in Ohio, impacts of Hurricane Sandy in New Jersey and New York, allergenic oak pollen in North Carolina, and harmful algal blooms on the Florida coast. Applying a consistent economic valuation approach to published studies and state estimates, we estimate total health-related costs from 917 deaths, 20,568 hospitalizations, and 17,857 emergency department visits of $10.0 billion in 2018 dollars, with a sensitivity range of $2.7-24.6 billion. Our estimates indicate that the financial burden of deaths, hospitalizations, emergency department visits, and associated medical care is a key dimension of the overall economic impact of climate-sensitive events. We found that mortality costs (i.e., the value of a statistical life) of $8.4 billion exceeded morbidity costs and lost wages ($1.6 billion combined). By better characterizing health damages in economic terms, this work helps to shed light on the burden climate-sensitive events already place on U.S. public health each year. In doing so, we provide a conceptual framework for broader estimation of climate-sensitive health-related costs. The high health-related costs associated with climate-sensitive events highlight the importance of actions to mitigate climate change and adapt to its unavoidable impacts.
Collapse
Affiliation(s)
| | - Wendy Max
- Institute for Health & AgingUniversity of CaliforniaSan FranciscoCAUSA
| | | | - Kim Knowlton
- Natural Resources Defense CouncilNew YorkNYUSA
- Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| |
Collapse
|
19
|
Rochlin I, Ninivaggi DV, Benach JL. Malaria and Lyme disease - the largest vector-borne US epidemics in the last 100 years: success and failure of public health. BMC Public Health 2019; 19:804. [PMID: 31234827 PMCID: PMC6591822 DOI: 10.1186/s12889-019-7069-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Malaria and Lyme disease were the largest vector-borne epidemics in recent US history. Malaria, a mosquito-borne disease with intense transmission, had higher morbidity and mortality, whereas Lyme and other tick-borne diseases are more persistent in the environment. The responses to these two epidemics were markedly different. The anti-malaria campaign involved large-scale public works eradicating the disease within two decades. In contrast, Lyme disease control and prevention focused on the individual, advocating personal protection and backyard control, with the disease incidence steeply increasing since 1980s. Control of Lyme and other tick-borne diseases will require a paradigm shift emphasizing measures to reduce tick and host (deer) populations and a substantial R&D effort. These steps will require changing the political climate, perceptions and opinions to generate support among governmental levels and the general public. Such support is essential for providing a real solution to one of the most intractable contemporary public health problems.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901 USA
| | - Dominick V. Ninivaggi
- Wetlands and Vector Management, LLC, 22 Rolling Hills Drive, Nesconset, NY 11767 USA
| | - Jorge L. Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
20
|
Nguyen C, Gray M, Burton TA, Foy SL, Foster JR, Gendernalik AL, Rückert C, Alout H, Young MC, Boze B, Ebel GD, Clapsaddle B, Foy BD. Evaluation of a novel West Nile virus transmission control strategy that targets Culex tarsalis with endectocide-containing blood meals. PLoS Negl Trop Dis 2019; 13:e0007210. [PMID: 30845250 PMCID: PMC6424467 DOI: 10.1371/journal.pntd.0007210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/19/2019] [Accepted: 02/04/2019] [Indexed: 11/27/2022] Open
Abstract
Control of arbovirus transmission remains focused on vector control through application of insecticides directly to the environment. However, these insecticide applications are often reactive interventions that can be poorly-targeted, inadequate for localized control during outbreaks, and opposed due to environmental and toxicity concerns. In this study, we developed endectocide-treated feed as a systemic endectocide for birds to target blood feeding Culex tarsalis, the primary West Nile virus (WNV) bridge vector in the western United States, and conducted preliminary tests on the effects of deploying this feed in the field. In lab tests, ivermectin (IVM) was the most effective endectocide tested against Cx. tarsalis and WNV-infection did not influence mosquito mortality from IVM. Chickens and wild Eurasian collared doves exhibited no signs of toxicity when fed solely on bird feed treated with concentrations up to 200 mg IVM/kg of diet, and significantly more Cx. tarsalis that blood fed on these birds died (greater than 80% mortality) compared to controls (less than 25% mortality). Mosquito mortality following blood feeding correlated with IVM serum concentrations at the time of blood feeding, which dropped rapidly after the withdrawal of treated feed. Preliminary field testing over one WNV season in Fort Collins, Colorado demonstrated that nearly all birds captured around treated bird feeders had detectable levels of IVM in their blood. However, entomological data showed that WNV transmission was non-significantly reduced around treated bird feeders. With further development, deployment of ivermectin-treated bird feed might be an effective, localized WNV transmission control tool. West Nile virus (WNV) is a mosquito-borne virus that causes significant disease and death every year in humans, domesticated animals, and wildlife. Control of WNV transmission is focused on controlling the mosquito vector through applications of insecticides directly to the environment. In this study, we evaluate a novel control strategy for WNV transmission by targeting the main mosquito bridge vector in the Great Plains region, Culex tarsalis, through its blood feeding behavior. Because Culex tarsalis favor taking blood meals from particular bird species, our strategy aims to target these bird species with endectocide-treated bird feed that will result in lethal blood meals for Cx. tarsalis. In this study, we developed a safe and effective formulation of ivermectin-treated diet that resulted in increased mortality for Cx. tarsalis blood fed on birds consuming this treated diet as compared to mosquitoes feeding on control birds. We also conducted a pilot field trial in Fort Collins, Colorado to test this strategy in a natural transmission cycle, which demonstrated promising results.
Collapse
Affiliation(s)
- Chilinh Nguyen
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| | - Meg Gray
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Timothy A. Burton
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Soleil L. Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - John R. Foster
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Alex Lazr Gendernalik
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Claudia Rückert
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | | | - Michael C. Young
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Broox Boze
- Vector Disease Control International, Little Rock, AR, United States of America
| | - Gregory D. Ebel
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | | | - Brian D. Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
21
|
Martinez D, Murray KO, Reyna M, Arafat RR, Gorena R, Shah UA, Debboun M. West Nile Virus Outbreak in Houston and Harris County, Texas, USA, 2014. Emerg Infect Dis 2018; 23:1372-1376. [PMID: 28726615 PMCID: PMC5547786 DOI: 10.3201/eid2308.170384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Since 2002, West Nile virus (WNV) has been detected every year in Houston and the surrounding Harris County, Texas. In 2014, the largest WNV outbreak to date occurred, comprising 139 cases and causing 2 deaths. Additionally, 1,286 WNV-positive mosquito pools were confirmed, the most reported in a single mosquito season.
Collapse
|
22
|
DeFelice NB, Schneider ZD, Little E, Barker C, Caillouet KA, Campbell SR, Damian D, Irwin P, Jones HMP, Townsend J, Shaman J. Use of temperature to improve West Nile virus forecasts. PLoS Comput Biol 2018. [PMID: 29522514 PMCID: PMC5862506 DOI: 10.1371/journal.pcbi.1006047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that on average increased absolute forecast accuracy 5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperature influences rates of WNV transmission. The findings provide a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs. West Nile virus (WNV) is the leading cause of domestically acquired arthropod-borne viral disease in the United States. Here we show that accurate retrospective forecasts of mosquito infection rates and human WNV cases can be generated for a variety of locations in the U.S. Incorporation of temperature forcing into a baseline dynamic model improves our ability to accurately forecast WNV outbreaks and provides further evidence that temperature modulates rates of WNV transmission. These findings provide a foundation for implementation of a statistically rigorous system for real-time short-term and seasonal forecast of WNV. Such a decision support tool would help public health officials and mosquito control programs target control of infectious mosquito populations, alert the public to future periods of elevated WNV spillover transmission risk, and identify when to intensify blood donor screening.
Collapse
Affiliation(s)
- Nicholas B. DeFelice
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Zachary D. Schneider
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Eliza Little
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Christopher Barker
- Center for Vectorborne Diseases, University of California Davis, Davis, California
| | - Kevin A. Caillouet
- St. Tammany Parish Mosquito Abatement District, St. Tammany Parish, Slidell, Louisiana, United States of America
| | - Scott R. Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, New York, United States of America
| | - Dan Damian
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Patrick Irwin
- Northwest Mosquito Abatement District, Wheeling, Illinois, United States of America
| | - Herff M. P. Jones
- Iberia Parish Mosquito Abatement District, Iberia Parish, New Iberia, Louisiana, United States of America
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
23
|
Khan E, Barr KL, Farooqi JQ, Prakoso D, Abbas A, Khan ZY, Ashi S, Imtiaz K, Aziz Z, Malik F, Lednicky JA, Long MT. Human West Nile Virus Disease Outbreak in Pakistan, 2015-2016. Front Public Health 2018. [PMID: 29535994 PMCID: PMC5835076 DOI: 10.3389/fpubh.2018.00020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Like most of the world, Pakistan has seen an increase in mosquito-transmitted diseases in recent years. The magnitude and distribution of these diseases are poorly understood as Pakistan does not have a nation-wide system for reporting disease. A cross-sectional study to determine which flaviviruses were causing of arboviral disease in Pakistan was instituted. West Nile virus (WNV) is a cause of seasonal fever with neurotropic findings in countries that share borders with Pakistan. Here, we describe the active and persistent circulation of WNV in humans in the southern region of Pakistan. This is the first report of WNV causing neurological disease in human patients in this country. Of 997 enrolled patients presenting with clinical features suggestive of arboviral disease, 105 were positive for WNV IgM antibodies, and 71 of these patients possessed WNV-specific neutralizing antibodies. Cross-reactivity of WNV IgM antibodies with Japanese encephalitis virus (JEV) occurred in 75 of these 105 patients. WNV co-infections with Dengue viruses were not a contributing factor for the severity of disease. Nor did prior exposure to dengue virus contribute to incidence of neurological involvement in WNV-infected patients. Patients with WNV infections were more likely to present with altered mental status, seizures, and reduced Glasgow Coma scores when compared with JEV-infected patients. Human WNV cases and vector numbers exhibited a temporal correlation with climate.
Collapse
Affiliation(s)
- Erum Khan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kelli L Barr
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Joveria Qais Farooqi
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Dhani Prakoso
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Alizeh Abbas
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zain Yar Khan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Shanze Ashi
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kehkashan Imtiaz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Z Aziz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Faisal Malik
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - John A Lednicky
- Department of Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Maureen T Long
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Paternoster G, Babo Martins S, Mattivi A, Cagarelli R, Angelini P, Bellini R, Santi A, Galletti G, Pupella S, Marano G, Copello F, Rushton J, Stärk KDC, Tamba M. Economics of One Health: Costs and benefits of integrated West Nile virus surveillance in Emilia-Romagna. PLoS One 2017; 12:e0188156. [PMID: 29176851 PMCID: PMC5703535 DOI: 10.1371/journal.pone.0188156] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Since 2013 in Emilia-Romagna, Italy, surveillance information generated in the public health and in the animal health sectors has been shared and used to guide public health interventions to mitigate the risk of West Nile virus (WNV) transmission via blood transfusion. The objective of the current study was to identify and estimate the costs and benefits associated with this One Health surveillance approach, and to compare it to an approach that does not integrate animal health information in blood donations safety policy (uni-sectoral scenario). Costs of human, animal, and entomological surveillance, sharing of information, and triggered interventions were estimated. Benefits were quantified as the averted costs of potential human cases of WNV neuroinvasive disease associated to infected blood transfusion. In the 2009–2015 period, the One Health approach was estimated to represent a cost saving of €160,921 compared to the uni-sectoral scenario. Blood donation screening was the main cost for both scenarios. The One Health approach further allowed savings of €1.21 million in terms of avoided tests on blood units. Benefits of the One Health approach due to short-term costs of hospitalization and compensation for transfusion-associated disease potentially avoided, were estimated to range from €0 to €2.98 million according to the probability of developing WNV neuroinvasive disease after receiving an infected blood transfusion.
Collapse
Affiliation(s)
- Giulia Paternoster
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), Brescia, Italy
- * E-mail:
| | - Sara Babo Martins
- Department of Production and Population Health, Royal Veterinary College, Hatfield, United Kingodm
- SAFOSO AG, Bern-Liebefeld, Switzerland
| | - Andrea Mattivi
- Regional Health Authority of Emilia-Romagna, Bologna, Italy
| | | | - Paola Angelini
- Regional Health Authority of Emilia-Romagna, Bologna, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, Crevalcore, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), Brescia, Italy
| | - Giorgio Galletti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), Brescia, Italy
| | - Simonetta Pupella
- National Blood Centre, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome, Italy
| | - Giuseppe Marano
- National Blood Centre, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome, Italy
| | - Francesco Copello
- Occupational Medicine Unit, IRCCS AOU San Martino-IST teaching Hospital, Genoa, Italy
| | - Jonathan Rushton
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingodm
| | - Katharina D. C. Stärk
- Department of Production and Population Health, Royal Veterinary College, Hatfield, United Kingodm
- SAFOSO AG, Bern-Liebefeld, Switzerland
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), Brescia, Italy
| |
Collapse
|
25
|
Yeung MW, Shing E, Nelder M, Sander B. Epidemiologic and clinical parameters of West Nile virus infections in humans: a scoping review. BMC Infect Dis 2017; 17:609. [PMID: 28877682 PMCID: PMC5588625 DOI: 10.1186/s12879-017-2637-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Background Clinical syndromes associated with West Nile virus (WNV) infection range from fever to neuroinvasive disease. Understanding WNV epidemiology and disease history is important for guiding patient care and healthcare decision-making. The objective of this review was to characterize the existing body of peer-reviewed and surveillance literature on WNV syndromes and summarize epidemiologic and clinical parameters. Methods We followed scoping review methodology described by the Joanna Briggs Institute. Terms related to WNV epidemiology, hospitalization, and surveillance were searched in four bibliographic databases (MEDLINE, EMBASE, Scopus, and CINAHL) for literature published from January 1999 to December 2015. Results In total, 2334 non-duplicated titles and abstracts were screened; 92 primary studies were included in the review. Publications included one randomized controlled trial and 91 observational studies. Sample sizes ranged from under 25 patients (n = 19) to over 400 patients (n = 28). Eight studies were from Canada, seven from Israel, and the remaining (n = 77) from the United States. N = 17 studies were classified as outbreak case investigations following epidemics; n = 37 with results of regional/national surveillance and monitoring programs. Mean patient ages were > 40 years old; three studies (3%) focused on the pediatric population. Patients with encephalitis fared worse than patients with meningitis and fever, considering hospitalization, length of stay, discharge, recovery, and case-fatality. Several studies examined risk factors; however, age was the only risk factor for neuroinvasive disease/death consistently identified. Overall, patients with acute flaccid paralysis or encephalitis fared worse than patients with meningitis and West Nile fever in terms of hospitalization and mortality. Among the included studies, proportion hospitalized, length of stay, proportion discharged home and case-fatality ranged considerably. Conclusion Our review highlights the heterogeneity among reporting clinical WNV syndromes and epidemiologic parameters of WNV-related illness. Presently, there is potential for further synthesis of the risk factors of WNV-illness and mortality; undertaking further analysis through a systematic review and meta-analysis may benefit our understanding of risk factors for emerging mosquito-borne diseases. Future research on the burden of WNV can build on existing evidence summarized in this review, not only to support our understanding of endemic WNV, but also to strengthen research on emerging arboviruses with similar clinical manifestations. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2637-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Man Wah Yeung
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Emily Shing
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Mark Nelder
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Beate Sander
- Public Health Ontario, Toronto, Canada, Institute for Clinical Evaluative Sciences, Toronto, Canada, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.
| |
Collapse
|
26
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): West Nile fever. EFSA J 2017; 15:e04955. [PMID: 32625621 PMCID: PMC7009844 DOI: 10.2903/j.efsa.2017.4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
West Nile fever (WNF) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of WNF to be listed, Article 9 for the categorisation of WNF according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to WNF. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, WNF can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1). The animal species to be listed for WNF according to Article 8(3) criteria are several orders of birds and mammals as susceptible species and several families of birds as reservoir. Different mosquito species can serve as vectors.
Collapse
|
27
|
Shankar MB, Staples JE, Meltzer MI, Fischer M. Cost effectiveness of a targeted age-based West Nile virus vaccination program. Vaccine 2017; 35:3143-3151. [PMID: 28456529 DOI: 10.1016/j.vaccine.2016.11.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND West Nile virus (WNV) is the leading cause of domestically-acquired arboviral disease in the United States. Several WNV vaccines are in various stages of development. We estimate the cost-effectiveness of WNV vaccination programs targeting groups at increased risk for severe WNV disease. METHODS We used a mathematical model to estimate costs and health outcomes of vaccination with WNV vaccine compared to no vaccination among seven cohorts, spaced at 10year intervals from ages 10 to 70years, each followed until 90-years-old. U.S. surveillance data were used to estimate WNV neuroinvasive disease incidence. Data for WNV seroprevalence, acute and long-term care costs of WNV disease patients, quality-adjusted life-years (QALYs), and vaccine characteristics were obtained from published reports. We assumed vaccine efficacy to either last lifelong or for 10years with booster doses given every 10years. RESULTS There was a statistically significant difference in cost-effectiveness ratios across cohorts in both models and all outcomes assessed (Kruskal-Wallis test p<0.0001). The 60-year-cohort had a mean cost per neuroinvasive disease case prevented of $664,000 and disability averted of $1,421,000 in lifelong model and $882,000 and $1,887,000, respectively in 10-year immunity model; these costs were statistically significantly lower than costs for other cohorts (p<0.0001). Vaccinating 70-year-olds had the lowest cost per death averted in both models at around $4.7 million (95%CI $2-$8 million). Cost per disease case averted was lowest among 40- and 50-year-old cohorts and cost per QALY saved lowest among 60-year cohorts in lifelong immunity model. The models were most sensitive to disease incidence, vaccine cost, and proportion of persons developing disease among infected. CONCLUSIONS Age-based WNV vaccination program targeting those at higher risk for severe disease is more cost-effective than universal vaccination. Annual variation in WNV disease incidence, QALY weights, and vaccine costs impact the cost effectiveness ratios.
Collapse
Affiliation(s)
- Manjunath B Shankar
- Division for Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS C-18, Atlanta, GA 30329, USA.
| | - J Erin Staples
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA.
| | - Martin I Meltzer
- Division for Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS C-18, Atlanta, GA 30329, USA.
| | - Marc Fischer
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA.
| |
Collapse
|
28
|
Humblet MF, Vandeputte S, Fecher-Bourgeois F, Léonard P, Gosset C, Balenghien T, Durand B, Saegerman C. Estimating the economic impact of a possible equine and human epidemic of West Nile virus infection in Belgium. ACTA ACUST UNITED AC 2017; 21:30309. [PMID: 27526394 PMCID: PMC4998509 DOI: 10.2807/1560-7917.es.2016.21.31.30309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/02/2016] [Indexed: 11/20/2022]
Abstract
This study aimed at estimating, in a prospective scenario, the potential economic impact of a possible epidemic of WNV infection in Belgium, based on 2012 values for the equine and human health sectors, in order to increase preparedness and help decision-makers. Modelling of risk areas, based on the habitat suitable for Culex pipiens, the main vector of the virus, allowed us to determine equine and human populations at risk. Characteristics of the different clinical forms of the disease based on past epidemics in Europe allowed morbidity among horses and humans to be estimated. The main costs for the equine sector were vaccination and replacement value of dead or euthanised horses. The choice of the vaccination strategy would have important consequences in terms of cost. Vaccination of the country's whole population of horses, based on a worst-case scenario, would cost more than EUR 30 million; for areas at risk, the cost would be around EUR 16-17 million. Regarding the impact on human health, short-term costs and socio-economic losses were estimated for patients who developed the neuroinvasive form of the disease, as no vaccine is available yet for humans. Hospital charges of around EUR 3,600 for a case of West Nile neuroinvasive disease and EUR 4,500 for a case of acute flaccid paralysis would be the major financial consequence of an epidemic of West Nile virus infection in humans in Belgium.
Collapse
|
29
|
Mayer SV, Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop 2017; 166:155-163. [PMID: 27876643 PMCID: PMC5203945 DOI: 10.1016/j.actatropica.2016.11.020] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 01/02/2023]
Abstract
Arthropod-borne viruses (arboviruses) present a substantial threat to human and animal health worldwide. Arboviruses can cause a variety of clinical presentations that range from mild to life threatening symptoms. Many arboviruses are present in nature through two distinct cycles, the urban and sylvatic cycle that are maintained in complex biological cycles. In this review we briefly discuss the factors driving the emergence of arboviruses, such as the anthropogenic aspects of unrestrained human population growth, economic expansion and globalization. Also the important aspects of viruses and vectors in the occurrence of arboviruses epidemics. The focus of this review will be on dengue, zika and chikungunya viruses, particularly because these viruses are currently causing a negative impact on public health and economic damage around the world.
Collapse
Affiliation(s)
- Sandra V Mayer
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-0609, USA
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-0609, USA; Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, USA; Center for Tropical Diseases, UTMB, Galveston, TX 77555-0609, USA; Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555-0610, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-0609, USA; Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, USA; Center for Tropical Diseases, UTMB, Galveston, TX 77555-0609, USA; Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555-0610, USA.
| |
Collapse
|
30
|
Lockaby G, Noori N, Morse W, Zipperer W, Kalin L, Governo R, Sawant R, Ricker M. Climatic, ecological, and socioeconomic factors associated with West Nile virus incidence in Atlanta, Georgia, U.S.A. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:232-243. [PMID: 27860011 DOI: 10.1111/jvec.12218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/17/2016] [Indexed: 05/14/2023]
Abstract
The integrated effects of the many risk factors associated with West Nile virus (WNV) incidence are complex and not well understood. We studied an array of risk factors in and around Atlanta, GA, that have been shown to be linked with WNV in other locations. This array was comprehensive and included climate and meteorological metrics, vegetation characteristics, land use / land cover analyses, and socioeconomic factors. Data on mosquito abundance and WNV mosquito infection rates were obtained for 58 sites and covered 2009-2011, a period following the combined storm water - sewer overflow remediation in that city. Risk factors were compared to mosquito abundance and the WNV vector index (VI) using regression analyses individually and in combination. Lagged climate variables, including soil moisture and temperature, were significantly correlated (positively) with vector index as were forest patch size and percent pine composition of patches (both negatively). Socioeconomic factors that were most highly correlated (positively) with the VI included the proportion of low income households and homes built before 1960 and housing density. The model selected through stepwise regression that related risk factors to the VI included (in the order of decreasing influence) proportion of houses built before 1960, percent of pine in patches, and proportion of low income households.
Collapse
Affiliation(s)
- Graeme Lockaby
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Navideh Noori
- University of Georgia, Odum School of Ecology, Athens, GA, U.S.A
| | - Wayde Morse
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Wayne Zipperer
- USDA Forest Service Southern Research Station, Gainesville, FL, U.S.A
| | - Latif Kalin
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Robin Governo
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Rajesh Sawant
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Matthew Ricker
- University of Pennsylvania, Department of Environmental, Geographical, and Geologic Sciences, Bloomsburg, PA, U.S.A
| |
Collapse
|
31
|
Kolimenakis A, Bithas K, Richardson C, Latinopoulos D, Baka A, Vakali A, Hadjichristodoulou C, Mourelatos S, Kalaitzopoulou S, Gewehr S, Michaelakis A, Koliopoulos G. Economic appraisal of the public control and prevention strategy against the 2010 West Nile Virus outbreak in Central Macedonia, Greece. Public Health 2015; 131:63-70. [PMID: 26710663 DOI: 10.1016/j.puhe.2015.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of the present paper is to evaluate the economic efficiency of the public control and prevention strategies to tackle the 2010 West Nile Virus (WNV) outbreak in the Region of Central Macedonia, Greece. Efficiency is examined on the basis of the public prevention costs incurred and their potential in justifying the costs arising from health and nuisance impacts in the succeeding years. STUDY DESIGN Economic appraisal of public health management interventions. METHODS Prevention and control cost categories including control programmes, contingency planning and blood safety testing, are analyzed based on market prices. A separate cost of illness approach is conducted for the estimation of medical costs and productivity losses from 2010 to 2013 and for the calculation of averted health impacts. The averted mosquito nuisance costs to households are estimated on the basis of a contingent valuation study. Based on these findings, a limited cost-benefit analysis is employed in order to evaluate the economic efficiency of these strategies in 2010-2013. RESULTS Results indicate that cost of illness and prevention costs fell significantly in the years following the 2010 outbreak, also as a result of the epidemic coming under control. According to the contingent valuation survey, the annual average willingness to pay to eliminate the mosquito problem in the study area ranged between 22 and 27 € per household. Cost-benefit analysis indicates that the aggregate benefit of implementing the previous 3-year strategy creates a net socio-economic benefit in 2013. However the spread of the WNV epidemic and the overall socio-economic consequences, had the various costs not been employed, remain unpredictable and extremely difficult to calculate. CONCLUSIONS The application of a post epidemic strategy appears to be of utmost importance for public health safety. An updated well designed survey is needed for a more precise definition of the optimum prevention policies and levels and for the establishment of the various cost/benefit parameters.
Collapse
Affiliation(s)
- A Kolimenakis
- Institute of Urban Environment & Human Resources, Department of Economic and Regional Development, Panteion University, 14 Aristotelous St., GR-17671 Kallithea, Athens, Greece.
| | - K Bithas
- Institute of Urban Environment & Human Resources, Department of Economic and Regional Development, Panteion University, 14 Aristotelous St., GR-17671 Kallithea, Athens, Greece
| | - C Richardson
- Institute of Urban Environment & Human Resources, Department of Economic and Regional Development, Panteion University, 14 Aristotelous St., GR-17671 Kallithea, Athens, Greece
| | - D Latinopoulos
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, Greece
| | - A Baka
- Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - A Vakali
- Hellenic Center for Disease Control & Prevention, Athens, Greece
| | | | | | | | - S Gewehr
- Ecodevelopment SA, Thessaloniki, Greece
| | - A Michaelakis
- Department of Entomology and Agricultural Zoology Benaki Phytopathological Institute, Athens, Greece
| | - G Koliopoulos
- Laboratory of Biological Control of Pesticides, Department of Pesticides Control & Phytopharmacy Benaki Phytopathological Institute, Athens, Greece
| |
Collapse
|
32
|
Kampen H, Werner D. Die wiederkehrende Notwendigkeit von Stechmücken-Surveillance und -Forschung. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 58:1101-9. [DOI: 10.1007/s00103-015-2218-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Bellini R, Zeller H, Van Bortel W. A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe. Parasit Vectors 2014; 7:323. [PMID: 25015004 PMCID: PMC4230500 DOI: 10.1186/1756-3305-7-323] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe.Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios.
Collapse
Affiliation(s)
- Romeo Bellini
- Centro Agricoltura Ambiente "G,Nicoli", Via Argini Nord 3351, Crevalcore 40014, Italy.
| | | | | |
Collapse
|
34
|
Abstract
During the 2012 West Nile virus outbreak in Texas, USA, 1,868 cases were reported. Male patients, persons >65 years of age, and minorities were at highest risk for neuroinvasive disease. Fifty-three percent of counties reported a case; 48% of case-patients resided in 4 counties around Dallas/Fort Worth. The economic cost was >$47.6 million.
Collapse
|
35
|
Amanna IJ, Slifka MK. Current trends in West Nile virus vaccine development. Expert Rev Vaccines 2014; 13:589-608. [PMID: 24689659 DOI: 10.1586/14760584.2014.906309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that has become endemic in the United States. From 1999-2012, there have been 37088 reported cases of WNV and 1549 deaths, resulting in a 4.2% case-fatality rate. Despite development of effective WNV vaccines for horses, there is no vaccine to prevent human WNV infection. Several vaccines have been tested in preclinical studies and to date there have been eight clinical trials, with promising results in terms of safety and induction of antiviral immunity. Although mass vaccination is unlikely to be cost effective, implementation of a targeted vaccine program may be feasible if a safe and effective vaccine can be brought to market. Further evaluation of new and advanced vaccine candidates is strongly encouraged.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc., 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
36
|
Staples JE, Shankar MB, Sejvar JJ, Meltzer MI, Fischer M. Initial and long-term costs of patients hospitalized with West Nile virus disease. Am J Trop Med Hyg 2014; 90:402-9. [PMID: 24515937 DOI: 10.4269/ajtmh.13-0206] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There are no published data on the economic burden for specific West Nile virus (WNV) clinical syndromes (i.e., fever, meningitis, encephalitis, and acute flaccid paralysis [AFP]). We estimated initial hospital and lost-productivity costs from 80 patients hospitalized with WNV disease in Colorado during 2003; 38 of these patients were followed for 5 years to determine long-term medical and lost-productivity costs. Initial costs were highest for patients with AFP (median $25,117; range $5,385-$283,381) and encephalitis (median $20,105; range $3,965-$324,167). Long-term costs were highest for patients with AFP (median $22,628; range $624-$439,945) and meningitis (median $10,556; range $0-$260,748). Extrapolating from this small cohort to national surveillance data, we estimated the total cumulative costs of reported WNV hospitalized cases from 1999 through 2012 to be $778 million (95% confidence interval $673 million-$1.01 billion). These estimates can be used in assessing the cost-effectiveness of interventions to prevent WNV disease.
Collapse
Affiliation(s)
- J Erin Staples
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; Prion and Health Office, Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Preparedness and Emerging Infections, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Alan D. T. Barrett
- * Address correspondence to Alan D. T. Barrett, Department of Pathology, Sealy Center for Vaccine Development, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, and Institute for Human Infections and Immunity. University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0436. E-mail:
| |
Collapse
|
38
|
Marka A, Diamantidis A, Papa A, Valiakos G, Chaintoutis SC, Doukas D, Tserkezou P, Giannakopoulos A, Papaspyropoulos K, Patsoula E, Badieritakis E, Baka A, Tseroni M, Pervanidou D, Papadopoulos NT, Koliopoulos G, Tontis D, Dovas CI, Billinis C, Tsakris A, Kremastinou J, Hadjichristodoulou C. West Nile virus state of the art report of MALWEST Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6534-610. [PMID: 24317379 PMCID: PMC3881129 DOI: 10.3390/ijerph10126534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022]
Abstract
During the last three years Greece is experiencing the emergence of West Nile virus (WNV) epidemics. Within this framework, an integrated surveillance and control programme (MALWEST project) with thirteen associate partners was launched aiming to investigate the disease and suggest appropriate interventions. One out of seven work packages of the project is dedicated to the State of the Art report for WNV. Three expert working groups on humans, animals and mosquitoes were established. Medical databases (PubMed, Scopus) were searched together with websites: e.g., WHO, CDC, ECDC. In total, 1,092 relevant articles were initially identified and 258 of them were finally included as references regarding the current knowledge about WNV, along with 36 additional sources (conference papers, reports, book chapters). The review is divided in three sections according to the fields of interest: (1) WNV in humans (epidemiology, molecular characteristics, transmission, diagnosis, treatment, prevention, surveillance); (2) WNV in animals (epidemiological and transmission characteristics concerning birds, horses, reptiles and other animal species) and (3) WNV in mosquitoes (control, surveillance). Finally, some examples of integrated surveillance programmes are presented. The introduction and establishment of the disease in Greece and other European countries further emphasizes the need for thorough research and broadening of our knowledge on this viral pathogen.
Collapse
Affiliation(s)
- Andriani Marka
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexandros Diamantidis
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - Anna Papa
- National Reference Center for Arboviruses, Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mail:
| | - George Valiakos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Serafeim C. Chaintoutis
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Persefoni Tserkezou
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexios Giannakopoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Konstantinos Papaspyropoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Eleni Patsoula
- Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, Athens 11521, Greece; E-mail:
| | - Evangelos Badieritakis
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Agoritsa Baka
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Maria Tseroni
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Danai Pervanidou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - George Koliopoulos
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Dimitrios Tontis
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Chrysostomos I. Dovas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Charalambos Billinis
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Athanassios Tsakris
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-2410-565-007; Fax: +30-2410-565-051
| | - Jenny Kremastinou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | | |
Collapse
|
39
|
Durbin AP, Wright PF, Cox A, Kagucia W, Elwood D, Henderson S, Wanionek K, Speicher J, Whitehead SS, Pletnev AG. The live attenuated chimeric vaccine rWN/DEN4Δ30 is well-tolerated and immunogenic in healthy flavivirus-naïve adult volunteers. Vaccine 2013; 31:5772-7. [PMID: 23968769 DOI: 10.1016/j.vaccine.2013.07.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/16/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
Abstract
WNV has become the leading vector-borne cause of meningoencephalitis in the United States. Although the majority of WNV infections result in asymptomatic illness, approximately 20% of infections result in West Nile fever and 1% in West Nile neuroinvasive disease (WNND), which causes encephalitis, meningitis, or flaccid paralysis. The elderly are at particular risk for WNND, with more than half the cases occurring in persons older than sixty years of age. There is no licensed treatment for WNND, nor is there any licensed vaccine for humans for the prevention of WNV infection. The Laboratory of Infectious Diseases at the National Institutes of Health has developed a recombinant live attenuated WNV vaccine based on chimerization of the wild-type WNV NY99 genome with that of the live attenuated DENV-4 candidate vaccine rDEN4Δ30. The genes encoding the prM and envelope proteins of DENV-4 were replaced with those of WNV NY99 and the resultant virus was designated rWN/DEN4Δ30. The vaccine was evaluated in healthy flavivirus-naïve adult volunteers age 18-50 years in two separate studies, both of which are reported here. The first study evaluated 10³ or 10⁴ PFU of the vaccine given as a single dose; the second study evaluated 10⁵ PFU of the vaccine given as two doses 6 months apart. The vaccine was well-tolerated and immunogenic at all three doses, inducing seroconversion to WNV NY99 in 74% (10³ PFU), 75% (10⁴ PFU), and 55% (10⁵ PFU) of subjects after a single dose. A second 10⁵ PFU dose of rWN/DEN4Δ30 given 6 months after the first dose increased the seroconversion rate 89%. Based on the encouraging results from these studies, further evaluation of the candidate vaccine in adults older than 50 years of age is planned.
Collapse
Affiliation(s)
- Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Steps to a sustainable public health surveillance enterprise
a commentary from the international society for disease surveillance. Online J Public Health Inform 2013; 5:210. [PMID: 23923095 PMCID: PMC3733763 DOI: 10.5210/ojphi.v5i2.4703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
More than a decade into the 21st century, the ability to effectively
monitor community health status, as well as forecast, detect, and respond to
disease outbreaks and other events of public health significance, remains a
major challenge. As an issue that affects population health, economic stability,
and global security, the public health surveillance enterprise warrants the
attention of decision makers at all levels. Public health practitioners responsible for surveillance functions are best
positioned to identify the key elements needed for creating and maintaining
effective and sustainable surveillance systems. This paper presents the
recommendations of the Sustainable Surveillance Workgroup convened by the
International Society for Disease Surveillance (ISDS) to identify strategies for
building, strengthening, and maintaining surveillance systems that are equipped
to provide data continuity and to handle both established and new data sources
and public health surveillance practices.
Collapse
|
41
|
Nolan MS, Schuermann J, Murray KO. West Nile virus infection among humans, Texas, USA, 2002-2011. Emerg Infect Dis 2013; 19:137-9. [PMID: 23260575 PMCID: PMC3558005 DOI: 10.3201/eid1901.121135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted an epidemiologic analysis to document West Nile virus infections among humans in Texas, USA, during 2002-2011. West Nile virus has become endemic to Texas; the number of reported cases increased every 3 years. Risk for infection was greatest in rural northwestern Texas, where Culex tarsalis mosquitoes are the predominant mosquito species.
Collapse
|
42
|
Beasley DWC, Barrett ADT, Tesh RB. Resurgence of West Nile neurologic disease in the United States in 2012: what happened? What needs to be done? Antiviral Res 2013; 99:1-5. [PMID: 23624155 DOI: 10.1016/j.antiviral.2013.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/02/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022]
Abstract
The resurgence in cases of neurologic disease caused by West Nile virus (WNV) in the United States in 2012 came as a surprise to the general public and to many non-arbovirus researchers. Following the introduction of WNV into the US in 1999, the number of human infections rose dramatically, peaking in 2002-03. However, cases declined from 2008-11, and it was unclear if the virus would continue to have a low-level endemic transmission pattern with occasional outbreaks, like the related flavivirus, Saint Louis encephalitis virus, or a more active pattern with annual outbreaks, including occasional years with large epidemics, like Japanese encephalitis virus. The large epidemic in 2012 suggests that the United States can expect periodic outbreaks of West Nile fever and neurologic disease in the coming years. In this paper, we consider the causes of the upsurge in WNV infections during the past year and their implications for future research and disease control measures.
Collapse
Affiliation(s)
- David W C Beasley
- Departments of Microbiology and Immunology, and Pathology, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA.
| | | | | |
Collapse
|
43
|
Kwan JL, Park BK, Carpenter TE, Ngo V, Civen R, Reisen WK. Comparison of enzootic risk measures for predicting West Nile disease, Los Angeles, California, USA, 2004-2010. Emerg Infect Dis 2013; 18:1298-306. [PMID: 22840314 PMCID: PMC3414020 DOI: 10.3201/eid1808.111558] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The best model comprised enzootic surveillance data from avian, mosquito, and climate sources. In Los Angeles, California, USA, 2 epidemics of West Nile virus (WNV) disease have occurred since WNV was recognized in 2003. To assess which measure of risk was most predictive of human cases, we compared 3 measures: the California Mosquito-Borne Virus Surveillance and Response Plan Assessment, the vector index, and the Dynamic Continuous-Area Space-Time system. A case–crossover study was performed by using symptom onset dates from 384 persons with WNV infection to determine their relative environmental exposure to high-risk conditions as measured by each method. Receiver-operating characteristic plots determined thresholds for each model, and the area under the curve was used to compare methods. We found that the best risk assessment model for human WNV cases included surveillance data from avian, mosquito, and climate sources.
Collapse
|
44
|
Rey JR, Walton WE, Wolfe RJ, Connelly R, O’Connell SM, Berg J, Sakolsky-Hoopes GE, Laderman AD. North American wetlands and mosquito control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:4537-605. [PMID: 23222252 PMCID: PMC3546777 DOI: 10.3390/ijerph9124537] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/23/2022]
Abstract
Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere.
Collapse
Affiliation(s)
- Jorge R. Rey
- Florida Medical Entomology Laboratory and Department of Entomology and Nematology, University of Florida-IFAS, Vero Beach, FL 342962, USA; E-Mails: (R.C.); (S.M.O.C.)
| | - William E. Walton
- Department of Entomology, University of California, Riverside, CA 92521, USA; E-Mail:
| | - Roger J. Wolfe
- Connecticut Department of Energy and Environmental Protection, Franklin, CT 06254, USA; E-Mail:
| | - Roxanne Connelly
- Florida Medical Entomology Laboratory and Department of Entomology and Nematology, University of Florida-IFAS, Vero Beach, FL 342962, USA; E-Mails: (R.C.); (S.M.O.C.)
| | - Sheila M. O’Connell
- Florida Medical Entomology Laboratory and Department of Entomology and Nematology, University of Florida-IFAS, Vero Beach, FL 342962, USA; E-Mails: (R.C.); (S.M.O.C.)
| | - Joe Berg
- Biohabitats, Inc., 2081 Clipper Park Road, Baltimore, MD 21211, USA; E-Mail:
| | | | | |
Collapse
|
45
|
Estimated cumulative incidence of West Nile virus infection in US adults, 1999-2010. Epidemiol Infect 2012; 141:591-5. [PMID: 22640592 DOI: 10.1017/s0950268812001070] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
West Nile virus (WNV) was first recognized in the USA in 1999. We estimated the cumulative incidence of WNV infection in the USA from 1999 to 2010 using recently derived age- and sex-stratified ratios of infections to WNV neuroinvasive disease (WNND) and the number of WNND cases reported to national surveillance. We estimate that over 3 million persons have been infected with WNV in the USA, with the highest incidence rates in the central plains states. These 3 million infections would have resulted in about 780 000 illnesses. A substantial number of WNV infections and illnesses have occurred during the virus' first decade in the USA.
Collapse
|
46
|
Nett R, Kuehnert M, Ison M, Orlowski J, Fischer M, Staples J. Current practices and evaluation of screening solid organ donors for West Nile virus. Transpl Infect Dis 2012; 14:268-77. [DOI: 10.1111/j.1399-3062.2012.00743.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 01/21/2012] [Indexed: 11/28/2022]
Affiliation(s)
- R.J. Nett
- Arboviral Diseases Branch; Centers for Disease Control and Prevention (CDC); Fort Collins; Colorado; USA
| | - M.J. Kuehnert
- Office of Blood, Organ, and Other Tissue Safety; CDC; Atlanta; Georgia; USA
| | - M.G. Ison
- Divisions of Infectious Diseases and Organ Transplantation; Northwestern University Feinberg School of Medicine; Chicago; Illinois; USA
| | - J.P. Orlowski
- Center for Donation and Transplant; Albany; New York; USA
| | - M. Fischer
- Arboviral Diseases Branch; Centers for Disease Control and Prevention (CDC); Fort Collins; Colorado; USA
| | - J.E. Staples
- Arboviral Diseases Branch; Centers for Disease Control and Prevention (CDC); Fort Collins; Colorado; USA
| |
Collapse
|
47
|
Carney RM, Ahearn SC, McConchie A, Glasner C, Jean C, Barker C, Park B, Padgett K, Parker E, Aquino E, Kramer V. Early warning system for West Nile virus risk areas, California, USA. Emerg Infect Dis 2011; 17:1445-54. [PMID: 21801622 PMCID: PMC3381548 DOI: 10.3201/eid1708.100411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Dynamic Continuous-Area Space-Time (DYCAST) system is a biologically based spatiotemporal model that uses public reports of dead birds to identify areas at high risk for West Nile virus (WNV) transmission to humans. In 2005, during a statewide epidemic of WNV (880 cases), the California Department of Public Health prospectively implemented DYCAST over 32,517 km2 in California. Daily risk maps were made available online and used by local agencies to target public education campaigns, surveillance, and mosquito control. DYCAST had 80.8% sensitivity and 90.6% specificity for predicting human cases, and k analysis indicated moderate strength of chance-adjusted agreement for >4 weeks. High-risk grid cells (populations) were identified an average of 37.2 days before onset of human illness; relative risk for disease was >39× higher than for low-risk cells. Although prediction rates declined in subsequent years, results indicate DYCAST was a timely and effective early warning system during the severe 2005 epidemic.
Collapse
Affiliation(s)
- Ryan M Carney
- California Department of Public Health, Richmond, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leisnham PT, Sandoval-Mohapatra S. Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:3099-113. [PMID: 21909293 PMCID: PMC3166729 DOI: 10.3390/ijerph8083099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/08/2011] [Accepted: 07/13/2011] [Indexed: 11/16/2022]
Abstract
A study was conducted during the summer of 2009 (from July to September) to characterize mosquito communities among different habitats in five historically ditched tidal salt marshes and three adjacent wooded areas in the E.A. Vaughn Wetland Management Area on the Maryland Delmarva Peninsula, USA. Study marshes are characteristic of Atlantic coastal salt marshes that had undergone grid ditching from the 1930s to 1950s. In the autumn of 2008 (October and November) ditches were plugged near their outlets in two ('experimental') marshes with the aim to restore their natural tidal hydrology. The three other marshes were not plugged. Marshes were sampled from July to September in 2009 by using standard dip count method. A total of 2,457 mosquito larvae representing six species were collected on 15.4% (86/557) of all sample occasions and 399 adults representing four mosquito species were collected from landing counts. Aedes sollicitans, Anopheles bradleyi and Culex salinarius were the most common species collected in larval habitats, and Ae. sollicitans was the most common adult collected. Wooded habitats had more total mosquitoes, were also more frequently occupied by mosquitoes and had higher densities of mosquitoes than marsh habitats. Almost all larvae collected from marshes were from one experimental and one control site. The majority of larvae at the control site were Ae. sollicitans in marsh pannes while Cx. salinarius, An. bradleyi, Ae. cantator, and Ae. sollicitans were collected in high numbers from ditches at the experimental site. We found a difference in the proportion of marsh pannes occupied by Ae. sollicitans but not total mosquitoes sampled 4-5 days after spring tide events than on other occasions. Salinity measures of 42 larval habitats showed lower median salinity in mosquito-occupied habitats (11.5 ppt) than unoccupied habitats (20.1 ppt), and in habitats in wooded areas followed by ditches and pannes in marsh areas. The results of this study suggest that wooded areas adjacent to salt marshes may be a substantial source of biting adult mosquitoes usually associated with salt marsh habitats and that ditch plugging may alter the productivity of mosquitoes on some marshes. We recommend future studies consider mosquito productivity from habitats surrounding salt marshes, and if assessments of marsh alterations are a goal, compare multiple experimental and control areas before and after treatments to determine if alterations have a consistent impact on regional mosquito production.
Collapse
Affiliation(s)
- Paul T Leisnham
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
49
|
Preftakes CJ, Schleier JJ, Peterson RKD. Bystander exposure to ultra-low-volume insecticide applications used for adult mosquito management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2142-52. [PMID: 21776222 PMCID: PMC3138017 DOI: 10.3390/ijerph8062142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/04/2011] [Accepted: 06/09/2011] [Indexed: 12/01/2022]
Abstract
A popular and effective management option for adult mosquitoes is the use of insecticides applied by ultra-low-volume (ULV) equipment. However, there is a paucity of data on human dermal exposure to insecticides applied by this method. The objective of the current study was to estimate dermal exposures to the insecticide active ingredient permethrin using water- (Aqua-Reslin®) and oil-based (Permanone® 30-30) formulations with passive dosimetry. No significant differences in deposition of permethrin were observed between years, distance from the spray source, front or back of the body, or the placement of the patches on the body. However, exposure to Aqua-Reslin was significantly greater than Permanone 30-30 and average concentrations deposited on the body were 4.2 and 2.1 ng/cm2, respectively. The greater deposition of Aqua-Reslin is most likely due to the higher density of the water-based formulation which causes it to settle out faster than the lighter oil-based formulation of Permanone 30-30. The estimated average absorbed dermal exposure for permethrin from Aqua-Reslin and Permanone 30-30 was 0.00009 and 0.00005 mg/kg body weight, respectively. We also found that ground deposition of ULV insecticides can be used as a surrogate for estimating dermal exposure. The estimated exposures support the findings of previous risk assessments that exposure to ULV applications used for mosquito management are below regulatory levels of concern.
Collapse
Affiliation(s)
- Collin J. Preftakes
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, Montana 59717, USA; E-Mails: (C.J.P.); (R.K.D.P.)
| | - Jerome J. Schleier
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, Montana 59717, USA; E-Mails: (C.J.P.); (R.K.D.P.)
| | - Robert K. D. Peterson
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, Montana 59717, USA; E-Mails: (C.J.P.); (R.K.D.P.)
| |
Collapse
|
50
|
Hobson-Peters J, Arévalo C, Cheah WY, Blitvich BJ, Tan CSE, Sandis A, Araya LN, Hernández JL, Toye P, Hall RA. Detection of antibodies to West Nile virus in horses, Costa Rica, 2004. Vector Borne Zoonotic Dis 2011; 11:1081-4. [PMID: 21417920 DOI: 10.1089/vbz.2010.0198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We conducted a serosurvey for West Nile virus (WNV) infection in equines in Costa Rica in 2004. Antibodies to WNV were detected in 28% of the horses using an epitope blocking ELISA that is specific for WNV. WNV infection was confirmed for a subset of these sera by plaque reduction neutralization tests and Western blot. This is the first evidence of WNV activity in Costa Rica.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|