1
|
Kang W, Wang M, Yi X, Wang J, Zhang X, Wu Z, Wang Y, Sun H, Gottschalk M, Zheng H, Xu J. Investigation of genomic and pathogenicity characteristics of Streptococcus suis ST1 human strains from Guangxi Zhuang Autonomous Region (GX) between 2005 and 2020 in China. Emerg Microbes Infect 2024; 13:2339946. [PMID: 38578304 PMCID: PMC11034456 DOI: 10.1080/22221751.2024.2339946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.
Collapse
Affiliation(s)
- Weiming Kang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Mingliu Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, People’s Republic of China
| | - Xueli Yi
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang, People’s Republic of China
| | - Jianping Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiyan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zongfu Wu
- WOAH Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yan Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Hui Sun
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Jianguo Xu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Natonal key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People's Republic of China
| |
Collapse
|
2
|
Yin S, Yuan M, Zhang S, Chen H, Zhou J, He T, Li G, Yu Y, Zhang F, Li M, Zhao Y. Streptococcus suis Serotype 2 Type IV Secretion Effector SspA-1 Induces Proinflammatory Cytokine Production via TLR2 Endosomal and Type I Interferon Signaling. J Infect Dis 2024; 230:188-197. [PMID: 39052722 PMCID: PMC11272045 DOI: 10.1093/infdis/jiad454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 11/17/2023] Open
Abstract
The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.
Collapse
Affiliation(s)
- Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Mengmeng Yuan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Sirui Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Jing Zhou
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Tongyu He
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Gang Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Yanlan Yu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Wang L, Sun J, Zhao J, Bai J, Zhang Y, Zhu Y, Zhang W, Wang C, Langford PR, Liu S, Li G. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2. Talanta 2024; 267:125202. [PMID: 37734291 DOI: 10.1016/j.talanta.2023.125202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Streptococcus suis serotype 2 is an economically important zoonotic pathogen that causes septicemia, arthritis, and meningitis in pigs and humans. S. suis serotype 2 is responsible for substantial economic losses to the swine industry and poses a serious threat to public health, and accurate and rapid detection is important for the prevention and control of epidemic disease. In this study, we developed a high-fidelity detection and serotyping platform for S. suis serotype 2 based on recombinase polymerase amplification (RPA) and a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a system called Cards-SSJ/K. Cards-SSJ had a detection limit of 10 CFU, takes <60 min, and no cross-reaction was found with other S. suis serotypes, closely related Streptococcus spp., or common pig pathogens, and Cards-SSK could differentiate serotype 2 from serotype 1/2. Results from Cards-SSJ and qPCR were equivalent in detecting S. suis serotype 2 in tissue samples. Analysis indicated that despite a relatively high reagent cost compared to PCR and qPCR, Cards-SSJ was less time-consuming and had low requirements for equipment and personnel. Thus, it is an excellent method for point-of-care detection for S. suis serotype 2.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Jing Sun
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jiyu Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jieyu Bai
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Yueling Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Chunlai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, W2 1NY, United Kingdom
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Gang Li
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
4
|
Wang Z, Zhou Y, Guo G, Li Q, Yu Y, Zhang W. Promising potential of machine learning-assisted MALDI-TOF MS as an effective detector for Streptococcus suis serotype 2 and virulence thereof. Appl Environ Microbiol 2023; 89:e0128423. [PMID: 37861326 PMCID: PMC10686076 DOI: 10.1128/aem.01284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE To the best of our knowledge, this study reveals a strong correlation between mass spectra pattern and virulence phenotype among S. suis for the first time. In order to make the findings applicable and to excavate the intrinsic information in the spectra, the classifiers based on the machine learning algorithms were established, and RF (Random Forest)-based models have achieved an accuracy of over 90%. Overall, this study will pave the way for virulent SS2 (Streptococcus suis serotype 2) rapid detection, and the important findings on the association between genotype and mass spectrum may provide a new idea for the genotype-dependent detection of specific pathogens.
Collapse
Affiliation(s)
- Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| | - Yu Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| | - Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| |
Collapse
|
5
|
Wang CZ, Wang MG, Chu YF, Sun RY, Li JG, Li XA, Sun J, Liu YH, Zhou YF, Liao XP. Antibiotic Resistance Patterns and Molecular Characterization of Streptococcus suis Isolates from Swine and Humans in China. Microbiol Spectr 2023; 11:e0030923. [PMID: 37154736 PMCID: PMC10269843 DOI: 10.1128/spectrum.00309-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes disease in humans after exposure to infected pigs or pig-derived food products. In this study, we examined the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative and conjugative elements (ICEs), and associated genomic environments of S. suis isolates from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes, predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates possessed 36 different sequence types (STs), and ST242 and ST117 were the most prevalent. Phylogenetic analysis revealed possible animal and human clonal transmission, while antimicrobial susceptibility testing indicated high-level resistance to macrolides, tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes (ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance genotypes were directly correlated with the observed phenotypes. We also identified ICEs in 10 isolates, which were present in 4 different genetic environments and possessed differing ARG combinations. We also predicted and confirmed by PCR analysis the existence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain could not be eliminated with tetracycline treatment. S. suis therefore poses a significant challenge to global public health and requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation. IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the epidemiological and molecular characteristics of 96 S. suis isolates from 10 different provinces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were able to be horizontally transferred among isolates of different S. suis serotypes. A mouse thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance development. S. suis requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation.
Collapse
Affiliation(s)
- Chang-Zhen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Min-Ge Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yue-Fei Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ruan-Yang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian-Guo Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xian-An Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yu-Feng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Ji L, Chen Z, Li F, Hu Q, Xu L, Duan X, Wu H, Xu S, Chen Q, Wu S, Qiu S, Lu H, Jiang M, Cai R, Qiu Y, Li Y, Shi X. Epidemiological and genomic analyses of human isolates of Streptococcus suis between 2005 and 2021 in Shenzhen, China. Front Microbiol 2023; 14:1118056. [PMID: 37113229 PMCID: PMC10126776 DOI: 10.3389/fmicb.2023.1118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus suis (S. suis) is an important food-borne zoonotic pathogen that causes swine streptococcosis, which threatens human health and brings economic loss to the swine industry. Three-quarters of human S. suis infections are caused by serotype 2. A retrospective analysis of human S. suis cases in Shenzhen, a megacity in China, with high pork consumption, between 2005 and 2021 was conducted to understand its genomic epidemiology, pathogen virulence, and drug resistance characteristics. The epidemiological investigation showed that human cases of S. suis in Shenzhen were mainly associated with people who had been in close contact with raw pork or other swine products. Whole-genome sequence analysis showed that 33 human isolates in Shenzhen were dominated by serotype 2 (75.76%), followed by serotype 14 (24.24%), and the most prevalent sequence types (STs) were ST7 (48.48%) and ST1 (39.40%). ST242 (9.09%) and ST25 (3.03%), which were rarely reported, were also found. Phylogenetic analysis showed that the Shenzhen human isolates had close genetic relatedness to isolates from Guangxi (China), Sichuan (China), and Vietnam. We found a new 82 KB pathogenicity island (PAI) in the serotype 2 isolate that may play a role in sepsis. Similarly, a serotype 14 isolate, containing 78 KB PAI, was isolated from a patient presenting with streptococcal toxic shock syndrome (STSLS) who subsequently died. Multi-drug resistance (MDR) was high in human isolates of S. suis from Shenzhen. Most human isolates were resistant to tetracycline, streptomycin, erythromycin, and clindamycin, and 13 isolates had intermediate resistance to penicillin. In conclusion, swine importation from Guangxi, Sichuan, and Vietnam should be more closely monitored, and the use of antibiotics limited to reduce the potential for antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Liyin Ji
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhigao Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fan Li
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liangcai Xu
- Futian District Center for Disease Control and Prevention, Shenzhen, China
| | - Xiangke Duan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanguang Wu
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Shiqin Xu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuxiang Qiu
- School of Public Health, University of South China, Hengyang, China
| | - Huiqun Lu
- School of Public Health, University of South China, Hengyang, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- *Correspondence: Xiaolu Shi,
| |
Collapse
|
7
|
Yan Z, Yao X, Pan R, Zhang J, Ma X, Dong N, Wei J, Liu K, Qiu Y, Sealey K, Nichols H, Jarvis MA, Upton M, Li X, Ma Z, Liu J, Li B. Subunit Vaccine Targeting Phosphate ABC Transporter ATP-Binding Protein, PstB, Provides Cross-Protection against Streptococcus suis Serotype 2, 7, and 9 in Mice. Vet Sci 2023; 10:vetsci10010048. [PMID: 36669049 PMCID: PMC9953333 DOI: 10.3390/vetsci10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Streptococcus suis is a significant pathogen in pigs and a newly emerging zoonotic agent in humans. The presence of multiple serotypes and strains with diversified sequence types in pig herds highlights the need for the identification of broadly cross-reactive universal vaccine antigen targets, capable of providing cross-protection against S. suis infection. Subunit vaccines based on the conserved proteins shared between different S. suis serotypes are potential candidates for such a universally protective vaccine. In the present study, phosphate ABC transporter ATP-binding protein PstB (PstB), an immunogenic protein of the S. suis bacterium, was expressed and purified, and then subjected to cross-protection evaluation in mice. The PstB protein showed nearly 100% amino acid similarity across a panel of 31 S. suis isolates representing different serotypes, which were collected from different countries. A recombinant PstB (rPstB) protein (S. suis serotype 2) was recognized by rabbit sera specific to this serotype, and induced high levels of IFN-γ and IL-4 in mice immunized with the recombinant protein. These cytokines are considered important for protection against S. suis infection. Immunization of mice with rPstB resulted in an 87.5% protection against challenge with S. suis serotype 2 and 9 strains, suggesting a high level of cross-protection for S. suis serotypes 2 and 9. A lower protection rate (62.5%) was observed in mice challenged with the S. suis serotype 7 strain. These data demonstrate that PstB is a promising target antigen for development as a component of a universal subunit vaccine against multiple S. suis serotypes.
Collapse
Affiliation(s)
- Zujie Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ruyi Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Nihua Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Katie Sealey
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Hester Nichols
- The Vaccine Group Ltd., Plymouth, Derriford Research Facility, Devon PL6 8BX, UK
| | - Michael A. Jarvis
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
- The Vaccine Group Ltd., Plymouth, Derriford Research Facility, Devon PL6 8BX, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (J.L.); (B.L.)
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- Correspondence: (J.L.); (B.L.)
| |
Collapse
|
8
|
Wang J, Liang P, Sun H, Wu Z, Gottschalk M, Qi K, Zheng H. Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains. Virulence 2022; 13:1455-1470. [PMID: 36031944 PMCID: PMC9423846 DOI: 10.1080/21505594.2022.2116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus suis epidemic strains were responsible for two outbreaks in China and possessed increased pathogenicity which was featured prominently by inducing an excessive inflammatory response at the early phase of infection. To discover the critical genes responsible for the pathogenicity increase of S. suis epidemic strains, the genome-wide transcriptional profiles of epidemic strain SC84 were investigated at the early phase of interaction with BV2 cells. The overall low expression levels of 89K pathogenicity island (PAI) and 129 known virulence genes in the SC84 interaction groups indicated that its pathogenicity increase should be attributed to novel mechanisms. Using highly pathogenic strain P1/7 and intermediately pathogenic strain 89–1591 as controls, 11 pathogenicity increase crucial genes (PICGs) and 38 pathogenicity increase-related genes (PIRGs) were identified in the SC84 incubation groups. The PICGs encoded proteins related to the methionine biosynthesis/uptake pathway and played critical roles in the pathogenicity increase of epidemic strains. A high proportion of PIRGs encoded surface proteins related to host cell adherence and immune escape, which may be conducive to the pathogenicity increase of epidemic strains by rapidly initiating infection. The fact that none of PICGs and PIRGs belonged to epidemic strain-specific gene indicated that the pathogenicity increase of epidemic strain may be determined by the expression level of genes, rather than the presence of them. Our results deepened the understanding on the mechanism of the pathogenicity increase of S. suis epidemic strains and provided novel approaches to control the life-threatening infections of S. suis epidemic strains.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- OIE Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zongfu Wu
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Department of Clinical Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
9
|
IL-18 Signaling Is Essential for Causing Streptococcal Toxic Shock-like Syndrome (STSLS). Life (Basel) 2022; 12:life12091324. [PMID: 36143361 PMCID: PMC9503922 DOI: 10.3390/life12091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic pathogen that can cause multiple diseases, including streptococcal toxic shock-like syndrome (STSLS). The S. suis SC-19 strain could cause NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome hyperactivation, then induce a cytokine storm and STSLS. Although IL-18 is the downstream effector of NLRP3 signaling, the role of IL-18 signaling on STSLS remains to be elucidated. Thus, il18r1 gene knockout mice were constructed and challenged with the SC-19 strain. Alleviated clinical signs and tissue damages, as well as improved survival were observed in il18r−/− mice compared with the WT mice post-SC-19 challenge. Meanwhile, an obvious decrease in the inflammatory cytokine levels in blood was observed in the il18r-/- mice infected with SC-19. Therefore, IL-18, the downstream effector of NLRP3 inflammasome activation, was responsible for the cytokine storm and STSLS development caused by S. suis, suggesting that IL-18/IL-18Rα signaling could serve as a new target for STSLS.
Collapse
|
10
|
Genome analysis provides insight into hyper-virulence of Streptococcus suis LSM178, a human strain with a novel sequence type 1005. Sci Rep 2021; 11:23919. [PMID: 34907269 PMCID: PMC8671398 DOI: 10.1038/s41598-021-03370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis has been well-recognized as a zoonotic pathogen worldwide, and the diversity and unpredictable adaptive potential of sporadic human strains represent a great risk to the public health. In this study, S. suis LSM178, isolated from a patient in contact with pigs and raw pork, was assessed as a hyper-virulent strain and interpreted for the virulence based on its genetic information. The strain was more invasive for Caco-2 cells than two other S. suis strains, SC19 and P1/7. Sequence analysis designated LSM178 with serotype 2 and a novel sequence type 1005. Phylogenetic analysis showed that LSM178 clustered with highly virulent strains including all human strains and epidemic strains. Compared with other strains, these S. suis have the most and the same virulent factors and a type I-89 K pathogenicity island. Further, groups of genes were identified to distinguish these highly virulent strains from other generally virulent strains, emphasizing the key roles of genes modeling transcription, cell barrier, replication, recombination and repair on virulence regulation. Additionally, LSM178 contains a novel prophage conducive potentially to pathogenicity.
Collapse
|
11
|
Liang P, Wang M, Gottschalk M, Vela AI, Estrada AA, Wang J, Du P, Luo M, Zheng H, Wu Z. Genomic and pathogenic investigations of Streptococcus suis serotype 7 population derived from a human patient and pigs. Emerg Microbes Infect 2021; 10:1960-1974. [PMID: 34635002 PMCID: PMC8525962 DOI: 10.1080/22221751.2021.1988725] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Streptococcus suis is one of the important emerging zoonotic pathogens. Serotype 2 is most prevalent in patients worldwide. In the present study, we first isolated one S. suis serotype 7 strain GX69 from the blood culture of a patient with septicemia complicated with pneumonia in China. In order to deepen the understanding of S. suis serotype 7 population characteristics, we investigated the phylogenetic structure, genomic features, and virulence of S. suis serotype 7 population, including 35 strains and 79 genomes. Significant diversities were revealed in S. suis serotype 7 population, which were clustered into 22 sequence types (STs), five minimum core genome (MCG) groups, and six lineages. Lineages 1, 3a, and 6 were mainly constituted by genomes from Asia. Genomes of Lineages 2, 3b, and 5a were mainly from Northern America. Most of genomes from Europe (41/48) were clustered into Lineage 5b. In addition to strain GX69, 13 of 21 S. suis serotype 7 representative strains were classified as virulent strains using the C57BL/6 mouse model. Virulence-associated genes preferentially present in highly pathogenic S. suis serotype 2 strains were not suitable as virulence indicators for S. suis serotype 7 strains. Integrative mobilizable elements were widespread and may play a critical role in disseminating antibiotic resistance genes of S. suis serotype 7 strains. Our study confirmed S. suis serotype 7 is a non-negligible pathotype and deepened the understanding of the population structure of S. suis serotype 7, which provided valuable information for the improved surveillance of this serotype.
Collapse
Affiliation(s)
- Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mingliu Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, People's Republic of China
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Canada
| | - Ana I. Vela
- Departamento de Sanidad Animal, Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - April A. Estrada
- The College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ming Luo
- Yulin Center for Disease Prevention and Control, Yulin, People's Republic of China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zongfu Wu
- OIE Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Dong X, Chao Y, Zhou Y, Zhou R, Zhang W, Fischetti VA, Wang X, Feng Y, Li J. The global emergence of a novel Streptococcus suis clade associated with human infections. EMBO Mol Med 2021; 13:e13810. [PMID: 34137500 PMCID: PMC8261479 DOI: 10.15252/emmm.202013810] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis, a ubiquitous bacterial colonizer in pigs, has recently extended host range to humans, leading to a global surge of deadly human infections and three large outbreaks since 1998. To better understand the mechanisms for the emergence of cross-species transmission and virulence in human, we have sequenced 366 S. suis human and pig isolates from 2005 to 2016 and performed a large-scale phylogenomic analysis on 1,634 isolates from 14 countries over 36 years. We show the formation of a novel human-associated clade (HAC) diversified from swine S. suis isolates. Phylogeographic analysis identified Europe as the origin of HAC, coinciding with the exportation of European swine breeds between 1960s and 1970s. HAC is composed of three sub-lineages and contains several healthy-pig isolates that display high virulence in experimental infections, suggesting healthy-pig carriers as a potential source for human infection. New HAC-specific genes are identified as promising markers for pathogen detection and surveillance. Our discovery of a human-associated S. suis clade provides insights into the evolution of this emerging human pathogen and extend our understanding of S. suis epidemics worldwide.
Collapse
Affiliation(s)
- Xingxing Dong
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National R&D Center for Se‐rich Agricultural Products ProcessingHubei Engineering Research Center for Deep Processing of Green Se‐rich Agricultural ProductsSchool of Modern Industry for Selenium Science and EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH)CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
| | - Yang Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
| | - Rui Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Wei Zhang
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingChina
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and ImmunologyThe Rockefeller UniversityNew YorkNYUSA
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ye Feng
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jinquan Li
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Laboratory of Bacterial Pathogenesis and ImmunologyThe Rockefeller UniversityNew YorkNYUSA
| |
Collapse
|
13
|
Streptococcus suis Research: Progress and Challenges. Pathogens 2020; 9:pathogens9090707. [PMID: 32867188 PMCID: PMC7557840 DOI: 10.3390/pathogens9090707] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is considered among the top bacterial pathogens leading to important economic losses to the swine industry, with the incidence of disease increasing as the prophylactic use of antimicrobial is being vanished worldwide. S. suis is also a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Besides, in some Asian countries, it is considered a major public health concern for the general population as well. Antimicrobial resistance is one of the most important global health challenges, and in the absence of preventive measures (such as effective vaccines), S. suis remains a risk for increased antimicrobial resistance and transmission of resistance genes to other bacteria beyond the host animal species. The studies in this Special Issue have evidenced the importance of swine population demographics and management on disease control, progress in molecular tools to better understand the epidemiology of S. suis infections in swine and humans, and the mechanisms involved in different aspects of the immuno-pathogenesis of the disease. The importance of reducing the prophylactic use of antimicrobials in livestock productions and the development of alternative control measures, including vaccination, are herein discussed.
Collapse
|
14
|
Song L, Li X, Xiao Y, Huang Y, Jiang Y, Meng G, Ren Z. Contribution of Nlrp3 Inflammasome Activation Mediated by Suilysin to Streptococcal Toxic Shock-like Syndrome. Front Microbiol 2020; 11:1788. [PMID: 32922370 PMCID: PMC7456889 DOI: 10.3389/fmicb.2020.01788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of this study was to investigate the molecular mechanism of inflammasome activation in response to Streptococcus suis serotype 2 (SS2) infection and its contribution to the development of streptococcal toxic shock-like syndrome (STSS). Methods: To verify the role of suilysin (SLY) in STSS, we infected bone-marrow-derived macrophages (BMDMs) in vitro and C57BL/6J mice intraperitoneally (IP) with the SS2 wild-type (WT) strain or isogenic sly mutant (∆SLY) to measure the interleukin (IL)-1β release and survival rate. To determine the role of inflammasome activation and pyroptosis in STSS, we infected BMDMs from WT and various deficient mice, including Nlrp3-deficient (Nlrp3−/−), Nlrc4-deficient (Nlrc4−/−), Asc-deficient (Asc−/−), Aim2-deficient (Aim2−/−), Caspase-1/11-deficient (Caspase-1/11−/−), and Gsdmd-deficient (Gsdmd−/−) ex vivo, and IP injected WT, Nlrp3−/−, Caspase-1/11−/−, and Gsdmd−/− mice with SS2, to compare the IL-1β releases and survival rate in vivo. Results: The SS2-induced IL-1β production in mouse macrophages is mediated by SLY ex vivo. The survival rate of WT mice infected with SS2 was significantly lower than that of mice infected with the ∆SLY strain in vivo. Furthermore, SS2-triggered IL-1β releases, and the cytotoxicity in the BMDMs required the activation of the NOD-Like Receptors Family Pyrin Domain Containing 3 (Nlrp3), Caspase-1/11, and gasdermin D (Gsdmd) inflammasomes, but not the Nlrc4 and Aim2 inflammasomes ex vivo. The IL-1β production and survival rate of WT mice infected with SS2 were significantly lower than those of the Nlrp3−/−, Caspase-1/11−/−, and Gsdmd−/− mice in vivo. Finally, the inhibitor of the Nlrp3 inflammasome could reduce the IL-1β release and cytotoxicity of SS2-infected macrophages ex vivo and protect SS2-infected mice from death in vivo. Conclusion: Nlrp3 inflammasome activation triggered by SLY in macrophages played an important role in the pathogenesis of STSS.
Collapse
Affiliation(s)
- Liqiong Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchun Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanming Huang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhihong Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Guo G, Du D, Yu Y, Zhang Y, Qian Y, Zhang W. Pan-genome analysis of Streptococcus suis serotype 2 revealed genomic diversity among strains of different virulence. Transbound Emerg Dis 2020; 68:637-647. [PMID: 32654396 DOI: 10.1111/tbed.13725] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus suis (SS) is an emerging zoonotic pathogen that causes severe infections in swine and humans. Among the 33 known serotypes, serotype 2 is most frequently associated with infections in pigs and humans. To better understand the virulence characterization of S. suis serotype 2 (SS2) and discriminate the difference between virulent and avirulent strains in SS2, characterization of the genomic features of strains with different virulence is required. The result showed that Streptococcus suis have an open pan-genome. The pan-genome shared by the 19 S. suis serotype 2 strains was composed of 1,239 core genes and 2,436 accessory genes. COG analysis indicated that core genes are involved in the basic physiological function, but accessory genes related to tachytely evolution. Comparative analysis between core genomes of virulent strains and 9 avirulent strains suggested that srtBCD pilus cluster was a significant discrepancy between virulent and avirulent strains. Analysis between high virulent and group B low virulent strains showed 53 and 58 genes specific to each other. Moreover, genomes of avirulent strains tend to be larger than virulent strains; avirulent strains tend to possess more prophages sequences than virulent strains. Our findings could be contributed to a better understanding of the genomics of S. suis serotype 2.
Collapse
Affiliation(s)
- Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Dechao Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Yanfei Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Yunyun Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
16
|
Segura M, Aragon V, Brockmeier SL, Gebhart C, de Greeff A, Kerdsin A, O’Dea MA, Okura M, Saléry M, Schultsz C, Valentin-Weigand P, Weinert LA, Wells JM, Gottschalk M. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens 2020; 9:pathogens9050374. [PMID: 32422856 PMCID: PMC7281350 DOI: 10.3390/pathogens9050374] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.
Collapse
Affiliation(s)
- Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | | | - Connie Gebhart
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Mark A O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia;
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan;
| | - Mariette Saléry
- French Agency for Veterinary Medicinal Products-French Agency for food, Environmental and Occupational Health Safety (Anses-ANMV), 35302 Fougères, France;
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development and Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 BP Amsterdam, The Netherlands;
| | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Department Animal Sciences, Wageningen University and Research, 6709 PG Wageningen, The Netherlands;
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| |
Collapse
|
17
|
Auger JP, Benoit-Biancamano MO, Bédard C, Segura M, Gottschalk M. Differential role of MyD88 signaling in Streptococcus suis serotype 2-induced systemic and central nervous system diseases. Int Immunol 2020; 31:697-714. [PMID: 30944920 DOI: 10.1093/intimm/dxz033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the systemic and central nervous system (CNS) infections. However, S. suis serotype 2 strains are genetically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies. Yet, most studies have used 'classical' virulent Eurasian ST1 or ST7 strains, even though ST25 and ST28 strains account for most isolates in North America. While recognition of S. suis by innate immune cells has been associated with the myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptor (TLR) pathway in vitro, particularly surface-associated TLR2, little information is available regarding its role in vivo. This study demonstrates for the first time a differential role of MyD88 signaling in S. suis-induced systemic and CNS diseases, regardless of strain background diversity. The MyD88-dependent pathway is critical for the development of systemic disease via its role in inflammation, which subsequently controls bacterial burden. However, and differently from what has been described in vitro, TLR2 and TLR4 individually do not contribute to systemic disease, suggesting possible compensation in their absence and/or a collaborative role with other MyD88-dependent TLRs. On the other hand, CNS disease does not necessarily require MyD88 signaling and, consequently, neither TLR2 nor TLR4, suggesting a partial implication of other pathways. Finally, regardless of its notable heterogeneity, recognition of S. suis serotype 2 appears to be similar, indicating that recognized components are conserved motifs.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marie-Odile Benoit-Biancamano
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Christian Bédard
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Saint-Hyacinthe, Quebec, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
18
|
Human infection caused by Streptococcus suis serotype 2 in China: report of two cases and epidemic distribution based on sequence type. BMC Infect Dis 2020; 20:223. [PMID: 32171281 PMCID: PMC7071708 DOI: 10.1186/s12879-020-4943-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/02/2020] [Indexed: 11/30/2022] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen that causes serious systemic infections in pigs and occupation-related infections in humans who contact with pigs or pork products. In China, it has caused two outbreaks of human infection and surveillance for S.suis has been ongoing since last time. Case presentation Two cases of meningitis and sepsis caused by S. suis were reported in this study. Both patients work in relation to the pork trade, a risk factor for S. suis infection. The outcome was favorable after a prolonged ceftriaxone therapy but one patient was left with mild hearing loss. Two isolates were identified as sequencing type (ST) 7, S. suis serotype 2 (SS2), which is one the most prevalent and cause two outbreaks in China. Whole-genome sequencing (WGS) revealed that a high degree identity was noted in the genome organizations and sequences between two sporadic ST7 SS2 isolates in this study and representative epidemic virulent isolates. Major differences among them are two sporadic ST7 SS2 isolates lacked a virulence factor called agglutinin receptor and an 89 K pathogenicity island (PAI), which plays important role in the pathogenesis of streptococcal toxic shock syndrome (STSS). A summary about STs of human infection with S. suis in China was completed. The result showed ST1 and ST7 were still the major STs and several novel STs were successfully discovered in different provinces. Conclusions Our results enhanced the understanding of the ability to cause life-threatening infections in humans and the distribution and evolution of the S. suis in China.
Collapse
|
19
|
Arenas J, Bossers-de Vries R, Harders-Westerveen J, Buys H, Ruuls-van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 2020; 10:334-351. [PMID: 30957693 PMCID: PMC6527017 DOI: 10.1080/21505594.2019.1599669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and a zoonotic pathogen residing in the nasopharynx or the gastrointestinal tract of pigs with a potential of causing life-threatening invasive disease. It is endemic in the porcine production industry worldwide, and it is also an emerging human pathogen. After invasion, the pathogen adapts to cause bacteremia and disseminates to different organs including the brain. To gain insights in this process, we infected piglets with a highly virulent strain of S. suis, and bacterial transcriptomes were obtained from blood and different organs (brain, joints, and heart) when animals had severe clinical symptoms of infection. Microarrays were used to determine the genome-wide transcriptional profile at different infection sites and during growth in standard growth medium in vitro. We observed differential expression of around 30% of the Open Reading Frames (ORFs) and infection-site specific patterns of gene expression. Genes with major changes in expression were involved in transcriptional regulation, metabolism, nutrient acquisition, stress defenses, and virulence, amongst others, and results were confirmed for a subset of selected genes using RT-qPCR. Mutants were generated in two selected genes, and the encoded proteins, i.e., NADH oxidase and MetQ, were shown to be important virulence factors in coinfection experiments and in vitro assays. The knowledge derived from this study regarding S. suis gene expression in vivo and identification of virulence factors is important for the development of novel diagnostic and therapeutic strategies to control S. suis disease.
Collapse
Affiliation(s)
- Jesús Arenas
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Ruth Bossers-de Vries
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - José Harders-Westerveen
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Herma Buys
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | | | | | - Edoardo Zaccaria
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Jan Tommassen
- c Department of Molecular Microbiology and Institute of Biomembranes , Utrecht University , Utrecht , The Netherlands
| | - Jerry M Wells
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Hilde E Smith
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Astrid de Greeff
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| |
Collapse
|
20
|
Genomic Epidemiology of Streptococcus suis Sequence Type 7 Sporadic Infections in the Guangxi Zhuang Autonomous Region of China. Pathogens 2019; 8:pathogens8040187. [PMID: 31614790 PMCID: PMC6963630 DOI: 10.3390/pathogens8040187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen. Serotype 2 and sequence type (ST) 1 are the most frequently reported strains in both infected humans and pigs. ST7 is only endemic to China, and it was responsible for outbreaks in 1998 and 2005 in China. In the present study, 38 sporadic ST7 S. suis strains, which mostly caused sepsis, were collected from patients in the Guangxi Zhuang Autonomous Region (GX) between 2007 and 2018. Of 38 sporadic ST7 strains, serotype 14 was the most frequent (27 strains, 71.1%), followed by serotype 2 (11 strains, 28.9%). The phylogenetic structure of the ST7 population, including epidemic and sporadic ST7 strains, was constructed using mutational single-nucleotide polymorphisms (SNPs). High diversity within the ST7 population was revealed and divided into five lineages. Only one sporadic ST7 strain, GX14, from a Streptococcal toxic-shock-like syndrome (STSLS) patient was clustered into the same lineage as the epidemic strains. GX14 and the epidemic strains diverged in 1974. The sporadic ST7 strains of GX were mainly clustered into lineage 5, which emerged in 1980. Comparing to genome of epidemic strain, the major differences in genome of sporadic ST7 strains of GX was the absence of 89 kb pathogenicity island (PAI) specific to epidemic strain and insertion of 128 kb ICE_phage tandem MGE or ICE portion of the MGE. These mobile elements play a significant role in the horizontal transfer of antibiotic resistance genes in sporadic ST7 strains. Our results enhanced the understanding of the evolution of the ST7 strains and their ability to cause life-threatening infections in humans.
Collapse
|
21
|
Hlebowicz M, Jakubowski P, Smiatacz T. Streptococcus suis Meningitis: Epidemiology, Clinical Presentation and Treatment. Vector Borne Zoonotic Dis 2019; 19:557-562. [PMID: 30855223 DOI: 10.1089/vbz.2018.2399] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis, a prevalent porcine pathogen, may sporadically cause infections in humans, and has recently emerged as a cause of zoonoses in some professionals. The aim of this article was to review available data on epidemiology, etiopathogenesis, diagnostics, and management of the most common form of S. suis infection, purulent meningitis. Literature data show that S. suis is an important etiological factor of purulent meningitis, especially in subjects being occupationally exposed to contact with pigs and/or pork meat. Owing to growing incidence of S. suis meningitis, a history of such exposure should be verified in each patient presenting with typical meningeal symptoms. Whenever S. suis was confirmed as the etiological factor of purulent meningitis, therapeutic protocol should be adjusted appropriately, to avoid patient's exposure to potentially ototoxic antimicrobial agents and corticosteroids. Considering the biphasic character of S. suis meningitis and its frequently atypical outcome, all individuals with this condition should be optimally supervised by a multidisciplinary team, including an ENT specialist.
Collapse
Affiliation(s)
- Maria Hlebowicz
- Department of Infectious Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Paweł Jakubowski
- Department of Infectious Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Smiatacz
- Department of Infectious Diseases, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
22
|
Huang W, Wang M, Hao H, Yang R, Xie J, Su J, Lin M, Cui Y, Jiang Y. Genomic epidemiological investigation of a Streptococcus suis outbreak in Guangxi, China, 2016. INFECTION GENETICS AND EVOLUTION 2018; 68:249-252. [PMID: 30597207 DOI: 10.1016/j.meegid.2018.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/16/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022]
Abstract
In June 2016, a Streptococcus suis outbreak occurred in Guangxi, China. We determined the genetic characteristics of six clinically isolated strains by serotyping, PCR, and whole-genome sequencing, performing genome epidemiology analysis on these and 961 public available S. suis genomes. We also classified the first sequence type ST665 human case. Sporadic and outbreak cases were distinguished by whole-genome sequencing and phylogenomics. This approach could help to prevent and control S. suis epidemics in Guangxi and the wider region.
Collapse
Affiliation(s)
- Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mingliu Wang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Huaijie Hao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jijie Xie
- Jingxi Center for Diseases Control and Prevention, Jingxi, Guangxi, China
| | - Jinhong Su
- Hengxian Center for Diseases Control and Prevention, Hengxian, Guangxi, China
| | - Mei Lin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
23
|
Dumesnil A, Auger JP, Roy D, Vötsch D, Willenborg M, Valentin-Weigand P, Park PW, Grenier D, Fittipaldi N, Harel J, Gottschalk M. Characterization of the zinc metalloprotease of Streptococcus suis serotype 2. Vet Res 2018; 49:109. [PMID: 30373658 PMCID: PMC6206940 DOI: 10.1186/s13567-018-0606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022] Open
Abstract
Streptococcus suis is a swine pathogen and zoonotic agent responsible for meningitis and septic shock. Although several putative virulence factors have been described, the initial steps of the S. suis pathogenesis remain poorly understood. While controversial results have been reported for a S. suis serotype 2 zinc metalloprotease (Zmp) regarding its IgA protease activity, recent phylogenetic analyses suggested that this protein is homologous to the ZmpC of Streptococcus pneumoniae, which is not an IgA protease. Based on the previously described functions of metalloproteases (including IgA protease and ZmpC), different experiments were carried out to study the activities of that of S. suis serotype 2. First, results showed that S. suis, as well as the recombinant Zmp, were unable to cleave human IgA1, confirming lack of IgA protease activity. Similarly, S. suis was unable to cleave P-selectin glycoprotein ligand-1 and to activate matrix metalloprotease 9, at least under the conditions tested. However, S. suis was able to partially cleave mucin 16 and syndecan-1 ectodomains. Experiments carried out with an isogenic Δzmp mutant showed that the Zmp protein was partially involved in such activities. The absence of a functional Zmp protein did not affect the ability of S. suis to adhere to porcine bronchial epithelial cells in vitro, or to colonize the upper respiratory tract of pigs in vivo. Taken together, our results show that S. suis serotype 2 Zmp is not a critical virulence factor and highlight the importance of independently confirming results on S. suis virulence by different teams.
Collapse
Affiliation(s)
- Audrey Dumesnil
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pyong Woo Park
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Josée Harel
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada. .,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
24
|
Hayashi T, Tsukagoshi H, Sekizuka T, Ishikawa D, Imai M, Fujita M, Kuroda M, Saruki N. Next-generation DNA sequencing analysis of two Streptococcus suis ST28 isolates associated with human infective endocarditis and meningitis in Gunma, Japan: a case report. Infect Dis (Lond) 2018; 51:62-66. [PMID: 30111218 DOI: 10.1080/23744235.2018.1490813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Streptococcus suis (S. suis) is an important emerging zoonotic agent. Here, we report two cases of S. suis infection in pig farmers in Gunma Prefecture, Japan. We conducted a high-resolution molecular epidemiologic analysis on the basis of whole-genome sequencing data of each isolate using next-generation sequencing (NGS). NGS analysis revealed that the two S. suis clinical isolates were belonged to serotype 2 ST28. Phylogenetic analysis showed that two isolates were closely related to S. suis strains isolated from pigs in Japan at least until 1995. Since 41 nucleotide substitutions were found between the two strains, these strains might be derived from the same genetic lineage but distinct sporadic cases. NGS analysis is a powerful diagnostic tool for analysing bacterial infections. The database is more fulfilling, and more detailed analysis will become possible in the near future. Attention should be paid to S. suis infections, especially if the patient works on a livestock farm.
Collapse
Affiliation(s)
| | - Hiroyuki Tsukagoshi
- b Gunma Prefectural Institute of Public Health and Environmental Sciences , Maebashi-shi , Japan
| | - Tsuyoshi Sekizuka
- c Pathogen Genomics Center National Institute of Infectious Diseases , Tokyo , Japan
| | | | - Michiko Imai
- a Maebashi Red Cross Hospital , Maebashi-shi , Japan
| | - Masahiro Fujita
- b Gunma Prefectural Institute of Public Health and Environmental Sciences , Maebashi-shi , Japan
| | - Makoto Kuroda
- c Pathogen Genomics Center National Institute of Infectious Diseases , Tokyo , Japan
| | - Nobuhiro Saruki
- b Gunma Prefectural Institute of Public Health and Environmental Sciences , Maebashi-shi , Japan
| |
Collapse
|
25
|
Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie van Leeuwenhoek 2018; 111:2233-2247. [PMID: 29934695 DOI: 10.1007/s10482-018-1116-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/14/2018] [Indexed: 01/26/2023]
Abstract
One of the most important zoonotic pathogens worldwide, Streptococcus suis is a swine pathogen that is responsible for meningitis, toxic shock and even death in humans. S. suis infection develops rapidly with nonspecific clinical symptoms in the early stages and a high fatality rate. Recently, much attention has been paid to the high prevalence of S. suis as well as the increasing incidence and its epidemic characteristics. As laboratory-acquired infections of S. suis can occur and it is dangerous to public health security, timely and early diagnosis has become key to controlling S. suis prevalence. Here, the techniques that have been used for the detection, typing and characterization of S. suis are reviewed and the prospects for future detection methods for this bacterium are also discussed.
Collapse
|
26
|
Vötsch D, Willenborg M, Weldearegay YB, Valentin-Weigand P. Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract. Front Microbiol 2018; 9:480. [PMID: 29599763 PMCID: PMC5862822 DOI: 10.3389/fmicb.2018.00480] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The “two faces” of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yenehiwot B Weldearegay
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
27
|
Liu Q, Xu W, Lu S, Jiang J, Zhou J, Shao Z, Liu X, Xu L, Xiong Y, Zheng H, Jin S, Jiang H, Cao W, Xu J. Landscape of emerging and re-emerging infectious diseases in China: impact of ecology, climate, and behavior. Front Med 2018; 12:3-22. [PMID: 29368266 PMCID: PMC7089168 DOI: 10.1007/s11684-017-0605-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 10/26/2022]
Abstract
For the past several decades, the infectious disease profile in China has been shifting with rapid developments in social and economic aspects, environment, quality of food, water, housing, and public health infrastructure. Notably, 5 notifiable infectious diseases have been almost eradicated, and the incidence of 18 additional notifiable infectious diseases has been significantly reduced. Unexpectedly, the incidence of over 10 notifiable infectious diseases, including HIV, brucellosis, syphilis, and dengue fever, has been increasing. Nevertheless, frequent infectious disease outbreaks/events have been reported almost every year, and imported infectious diseases have increased since 2015. New pathogens and over 100 new genotypes or serotypes of known pathogens have been identified. Some infectious diseases seem to be exacerbated by various factors, including rapid urbanization, large numbers of migrant workers, changes in climate, ecology, and policies, such as returning farmland to forests. This review summarizes the current experiences and lessons from China in managing emerging and re-emerging infectious diseases, especially the effects of ecology, climate, and behavior, which should have merits in helping other countries to control and prevent infectious diseases.
Collapse
Affiliation(s)
- Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Shan Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiafu Jiang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071, China
| | - Jieping Zhou
- The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China.,State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing, 100094, China
| | - Zhujun Shao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaobo Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lei Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Sun Jin
- The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China.,State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing, 100094, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wuchun Cao
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
28
|
Kan B, Zhou H, Du P, Zhang W, Lu X, Qin T, Xu J. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace. Front Med 2018; 12:23-33. [PMID: 29318441 DOI: 10.1007/s11684-017-0607-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Two decades have passed since the first bacterial whole-genome sequencing, which provides new opportunity for microbial genome. Consequently, considerable genetic diversity encoded by bacterial genomes and among the strains in the same species has been revealed. In recent years, genome sequencing techniques and bioinformatics have developed rapidly, which has resulted in transformation and expedited the application of strategy and methodology for bacterial genome comparison used in dissection of infectious disease epidemics. Bacterial whole-genome sequencing and bioinformatic computing allow genotyping to satisfy the requirements of epidemiological study in disease control. In this review, we outline the significance and summarize the roles of bacterial genome sequencing in the context of bacterial disease control and prevention.We discuss the applications of bacterial genome sequencing in outbreak detection, source tracing, transmission mode discovery, and new epidemic clone identification. Wide applications of genome sequencing and data sharing in infectious disease surveillance networks will considerably promote outbreak detection and early warning to prevent the dissemination of bacterial diseases.
Collapse
Affiliation(s)
- Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Wen Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Tian Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
29
|
Auger JP, Santinón A, Roy D, Mossman K, Xu J, Segura M, Gottschalk M. Type I Interferon Induced by Streptococcus suis Serotype 2 is Strain-Dependent and May Be Beneficial for Host Survival. Front Immunol 2017; 8:1039. [PMID: 28894449 PMCID: PMC5581389 DOI: 10.3389/fimmu.2017.01039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death of the host. A better understanding of the underlying mechanisms involved in the control of inflammation and subsequent bacterial burden could help to develop control measures for this important porcine and zoonotic agent.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Agustina Santinón
- Research Group on Infectious Diseases in Production Animals (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - David Roy
- Research Group on Infectious Diseases in Production Animals (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Karen Mossman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
30
|
Auger JP, Chuzeville S, Roy D, Mathieu-Denoncourt A, Xu J, Grenier D, Gottschalk M. The bias of experimental design, including strain background, in the determination of critical Streptococcus suis serotype 2 virulence factors. PLoS One 2017; 12:e0181920. [PMID: 28753679 PMCID: PMC5533308 DOI: 10.1371/journal.pone.0181920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are genotypically and phenotypically heterogeneous. Though a multitude of virulence factors have been described for S. suis serotype 2, the lack of a clear definition regarding which ones are truly “critical” has created inconsistencies that have only recently been highlighted. Herein, the involvement of two factors previously described as being critical for S. suis serotype 2 virulence, whether the dipeptidyl peptidase IV and autolysin, were evaluated with regards to different ascribed functions using prototype strains belonging to important sequence types. Results demonstrate a lack of reproducibility with previously published data. In fact, the role of the dipeptidyl peptidase IV and autolysin as critical virulence factors could not be confirmed. Though certain in vitro functions may be ascribed to these factors, their roles are not unique for S. suis, probably due to compensation by other factors. As such, variations and discrepancies in experimental design, including in vitro assays, cell lines, and animal models, are an important source of differences between results. Moreover, the use of different sequence types in this study demonstrates that the role attributed to a virulence factor may vary according to the S. suis serotype 2 strain background. Consequently, it is necessary to establish standard experimental designs according to the experiment and purpose in order to facilitate comparison between laboratories. Alongside, studies should include strains of diverse origins in order to prevent erroneous and biased conclusions that could affect future studies.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Sarah Chuzeville
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Annabelle Mathieu-Denoncourt
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- * E-mail:
| |
Collapse
|
31
|
Chuzeville S, Auger JP, Dumesnil A, Roy D, Lacouture S, Fittipaldi N, Grenier D, Gottschalk M. Serotype-specific role of antigen I/II in the initial steps of the pathogenesis of the infection caused by Streptococcus suis. Vet Res 2017; 48:39. [PMID: 28705175 PMCID: PMC5513104 DOI: 10.1186/s13567-017-0443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 01/15/2023] Open
Abstract
Streptococcus suis is one of the most important post-weaning porcine bacterial pathogens worldwide. The serotypes 2 and 9 are often considered the most virulent and prevalent serotypes involved in swine infections, especially in Europe. However, knowledge of the bacterial factors involved in the first steps of the pathogenesis of the infection remains scarce. In several pathogenic streptococci, expression of multimodal adhesion proteins known as antigen I/II (AgI/II) have been linked with persistence in the upper respiratory tract and the oral cavity, as well as with bacterial dissemination. Herein, we report expression of these immunostimulatory factors by S. suis serotype 2 and 9 strains and that AgI/II-encoding genes are carried by integrative and conjugative elements. Using mutagenesis and different in vitro assays, we demonstrate that the contribution of AgI/II to the virulence of the serotype 2 strain used herein appears to be modest. In contrast, data demonstrate that the serotype 9 AgI/II participates in self-aggregation, induces salivary glycoprotein 340-related aggregation, contributes to biofilm formation and increased strain resistance to low pH, as well as in bacterial adhesion to extracellular matrix proteins and epithelial cells. Moreover, the use of a porcine infection model revealed that AgI/II contributes to colonization of the upper respiratory tract of pigs. Taken together, these findings suggest that surface exposed AgI/II likely play a key role in the first steps of the pathogenesis of the S. suis serotype 9 infection.
Collapse
Affiliation(s)
- Sarah Chuzeville
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Audrey Dumesnil
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory Toronto and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada. .,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
32
|
Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Vet Microbiol 2017. [PMID: 28622857 DOI: 10.1016/j.vetmic.2017.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Streptococcus suis (SS), an important pathogen for pigs, is not only considered as a zoonotic agent for humans, but is also recognized as a major reservoir of antimicrobial resistance contributing to the spread of resistance genes to other pathogenic Streptococcus species. In addition to serotype 2 (SS2), serotype 9 (SS9) is another prevalent serotype isolated from diseased pigs. Although many SS strains have been sequenced, the complete genome of a non-SS2 virulent strain has been unavailable to date. Here, we report the complete genome of GZ0565, a virulent strain of SS9, isolated from a pig with meningitis. Comparative genomic analysis revealed five new putative virulence or antimicrobial resistance-associated genes in strain GZ0565 but not in SS2 virulent strains. These five genes encode a putative triacylglycerol lipase, a TipAS antibiotic-recognition domain protein, a putative TetR family transcriptional repressor, a protein containing a LPXTG domain and a G5 domain, and a type VII secretion system (T7SS) putative substrate (EsxA), respectively. Western blot analysis showed that strain GZ0565 can secrete EsxA. We generated an esxA deletion mutant and showed that EsxA contributes to SS virulence in a mouse infection model. Additionally, the antibiotic resistance gene vanZSS was identified and expression of vanZSS conferred resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. We believe this is the first experimental demonstration of the existence of the T7SS putative substrate EsxA and its contribution to bacterial virulence in SS. Together, our results contribute to further understanding of the virulence and antimicrobial resistance characteristics of SS.
Collapse
|
33
|
Li G, Lu G, Qi Z, Li H, Wang L, Wang Y, Liu B, Niu X, Deng X, Wang J. Morin Attenuates Streptococcus suis Pathogenicity in Mice by Neutralizing Suilysin Activity. Front Microbiol 2017; 8:460. [PMID: 28373868 PMCID: PMC5357624 DOI: 10.3389/fmicb.2017.00460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022] Open
Abstract
Streptococcus suis, a Gram-positive pathogen, is widely recognized as an important agent of swine infection, and it is also known to cause a variety of zoonoses, such as meningitis, polyarthritis and pneumonia. Suilysin (SLY), an extracellular pore-forming toxin that belongs to the cholesterol-dependent cytolysin family, is an essential virulence factor of S. suis capsular type 2 (SS2). Here, we found that morin hydrate (morin), a natural flavonoid that lacks anti-SS2 activity, inhibits the hemolytic activity of SLY, protects J774 cells from SS2-induced injury and protects mice from SS2 infection. Further, by molecular modeling and mutational analysis, we found that morin binds to the "stem" domain 2 in SLY and hinders its transformation from the monomer form to the oligomer form, which causes the loss of SLY activity. Our study demonstrates that morin hinders the cell lysis activity of SLY through a novel mechanism of interrupting the heptamer formation. These findings may lead to the development of promising therapeutic candidates for the treatment of SS2 infections.
Collapse
Affiliation(s)
- Gen Li
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Gejin Lu
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Zhimin Qi
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Hongen Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University Changchun, China
| | - Lin Wang
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yanhui Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University Changchun, China
| | - Bowen Liu
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xiaodi Niu
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xuming Deng
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jianfeng Wang
- The First Hospital and Institute of Infection and Immunity, Jilin UniversityChangchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|
34
|
Critical Streptococcus suis Virulence Factors: Are They All Really Critical? Trends Microbiol 2017; 25:585-599. [PMID: 28274524 DOI: 10.1016/j.tim.2017.02.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 01/15/2023]
Abstract
Streptococcus suis is an important swine pathogen that can be transmitted to humans by contact with diseased animals or contaminated raw pork products. This pathogen possesses a coat of capsular polysaccharide (CPS) that confers protection against the immune system. Yet, the CPS is not the only virulence factor enabling this bacterium to successfully colonize, invade, and disseminate in its host leading to severe systemic diseases such as meningitis and toxic shock-like syndrome. Indeed, recent research developments, cautiously inventoried in this review, have revealed over 100 'putative virulence factors or traits' (surface-associated or secreted components, regulatory genes or metabolic pathways), of which at least 37 have been claimed as being 'critical' for virulence. In this review we discuss the current contradictions and controversies raised by this explosion of virulence factors and the future directions that may be conceived to advance and enlighten research on S. suis pathogenesis.
Collapse
|
35
|
Xia X, Wang L, Cheng L, Shen Z, Li S, Wang J. Expression and immunological evaluation of elongation factor Tu of Streptococcus suis serotype 2. Pol J Vet Sci 2017; 20:277-284. [DOI: 10.1515/pjvs-2017-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Streptococcus suis serotype 2 (SS2) is considered as a major pathogen that causes sepsis and meningitis in piglets and humans, but knowledge of its antigenic proteins remains limited so far. The surface-related proteins of pathogens often play significant roles in bacterium-host interactions and infection. Here, we obtained the elongation factor Tu (EF-Tu) gene of Streptococcus suis and constructed the recombinant expression plasmid successfully. The target recombinant plasmid was then expressed in Escherichia coli and the immuno-protection of the recombinant protein was subsequently evaluated as well. The EF-Tu gene of Streptococcus suis is 1197 bp in length, encodes 398 amino acids. The target recombinant EF-Tu (rEF-Tu) protein can recognize the antiserum of Streptococcus suis and can provoke obvious humoral immune responses in rabbits and conferred protection to rabbits against Streptococcus suis ear-vein challenge, implying that the EF-Tu may be used as an attractive candidate antigen for a component of subunit vaccine.
Collapse
|
36
|
Zheng H, Qiu X, Roy D, Segura M, Du P, Xu J, Gottschalk M. Genotyping and investigating capsular polysaccharide synthesis gene loci of non-serotypeable Streptococcus suis isolated from diseased pigs in Canada. Vet Res 2017; 48:10. [PMID: 28219415 PMCID: PMC5322794 DOI: 10.1186/s13567-017-0417-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is an important swine pathogen and an emerging zoonotic agent. Most clinical S. suis strains express capsular polysaccharides (CPS), which can be typed by antisera using the coagglutination test. In this study, 79 S. suis strains recovered from diseased pigs in Canada and which could not be typed using antisera were further characterized by capsular gene typing and sequencing. Four patterns of cps locus were observed: (1) fifteen strains were grouped into previously reported serotypes but presented several mutations in their cps loci, when compared to available data from reference strains; (2) seven strains presented a complete deletion of the cps locus, which would result in an inability to synthesize capsule; (3) forty-seven strains were classified in recently described novel cps loci (NCLs); and (4) ten strains carried novel NCLs not previously described. Different virulence gene profiles (based on the presence of mrp, epf, and/or sly) were observed in these non-serotypeable strains. This study provides further insight in understanding the genetic characteristics of cps loci in non-serotypeable S. suis strains recovered from diseased animals. When using a combination of the previously described 35 serotypes and the complete NCL system, the number of untypeable strains recovered from diseased animals in Canada would be significantly reduced.
Collapse
Affiliation(s)
- Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - David Roy
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Diseases Research Center, University of Montreal, Quebec, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Diseases Research Center, University of Montreal, Quebec, Canada
| | - Pengchen Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, People's Republic of China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Diseases Research Center, University of Montreal, Quebec, Canada.
| |
Collapse
|
37
|
Du P, Zheng H, Zhou J, Lan R, Ye C, Jing H, Jin D, Cui Z, Bai X, Liang J, Liu J, Xu L, Zhang W, Chen C, Xu J. Detection of Multiple Parallel Transmission Outbreak of Streptococcus suis Human Infection by Use of Genome Epidemiology, China, 2005. Emerg Infect Dis 2017; 23:204-211. [PMID: 27997331 PMCID: PMC5324821 DOI: 10.3201/eid2302.160297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcussuis sequence type 7 emerged and caused 2 of the largest human infection outbreaks in China in 1998 and 2005. To determine the major risk factors and source of the infections, we analyzed whole genomes of 95 outbreak-associated isolates, identified 160 single nucleotide polymorphisms, and classified them into 6 clades. Molecular clock analysis revealed that clade 1 (responsible for the 1998 outbreak) emerged in October 1997. Clades 2–6 (responsible for the 2005 outbreak) emerged separately during February 2002–August 2004. A total of 41 lineages of S.suis emerged by the end of 2004 and rapidly expanded to 68 genome types through single base mutations when the outbreak occurred in June 2005. We identified 32 identical isolates and classified them into 8 groups, which were distributed in a large geographic area with no transmission link. These findings suggest that persons were infected in parallel in respective geographic sites.
Collapse
|
38
|
Novel Capsular Polysaccharide Loci and New Diagnostic Tools for High-Throughput Capsular Gene Typing in Streptococcus suis. Appl Environ Microbiol 2016; 82:7102-7112. [PMID: 27694240 DOI: 10.1128/aem.02102-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/24/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important pathogen of pigs and may cause serious disease in humans. Serotyping is an important tool for detection and epidemiological studies of S. suis Thirty-three reference serotypes and nine novel cps loci (NCLs) are recognized in S. suis To gain a better understanding of the prevalence and genetic characteristics of NCLs, we investigated the serotype identity of 486 isolates isolated between 2013 and 2015 in China by capsular gene typing methods. Two hundred seventy-six isolates carried NCLs belonging to 16 groups, 8 of which appear to have not been reported previously. These isolates showed autoagglutination, polyagglutination, or nonagglutination with reference antisera and thus were nonserotypeable. Almost all isolates carrying the unknown NCLs were encapsulated, with various capsular thicknesses, indicating that they are most likely novel serotypes. To simultaneously identify the currently recognized 17 NCLs, an 18-plex detection system using the Luminex xTAG universal array technology was developed. Our data also provide valuable genetic information for monitoring the variations within NCLs by investigating the genetic characteristics of different subtypes within NCLs. IMPORTANCE Nonserotypeable Streptococcus suis isolates have been reported in many studies, and 9 novel cps loci (NCLs) have already been identified in nonserotypeable isolates. Moreover, novel cps loci are continually being found. The main purpose of this study was to investigate the prevalence and characteristics of NCLs in S. suis isolates recovered between 2013 and 2015 in China. This study provides valuable genetic information for monitoring the variations within NCLs. Meanwhile, a fast and cost-effective 18-plex detection system that can simultaneously identify the currently recognized 17 NCLs was developed in this study. This system will serve as a valuable tool for detecting known and identifying additional novel cps loci among nonserotypeable S. suis isolates.
Collapse
|
39
|
Suilysin-induced Platelet-Neutrophil Complexes Formation is Triggered by Pore Formation-dependent Calcium Influx. Sci Rep 2016; 6:36787. [PMID: 27830834 PMCID: PMC5103290 DOI: 10.1038/srep36787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Platelet activation and platelet–neutrophil interactions have been found to be involved in inflammation, organ failure and soft-tissue necrosis in bacterial infections. Streptococcus suis, an emerging human pathogen, can cause streptococcal toxic-shock syndrome (STSS) similarly to Streptococcus pyogenes. Currently, S. suis–platelet interactions are poorly understood. Here, we found that suilysin (SLY), the S. suis cholesterol-dependent cytolysin (CDC), was the sole stimulus of S. suis that induced platelet-neutrophil complexes (PNC) formation. Furthermore, P-selectin released in α-granules mediated PNC formation. This process was triggered by the SLY-induced pore forming-dependent Ca2+ influx. Moreover, we demonstrated that the Ca2+ influx triggered an MLCK-dependent pathway playing critical roles in P-selectin activation and PNC formation, however, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signalling were not involved. Additionally, the “outside-in” signalling had a smaller effect on the SLY-induced P-selectin release and PNC formation. Interestingly, other CDCs including pneumolysin and streptolysin O have also been found to induce PNC formation in a pore forming-dependent Ca2+ influx manner. It is possible that the bacterial CDC-mediated PNC formation is a similar response mechanism used by a wide range of bacteria. These findings may provide useful insight for discovering potential therapeutic targets for S. suis-associated STSS.
Collapse
|
40
|
Zhang S, Wang J, Chen S, Yin J, Pan Z, Liu K, Li L, Zheng Y, Yuan Y, Jiang Y. Effects of Suilysin on Streptococcus suis-Induced Platelet Aggregation. Front Cell Infect Microbiol 2016; 6:128. [PMID: 27800304 PMCID: PMC5065993 DOI: 10.3389/fcimb.2016.00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022] Open
Abstract
Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS). Streptococcus suis (S. suis) an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY), different from other bacterial cholesterol-dependent cytolysins (CDCs), was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY) and streptolysin O (SLO), two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China; Department of Clinical Laboratory, Dongfang Hospital, Beijing University of Chinese MedicineBeijing, China
| | | | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jiye Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Keke Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
41
|
Zhou Y, Dong X, Li Z, Zou G, Lin L, Wang X, Chen H, Gasser RB, Li J. Predominance of Streptococcus suis ST1 and ST7 in human cases in China, and detection of a novel sequence type, ST658. Virulence 2016; 8:1031-1035. [PMID: 27689249 DOI: 10.1080/21505594.2016.1243193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yang Zhou
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China.,b College of Fisheries, Huazhong Agricultural University , Wuhan, Hubei , P.R. China
| | - Xingxing Dong
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China
| | - Zhiwei Li
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China
| | - Geng Zou
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China
| | - Li Lin
- b College of Fisheries, Huazhong Agricultural University , Wuhan, Hubei , P.R. China
| | - Xiaohong Wang
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China
| | - Huanchun Chen
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China
| | - Robin B Gasser
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China.,c Faculty of Veterinary and Agricultural Sciences, The University of Melbourne , Parkville , Victoria , Australia
| | - Jinquan Li
- a College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, Hubei , P.R. China.,d Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou, Jiangsu , P.R. China
| |
Collapse
|
42
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
43
|
Chen S, Xie W, Wu K, Li P, Ren Z, Li L, Yuan Y, Zhang C, Zheng Y, Lv Q, Jiang H, Jiang Y. Suilysin Stimulates the Release of Heparin Binding Protein from Neutrophils and Increases Vascular Permeability in Mice. Front Microbiol 2016; 7:1338. [PMID: 27617009 PMCID: PMC4999480 DOI: 10.3389/fmicb.2016.01338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/15/2016] [Indexed: 11/13/2022] Open
Abstract
Most of the deaths that occurred during two large outbreaks of Streptococcus suis infections in 1998 and 2005 in China were caused by streptococcal toxic shock syndrome (STSS), which is characterized by increased vascular permeability. Heparin-binding protein (HBP) is thought to mediate the vascular leakage. The purpose of this study was to investigate the detailed mechanism underlying the release of HBP and the vascular leakage induced by S. suis. Significantly higher serum levels of HBP were detected in Chinese patients with STSS than in patients with meningitis or healthy controls. Suilysin (SLY) is an exotoxin secreted by the highly virulent strain 05ZYH33, and it stimulated the release of HBP from the polymorphonuclear neutrophils and mediated vascular leakage in mice. The release of HBP induced by SLY was caused by a calcium influx-dependent degranulation. Analyses using a pharmacological approach revealed that the release of HBP induced by SLY was related to Toll-like receptor 4, p38 mitogen-activated protein kinase, and the 1-phosphatidylinositol 3-kinase pathway. It was also dependent on a G protein-coupled seven-membrane spanning receptor. The results of this study provide new insights into the vascular leakage in STSS associated with non-Group A streptococci, which could lead to the discovery of potential therapeutic targets for STSS associated with S. suis.
Collapse
Affiliation(s)
- Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenlong Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Kai Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Zhiqiang Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Chunmao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
44
|
Tenenbaum T, Asmat TM, Seitz M, Schroten H, Schwerk C. Biological activities of suilysin: role in Streptococcus suis pathogenesis. Future Microbiol 2016; 11:941-54. [PMID: 27357518 DOI: 10.2217/fmb-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptococcus suis is an important swine and zoonotic pathogen equipped with several virulence factors. The pore-forming toxins are the most abundant bacterial toxins and classified as critical virulence (associated) factors of several pathogens. The role of suilysin (SLY), a pore-forming cholesterol-dependent cytolysin of S. suis, as a true virulence factor is under debate. Most of the bacterial toxins have been reported to modulate the host immune system to facilitate invasion and subsequent replication of bacteria within respective host cells. SLY has been demonstrated to play an important role in the pathogenesis of S. suis infection and inflammatory response in vitro and in vivo. This review highlights the contributions of SLY to the pathogenicity of S. suis. It will address its role during the development of S. suis meningitis in pigs, as well as humans, and discuss SLY as a potential vaccine candidate.
Collapse
Affiliation(s)
- Tobias Tenenbaum
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Tauseef M Asmat
- Center for Advanced Studies in Vaccinology and Biotechnology, Brewery Road, University of Balochistan, 87300 Quetta, Pakistan
| | - Maren Seitz
- Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover D-30173, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| |
Collapse
|
45
|
Yin S, Li M, Rao X, Yao X, Zhong Q, Wang M, Wang J, Peng Y, Tang J, Hu F, Zhao Y. Subtilisin-like protease-1 secreted through type IV secretion system contributes to high virulence of Streptococcus suis 2. Sci Rep 2016; 6:27369. [PMID: 27270879 PMCID: PMC4897608 DOI: 10.1038/srep27369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/18/2016] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis serotype 2 is an emerging zoonotic pathogen that triggered two outbreaks of streptococcal toxic shock syndrome (STSS) in China. Our previous research demonstrated that a type IV secretion system (T4SS) harbored in the 89K pathogenicity island contributes to the pathogenicity of S. suis 2. In the present study, a shotgun proteomics approach was employed to identify the effectors secreted by T4SS in S. suis 2, and surface-associated subtilisin-like protease-1 (SspA-1) was identified as a potential virulence effector. Western blot analysis and pull-down assay revealed that SspA-1 secretion depends on T4SS. Knockout mutations affecting sspA-1 attenuated S. suis 2 and impaired the pathogen’s ability to trigger inflammatory response in mice. And purified SspA-1 induced the secretion of IL-6, TNF-α, and IL-12p70 in THP-1 cells directly. SspA-1 is the first T4SS virulence effector reported in Gram-positive bacteria. Overall, these findings allow us to gain further insights into the pathogenesis of T4SS and STSS.
Collapse
Affiliation(s)
- Supeng Yin
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xinyue Yao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Min Wang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaqi Tang
- PLA Research Institute of Clinical Laboratory Medicine, Nanjing general hospital of Nanjing Military command, Nanjing 210002, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis. Sci Rep 2016; 6:26479. [PMID: 27217336 PMCID: PMC4877710 DOI: 10.1038/srep26479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/04/2016] [Indexed: 11/30/2022] Open
Abstract
Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathway. In contrast, it retains a bioY, a biotin transporter-encoding gene, indicating an alternative survival strategy for S. suis to scavenge biotin from its inhabiting niche. Here we report functional definition of S. suis birA homologue. The in vivo functions of the birA paralogue with only 23.6% identity to the counterpart of E. coli, was judged by its ability to complement the conditional lethal mutants of E. coli birA. The recombinant BirA protein of S. suis was overexpressed in E. coli, purified to homogeneity and verified with MS. Both cellulose TLC and MALDI-TOFF-MS assays demonstrated that the S. suis BirA protein catalyzed the biotinylation reaction of its acceptor biotin carboxyl carrier protein. EMSA assays confirmed binding of the bioY gene to the S. suis BirA. The data defined the first example of the bifunctional BirA ligase/repressor in Streptococcus.
Collapse
|
47
|
Shi X, Ye H, Wang J, Li Z, Wang J, Chen B, Wen R, Hu Q, Feng Y. Loss of 89K Pathogenicity Island in Epidemic Streptococcus suis, China. Emerg Infect Dis 2016; 22:1126-7. [PMID: 27192444 PMCID: PMC4880084 DOI: 10.3201/eid2206.152010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Gauthier-Levesque L, Bonifait L, Turgeon N, Veillette M, Perrott P, Grenier D, Duchaine C. Impact of serotype and sequence type on the preferential aerosolization of Streptococcus suis. BMC Res Notes 2016; 9:273. [PMID: 27180230 PMCID: PMC4868011 DOI: 10.1186/s13104-016-2073-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/02/2016] [Indexed: 01/24/2023] Open
Abstract
Background Streptococcus suis is a swine pathogen that causes pneumonia, septicemia and meningitis. It is also an important zoonotic agent responsible of several outbreaks in China. S. suis strains are classified into 35 serotypes based on the composition of their polysaccharide capsule. S. suis serotype 2 causes the majority of severe infections in pigs and in human, and can be further subdivided into sequence types (STs) based on multilocus sequence typing. The ST1 is associated with highly virulent strains. In North America, the strains most commonly isolated belong to ST25 and ST28, which are respectively moderately and weakly virulent in a mouse model. The presence of S. suis bioaerosols in the air of swine confinement buildings has been previously demonstrated. The aim of this study was to better understand the aerosolization behaviour of S. suis by investigating the preferential aerosolization of various strains of S. suis, belonging to different serotypes or STs, using in-house developed environmental chamber and bubble-burst nebulizer. qPCR technology was used to analyze the ratio of S. suis strains. Results The results suggest that the highly virulent serotype 2 ST1 strains are preferentially aerosolized and that the S. suis preferential aerosolization is a strain-dependent process. Conclusion These observations will need to be confirmed using a larger number of strains. This study is a proof of concept and increases our knowledge on the potential aerosol transmission of S. suis.
Collapse
Affiliation(s)
- Léa Gauthier-Levesque
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada
| | - Laetitia Bonifait
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada
| | - Nathalie Turgeon
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada
| | - Phillipa Perrott
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada
| | - Daniel Grenier
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada. .,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche Nature et Technologies du Québec (FRQNT), Saint-Hyacinthe, QC, Canada. .,Département de Biochimie, Microbiologie et Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
49
|
Auger JP, Christodoulides M, Segura M, Xu J, Gottschalk M. Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Res Notes 2015; 8:607. [PMID: 26502903 PMCID: PMC4624383 DOI: 10.1186/s13104-015-1581-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Streptococcus suis serotype 2 is an important porcine pathogen and emerging zoonotic agent responsible for meningitis, of which different sequence types predominate worldwide. Though bacterial meningitis is defined as an exacerbated inflammation of the meninges, the underlying astrocytes of the glia limitans superficialis may also be implicated. However, the interactions between this pathogen and human meningeal cells or astrocytes remain unknown. Furthermore, the roles of well-described virulence factors (capsular polysaccharide, suilysin and cell wall modifications) in these interactions have yet to be studied. Consequently, the interactions between S. suis serotype 2 and human meningeal cells or astrocytes were evaluated for the first time in order to better understand their involvement during meningitis in humans. RESULTS Streptococcus suis serotype 2 adhered to human meningeal cells and astrocytes; invasion of meningeal cells was rare however, whereas invasion of astrocytes was generally more frequent. Regardless of the interaction or cell type, differences were not observed between sequence types. Though the capsular polysaccharide modulated the adhesion to and invasion of meningeal cells and astrocytes, the suilysin and cell wall modifications only influenced astrocyte invasion. Surprising, S. suis serotype 2 induced little or no inflammatory response from both cell types, but this absence of inflammatory response was probably not due to S. suis-induced cell death. CONCLUSIONS Though S. suis serotype 2 interacted with human meningeal cells and astrocytes, there was no correlation between sequence type and interaction. Consequently, the adhesion to and invasion of human meningeal cells and astrocytes are strain-specific characteristics. As such, the meningeal cells of the leptomeninges and the astrocytes of the glia limitans superficialis may not be directly implicated in the inflammatory response observed during meningitis in humans.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
50
|
Characterization of Five Zoonotic Streptococcus suis Strains from Germany, Including One Isolate from a Recent Fatal Case of Streptococcal Toxic Shock-Like Syndrome in a Hunter. J Clin Microbiol 2015; 53:3912-5. [PMID: 26424844 DOI: 10.1128/jcm.02578-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022] Open
Abstract
A Streptococcus suis isolate from a German hunter with streptococcal toxic shock-like syndrome (STSLS) and four additional zoonotic isolates were genotyped as mrp(+) epf* (variant 1890) sly(+) cps2(+). All five zoonotic German strains were characterized by high multiplication in human blood samples ex vivo, but induction of only low levels of proinflammatory cytokines compared to a Chinese STSLS strain.
Collapse
|