1
|
Insuk C, Cheeptham N, Lausen C, Xu J. DNA metabarcoding analyses reveal fine-scale microbiome structures on Western Canadian bat wings. Microbiol Spectr 2024:e0037624. [PMID: 39436130 DOI: 10.1128/spectrum.00376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Healthy wings are vital for the survival and reproduction of bats, and wing microbiome is a key component of bat wing health. However, relatively little is known about the wing microbiome of bats in western Canada where the white nose syndrome has become an increasing threat. Here, we used DNA metabarcoding to investigate the bacterial and fungal communities on the wings of three bat species: the big brown bat (Eptesicus fuscus), the Yuma myotis (Myotis yumanensis), and the little brown myotis (M. lucifugus) from four field sites in Lillooet, British Columbia, Canada. The bacterial 16S rRNA metabarcoding revealed a total of 4,167 amplicon sequence variants (ASVs) belonging to 27 phyla, 639 genera, and 533 known and 2,423 unknown species. The wing bacteria were dominated by phyla Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria, and the most common genera were Delftia, Bordetella, Sphingomonas, Phyllobacterium, Bradyrhizobium, Pseudomonas, and Corynebacterium. The fungal internal transcribed spacer (ITS) metabarcoding revealed a total of 11,722 ASVs belonging to 16 phyla, 806 genera, and 1,420 known and 10,302 unknown species. The wing fungi were dominated by phyla Ascomycota, Basidiomycota, and Motierellomycota, and the most common genera were Cladosporium, Aspergillus, and Mycosphaerella. Principal coordinates analysis showed that both bat species and field sites contributed variably to the diversity and distribution of bacterial and fungal communities on bat wings. Interestingly, both positive and negative correlations were found in their relative abundances among several groups of microbial taxa. We discuss the implications of our results for bat health, including the management of P. destructans infection and white-nose syndrome spread. IMPORTANCE Microbiomes play important roles in host health. White-nose syndrome (WNS), a fungal infection of bat wings and muzzles, has threatened bat populations across North America since 2006. Recent research suggest that the skin microbiome of bats may play a significant role in bat's susceptibility to WNS. However, relatively little is known about the skin microbiome composition and function in bats in Western Canada, a region with a high diversity of bats, but WNS has yet to be a major issue. Here, we revealed high bacterial and fungal diversities on the skin of three common bat species in Lillooet, British Columbia, including several highly prevalent microbial species that have been rarely reported in other regions. Our analyses showed fine-scale structures of bat wing microbiome based on local sites and bat species. The knowledge obtained from WNS-naïve bat populations in this study may help develop mitigation and management strategies against WNS.
Collapse
Affiliation(s)
- Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, Kaslo, British Columbia, Canada
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Twort VG, Laine VN, Field KA, Whiting-Fawcett F, Ito F, Reiman M, Bartonicka T, Fritze M, Ilyukha VA, Belkin VV, Khizhkin EA, Reeder DM, Fukui D, Jiang TL, Lilley TM. Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen. BMC Genomics 2024; 25:828. [PMID: 39227786 PMCID: PMC11370307 DOI: 10.1186/s12864-024-10722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Disease can act as a driving force in shaping genetic makeup across populations, even species, if the impacts influence a particularly sensitive part of their life cycles. White-nose disease is caused by a fungal pathogen infecting bats during hibernation. The mycosis has caused massive population declines of susceptible species in North America, particularly in the genus Myotis. However, Myotis bats appear to tolerate infection in Eurasia, where the fungal pathogen has co-evolved with its bat hosts for an extended period of time. Therefore, with susceptible and tolerant populations, the fungal disease provides a unique opportunity to tease apart factors contributing to tolerance at a genomic level to and gain an understanding of the evolution of non-harmful in host-parasite interactions. To investigate if the fungal disease has caused adaptation on a genomic level in Eurasian bat species, we adopted both whole-genome sequencing approaches and a literature search to compile a set of 300 genes from which to investigate signals of positive selection in genomes of 11 Eurasian bats at the codon-level. Our results indicate significant positive selection in 38 genes, many of which have a marked role in responses to infection. Our findings suggest that white-nose syndrome may have applied a significant selective pressure on Eurasian Myotis-bats in the past, which can contribute their survival in co-existence with the pathogen. Our findings provide an insight on the selective pressure pathogens afflict on their hosts using methodology that can be adapted to other host-pathogen study systems.
Collapse
Affiliation(s)
- V G Twort
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - V N Laine
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - F Whiting-Fawcett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - F Ito
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - M Reiman
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - T Bartonicka
- Dept. Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - M Fritze
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- German Bat Observatory, Berlin, Germany
- Competence Center for Bat Conservation Saxony Anhalt, in the South Harz Karst Landscape Biosphere Reserve, Südharz, Germany
| | - V A Ilyukha
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - V V Belkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - E A Khizhkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - D M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - D Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo Fuji Iyashinomori Woodland Study Center, The University of Tokyo, Yamanakako, Japan
| | - T L Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - T M Lilley
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Yiallouris A, Pana ZD, Marangos G, Tzyrka I, Karanasios S, Georgiou I, Kontopyrgia K, Triantafyllou E, Seidel D, Cornely OA, Johnson EO, Panagiotou S, Filippou C. Fungal diversity in the soil Mycobiome: Implications for ONE health. One Health 2024; 18:100720. [PMID: 38699438 PMCID: PMC11064618 DOI: 10.1016/j.onehlt.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Zoi D. Pana
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | | | | | | | | | | | | | - Danila Seidel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Elizabeth O. Johnson
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Stavros Panagiotou
- School of Medicine, European University, Cyprus
- Division of Medical Education, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Charalampos Filippou
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| |
Collapse
|
4
|
Meurling S, Siljestam M, Cortazar-Chinarro M, Åhlen D, Rödin-Mörch P, Ågren E, Höglund J, Laurila A. Body size mediates latitudinal population differences in the response to chytrid fungus infection in two amphibians. Oecologia 2024; 204:71-81. [PMID: 38097779 PMCID: PMC10830819 DOI: 10.1007/s00442-023-05489-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/14/2023] [Indexed: 02/02/2024]
Abstract
Factors behind intraspecific variation in sensitivity to pathogens remain poorly understood. We investigated how geographical origin in two North European amphibians affects tolerance to infection by the chytrid fungus Batrachochytrium dendrobatidis (Bd), a generalist pathogen which has caused amphibian population declines worldwide. We exposed newly metamorphosed individuals of moor frog Rana arvalis and common toad Bufo bufo from two latitudinal regions to two different BdGPL strains. We measured survival and growth as infections may cause sub-lethal effects in fitness components even in the absence of mortality. Infection loads were higher in B. bufo than in R. arvalis, and smaller individuals had generally higher infection loads. B. bufo had high mortality in response to Bd infection, whereas there was little mortality in R. arvalis. Bd-mediated mortality was size-dependent and high-latitude individuals were smaller leading to high mortality in the northern B. bufo. Bd exposure led to sub-lethal effects in terms of reduced growth suggesting that individuals surviving the infection may have reduced fitness mediated by smaller body size. In both host species, the Swedish Bd strain caused stronger sublethal effects than the British strain. We suggest that high-latitude populations can be more vulnerable to chytrids than those from lower latitudes and discuss the possible mechanisms how body size and host geographical origin contribute to the present results.
Collapse
Affiliation(s)
- Sara Meurling
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mattias Siljestam
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Maria Cortazar-Chinarro
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - David Åhlen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Uppsala, Sweden
| | - Patrik Rödin-Mörch
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Erik Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Troitsky TS, Laine VN, Lilley TM. When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation. Anim Microbiome 2023; 5:66. [PMID: 38129884 PMCID: PMC10740296 DOI: 10.1186/s42523-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.
Collapse
Affiliation(s)
- T S Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - V N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Arnaout Y, Picard-Meyer E, Robardet E, Cappelle J, Cliquet F, Touzalin F, Jimenez G, Djelouadji Z. Assessment of virus and Leptospira carriage in bats in France. PLoS One 2023; 18:e0292840. [PMID: 37862301 PMCID: PMC10588846 DOI: 10.1371/journal.pone.0292840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
With over 1,400 species worldwide, bats represent the second largest order of mammals after rodents, and are known to host major zoonotic pathogens. Here, we estimate the presence of pathogens in autochthonous bat populations. First, we set out to check our samples for PCR amplification efficiency by assessing the occurrence of inhibited PCR reactions from different types of bat samples with amplifying the housekeeping gene β-actin. Second, we investigated the presence of five targeted pathogens in a French bat population using PCR. We targeted viral RNA of Canine distemper virus, Alphacoronavirus, Lyssavirus, Rotavirus and bacterial Leptospira DNA. To do so, we screened for these viruses in bat faecal samples as well as in oropharyngeal swab samples. The presence of Leptospira was assessed in urine, kidney, lung and faecal samples. Results showed a frequency of inhibited reactions ranging from 5 to 60% of samples, varying according to the sample itself and also suspected to vary according to sampling method and the storage buffer solution used, demonstrating the importance of the sampling and storage on the probability of obtaining negative PCR results. For pathogen assessment, rotavirus and alphacoronavirus RNA were detected in Myotis myotis, Myotis daubentonii, Myotis emarginatus and Rhinolophus ferrumequinum bats. Rotaviruses were also detected in Barbastella barbastellus. The presence of alphacoronavirus also varied seasonally, with higher frequencies in late summer and October, suggesting that juveniles potentially play an important role in the dynamics of these viruses. Leptospira DNA was detected in M. myotis and M. daubentonii colonies. The 16S rRNA sequences obtained from Leptospira positive samples showed 100% genetic identity with L. borgpetersenii. Neither canine distemper virus nor lyssavirus RNA were detected in any of the tested samples. This study is the first to show the presence of Leptospira in autochthonous French bats in addition to coronavirus and rotavirus RNA previously reported in European autochthonous bats.
Collapse
Affiliation(s)
- Youssef Arnaout
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| | - Evelyne Picard-Meyer
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Emmanuelle Robardet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Julien Cappelle
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- UMR EPIA, INRAE, VetAgro Sup, Theix, France
| | - Florence Cliquet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Frédéric Touzalin
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | | | - Zouheira Djelouadji
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| |
Collapse
|
7
|
Blejwas K, Beard L, Buchanan J, Lausen CL, Neubaum D, Tobin A, Weller TJ. COULD WHITE-NOSE SYNDROME MANIFEST DIFFERENTLY IN MYOTIS LUCIFUGUS IN WESTERN VERSUS EASTERN REGIONS OF NORTH AMERICA? A REVIEW OF FACTORS. J Wildl Dis 2023; 59:381-397. [PMID: 37270186 DOI: 10.7589/jwd-d-22-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/28/2023] [Indexed: 06/05/2023]
Abstract
White-nose syndrome (WNS) has notably affected the abundance of Myotis lucifugus (little brown myotis) in North America. Thus far, substantial mortality has been restricted to the eastern part of the continent where the cause of WNS, the invasive fungus Pseudogymnoascus destructans, has infected bats since 2006. To date, the state of Washington is the only area in the Western US or Canada (the Rocky Mountains and further west in North America) with confirmed cases of WNS in bats, and there the disease has spread more slowly than it did in Eastern North America. Here, we review differences between M. lucifugus in western and eastern parts of the continent that may affect transmission, spread, and severity of WNS in the West and highlight important gaps in knowledge. We explore the hypothesis that western M. lucifugus may respond differently to WNS on the basis of different hibernation strategies, habitat use, and greater genetic structure. To document the effect of WNS on M. lucifugus in the West most effectively, we recommend focusing on maternity roosts for strategic disease surveillance and monitoring abundance. We further recommend continuing the challenging work of identifying hibernation and swarming sites to better understand the microclimates, microbial communities, and role in disease transmission of these sites, as well as the ecology and hibernation physiology of bats in noncavernous hibernacula.
Collapse
Affiliation(s)
- Karen Blejwas
- Alaska Department of Fish and Game, PO Box 110024, Juneau, Alaska 99811, USA
- Except for the first author, all others are listed in alphabetical order
| | - Laura Beard
- Wyoming Game and Fish Department, 260 Buena Vista, Lander, Wyoming 82520, USA
| | - Joseph Buchanan
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, Washington 98501, USA
| | - Cori L Lausen
- Wildlife Conservation Society Canada, 202 B Avenue, Kaslo, British Columbia V0G 1M0, Canada
| | - Daniel Neubaum
- Colorado Parks and Wildlife, 711 Independent Ave., Grand Junction, Colorado 81507, USA
| | - Abigail Tobin
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, Washington 98501, USA
| | - Theodore J Weller
- USDA Forest Service, Pacific Southwest Research Station, 1700 Bayview Drive, Arcata, California 95521, USA
| |
Collapse
|
8
|
Bazant W, Blevins AS, Crouch K, Beiting DP. Improved eukaryotic detection compatible with large-scale automated analysis of metagenomes. MICROBIOME 2023; 11:72. [PMID: 37032329 PMCID: PMC10084625 DOI: 10.1186/s40168-023-01505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Eukaryotes such as fungi and protists frequently accompany bacteria and archaea in microbial communities. Unfortunately, their presence is difficult to study with "shotgun" metagenomic sequencing since prokaryotic signals dominate in most environments. Recent methods for eukaryotic detection use eukaryote-specific marker genes, but they do not incorporate strategies to handle the presence of eukaryotes that are not represented in the reference marker gene set, and they are not compatible with web-based tools for downstream analysis. RESULTS Here, we present CORRAL (for Clustering Of Related Reference ALignments), a tool for the identification of eukaryotes in shotgun metagenomic data based on alignments to eukaryote-specific marker genes and Markov clustering. Using a combination of simulated datasets, mock community standards, and large publicly available human microbiome studies, we demonstrate that our method is not only sensitive and accurate but is also capable of inferring the presence of eukaryotes not included in the marker gene reference, such as novel strains. Finally, we deploy CORRAL on our MicrobiomeDB.org resource, producing an atlas of eukaryotes present in various environments of the human body and linking their presence to study covariates. CONCLUSIONS CORRAL allows eukaryotic detection to be automated and carried out at scale. Implementation of CORRAL in MicrobiomeDB.org creates a running atlas of microbial eukaryotes in metagenomic studies. Since our approach is independent of the reference used, it may be applicable to other contexts where shotgun metagenomic reads are matched against redundant but non-exhaustive databases, such as the identification of bacterial virulence genes or taxonomic classification of viral reads. Video Abstract.
Collapse
Affiliation(s)
- Wojtek Bazant
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ann S Blevins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn Crouch
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Risk of infection of white-nose syndrome in North American vespertilionid bats in Mexico. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Niessen L, Fritze M, Wibbelt G, Puechmaille SJ. Development and Application of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid Diagnosis of the Bat White-Nose Disease Fungus Pseudogymnoascus destructans. Mycopathologia 2022; 187:547-565. [PMID: 35931867 DOI: 10.1007/s11046-022-00650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Pseudogymnoascus destructans (= Geomyces destructans) is a psychrophilic filamentous fungus that causes White-Nose Disease (WND; the disease associated with White-Nose Syndrome, WNS) in hibernating bats. The disease has caused considerable reductions in bat populations in the USA and Canada since 2006. Identification and detection of the pathogen in pure cultures and environmental samples is routinely based on qPCR or PCR after DNA isolation and purification. Rapid and specific direct detection of the fungus in the field would strongly improve prompt surveillance, and support control measures. Based on the genes coding for ATP citrate lyase1 (acl1) and the 28S-18S ribosomal RNA intergenic spacer (IGS) in P. destructans, two independent LAMP assays were developed for the rapid and sensitive diagnosis of the fungus. Both assays could discriminate P. destructans from 159 tested species of filamentous fungi and yeasts. Sensitivity of the assays was 2.1 picogram per reaction (pg/rxn) and 21 femtogram per reaction (fg/rxn) for the acl1 and IGS based assays, respectively. Moreover, both assays also work with spores and mycelia of P. destructans that are directly added to the master mix without prior DNA extraction. For field-diagnostics, we developed and tested a field-applicable version of the IGS-based LAMP assay. Lastly, we also developed a protocol for preparation of fungal spores and mycelia from swabs and tape liftings of contaminated surfaces or infected bats. This protocol in combination with the highly sensitive IGS-based LAMP-assay enabled sensitive detection of P. destructans from various sources.
Collapse
Affiliation(s)
- Ludwig Niessen
- TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany.
| | - Marcus Fritze
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Str. 26, 17489, Greifswald, Germany.,German Bat Observatory, Am Juliusturm 64, 13599, Berlin, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Sebastien J Puechmaille
- Applied Zoology and Nature Conservation, University of Greifswald, Loitzer Str. 26, 17489, Greifswald, Germany.,ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,Institut Universitaire de France, 75005, Paris, France
| |
Collapse
|
11
|
Li Z, Li A, Hoyt JR, Dai W, Leng H, Li Y, Li W, Liu S, Jin L, Sun K, Feng J. Activity of bacteria isolated from bats against Pseudogymnoascus destructans in China. Microb Biotechnol 2022; 15:469-481. [PMID: 33559264 PMCID: PMC8867990 DOI: 10.1111/1751-7915.13765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
White-nose syndrome, a disease that is caused by the psychrophilic fungus Pseudogymnoascus destructans, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected with P. destructans but show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limiting P. destructans growth remains unexplored. We isolated three bacterial strains with the ability to inhibit P. destructans, namely, Pseudomonas yamanorum GZD14026, Pseudomonas brenneri XRD11711 and Pseudomonas fragi GZD14479, from bats in China. Pseudomonas yamanorum, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibiting P. destructans as phenazine-1-carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 μg ml-1 . Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography-mass spectrometry (GC-MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3-tert-butyl-4-hydroxyanisole (isoprenol) and 100 ppm 3-methyl-3-buten-1-ol (BHA) inhibited the growth of P. destructans. These results support that bacteria may play a role in limiting the growth of P. destructans on bats.
Collapse
Affiliation(s)
- Zhongle Li
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchun130018China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
- Key Laboratory of Vegetation EcologyMinistry of EducationChangchun130024China
| | - Joseph R. Hoyt
- Department of Biological SciencesVirginia Polytechnic InstituteBlacksburgVA24060USA
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Yanfei Li
- College of Chinese Medicine MaterialsJilin Agricultural UniversityChangchun130118China
| | - Wei Li
- College of Chinese Medicine MaterialsJilin Agricultural UniversityChangchun130118China
| | - Sen Liu
- Institute of Resources and EnvironmentHenan Polytechnic UniversityJiaozuo454000China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
- Key Laboratory of Vegetation EcologyMinistry of EducationChangchun130024China
| | - Jiang Feng
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchun130018China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| |
Collapse
|
12
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|
13
|
Fritze M, Puechmaille SJ, Fickel J, Czirják GÁ, Voigt CC. A Rapid, in-Situ Minimally-Invasive Technique to Assess Infections with Pseudogymnoascus destructans in Bats. ACTA CHIROPTEROLOGICA 2021. [DOI: 10.3161/15081109acc2021.23.1.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marcus Fritze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | | | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Gábor Á. Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Christian C. Voigt
- Institute of Biology, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Integrating Multiple Survey Techniques to Document a Shifting Bat Community in the Wake of White-Nose Syndrome. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2021. [DOI: 10.3996/jfwm-20-043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
The long-term study of bat communities often depends on a diverse set of sampling methodologies that are chosen based on the species or habitat management priorities of the research project. Integrating the data from a diverse set of methodologies (such as acoustic monitoring and mist net sampling) would improve our ability to characterize changes in community structure or composition over time, such as one would expect following an emergent infectious disease such as white-nose syndrome. We developed a Bayesian state-space model to integrate these disparate data into a common currency (relative abundance). We collected both acoustic monitoring and mist net capture data over an 8-y period (2006–2014) to document shifts in the bat community in central New England, USA, in response to the onset of white-nose syndrome in 2009. The integrated data model shows a significant decline in the abundance of little brown bat Myotis lucifugus, northern long-eared bat Myotis septentrionalis, and hoary bat Lasiurus cinereus, and an increase in abundance of the eastern small-footed bat Myotis leibii and the eastern red bat Lasiurus borealis. There was no evidence for a change in abundance in the big brown bat Eptesicus fuscus since the onset of white-nose syndrome. The consistency of this model with regional estimates of decline over the same time period support the validity of our relative abundance estimate. This model provides the opportunity to quantify shifts in other communities where multiple sampling methodologies were employed, and therefore provides natural resource managers with a robust tool to integrate existing sampling data to quantify changes in community composition that can inform conservation and management recommendations.
Collapse
|
15
|
White-nose syndrome-related changes to Mid-Atlantic bat communities across an urban-to-rural gradient. BMC ZOOL 2021; 6:12. [PMID: 37170299 PMCID: PMC10127033 DOI: 10.1186/s40850-021-00079-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
White-nose Syndrome (WNS) has reduced the abundance of many bat species within the United States’ Mid-Atlantic region. To determine changes within the National Park Service National Capital Region (NCR) bat communities, we surveyed the area with mist netting and active acoustic sampling (2016–2018) and compared findings to pre-WNS (2003–2004) data.
Results
The results indicated the continued presence of the threatened Myotis septentrionalis (Northern Long-eared bat) and species of conservation concern, including Perimyotis subflavus (Tri-colored bat), Myotis leibii (Eastern Small-footed bat) and Myotis lucifugus (Little Brown bat). However, we documented a significant reduction in the abundance and distribution of M. lucifugus and P. subflavus, a decrease in the distribution of M. septentrionalis, and an increase in the abundance of Eptesicus fuscus (Big Brown bat).
Conclusions
Documented post-WNS M. septentrionalis recruitment suggests that portions of the NCR may be important bat conservation areas. Decreases in distribution and abundance of P. subflavus and M. lucifugus indicate probable extirpation from many previously occupied portions of the region.
Collapse
|
16
|
Garzoli L, Bozzetta E, Varello K, Cappelleri A, Patriarca E, Debernardi P, Riccucci M, Boggero A, Girometta C, Picco AM. White-Nose Syndrome Confirmed in Italy: A Preliminary Assessment of Its Occurrence in Bat Species. J Fungi (Basel) 2021; 7:192. [PMID: 33803110 PMCID: PMC8000523 DOI: 10.3390/jof7030192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although no mass mortality has been recorded so far, the precise demographic effect of white-nose syndrome (WNS) on European bats still remains to be ascertained. Following the first isolation of P. destructans in Italy, further surveys were performed to assess the distribution of the fungus in NW Italy and its effects on bats. Data were collected from March 2019 to April 2020 at sites used for hibernation (six sites) and/or for reproduction (four sites) in Piedmont and Aosta Valley. A total of 138 bats, belonging to 10 species, were examined to identify clinical features possibly related to the fungal presence. Culture from swabs and the molecular identification of isolates confirmed the presence of P. destructans in bats from five sites, including two maternal roosts. Dermal fungal infiltration, the criterion to assess the presence of WNS, was observed in biopsies of bats belonging to Myotis blythii, M. daubentonii, M. emarginatus and M. myotis. This is the first report of the disease in Italy. The results suggest a greater susceptibility to the infection of the genus Myotis and particularly of M. emarginatus, possibly due to the long length of its hibernation period. Other fungal dermatophytes were also observed.
Collapse
Affiliation(s)
- Laura Garzoli
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Elena Bozzetta
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Katia Varello
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Andrea Cappelleri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy;
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, 20139 Milan, Italy
| | - Elena Patriarca
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Paolo Debernardi
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Marco Riccucci
- Zoological Section «La Specola», Museum of Natural History of the University of Florence, 50125 Florence, Italy;
| | - Angela Boggero
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Carolina Girometta
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| |
Collapse
|
17
|
Vanderwolf KJ, McAlpine DF. Hibernacula microclimate and declines in overwintering bats during an outbreak of white-nose syndrome near the northern range limit of infection in North America. Ecol Evol 2021; 11:2273-2288. [PMID: 33717454 PMCID: PMC7920769 DOI: 10.1002/ece3.7195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023] Open
Abstract
We document white-nose syndrome (WNS), a lethal disease of bats caused by the fungus Pseudogymnoascus destructans (Pd), and hibernacula microclimate in New Brunswick, Canada. Our study area represents a more northern region than is common for hibernacula microclimate investigations, providing insight as to how WNS may impact bats at higher latitudes. To determine the impact of the March 2011 arrival of Pd in New Brunswick and the role of hibernacula microclimate on overwintering bat mortality, we surveyed bat numbers at hibernacula twice a year from 2009 to 2015. We also collected data from iButton temperature loggers deployed at all sites and data from HOBO temperature and humidity loggers at three sites. Bat species found in New Brunswick hibernacula include Myotis lucifugus (Little Brown Bat) and M. septentrionalis (Northern Long-eared Bat), with small numbers of Perimyotis subflavus (Tricolored Bat). All known hibernacula in the province were Pd-positive with WNS-positive bats by winter 2013. A 99% decrease in the overwintering bat population in New Brunswick was observed between 2011 and 2015. We did not observe P. subflavus during surveys 2013-2015 and the species appears to be extirpated from these sites. Bats did not appear to choose hibernacula based on winter temperatures, but dark zone (zone where no light penetrates) winter temperatures did not differ among our study sites. Winter dark zone temperatures were warmer and less variable than entrance or above ground temperatures. We observed visible Pd growth on hibernating bats in New Brunswick during early winter surveys (November), even though hibernacula temperatures were colder than optimum for in vitro Pd growth. This suggests that cold hibernacula temperatures encountered near the apparent northern range limit for Pd do not sufficiently slow fungal growth to prevent the onset of WNS and associated bat mortality over the winter.
Collapse
Affiliation(s)
- Karen J. Vanderwolf
- Canadian Wildlife FederationKanataONCanada
- New Brunswick MuseumSaint JohnNBCanada
- Present address:
Trent UniversityPeterboroughONCanada
| | | |
Collapse
|
18
|
Salleh S, Cox-Witton K, Salleh Y, Hufschmid J. Caver Knowledge and Biosecurity Attitudes Towards White-Nose Syndrome and Implications for Global Spread. ECOHEALTH 2020; 17:487-497. [PMID: 33484389 PMCID: PMC8192400 DOI: 10.1007/s10393-020-01510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused catastrophic declines of bat populations in North America. Risk assessment indicates that cavers could pose a risk for the spread of the fungus, however, information on cavers' knowledge of WNS and their caving and biosecurity habits is lacking. An anonymous qualitative survey was completed by delegates (n = 134) from 23 countries at an international speleological conference in Sydney, Australia. Cavers indicated that they visit caves frequently (80.6% at least bimonthly), including outside of their own country, but 20.3% of respondents did not know about WNS prior to the conference. Some respondents were incorrect, or unsure, about whether they had visited caves in countries where P. destructans occurs (26.5%) or whether their own country was free of the fungus (7.8%). Although 65.9% of respondents were aware of current decontamination protocols, only 23.9% and 31.2% (when in Australian or overseas caves, respectively) fully adhered to them. Overall, cavers showed strong willingness to help prevent further spread of this disease, but further efforts at education and targeted biosecurity activities may be urgently needed to prevent the spread of P. destructans to Australia and to other unaffected regions of the world.
Collapse
Affiliation(s)
- S Salleh
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia
| | - K Cox-Witton
- Wildlife Health Australia, Suite E, 34 Suakin Drive, Mosman, NSW, 2088, Australia
| | - Y Salleh
- The Childrens Hospital at Westmead, Cnr Hawkesbury Rd and Hainsworth St, Westmead, NSW, 2145, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| |
Collapse
|
19
|
Hartman CJ, Mester JC, Hare PM, Cohen AI. Novel inactivation of the causative fungal pathogen of white-nose syndrome with methoxsalen plus ultraviolet A or B radiation. PLoS One 2020; 15:e0239001. [PMID: 32915896 PMCID: PMC7485863 DOI: 10.1371/journal.pone.0239001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/27/2020] [Indexed: 12/03/2022] Open
Abstract
White-nose syndrome is a fungal disease responsible for the rapid decline of North American bat populations. This study addressed a novel method for inactivating Pseudogymnoascus destructans, the causative agent of WNS, using ultraviolet A (UVA) or B (UVB) radiation in combination with methoxsalen, a photosensitizer from the furanocoumarin family of compounds. Fungal spore suspensions were diluted in micromolar concentrations of methoxsalen (50–500 μM), then exposed to fixed doses of UVA radiation (500–5000 mJ/cm2), followed by plating on germination media. These plates were examined for two to four weeks for evidence of spore germination or inactivation, along with resultant growth or inhibition of P. destructans colonies. Pretreatment of fungal spores with low doses of methoxsalen resulted in a UVA dose-dependent inactivation of the P. destructans spores. All doses of methoxsalen paired with 500 mJ/cm2 of UVA led to an approximate two-log10 (~99%) reduction in spore viability, and when paired with 1000 mJ/cm2, a four-log10 or greater (>99.99%) reduction in spore viability was observed. Additionally, actively growing P. destructans colonies treated directly with methoxsalen and either UVA or UVB radiation demonstrated UV dose-dependent inhibition and termination of colony growth. This novel approach of using a photosensitizer in combination with UV radiation to control fungal growth may have broad, practical application in the future.
Collapse
Affiliation(s)
- Colin J. Hartman
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Joseph C. Mester
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, United States of America
- * E-mail:
| | - Patrick M. Hare
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Alan I. Cohen
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| |
Collapse
|
20
|
Ogórek R, Kurczaba K, Cal M, Apoznański G, Kokurewicz T. A Culture-Based ID of Micromycetes on the Wing Membranes of Greater Mouse-Eared Bats ( Myotis myotis) from the "Nietoperek" Site (Poland). Animals (Basel) 2020; 10:E1337. [PMID: 32756314 PMCID: PMC7460332 DOI: 10.3390/ani10081337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Bats play important functions in ecosystems and many of them are threatened with extinction. Thus, the monitoring of the health status and prevention of diseases seem to be important aspects of welfare and conservation of these mammals. The main goal of the study was the identification of culturable fungal species colonizing the wing membranes of female greater mouse-eared bat (Myotis myotis) during spring emergence from the "Nietoperek" underground hibernation site by the use of genetic and phenotypic analyses. The study site is situated in Western Poland (52°25' N, 15°32' E) and is ranked within the top 10 largest hibernation sites in the European Union. The number of hibernating bats in the winter exceeds 39,000 individuals of 12 species, with M. myotis being the most common one. The wing membranes of M. myotis were sampled using sterile swabs wetted in physiological saline (0.85% NaCl). Potato dextrose agar (PDA) plates were incubated in the dark at 8, 24 and 36 ± 1 °C for 3 up to 42 days. All fungi isolated from the surface of wing membranes were assigned to 17 distinct fungal isolates belonging to 17 fungal species. Penicillium chrysogenum was the most frequently isolated species. Some of these fungal species might have a pathogenic potential for bats and other mammals. However, taking into account habitat preferences and the life cycle of bats, it can be assumed that some fungi were accidentally obtained from the surface of vegetation during early spring activity. Moreover, Pseudogymnoascus destructans (Pd)-the causative agent of the White Nose Syndrome (WNS)-was not found during testing, despite it was found very often in M. myotis during previous studies in this same location.
Collapse
Affiliation(s)
- Rafał Ogórek
- Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland; (K.K.); (M.C.)
| | - Klaudia Kurczaba
- Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland; (K.K.); (M.C.)
| | - Magdalena Cal
- Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland; (K.K.); (M.C.)
| | - Grzegorz Apoznański
- Department of Vertebrate Ecology and Paleontology, Institute of Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska Street 5b, 51-631 Wrocław, Poland; (G.A.); (T.K.)
| | - Tomasz Kokurewicz
- Department of Vertebrate Ecology and Paleontology, Institute of Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska Street 5b, 51-631 Wrocław, Poland; (G.A.); (T.K.)
| |
Collapse
|
21
|
Magnino MZ, Holder KA, Norton SA. White-nose syndrome: A novel dermatomycosis of biologic interest and epidemiologic consequence. Clin Dermatol 2020; 39:299-303. [PMID: 34272026 PMCID: PMC7395813 DOI: 10.1016/j.clindermatol.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Over the past 10 years, the environmental and veterinary communities have sounded alarms over an insidious keratinophilous fungus, Pseudogymnoascus destructans, that has decimated populations of bats (yes, bats, chiropterans) throughout North America and, most recently, Northern China and Siberia. We as dermatologists may find this invasive keratinophilous fungus of particular interest, as its method of destruction is disruption of the homeostatic mechanism of the bat wing integument. Although it is unlikely that this pathogen will become an infectious threat to humans, its environmental impact will likely affect us all, especially as recent data have shown upregulation of naturally occurring coronaviruses in coinfected bats. Dermatologists are familiar with keratinophilous dermatophyte infections, but these rarely cause serious morbidity in individual patients and never cause crisis on a population basis. This contribution describes the effects of P destructans on both the individual and the population basis. Bringing the white-nose syndrome to the attention of human dermatologists and skin scientists may invite transfer of expertise in understanding the disease, its pathophysiology, epidemiology, treatment, and prevention.
Collapse
Affiliation(s)
| | - Kali A Holder
- Department of Wildlife Health Sciences, Smithsonian National Zoological Park, Washington, District of Columbia, USA
| | - Scott A Norton
- Department of Dermatology, The George Washington School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Genome-Wide Changes in Genetic Diversity in a Population of Myotis lucifugus Affected by White-Nose Syndrome. G3-GENES GENOMES GENETICS 2020; 10:2007-2020. [PMID: 32276959 PMCID: PMC7263666 DOI: 10.1534/g3.119.400966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Novel pathogens can cause massive declines in populations, and even extirpation of hosts. But disease can also act as a selective pressure on survivors, driving the evolution of resistance or tolerance. Bat white-nose syndrome (WNS) is a rapidly spreading wildlife disease in North America. The fungus causing the disease invades skin tissues of hibernating bats, resulting in disruption of hibernation behavior, premature energy depletion, and subsequent death. We used whole-genome sequencing to investigate changes in allele frequencies within a population of Myotis lucifugus in eastern North America to search for genetic resistance to WNS. Our results show low FST values within the population across time, i.e., prior to WNS (Pre-WNS) compared to the population that has survived WNS (Post-WNS). However, when dividing the population with a geographical cut-off between the states of Pennsylvania and New York, a sharp increase in values on scaffold GL429776 is evident in the Post-WNS samples. Genes present in the diverged area are associated with thermoregulation and promotion of brown fat production. Thus, although WNS may not have subjected the entire M. lucifugus population to selective pressure, it may have selected for specific alleles in Pennsylvania through decreased gene flow within the population. However, the persistence of remnant sub-populations in the aftermath of WNS is likely due to multiple factors in bat life history.
Collapse
|
23
|
Hecht-Höger AM, Braun BC, Krause E, Meschede A, Krahe R, Voigt CC, Greenwood AD, Czirják GÁ. Plasma proteomic profiles differ between European and North American myotid bats colonized by Pseudogymnoascus destructans. Mol Ecol 2020; 29:1745-1755. [PMID: 32279365 DOI: 10.1111/mec.15437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Emerging fungal diseases have become challenges for wildlife health and conservation. North American hibernating bat species are threatened by the psychrophilic fungus Pseudogymnoascus destructans (Pd) causing the disease called white-nose syndrome (WNS) with unprecedented mortality rates. The fungus is widespread in North America and Europe, however, disease is not manifested in European bats. Differences in epidemiology and pathology indicate an evolution of resistance or tolerance mechanisms towards Pd in European bats. We compared the proteomic profile of blood plasma in healthy and Pd-colonized European Myotis myotis and North American Myotis lucifugus in order to identify pathophysiological changes associated with Pd colonization, which might also explain the differences in bat survival. Expression analyses of plasma proteins revealed differences in healthy and Pd-colonized M. lucifugus, but not in M. myotis. We identified differentially expressed proteins for acute phase response, constitutive and adaptive immunity, oxidative stress defence, metabolism and structural proteins of exosomes and desmosomes, suggesting a systemic response against Pd in North American M. lucifugus but not European M. myotis. The differences in plasma proteomic profiles between European and North American bat species colonized by Pd suggest European bats have evolved tolerance mechanisms towards Pd infection.
Collapse
Affiliation(s)
| | - Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Angelika Meschede
- Institute of Zoology II, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
24
|
|
25
|
Lilley TM, Prokkola JM, Blomberg AS, Paterson S, Johnson JS, Turner GG, Bartonička T, Bachorec E, Reeder DM, Field KA. Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis. Oecologia 2019; 191:295-309. [PMID: 31506746 PMCID: PMC6763535 DOI: 10.1007/s00442-019-04499-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Abstract Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00442-019-04499-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Jenni M Prokkola
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph S Johnson
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Erik Bachorec
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
26
|
First Isolation of Pseudogymnoascus destructans, the Fungal Causative Agent of White-Nose Disease, in Bats from Italy. Mycopathologia 2019; 184:637-644. [PMID: 31414314 DOI: 10.1007/s11046-019-00371-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
White-nose disease, caused by the dermatophyte Pseudogymnoascus destructans, is a devastating pathology that has caused a massive decline in the US bat populations. In Europe, this fungus and the related infection in bats have been recorded in several countries and for many bat species, although no mass mortality has been detected. This study reports for the first time the presence of P. destructans in Italy. The fungus was isolated in the Rio Martino cave, a site located in the Western Alps and included in the Natura 2000 network. Twenty bats, belonging to five different species, were analysed. The fungus was retrieved on eight individuals of Myotis emarginatus. The allied keratolytic species P. pannorum was observed on two other individuals, also belonging to M. emarginatus. Strains were isolated in pure culture and characterized morphologically. Results were validated through molecular analyses. Future work should be dedicated to understand the distribution and the effects of the two Pseudogymnoascus species on Italian bats.
Collapse
|
27
|
Visagie CM, Yilmaz N, Vanderwolf K, Renaud JB, Sumarah MW, Houbraken J, Assebgui R, Seifert KA, Malloch D. Penicillium diversity in Canadian bat caves, including a new species, P. speluncae. Fungal Syst Evol 2019; 5:1-15. [PMID: 32467912 PMCID: PMC7250010 DOI: 10.3114/fuse.2020.05.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Penicillium species were commonly isolated during a fungal survey of bat hibernacula in New Brunswick and Quebec, Canada. Strains were isolated from arthropods, bats, rodents (i.e. the deer mouse Peromyscus maniculatus), their dung, and cave walls. Hundreds of fungal strains were recovered, of which Penicillium represented a major component of the community. Penicillium strains were grouped by colony characters on Blakeslee's malt extract agar. DNA sequencing of the secondary identification marker, beta-tubulin, was done for representative strains from each group. In some cases, ITS and calmodulin were sequenced to confirm identifications. In total, 13 species were identified, while eight strains consistently resolved into a unique clade with P. discolor, P. echinulatum and P. solitum as its closest relatives. Penicillium speluncae is described using macroand micromorphological characters, multigene phylogenies (including ITS, beta-tubulin, calmodulin and RNA polymerase II second largest subunit) and extrolite profiles. Major extrolites produced by the new species include cyclopenins, viridicatins, chaetoglobosins, and a microheterogenous series of cyclic and linear tetrapeptides.
Collapse
Affiliation(s)
- C M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield 0028, Pretoria, South Africa
| | - N Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield 0028, Pretoria, South Africa
| | - K Vanderwolf
- New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick, E2K 1E5, Canada
| | - J B Renaud
- London Research & Development Centre, Agriculture & Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - M W Sumarah
- London Research & Development Centre, Agriculture & Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - J Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, Netherlands
| | - R Assebgui
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - K A Seifert
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - D Malloch
- New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick, E2K 1E5, Canada
| |
Collapse
|
28
|
Uzenbaeva LB, Kizhina AG, Ilyukha VA, Belkin VV, Khizhkin EA. Morphology and Composition of Peripheral Blood Cells during Hibernation in Bats (Chiroptera, Vespertilionidae) of Northwestern Russia. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019030130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, Botvinkin AD, Brichta J, Dundarova H, Kokurewicz T, Irwin NR, Linhart P, Orlov OL, Piacek V, Škrabánek P, Tiunov MP, Zahradníková A. Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence 2018; 9:1734-1750. [PMID: 36595968 PMCID: PMC10022473 DOI: 10.1080/21505594.2018.1548685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans that is devastating to Nearctic bat populations but tolerated by Palearctic bats. Temperature is a factor known to be important for fungal growth and bat choice of hibernation. Here we investigated the effect of temperature on the pathogenic fungal growth in the wild across the Palearctic. We modelled body surface temperature of bats with respect to fungal infection intensity and disease severity and were able to relate this to the mean annual surface temperature at the site. Bats that hibernated at lower temperatures had less fungal growth and fewer skin lesions on their wings. Contrary to expectation derived from laboratory P. destructans culture experiments, natural infection intensity peaked between 5 and 6°C and decreased at warmer hibernating temperature. We made predictive maps based on bat species distributions, temperature and infection intensity and disease severity data to determine not only where P. destructans will be found but also where the infection will be invasive to bats across the Palearctic. Together these data highlight the mechanistic model of the interplay between environmental and biological factors, which determine progression in a wildlife disease.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Alexander D Botvinkin
- Epidemiology Department, Irkutsk State Medical University, Irkutsk, Russian Federation
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Heliana Dundarova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Sofia, Bulgaria
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Tyumen, Russian Federation.,Department of Biochemistry, Ural State Medical University, Ekaterinburg, Russian Federation
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Škrabánek
- Department of Process Control, Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czech Republic.,Institute of Automation and Computer Science, Brno University of Technology, Brno, Czech Republic
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
30
|
Phenotypic Divergence along Geographic Gradients Reveals Potential for Rapid Adaptation of the White-Nose Syndrome Pathogen, Pseudogymnoascus destructans, in North America. Appl Environ Microbiol 2018; 84:AEM.00863-18. [PMID: 29915107 DOI: 10.1128/aem.00863-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
White-nose syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungus Pseudogymnoascus destructans Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains was investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of time. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion.IMPORTANCE The causal agent of white-nose syndrome in bats is Pseudogymnoascus destructans, a filamentous fungus recently introduced from its native range in Europe. Infections caused by P. destructans have progressed across the eastern parts of Canada and the United States over the last 10 years. It is not clear how the disease is spread, as the pathogen is unable to grow above 23°C and ambient temperature can act as a barrier when hosts disperse. Here, we explore the patterns of phenotypic diversity and the germination of the fungal asexual spores, arthroconidia, from strains across a sizeable area of the epizootic range. Our analyses revealed evidence of adaptation along geographic gradients during its expansion. The results have implications for understanding the diversification of P. destructans and the limits of WNS spread in North America. Given the rapidly expanding distribution of WNS, a detailed understanding of the genetic bases for phenotypic variations in growth, reproduction, and dispersal of P. destructans is urgently needed to help control this disease.
Collapse
|
31
|
P. De Leon M, Montecillo AD, Pinili DS, Siringan MAT, Park DS. Bacterial diversity of bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines: A first report on the metagenome of Philippine bat guano. PLoS One 2018; 13:e0200095. [PMID: 30024917 PMCID: PMC6053158 DOI: 10.1371/journal.pone.0200095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Bats are highly diverse and ecologically valuable mammals. They serve as host to bacteria, viruses and fungi that are either beneficial or harmful to its colony as well as to other groups of cave organisms. The bacterial diversity of two bat guano samples, C1 and C2, from Cabalyorisa Cave, Mabini, Pangasinan, Philippines were investigated using 16S rRNA gene amplicon sequencing. V3-V4 hypervariable regions were amplified and then sequenced using Illumina MiSeq 250 PE system. Reads were processed using Mothur and QIIME pipelines and assigned 12,345 OTUs for C1 and 5,408 OTUs for C2. The most dominant OTUs in C1 belong to the Proteobacteria (61.7%), Actinobacteria (19.4%), Bacteroidetes (4.2%), Firmicutes (2.7%), Chloroflexi (2.5%), candidate phylum TM7 (2.3%) and Planctomycetes (1.9%) while Proteobacteria (61.7%) and Actinobacteria (34.9%) dominated C2. Large proportion of sequence reads mainly associated with unclassified bacteria indicated possible occurrence of novel bacteria in both samples. XRF spectrophotometric analyses of C1 and C2 guano revealed significant differences in the composition of both major and trace elements. C1 guano recorded high levels of Si, Fe, Mg, Al, Mn, Ti and Cu while C2 samples registered high concentrations of Ca, P, S, Zn and Cr. Community structure of the samples were compared with other published community profiling studies from Finland (SRR868695), Meghalaya, Northeast India (SRR1793374) and Maharashtra State, India (CGS). Core microbiome among samples were determined for comparison. Variations were observed among previously studied guano samples and the Cabalyorisa Cave samples were attributed to either bat sources or age of the guano. This is the first study on bacterial diversity of guano in the Philippines through high-throughput sequencing.
Collapse
Affiliation(s)
- Marian P. De Leon
- Microbial Culture Collection, Museum of Natural History, University of the Philippines Los Baños, College, Laguna, Philippines
- * E-mail:
| | - Andrew D. Montecillo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Dale S. Pinili
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Maria Auxilia T. Siringan
- Microbiological Research and Services Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Doo-Sang Park
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| |
Collapse
|
32
|
Kovacova V, Zukal J, Bandouchova H, Botvinkin AD, Harazim M, Martínková N, Orlov OL, Piacek V, Shumkina AP, Tiunov MP, Pikula J. White-nose syndrome detected in bats over an extensive area of Russia. BMC Vet Res 2018; 14:192. [PMID: 29914485 PMCID: PMC6007069 DOI: 10.1186/s12917-018-1521-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Spatiotemporal distribution patterns are important infectious disease epidemiological characteristics that improve our understanding of wild animal population health. The skin infection caused by the fungus Pseudogymnoascus destructans emerged as a panzootic disease in bats of the northern hemisphere. However, the infection status of bats over an extensive geographic area of the Russian Federation has remained understudied. Results We examined bats at the geographic limits of bat hibernation in the Palearctic temperate zone and found bats with white-nose syndrome (WNS) on the European slopes of the Ural Mountains through the Western Siberian Plain, Central Siberia and on to the Far East. We identified the diagnostic symptoms of WNS based on histopathology in the Northern Ural region at 11° (about 1200 km) higher latitude than the current northern limit in the Nearctic. While body surface temperature differed between regions, bats at all study sites hibernated in very cold conditions averaging 3.6 °C. Each region also differed in P. destructans fungal load and the number of UV fluorescent skin lesions indicating skin damage intensity. Myotis bombinus, M. gracilis and Murina hilgendorfi were newly confirmed with histopathological symptoms of WNS. Prevalence of UV-documented WNS ranged between 16 and 76% in species of relevant sample size. Conclusions To conclude, the bat pathogen P. destructans is widely present in Russian hibernacula but infection remains at low intensity, despite the high exposure rate. Electronic supplementary material The online version of this article (10.1186/s12917-018-1521-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.
| | - Jan Zukal
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexander D Botvinkin
- Irkutsk State Medical University, Krasnogo Vosstania street 1, Irkutsk, Russian Federation, 664003
| | - Markéta Harazim
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia.,Department of Biochemistry, Ural State Medical University, Repina 3, 620014, Ekaterinburg, Russia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexandra P Shumkina
- Western Baikal protected areas, Federal State Budgetary Institution "Zapovednoe Pribaikalye", Baikalskaya st. 291B, 664050, Irkutsk, Russia
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Pr-t 100-letiya Vladivostoka 159, 690022, Vladivostok, Russia
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
33
|
Abstract
Bat white-nose syndrome has become associated with unparalleled mortality in bat species across the United States since 2006. In a recent article, Drees and colleagues (mBio 8:e01941-17, 2017, https://doi.org/10.1128/mBio.01941-17) utilized both whole-genome sequencing and microsatellite data to explore the origin and spread of the causative agent of bat white-nose syndrome, Pseudogymnoascus destructans. The research by Drees et al. supports the hypothesis that P. destructans was introduced into North America from Europe, with molecular dating suggesting a divergence from European isolates approximately 100 years ago. The approaches described in this study are an important contribution toward pinpointing the origins of this infection and underscore the need for more rigorous international biosecurity in order to stem the tide of emerging fungal pathogens.
Collapse
|
34
|
Campana MG, Kurata NP, Foster JT, Helgen LE, Reeder DM, Fleischer RC, Helgen KM. White-Nose Syndrome Fungus in a 1918 Bat Specimen from France. Emerg Infect Dis 2018; 23:1611-1612. [PMID: 28820367 PMCID: PMC5572869 DOI: 10.3201/eid2309.170875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
White-nose syndrome, first diagnosed in North America in 2006, causes mass deaths among bats in North America. We found the causative fungus, Pseudogymnoascusdestructans, in a 1918 sample collected in Europe, where bats have now adapted to the fungus. These results are consistent with a Eurasian origin of the pathogen.
Collapse
|
35
|
Bandouchova H, Bartonička T, Berkova H, Brichta J, Kokurewicz T, Kovacova V, Linhart P, Piacek V, Pikula J, Zahradníková A, Zukal J. Alterations in the health of hibernating bats under pathogen pressure. Sci Rep 2018; 8:6067. [PMID: 29666436 PMCID: PMC5904171 DOI: 10.1038/s41598-018-24461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
36
|
Fungal, Bacterial, and Archaeal Diversity in the Digestive Tract of Several Beetle Larvae (Coleoptera). BIOMED RESEARCH INTERNATIONAL 2018; 2018:6765438. [PMID: 29850548 PMCID: PMC5926521 DOI: 10.1155/2018/6765438] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022]
Abstract
Interpretation of how partnerships between fungi, bacteria, archaea, and insects are maintained through the life of the hosts is a big challenge within the framework of symbiosis research. The main goal of this work was to characterize the gut microbiota in larvae of several Coleoptera species using sequencing of the bacterial and archaeal 16S rRNA genes and fungal internal transcribed spacer (ITS) region. Thus, larvae with various food preferences, including Amphimallon solstitiale, Oryctes nasicornis, Cucujus cinnaberinus, Schizotus pectinicornis, Rhagium mordax, and Rhagium inquisitor, were thoroughly investigated in this work. We revealed an association of these beetle species mainly with four bacterial phyla, Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, as well as with three fungal phyla, Ascomycota, Zygomycota, and Basidiomycota, but microbial communities varied depending on the beetle host, individual organism, and surrounding environment. Moreover, archaea within the phyla Euryarchaeota and Crenarchaeota in the hindgut content of O. nasicornis and A. solstitiale were additionally detected. The identified microbial communities suggest their potential role in the exploitation of various resources, providing nutritional needs for the host organism. These microorganisms can also represent a valuable source of novel metabolic capacities for their application in different biotechnologies.
Collapse
|
37
|
Hernandez H, Martinez LR. Relationship of environmental disturbances and the infectious potential of fungi. MICROBIOLOGY-SGM 2018; 164:233-241. [PMID: 29458659 DOI: 10.1099/mic.0.000620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fungi are critical organisms for the environment and offer many benefits to modern society through their application in the pharmaceutical, beverage and food industries. In contrast, fungal pathogens are emerging threats to humans, animals, plants and insects with potential to cause devastating mortality, morbidity and economic loss. Outbreaks associated with anthropogenic alterations of the environment, including climate change-related events such as natural disasters, are responsible for human, animal and plant disease. Similarly, fungi and their metabolites also have a negative impact in agriculture, posing a serious threat to our food supplies. Here, we describe the existing knowledge and importance of understanding the relationship of fungi and the environment in the context of human, animal and plant disease. Our goal is to encourage communication between scientists and the general public to create informed awareness about the impact of fungi in their daily lives and their environment.
Collapse
Affiliation(s)
- Hazael Hernandez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, TX, USA
| | - Luis R Martinez
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, TX, USA
| |
Collapse
|
38
|
Verant ML, Bohuski EA, Richgels KLD, Olival KJ, Epstein JH, Blehert DS. Determinants of Pseudogymnoascus destructans within bat hibernacula: implications for surveillance and management of white-nose syndrome. J Appl Ecol 2018; 55:820-829. [PMID: 29610540 DOI: 10.1111/1365-2664.13070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Fungal diseases are an emerging global problem affecting human health, food security and biodiversity. Ability of many fungal pathogens to persist within environmental reservoirs can increase extinction risks for host species and presents challenges for disease control. Understanding factors that regulate pathogen spread and persistence in these reservoirs is critical for effective disease management. 2. White-nose syndrome (WNS) is a disease of hibernating bats caused by Pseudogymnoascus destructans (Pd), a fungus that establishes persistent environmental reservoirs within bat hibernacula, which contribute to seasonal disease transmission dynamics in bats. However, host and environmental factors influencing distribution of Pd within these reservoirs are unknown. 3. We used model selection on longitudinally collected field data to test multiple hypotheses describing presence-absence and abundance of Pd in environmental substrates and on bats within hibernacula at different stages of WNS. 4. First detection of Pd in the environment lagged up to one year after first detection on bats within that hibernaculum. Once detected, the probability of detecting Pd within environmental samples from a hibernaculum increased over time and was higher in sediment compared to wall surfaces. Temperature had marginal effects on the distribution of Pd. For bats, prevalence and abundance of Pd were highest on Myotis lucifugus and on bats with visible signs of WNS. 5. Synthesis and applications. Our results indicate that distribution of Pseudogymnoascus destructans (Pd) within a hibernaculum is driven primarily by bats with delayed establishment of environmental reservoirs. Thus, collection of samples from Myotis lucifugus, or from sediment if bats cannot be sampled, should be prioritized to improve detection probabilities for Pd surveillance. Long-term persistence of Pd in sediment suggests that disease management for white-nose syndrome should address risks of sustained transmission from environmental reservoirs.
Collapse
Affiliation(s)
- Michelle L Verant
- School of Veterinary Medicine, University of Wisconsin-Madison and U.S. Geological Survey - National Wildlife Health Center
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans. Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. This phylogenetic study of the bat white-nose syndrome agent, P. destructans, uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.
Collapse
|
40
|
Reynolds DS, Shoemaker K, Oettingen SV, Najjar S. High Rates of Winter Activity and Arousals in Two New England Bat Species: Implications for a Reduced White-Nose Syndrome Impact? Northeast Nat (Steuben) 2017. [DOI: 10.1656/045.024.s720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D. Scott Reynolds
- St. Paul's School, Concord, NH 03301
- North East Ecological Services, Concord, NH 03301
| | - Kevin Shoemaker
- Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557
| | | | | |
Collapse
|
41
|
Davy CM, Donaldson ME, Willis CKR, Saville BJ, McGuire LP, Mayberry H, Wilcox A, Wibbelt G, Misra V, Bollinger T, Kyle CJ. The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans. Ecol Evol 2017; 7:7161-7170. [PMID: 28944007 PMCID: PMC5606880 DOI: 10.1002/ece3.3234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host–pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white‐nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse‐eared bat, Myotis myotis). We compared body condition, disease outcomes and gene expression in control (sham‐exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the “white‐nose syndrome transcriptome.” Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat‐WNS system, and robust characterization of genetic responses to exposure in various hosts and the pathogen should precede any attempts to use particular bat species as generalizable “model hosts.”
Collapse
Affiliation(s)
- Christina M Davy
- Environmental and Life Sciences Graduate Program Trent University Peterborough ON Canada.,Department of Biology University of Winnipeg Winnipeg MB Canada.,Present address: Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program Trent University Peterborough ON Canada
| | | | - Barry J Saville
- Forensic Science Department Trent University Peterborough ON Canada
| | - Liam P McGuire
- Department of Biology University of Winnipeg Winnipeg MB Canada.,Department of Biological Sciences Texas Tech University Lubbock TX USA
| | | | - Alana Wilcox
- Department of Biology University of Winnipeg Winnipeg MB Canada
| | - Gudrun Wibbelt
- Leibniz Institute of Zoo and Wildlife Research Berlin Germany
| | - Vikram Misra
- Department of Microbiology Western College of Veterinary Medicine University of Saskatchewan Saskatoon SK Canada
| | - Trent Bollinger
- Department of Veterinary Pathology Western College of Veterinary Medicine University of Saskatchewan Saskatoon SK Canada
| | | |
Collapse
|
42
|
Fungus Causing White-Nose Syndrome in Bats Accumulates Genetic Variability in North America with No Sign of Recombination. mSphere 2017; 2:mSphere00271-17. [PMID: 28713859 PMCID: PMC5506559 DOI: 10.1128/mspheredirect.00271-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Since its discovery in 2006, the emerging infectious disease known as white-nose syndrome has killed millions of bats in North America, making it one of the most devastating wildlife epidemics in recorded history. We demonstrate that there has been as yet only spontaneous mutation across the North American population of P. destructans, and we find no indication of recombination. Thus, selective forces, which might otherwise impact pathogenic virulence, have so far had essentially no genetic variation on which to act. Our study confirmed the time of origin for the first and, thus far, only introduction of P. destructans to North America. This system provides an unprecedented opportunity to follow the evolution of a host-pathogen interaction unfolding in real time. Emerging fungal diseases of wildlife are on the rise worldwide, and the white-nose syndrome (WNS) epidemic in North American bats is a catastrophic example. The causal agent of WNS is a single clone of the fungus Pseudogymnoascus destructans. Early evolutionary change in this clonal population has major implications for disease ecology and conservation. Accumulation of variation in the fungus through mutation, and shuffling of variation through recombination, could affect the virulence and transmissibility of the fungus and the durability of what appears to be resistance arising in some bat populations. Our genome-wide analysis shows that the clonal population of P. destructans has expanded in size from a single genotype, has begun to accumulate variation through mutation, and presents no evidence as yet of genetic exchange among individuals. IMPORTANCE Since its discovery in 2006, the emerging infectious disease known as white-nose syndrome has killed millions of bats in North America, making it one of the most devastating wildlife epidemics in recorded history. We demonstrate that there has been as yet only spontaneous mutation across the North American population of P. destructans, and we find no indication of recombination. Thus, selective forces, which might otherwise impact pathogenic virulence, have so far had essentially no genetic variation on which to act. Our study confirmed the time of origin for the first and, thus far, only introduction of P. destructans to North America. This system provides an unprecedented opportunity to follow the evolution of a host-pathogen interaction unfolding in real time.
Collapse
|
43
|
Using a Novel Partitivirus in Pseudogymnoascus destructans to Understand the Epidemiology of White-Nose Syndrome. PLoS Pathog 2016; 12:e1006076. [PMID: 28027325 PMCID: PMC5189944 DOI: 10.1371/journal.ppat.1006076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022] Open
Abstract
White-nose syndrome is one of the most lethal wildlife diseases, killing over 5 million North American bats since it was first reported in 2006. The causal agent of the disease is a psychrophilic filamentous fungus, Pseudogymnoascus destructans. The fungus is widely distributed in North America and Europe and has recently been found in some parts of Asia, but interestingly, no mass mortality is observed in European or Asian bats. Here we report a novel double-stranded RNA virus found in North American isolates of the fungus and show that the virus can be used as a tool to study the epidemiology of White-nose syndrome. The virus, termed Pseudogymnoascus destructans partitivirus-pa, contains 2 genomic segments, dsRNA 1 and dsRNA 2 of 1.76 kbp and 1.59 kbp respectively, each possessing a single open reading frame, and forms isometric particles approximately 30 nm in diameter, characteristic of the genus Gammapartitivirus in the family Partitiviridae. Phylogenetic analysis revealed that the virus is closely related to Penicillium stoloniferum virus S. We were able to cure P. destructans of the virus by treating fungal cultures with polyethylene glycol. Examination of 62 isolates of P. destructans including 35 from United States, 10 from Canada and 17 from Europe showed virus infection only in North American isolates of the fungus. Bayesian phylogenetic analysis using nucleotide sequences of the viral coat protein geographically clustered North American isolates indicating fungal spread followed by local adaptation of P. destructans in different regions of the United States and Canada. This is the first demonstration that a mycovirus potentially can be used to study fungal disease epidemiology. Many species of bats in North America have been severely impacted by a fungal disease, white-nose syndrome, that has killed over 5 million bats since it was first identified in 2006. The fungus is believed to have been introduced into a cave in New York where bats hibernate, and has now spread to 29 states and 4 Canadian provinces. The fungus is nearly identical from all sites where it has been isolated; however, we discovered that the fungus harbors a virus, and the virus varies enough to be able to use it to understand how the fungus has been spreading. This study used samples from infected bats throughout Pennsylvania and New York, and New Brunswick, Canada, as well a few isolates from other northeastern states. The evolution of the virus recapitulates the spread of the virus across these geographical areas, and should be useful for studying the further spread of the fungus.
Collapse
|
44
|
Reeder DM, Field KA, Slater MH. Balancing the Costs of Wildlife Research with the Benefits of Understanding a Panzootic Disease, White-Nose Syndrome. ILAR J 2016; 56:275-82. [PMID: 26912714 DOI: 10.1093/ilar/ilv035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Additional ethical issues surrounding wildlife research compared with biomedical research include consideration of the harm of research to the ecosystem as a whole and the benefits of conservation to the same species of animals under study. Research on white-nose syndrome in bats provides a case study to apply these considerations to determine whether research that harms ecosystems under crisis is justified. By expanding well-established guidelines for animal and human subjects research, we demonstrate that this research can be considered highly justified. Studies must minimize the amount of harm to the ecosystem while maximizing the knowledge gained. However, the likelihood of direct application of the results of the research for conservation should not necessarily take priority over other considerations, particularly when the entire context of the ecologic disaster is poorly understood. Since the emergence of white-nose syndrome, researchers have made great strides in understanding this panzootic disease and are now in a position to utilize this knowledge to mitigate this wildlife crisis.
Collapse
Affiliation(s)
- DeeAnn M Reeder
- DeeAnn M. Reeder, PhD, is a professor of biology and animal behavior at Bucknell University in Lewisburg, Pennsylvania. Kenneth A. Field, PhD, is an associate professor of biology and cell biology and biochemistry at Bucknell University in Lewisburg, Pennsylvania. Matthew H. Slater, PhD, is an associate professor of philosophy at Bucknell University in Lewisburg, Pennsylvania
| | - Kenneth A Field
- DeeAnn M. Reeder, PhD, is a professor of biology and animal behavior at Bucknell University in Lewisburg, Pennsylvania. Kenneth A. Field, PhD, is an associate professor of biology and cell biology and biochemistry at Bucknell University in Lewisburg, Pennsylvania. Matthew H. Slater, PhD, is an associate professor of philosophy at Bucknell University in Lewisburg, Pennsylvania
| | - Matthew H Slater
- DeeAnn M. Reeder, PhD, is a professor of biology and animal behavior at Bucknell University in Lewisburg, Pennsylvania. Kenneth A. Field, PhD, is an associate professor of biology and cell biology and biochemistry at Bucknell University in Lewisburg, Pennsylvania. Matthew H. Slater, PhD, is an associate professor of philosophy at Bucknell University in Lewisburg, Pennsylvania
| |
Collapse
|
45
|
Predicting bat colony survival under controls targeting multiple transmission routes of white-nose syndrome. J Theor Biol 2016; 409:60-69. [PMID: 27576354 DOI: 10.1016/j.jtbi.2016.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/27/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
White-nose syndrome (WNS) is a lethal infection of bats caused by the psychrophilic fungus Pseudogymnoascus destructans (Pd). Since the first cases of WNS were documented in 2006, it is estimated that as many as 5.5million bats have succumbed in the United States-one of the fastest mammalian die-offs due to disease ever observed, and the first known sustained epizootic of bats. WNS is contagious between bats, and mounting evidence suggests that a persistent environmental reservoir of Pd plays a significant role in transmission as well. It is unclear, however, the relative contributions of bat-to-bat and environment-to-bat transmission to disease propagation within a colony. We analyze a mathematical model to investigate the consequences of both avenues of transmission on colony survival in addition to the efficacy of disease control strategies. Our model shows that selection of the most effective control strategies is highly dependent on the primary route of WNS transmission. Under all scenarios, however, generalized culling is ineffective and while targeted culling of infected bats may be effective under idealized conditions, it primarily has negative consequences. Thus, understanding the significance of environment-to-bat transmission is paramount to designing effective management plans.
Collapse
|
46
|
Kokurewicz T, Ogórek R, Pusz W, Matkowski K. Bats Increase the Number of Cultivable Airborne Fungi in the "Nietoperek" Bat Reserve in Western Poland. MICROBIAL ECOLOGY 2016; 72:36-48. [PMID: 27084554 PMCID: PMC4902831 DOI: 10.1007/s00248-016-0763-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
The "Nietoperek" bat reserve located in Western Poland is one of the largest bat hibernation sites in the European Union with nearly 38,000 bats from 12 species. Nietoperek is part of a built underground fortification system from WWII. The aims of the study were (1) to determine the fungal species composition and changes during hibernation season in relation to bat number and microclimatic conditions and (2) evaluate the potential threat of fungi for bat assemblages and humans visiting the complex. Airborne fungi were collected in the beginning, middle and end of hibernation period (9 November 2013 and 17 January and 15 March 2014) in 12 study sites, one outside and 11 inside the complex. Ambient temperature (T a) and relative humidity (RH) were measured by the use of data loggers, and species composition of bats was recorded from the study sites. The collision method (Air Ideal 3P) sampler was used to detect 34 species of airborne fungi including Pseudogymnoascus destructans (Pd). The density of airborne fungi isolated from the outdoor air samples varied from 102 to 242 CFU/1 m(3) of air and from 12 to 1198 CFU in the underground air samples. There was a positive relationship between number of bats and the concentration of fungi. The concentration of airborne fungi increased with the increase of bats number. Analysis of other possible ways of spore transport to the underground indicated that the number of bats was the primary factor determining the number of fungal spores in that hibernation site. Microclimatic conditions where Pd was found (median 8.7 °C, min-max 6.1-9.9 °C and 100 %, min-max 77.5-100.0 %) were preferred by hibernating Myotis myotis and Myotis daubentonii; therefore, these species are most probably especially prone to infection by this fungi species. The spores of fungi found in the underground can be pathogenic for humans and animals, especially for immunocompromised persons, even though their concentrations did not exceed limits and norms established as dangerous for human health. In addition, we showed for the first time that the air in bats hibernation sites can be a reservoir of Pd. Therefore, further study in other underground environments and wintering bats is necessary to find out more about the potential threat of airborne fungi to bats and public health.
Collapse
Affiliation(s)
- Tomasz Kokurewicz
- Department of Vertebrate Ecology and Paleontology, Institute of Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland
| | - Rafał Ogórek
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Wojciech Pusz
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Krzysztof Matkowski
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| |
Collapse
|
47
|
Frank CL, Ingala MR, Ravenelle RE, Dougherty-Howard K, Wicks SO, Herzog C, Rudd RJ. The Effects of Cutaneous Fatty Acids on the Growth of Pseudogymnoascus destructans, the Etiological Agent of White-Nose Syndrome (WNS). PLoS One 2016; 11:e0153535. [PMID: 27070905 PMCID: PMC4829186 DOI: 10.1371/journal.pone.0153535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
White Nose Syndrome (WNS) greatly increases the over-winter mortality of little brown (Myotis lucifugus), Indiana (Myotis sodalis), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats. It is caused by a cutaneous infection with the fungus Pseudogymnoascus destructans (Pd). Big brown bats (Eptesicus fuscus) are much more resistant to cutaneous infection with Pd, however. We thus conducted analyses of wing epidermis from hibernating E. fuscus and M. lucifugus to determine their fatty acid compositions, and laboratory Pd culture experiments at 4.0–13.4°C to determine the effects of these fatty acids on Pd growth. Our analyses revealed that the epidermis of both bat species contain the same 7 fatty acid types (14:0, 15:0, 16:0. 16:1, 18:0, 18:1, & 18:2), but the epidermis of M. lucifugus contains: a) more stearic (18:0) acid, b) less palmitoleic (16:1) acid, c) less myristic (14:0) acid, and, d) less oleic (18:1) acid than that of E. fuscus. The growth of Pd was inhibited by: a) myristic and stearic acids at 10.5–13.4°C, but not at 4.0–5.0°C, b) oleic acid at 5.0–10.6°C, c) palmitoleic acid, and, d) linoleic (18:2) acid at 5.0–10.6°C. One set of factors that enables E. fuscus to better resist cutaneous P. destructans infections (and thus WNS) therefore appears to be the relatively higher myristic, palmitoleic, and oleic acid contents of the epidermis.
Collapse
Affiliation(s)
- Craig L. Frank
- Department of Biological Sciences, Fordham University, Louis Calder Center, P.O. Box 887, Armonk, NY, 10504, United States of America
- * E-mail:
| | - Melissa R. Ingala
- Environmental Science Program, Fordham University, LH 400, Bronx, NY, 10458, United States of America
| | - Rebecca E. Ravenelle
- Department of Biological Sciences, Fordham University, Louis Calder Center, P.O. Box 887, Armonk, NY, 10504, United States of America
| | - Kelsey Dougherty-Howard
- Environmental Science Program, Fordham University, LH 400, Bronx, NY, 10458, United States of America
| | - Samuel O. Wicks
- Environmental Science Program, Fordham University, LH 400, Bronx, NY, 10458, United States of America
| | - Carl Herzog
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233, United States of America
| | - Robert J. Rudd
- New York State Department of Health, Wadsworth Center, Albany, NY, 12201, United States of America
| |
Collapse
|
48
|
Powers KE, Reynolds RJ, Orndorff W, Hyzy BA, Hobson CS, Ford WM. Monitoring the Status of Gray Bats (Myotis grisescens) in Virginia, 2009–2014, and Potential Impacts of White-Nose Syndrome. SOUTHEAST NAT 2016. [DOI: 10.1656/058.015.0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Zukal J, Berková H, Madaraszová J. Flying or sleeping: flight activity of bats in natural cave with confirmed WNS. FOLIA ZOOLOGICA 2016. [DOI: 10.25225/fozo.v65.i1.a7.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Hana Berková
- Institute of Vertebrate Biology AS CR v.v.i., Květná 8, 603 65 Brno, Czech Republic;, ,
| | - Jana Madaraszová
- Institute of Vertebrate Biology AS CR v.v.i., Květná 8, 603 65 Brno, Czech Republic;, ,
| |
Collapse
|
50
|
Zukal J, Bandouchova H, Brichta J, Cmokova A, Jaron KS, Kolarik M, Kovacova V, Kubátová A, Nováková A, Orlov O, Pikula J, Presetnik P, Šuba J, Zahradníková A, Martínková N. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep 2016; 6:19829. [PMID: 26821755 PMCID: PMC4731777 DOI: 10.1038/srep19829] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/15/2015] [Indexed: 01/17/2023] Open
Abstract
A striking feature of white-nose syndrome, a fungal infection of hibernating bats, is the difference in infection outcome between North America and Europe. Here we show high WNS prevalence both in Europe and on the West Siberian Plain in Asia. Palearctic bat communities tolerate similar fungal loads of Pseudogymnoascus destructans infection as their Nearctic counterparts and histopathology indicates equal focal skin tissue invasiveness pathognomonic for WNS lesions. Fungal load positively correlates with disease intensity and it reaches highest values at intermediate latitudes. Prevalence and fungal load dynamics in Palearctic bats remained persistent and high between 2012 and 2014. Dominant haplotypes of five genes are widespread in North America, Europe and Asia, expanding the source region of white-nose syndrome to non-European hibernacula. Our data provides evidence for both endemicity and tolerance to this persistent virulent fungus in the Palearctic, suggesting that host-pathogen interaction equilibrium has been established.
Collapse
Affiliation(s)
- Jan Zukal
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic.,Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Adela Cmokova
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Kamil S Jaron
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic
| | - Miroslav Kolarik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Alena Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Oleg Orlov
- Ural State Pedagogical University, Kosmonavtov str. 26, 620017 Yekaterinburg, Russia
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Antoličičeva 1, SI-2204 Miklavž na Dravskem polju, Slovenia
| | - Jurģis Šuba
- Latvian State Forest Research Institute "Silava", 111 Rigas str., LV-2169 Salaspils, Latvia
| | - Alexandra Zahradníková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 83334 Bratislava, Slovakia
| | - Natália Martínková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic.,Institute of Biostatistics and Analysis, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic
| |
Collapse
|