1
|
Smertina E, Keller LM, Huang N, Flores-Benner G, Correa-Cuadros JP, Duclos M, Jaksic FM, Briceño C, Ramirez VN, Díaz-Gacitúa M, Carrasco-Fernández S, Smith IL, Strive T, Jenckel M. First Detection of Benign Rabbit Caliciviruses in Chile. Viruses 2024; 16:439. [PMID: 38543804 PMCID: PMC10974056 DOI: 10.3390/v16030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Pathogenic lagoviruses (Rabbit hemorrhagic disease virus, RHDV) are widely spread across the world and are used in Australia and New Zealand to control populations of feral European rabbits. The spread of the non-pathogenic lagoviruses, e.g., rabbit calicivirus (RCV), is less well studied as the infection results in no clinical signs. Nonetheless, RCV has important implications for the spread of RHDV and rabbit biocontrol as it can provide varying levels of cross-protection against fatal infection with pathogenic lagoviruses. In Chile, where European rabbits are also an introduced species, myxoma virus was used for localised biocontrol of rabbits in the 1950s. To date, there have been no studies investigating the presence of lagoviruses in the Chilean feral rabbit population. In this study, liver and duodenum rabbit samples from central Chile were tested for the presence of lagoviruses and positive samples were subject to whole RNA sequencing and subsequent data analysis. Phylogenetic analysis revealed a novel RCV variant in duodenal samples that likely originated from European RCVs. Sequencing analysis also detected the presence of a rabbit astrovirus in one of the lagovirus-positive samples.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Luca M. Keller
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Nina Huang
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Gabriela Flores-Benner
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (G.F.-B.); (J.P.C.-C.); (F.M.J.)
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
| | - Jennifer Paola Correa-Cuadros
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (G.F.-B.); (J.P.C.-C.); (F.M.J.)
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
| | - Melanie Duclos
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
- Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello (CIS-UNAB), Santiago 8370251, Chile
| | - Fabian M. Jaksic
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (G.F.-B.); (J.P.C.-C.); (F.M.J.)
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
| | - Cristóbal Briceño
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile; (C.B.); (V.N.R.)
| | - Victor Neira Ramirez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile; (C.B.); (V.N.R.)
| | | | - Sebastián Carrasco-Fernández
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
- Magíster en Recursos Naturales, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8370251, Chile
| | - Ina L. Smith
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Maria Jenckel
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| |
Collapse
|
2
|
Zhao Q, Tian Y, Liu L, Jiang Y, Sun H, Tan S, Huang B. The Genomic and Genetic Evolution Analysis of Rabbit Astrovirus. Vet Sci 2022; 9:603. [PMID: 36356080 PMCID: PMC9697364 DOI: 10.3390/vetsci9110603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Rabbit astrovirus (RAstV) is a pathogen that causes diarrhea in rabbits, with high infection rate at various stages, which can often cause secondary or mixed infections with other pathogens, bringing great economic losses to the rabbit industry. In this study, 10 samples were collected from cases of rabbits with diarrhea on a rabbit meat farm in the Shandong area of China. The positive sample for astrovirus detected by RT-PCR was inoculated into an RK 13 cell line. A rabbit astrovirus strain named Z317 was successfully isolated, which produced an obvious cytopathic effect 48 h post-inoculation in the RK 13 cell line. The genome structure of this isolate was studied by high-throughput sequencing, showing that the Z317 strain had the highest similarity with the American strain TN/2208/2010, with 92.43% nucleotide homology, belonging to group MRAstV-23. The basic properties of the Z317 capsid (Cap) protein were analyzed, and 10 liner B cell epitopes were screened with the online biosoft Bepipred 2.0 and SVMTriP, including 445–464, 186–205, 655–674, 88–107, 792–811, 45–64, and 257–276 amino acids. This is the first contribution concerning RAstV genomes in China; more studies are needed to understand the diversity and impact of RAstV on rabbit health.
Collapse
|
3
|
Su CM, Cheng YC, Wang HY, Hsieh CH, Wan CH. The origin and past demography of murine astrovirus 1 in laboratory mice. J Gen Virol 2021; 102. [PMID: 33206033 DOI: 10.1099/jgv.0.001520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Astroviruses are non-enveloped, positive-sense, ssRNA viruses and often associated with gastrointestinal diseases. Murine astrovirus (MuAstV) was first confirmed in a laboratory mouse colony in 2011. Although infected mice do not present significant clinical symptoms, the virus might interfere with research results. A recent surveillance has shown that MuAstV is highly prevalent in laboratory mice. The aims of the present study were to identify and characterize MuAstV strains as well as to investigate the prevalence rate of viral RNA in laboratory mice in Taiwan, and to estimate the origin and past population demography of MuAstVs. Based on molecular surveillance, MuAstV RNA was detected in 45.7 % of laboratory mice (48/105) from seven of nine colonies. Three fully sequenced MuAstV strains, MuAstV TW1, TW2 and TW3, exhibited 89.1-94.4 % and 89.1-90.0 % nucleotide identities with the reference strains MuAstV STL1 and STL2, respectively. Phylogenetic analyses of the partial regions of the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP) genes of 18 Taiwan strains along with other astroviruses revealed that there are three distinct lineages of mouse astrovirus, MuAstV1, MuAstV2 and mouse astrovirus JF755422. The mutation rates of MuAstV1 were 2.6×10-4 and 6.2×10-4 substitutions/site/year for the RdRp and CP regions, respectively. Based on the above molecular clock, the colonization of MuAstV1 in laboratory mice was between 1897 and 1912, in good agreement with the establishment of 'modern' laboratory mouse facilities. Since its initial infection, the population size of MuAstV1 has increased 15-60-fold, probably consistent with the increased use of laboratory mice. In conclusion, MuAstV1 has been associated with modern laboratory mice since the beginning, and its influence on research results may require further investigation.
Collapse
Affiliation(s)
- Chia-Ming Su
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ying-Chien Cheng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hurng-Yi Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung San South Road, Taipei 10002, Taiwan, ROC
| | - Chia-Hung Hsieh
- Department of Forestry and Nature Conservation, Chinese Culture University, No. 55, Hwa Kang Road, Yang-Ming-Shan, Taipei, Taiwan, ROC
| | - Cho-Hua Wan
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| |
Collapse
|
4
|
Comparative Analysis of RNA Virome Composition in Rabbits and Associated Ectoparasites. J Virol 2020; 94:JVI.02119-19. [PMID: 32188733 PMCID: PMC7269439 DOI: 10.1128/jvi.02119-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Ectoparasites play an important role in the transmission of many vertebrate-infecting viruses, including Zika and dengue viruses. Although it is becoming increasingly clear that invertebrate species harbor substantial virus diversity, it is unclear how many of the viruses carried by invertebrates have the potential to infect vertebrate species. We used the European rabbit (Oryctolagus cuniculus) as a model species to compare virome compositions in a vertebrate host and known associated ectoparasite mechanical vectors, in this case, fleas and blowflies. In particular, we aimed to infer the extent of viral transfer between these distinct types of host. Our analysis revealed that despite extensive viral diversity in both rabbits and associated ectoparasites, and the close interaction of these vertebrate and invertebrate species, biological viral transmission from ectoparasites to vertebrate species is rare. We did, however, find evidence to support the idea of a role of blowflies in transmitting viruses without active replication in the insect. Ectoparasites play an important role in virus transmission among vertebrates. Little, however, is known about the nature of those viruses that pass between invertebrates and vertebrates. In Australia, flies and fleas support the mechanical transmission of two viral biological controls against wild rabbits—rabbit hemorrhagic disease virus (RHDV) and myxoma virus. We compared virome compositions in rabbits and these ectoparasites, sequencing total RNA from multiple tissues and gut contents of wild rabbits, fleas collected from these rabbits, and flies trapped sympatrically. Meta-transcriptomic analyses identified 50 novel viruses from multiple RNA virus families. Rabbits and their ectoparasites were characterized by markedly different viromes, with virus abundance greatest in flies. Although viral contigs from six virus families/groups were found in both rabbits and ectoparasites, they clustered in distinct host-dependent lineages. A novel calicivirus and a picornavirus detected in rabbit cecal content were vertebrate specific; the newly detected calicivirus was distinct from known rabbit caliciviruses, while the picornavirus clustered with sapeloviruses. Several picobirnaviruses were also identified that fell in diverse phylogenetic positions, compatible with the idea that they are associated with bacteria. Further comparative analysis revealed that the remaining viruses found in rabbits, and all those from ectoparasites, were likely associated with invertebrates, plants, and coinfecting endosymbionts. While no full genomes of vertebrate-associated viruses were detected in ectoparasites, small numbers of reads from rabbit astrovirus, RHDV, and other lagoviruses were present in flies. This supports a role for flies in the mechanical transmission of RHDV, while their involvement in astrovirus transmission merits additional exploration. IMPORTANCE Ectoparasites play an important role in the transmission of many vertebrate-infecting viruses, including Zika and dengue viruses. Although it is becoming increasingly clear that invertebrate species harbor substantial virus diversity, it is unclear how many of the viruses carried by invertebrates have the potential to infect vertebrate species. We used the European rabbit (Oryctolagus cuniculus) as a model species to compare virome compositions in a vertebrate host and known associated ectoparasite mechanical vectors, in this case, fleas and blowflies. In particular, we aimed to infer the extent of viral transfer between these distinct types of host. Our analysis revealed that despite extensive viral diversity in both rabbits and associated ectoparasites, and the close interaction of these vertebrate and invertebrate species, biological viral transmission from ectoparasites to vertebrate species is rare. We did, however, find evidence to support the idea of a role of blowflies in transmitting viruses without active replication in the insect.
Collapse
|
5
|
Detection of Astrovirus in a Cow with Neurological Signs by Nanopore Technology, Italy. Viruses 2020; 12:v12050530. [PMID: 32403368 PMCID: PMC7290991 DOI: 10.3390/v12050530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered. Histological examination revealed acute non-suppurative encephalomyelitis affecting the brainstem, cerebrum, cerebellum, and medulla oblongata, while by using PCR-based assays, the nucleic acids of major agents for neurological signs were not detected. By using Nanopore technology, 151 sequence reads were assigned to Bovine Astrovirus (BoAstV). Real-time RT-PCR and in situ hybridization (ISH) confirmed the presence of viral RNA in the brain. Moreover, using the combination of fluorescent ISH and immunofluorescence (IF) techniques, it was possible to detect BoAstV RNA and antigens in the same cells, suggesting the active replication of the virus in infected neurons. The nearly whole genome of the occurring strain (BoAstV PE3373/2019/Italy), obtained by Illumina NextSeq 500, showed the highest nucleotide sequence identity (94.11%) with BoAstV CH13/NeuroS1 26,730 strain, an encephalitis-associated bovine astrovirus. Here, we provide further evidence of the role of AstV as a neurotropic agent. Considering that in a high proportion of non-suppurative encephalitis cases, which are mostly indicative of a viral infection, the etiologic agent remains unknown, our result underscores the value and versatility of Nanopore technology for a rapid diagnosis when the PCR-based algorithm gives negative results.
Collapse
|
6
|
Rawal G, Ferreyra FM, Macedo NR, Bradner LK, Harmon KM, Mueller A, Allison G, Linhares DC, Arruda BL. Detection and Cellular Tropism of Porcine Astrovirus Type 3 on Breeding Farms. Viruses 2019; 11:v11111051. [PMID: 31718108 PMCID: PMC6893673 DOI: 10.3390/v11111051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023] Open
Abstract
Astroviruses cause disease in a variety of species. Yet, little is known about the epidemiology of a majority of astroviruses including porcine astrovirus type 3 (PoAstV3), which is a putative cause of polioencephalomyelitis in swine. Accordingly, a cross-sectional study was conducted on sow farms with or without reported PoAstV3-associated neurologic disease in growing pigs weaned from those farms. Additionally, a conveniently selected subset of piglets from one farm was selected for gross and histologic evaluation. The distribution of PoAstV3 in the enteric system was evaluated through in situ hybridization. PoAstV3, as detected by RT-qPCR on fecal samples, was frequently detected across sows and piglets (66–90%) on all farms (65–85%). PoAstV3 was detected subsequently at a similar detection frequency (77% vs 85%) on one farm after three months. Viral shedding, as determined by the cycle quantification value, suggests that piglets shed higher quantities of virus than adult swine. No link between gastrointestinal disease and PoAstV3 was found. However, PoAstV3 was detected by in situ in myenteric plexus neurons of piglets elucidating a possible route of spread of the virus from the gastrointestinal tract to the central nervous system. These data suggest PoAstV3 has endemic potential, is shed in the feces at greater quantities by suckling piglets when compared to sows, and infection is widespread on farms in which it is detected.
Collapse
Affiliation(s)
- Gaurav Rawal
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Franco Matias Ferreyra
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Nubia R. Macedo
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Laura K. Bradner
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Karen M. Harmon
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Adam Mueller
- Swine Services Unlimited, Inc., Rice, MN 56367, USA;
| | - Grant Allison
- Walcott Veterinary Clinic, Durant St. Walcott, IA 52773, USA;
| | - Daniel C.L. Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Bailey L. Arruda
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
- Correspondence:
| |
Collapse
|
7
|
Detection of Murine Astrovirus and Myocoptes musculinus in individually ventilated caging systems: Investigations to expose suitable detection methods for routine hygienic monitoring. PLoS One 2019; 14:e0221118. [PMID: 31408494 PMCID: PMC6692027 DOI: 10.1371/journal.pone.0221118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Murine Astrovirus is one of the most prevalent viral agents in laboratory rodent facilities worldwide, but its influence on biomedical research results is poorly examined. Due to possible influence on research results and high seroprevalence rates in mice, it appears useful to include this virus into routine health monitoring programs. In order to establish exhaust air particle PCR as a reliable detection method for Murine Astrovirus infections in mice kept in individually ventilated cages (IVC) and compare the method to sentinel mice monitoring regarding reproducibility and detection limit, we conducted a study with defined Murine Astrovirus cage prevalence. In parallel, the efficacy of both detection strategies (soiled-bedding sentinel (SBS) and exhaust air dust (EAD) analysis) was tested for Myocoptes musculinus. The fur mite was used as a reference organism during the whole study period to ensure the validity of this method. Because some publications already demonstrated successful detection of several pathogens, including murine fur mite species, via EAP-PCR. Detection of Murine Astrovirus infections at low prevalence is possible with both methods tested. Detection by exhaust air particles (EAP) is faster, more sensitive and more reliable compared to soiled bedding sentinels (SBS). Exhaust air particle PCR also detected the reference organism Myocoptes musculinus, which was not detected at all by sentinel mice, not even by high sensitivity fur swab qPCR. In conclusion, Murine Astrovirus can be detected by both exhaust air particle PCR and soiled bedding sentinels. We recommend exhaust air particle PCR as the better detection technique for Murine Astrovirus, because it is more reliable. Environmental samples are the method of choice for detection of Myocoptes musculinus because relying on soiled bedding sentinels harbors a big risk of missing existing infestations.
Collapse
|
8
|
Kwit E, Rzeżutka A. Molecular methods in detection and epidemiologic studies of rabbit and hare viruses: a review. J Vet Diagn Invest 2019; 31:497-508. [PMID: 31131728 DOI: 10.1177/1040638719852374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Various PCR-based assays for rabbit viruses have gradually replaced traditional virologic assays, such as virus isolation, because they offer high-throughput analysis, better test sensitivity and specificity, and allow vaccine and wild-type virus strains to be fully typed and differentiated. In addition, PCR is irreplaceable in the detection of uncultivable or fastidious rabbit pathogens or those occurring in low quantity in a tested sample. We provide herein an overview of the current state of the art in the molecular detection of lagomorph viral pathogens along with details of their targeted gene or nucleic acid sequence and recommendations for their application. Apart from the nucleic acids-based methods used for identification and comprehensive typing of rabbit viruses, novel methods such as microarray, next-generation sequencing, and mass spectrometry (MALDI-TOF MS) could also be employed given that they offer greater throughput in sample screening for viral pathogens. Molecular methods should be provided with an appropriate set of controls, including an internal amplification control, to confirm the validity of the results obtained.
Collapse
Affiliation(s)
- Ewa Kwit
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
9
|
Xie XT, Kropinski AM, Tapscott B, Weese JS, Turner PV. Prevalence of fecal viruses and bacteriophage in Canadian farmed mink (Neovison vison). Microbiologyopen 2018; 8:e00622. [PMID: 29635866 PMCID: PMC6341152 DOI: 10.1002/mbo3.622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023] Open
Abstract
Recent viral metagenomic studies have demonstrated the diversity of eukaryotic viruses and bacteriophage shed in the feces of domestic species. Although enteric disease is a major concern in the commercial mink farming industry, few etiologic agents have been well characterized. This study aimed to identify viruses shed in the fecal matter of clinically healthy commercial mink from 40 southern Ontario farms. Viral RNA was extracted from 67 pooled fecal samples (30 adult female mink and 37 kit) and amplified for Illumina sequencing on the NextSeq platform, and the resulting contigs were trimmed and assembled using Trimmomatic 0.36.0 and Spades 3.8.0 in iVirus (CyVerse, AZ, USA) and SeqMan NGen 12 (DNAStar, WI, USA). Identification of assembled sequences >100 bp (Geneious 10.1.3) showed an abundance of bacteriophage sequences, mainly from families Siphoviridae (53%), Podoviridae (22%), Myoviridae (20%), Inoviridae (1%), Leviviridae (0.04%), Tectiviridae (0.01%), and Microviridae (0.01%). A diverse range of vertebrate viruses were detected, of which posavirus 3, mink bocavirus, gyroviruses, and avian‐associated viruses were most abundant. Additionally, sequences from nonvertebrate viruses with water and soil‐associated amebal and algal hosts were also highly prevalent. The results of this study show that viruses shed in the fecal matter of healthy commercial mink are highly diverse and could be closely associated with diet, and that more research is necessary to determine how the detected viruses may impact mink health.
Collapse
Affiliation(s)
- Xiao-Ting Xie
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Brian Tapscott
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Elora, ON, Canada
| | - J Scott Weese
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Kumthip K, Khamrin P, Saikruang W, Kongkaew A, Vachirachewin R, Ushijima H, Maneekarn N. Detection and genetic characterization of porcine astroviruses in piglets with and without diarrhea in Thailand. Arch Virol 2018; 163:1823-1829. [PMID: 29569070 DOI: 10.1007/s00705-018-3806-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/11/2018] [Indexed: 11/26/2022]
Abstract
Porcine astrovirus (PAstV) is widely distributed and highly prevalent among pigs, nevertheless its clinical significance remains unclear as it can be detected in both diarrheic and in healthy pigs. Information about the prevalence, clinical significance and molecular characterization of PAstV in Thailand is not available. This study investigated the prevalence of PAstV in 488 fecal samples collected from piglets with and without diarrhea in 28 pig farms in northern and central parts of Thailand using RT-PCR. The overall prevalence of PAstV infection was 6.5% (32/488), of which 21/251 (8.4%) were in diarrheic and 11/237 (4.6%) were in healthy pigs. Of 32 positive samples, 46.9% were positive for PAstV alone whereas 53.1% were co-infected with porcine group A rotavirus (PRVA). A phylogenetic analysis of the partial RNA-dependent RNA polymerase/capsid genes revealed two lineages of PAstV strains detected in this study. PAstV4 was the most dominant genotype (92%), followed by PAstV2 (8%). This study revealed for the first time that PAstV4 and PAstV2 were circulating in Thailand with PAstV4 as the most dominant genotype in pig herds in northern and central parts of Thailand.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Wilaiporn Saikruang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aphisek Kongkaew
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Animal House Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchaya Vachirachewin
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Boujon CL, Koch MC, Seuberlich T. The Expanding Field of Mammalian Astroviruses: Opportunities and Challenges in Clinical Virology. Adv Virus Res 2017; 99:109-137. [PMID: 29029723 DOI: 10.1016/bs.aivir.2017.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astroviruses are best known as being one of the leading causes of diarrhea in infants and were first described in this context in 1975. In its first years, astrovirus research was mainly restricted to electron microscopy and serology studies. The ability to culture some of these viruses in vitro allowed a first consequent step forward, especially at the molecular level. Since the emergence of more powerful genetic methods, though, the face of this research field has dramatically changed and evolved. From the exponential number of discoveries of new astrovirus strains in the most varied of animal species to their association with atypical diseases, these viruses revealed a lot of surprises, and many more are probably still waiting to be uncovered. This chapter summarizes the most important knowledge about astroviruses and discusses the implication of the latest findings in this area of research.
Collapse
|
12
|
Xie X, Bil J, Shantz E, Hammermueller J, Nagy E, Turner PV. Prevalence of lapine rotavirus, astrovirus, and hepatitis E virus in Canadian domestic rabbit populations. Vet Microbiol 2017; 208:146-149. [DOI: 10.1016/j.vetmic.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023]
|
13
|
Cortez V, Meliopoulos VA, Karlsson EA, Hargest V, Johnson C, Schultz-Cherry S. Astrovirus Biology and Pathogenesis. Annu Rev Virol 2017; 4:327-348. [PMID: 28715976 DOI: 10.1146/annurev-virology-101416-041742] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astroviruses are nonenveloped, positive-sense single-stranded RNA viruses that cause gastrointestinal illness. Although a leading cause of pediatric diarrhea, human astroviruses are among the least characterized enteric RNA viruses. However, by using in vitro methods and animal models to characterize virus-host interactions, researchers have discovered several important properties of astroviruses, including the ability of the astrovirus capsid to act as an enterotoxin, disrupting the gut epithelial barrier. Improved animal models are needed to study this phenomenon, along with the pathogenesis of astroviruses, particularly in those strains that can cause extraintestinal disease. Much like for other enteric viruses, the current dogma states that astroviruses infect in a species-specific manner; however, this assumption is being challenged by growing evidence that these viruses have potential to cross species barriers. This review summarizes these remarkable facets of astrovirus biology, highlighting critical steps toward increasing our understanding of this unique enteric pathogen.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , , .,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Cydney Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| |
Collapse
|
14
|
To KKW, Chan WM, Li KSM, Lam CSF, Chen Z, Tse H, Lau SKP, Woo PCY, Yuen KY. High prevalence of four novel astrovirus genotype species identified from rodents in China. J Gen Virol 2017; 98:1004-1015. [PMID: 28537544 DOI: 10.1099/jgv.0.000766] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Astroviruses cause gastrointestinal and neurological infections in humans and animals. Since astrovirus is genetically diverse and different astrovirus genotypes can be found in the same animal species, astrovirus is a potential zoonotic threat to humans. In this study, we screened for astroviruses in rodents from Hong Kong, Hunan and Guangxi. Astrovirus was detected in 11.9 % (67/562) of rectal swab specimens. Phylogenetic analysis of the ORF1b region, which encodes the RdRp, showed that there were four distinct clusters (clusters A, B, C and D). Whole genome sequencing was performed for 11 representative strains from each of these four clusters. The mean amino acid genetic distances (p-dist) of full-length ORF2 were >0.634 between clusters A, B, C and other known astroviruses. The p-dist between clusters A and B, A and C, and B and C were 0.371-0.375, 0.517-0.549 and 0.524-0.555, respectively. Within cluster C, the p-dist between HN-014 and GX-006 was 0.372. Since strains with p-dist of ≥0.368 in ORF2 are now considered to be of separate genotypes species, cluster A, cluster B, cluster C-HN-014 and cluster C-GX-006 can be classified as novel genotype species. Cluster D was most closely related to the rodent astrovirus previously identified in Hong Kong. Since rodents live in close proximity to humans, interspecies jumping of these novel astroviruses may represent a threat to human health.
Collapse
Affiliation(s)
- Kelvin K W To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wan-Mui Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kenneth S M Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Carol S F Lam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zhiwei Chen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China
| | - Herman Tse
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Susanna K P Lau
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
15
|
Ao YY, Yu JM, Li LL, Cao JY, Deng HY, Xin YY, Liu MM, Lin L, Lu S, Xu JG, Duan ZJ. Diverse novel astroviruses identified in wild Himalayan marmots. J Gen Virol 2017; 98:612-623. [PMID: 28100306 DOI: 10.1099/jgv.0.000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With advances in viral surveillance and next-generation sequencing, highly diverse novel astroviruses (AstVs) and different animal hosts had been discovered in recent years. However, the existence of AstVs in marmots had yet to be shown. Here, we identified two highly divergent strains of AstVs (tentatively named Qinghai Himalayanmarmot AstVs, HHMAstV1 and HHMAstV2), by viral metagenomic analysis in liver tissues isolated from wild Marmota himalayana in China. Overall, 12 of 99 (12.1 %) M. himalayana faecal samples were positive for the presence of genetically diverse AstVs, while only HHMAstV1 and HHMAstV2 were identified in 300 liver samples. The complete genomic sequences of HHMAstV1 and HHMAstV2 were 6681 and 6610 nt in length, respectively, with the typical genomic organization of AstVs. Analysis of the complete ORF 2 sequence showed that these novel AstVs are most closely related to the rabbit AstV, mamastrovirus 23 (with 31.0 and 48.0 % shared amino acid identity, respectively). Phylogenetic analysis of the amino acid sequences of ORF1a, ORF1b and ORF2 indicated that HHMAstV1 and HHMAstV2 form two distinct clusters among the mamastroviruses, and may share a common ancestor with the rabbit-specific mamastrovirus 23. These results suggest that HHMAstV1 and HHMAstV2 are two novel species of the genus Mamastrovirus in the Astroviridae. The remarkable diversity of these novel AstVs will contribute to a greater understanding of the evolution and ecology of AstVs, although additional studies will be needed to understand the clinical significance of these novel AstVs in marmots, as well as in humans.
Collapse
Affiliation(s)
- Yuan-Yun Ao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Jie-Mei Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Li-Li Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Jing-Yuan Cao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Hong-Yan Deng
- Medical College of Qingdao University, Qingdao 266021, Shandong, PR China
| | - Yun-Yun Xin
- The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan, PR China
| | - Meng-Meng Liu
- Medical College of Qingdao University, Qingdao 266021, Shandong, PR China
| | - Lin Lin
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, PR China
| | - Shan Lu
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
| | - Jian-Guo Xu
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| |
Collapse
|
16
|
Johnson C, Hargest V, Cortez V, Meliopoulos VA, Schultz-Cherry S. Astrovirus Pathogenesis. Viruses 2017; 9:E22. [PMID: 28117758 PMCID: PMC5294991 DOI: 10.3390/v9010022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/16/2022] Open
Abstract
Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1) in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems.
Collapse
Affiliation(s)
- Cydney Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
17
|
Pankovics P, Boros Á, Bíró H, Horváth KB, Phan TG, Delwart E, Reuter G. Novel picornavirus in domestic rabbits (Oryctolagus cuniculus var. domestica). INFECTION GENETICS AND EVOLUTION 2015; 37:117-22. [PMID: 26588888 PMCID: PMC7172602 DOI: 10.1016/j.meegid.2015.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Picornaviruses (family Picornaviridae) are small, non-enveloped viruses with positive sense, single-stranded RNA genomes. The numbers of the novel picornavirus species and genera are continuously increasing. Picornaviruses infect numerous vertebrate species from fish to mammals, but have not been identified in a member of the Lagomorpha order (pikas, hares and rabbits). In this study, a novel picornavirus was identified in 16 (28.6%) out of 56 faecal samples collected from clinically healthy rabbits (Oryctolagus cuniculus var. domestica) in two (one commercial and one family farms) of four rabbit farms in Hungary. The 8364 nucleotide (2486 amino acid) long complete genome sequence of strain Rabbit01/2013/HUN (KT325852) has typical picornavirus genome organization with type-V IRES at the 5'UTR, encodes a leader (L) and a single 2A(H-box/NC) proteins, contains a hepatitis-A-virus-like cis-acting replication element (CRE) in the 2A, but it does not contain the sequence forming a "barbell-like" secondary structure in the 3'UTR. Rabbit01/2013/HUN has 52.9%, 52% and 57.2% amino acid identity to corresponding proteins of species Aichivirus A (genus Kobuvirus): to murine Kobuvirus (JF755427) in P1, to canine Kobuvirus (JN387133) in P2 and to feline Kobuvirus (KF831027) in P3, respectively. The sequence and phylogenetic analysis indicated that Rabbit01/2013/HUN represents a novel picornavirus species possibly in genus Kobuvirus. This is the first report of detection of picornavirus in rabbit. Further study is needed to clarify whether this novel picornavirus plays a part in any diseases in domestic or wild rabbits.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Katalin Barbara Horváth
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| |
Collapse
|
18
|
Novel bocaparvoviruses in rabbits. Vet J 2015; 206:131-5. [PMID: 26383859 DOI: 10.1016/j.tvjl.2015.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/05/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022]
Abstract
Bocaparvovirus is a newly established genus within the family Parvoviridae and has been identified as a possible cause of enteric, respiratory, reproductive/neonatal and neurological disease in humans and several animal species. In this study, metagenomic analysis was used to identify and characterise a novel bocaparvovirus in the faeces of rabbits with enteric disease. To assess the prevalence of the novel virus, rectal swabs and faecal samples obtained from rabbits with and without diarrhoea were screened with a specific PCR assay. The complete genome sequence of the novel parvovirus was reconstructed. The virus was distantly related to other bocaparvoviruses; the three ORFs shared 53%, 53% and 50% nucleotide identity, respectively, to homologous genes of porcine bocaparvoviruses. The virus was detected in 8/29 (28%) and 16/95 (17%) samples of rabbits with and without diarrhoea, respectively. Sequencing of the capsid protein fragment targeted by the diagnostic PCR identified two distinct bocaparvovirus populations/sub-types, with 91.7-94.5% nucleotide identity to each other. Including these novel parvoviruses in diagnostic algorithms of rabbit diseases might help inform their potential pathogenic role and impact on rabbit production and the virological profiles of laboratory rabbits.
Collapse
|
19
|
Woo PCY, Lau SKP, Teng JLL, Tsang AKL, Joseph S, Xie J, Jose S, Fan RYY, Wernery U, Yuen KY. A novel astrovirus from dromedaries in the Middle East. J Gen Virol 2015; 96:2697-2707. [PMID: 26296576 DOI: 10.1099/jgv.0.000233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent emergence of Middle East respiratory syndrome coronavirus from the Middle East and its discovery from dromedary camels has boosted interest in the search for novel viruses in dromedaries. The existence of astroviruses (AstVs) in dromedaries was previously unknown. We describe the discovery of a novel dromedary camel AstV (DcAstV) from dromedaries in Dubai. Among 215 dromedaries, DcAstV was detected in faecal samples of four [three (1.5 %) adult dromedaries and one (8.3 %) dromedary calf] by reverse transcription-PCR. Sequencing of the four DcAstV genomes and phylogenetic analysis showed that the DcAstVs formed a distinct cluster. Although DcAstV was most closely related to a recently characterized porcine AstV 2, their capsid proteins only shared 60-66 % amino acid identity, with a mean amino acid genetic distance of 0.372. Notably, the N-terminal halves of the capsid proteins of DcAstV shared ≤ 85 % amino acid identity, but the C-terminal halves only shared ≤ 49 % amino acid identity compared with the corresponding proteins in other AstVs. A high variation of the genome sequences of DcAstV was also observed, with a mean amino acid genetic distance of 0.214 for ORF2 of the four strains. Recombination analysis revealed a possible recombination event in ORF2 of strain DcAstV-274. The low Ka/Ks ratios (number of non-synonymous substitutions per non-synonymous site to number of synonymous substitutions per synonymous site) of the four ORFs in the DcAstV genomes supported the suggestion that dromedaries are the natural reservoir where AstV is stably evolving. These results suggest that AstV is a novel species of the genus Mamastrovirus in the family Astroviridae. Further studies are important to understand the pathogenic potential of DcAstV.
Collapse
Affiliation(s)
- Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
| | - Susanna K P Lau
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Jade L L Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Sunitha Joseph
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Jun Xie
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Shanty Jose
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Rachel Y Y Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Kwok-Yung Yuen
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
20
|
Abstract
Human astroviruses (HAtVs) are positive-sense single-stranded RNA viruses that were discovered in 1975. Astroviruses infecting other species, particularly mammalian and avian, were identified and classified into the genera Mamastrovirus and Avastrovirus. Through next-generation sequencing, many new astroviruses infecting different species, including humans, have been described, and the Astroviridae family shows a high diversity and zoonotic potential. Three divergent groups of HAstVs are recognized: the classic (MAstV 1), HAstV-MLB (MAstV 6), and HAstV-VA/HMO (MAstV 8 and MAstV 9) groups. Classic HAstVs contain 8 serotypes and account for 2 to 9% of all acute nonbacterial gastroenteritis in children worldwide. Infections are usually self-limiting but can also spread systemically and cause severe infections in immunocompromised patients. The other groups have also been identified in children with gastroenteritis, but extraintestinal pathologies have been suggested for them as well. Classic HAstVs may be grown in cells, allowing the study of their cell cycle, which is similar to that of caliciviruses. The continuous emergence of new astroviruses with a potential zoonotic transmission highlights the need to gain insights on their biology in order to prevent future health threats. This review focuses on the basic virology, pathogenesis, host response, epidemiology, diagnostic assays, and prevention strategies for HAstVs.
Collapse
Affiliation(s)
- Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Cho YY, Lim SI, Kim YK, Song JY, Lee JB, An DJ. Molecular characterisation and phylogenetic analysis of feline astrovirus in Korean cats. J Feline Med Surg 2014; 16:679-83. [PMID: 24226753 PMCID: PMC11164166 DOI: 10.1177/1098612x13511812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Astroviruses (AstVs) are important pathogens associated with enteric diseases in humans and other animals. However, most animal AstVs, including feline astrovirus (FAstV), are poorly understood. The aim of the present study was to investigate the prevalence and association of FAstV with enteric diseases in cats, and to conduct a molecular analysis of FAstVs, in Korea. Eleven faecal samples from 62 hospitalised cats at animal hospitals in the Moran market in South Korea tested positive for FAstV. The prevalence of FAstV was higher in cats <2 months old (25%) than in cats >2 months old (14.3%) (P = 0.31). Diarrhoea and normal faeces were observed in 19% (8/42) and 15% (3/20) of cats with FAstV, respectively (P = 1.00). Amino acid sequences alignment and phylogenetic tree analysis showed that FAstVs, including Korean strains, formed a single clade within the mamastroviruses.
Collapse
Affiliation(s)
- Yoon-Young Cho
- Animal and Plant Quarantine Agency, Anyang, Republic of Korea Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seong-In Lim
- Animal and Plant Quarantine Agency, Anyang, Republic of Korea
| | - Young Kwan Kim
- Animal and Plant Quarantine Agency, Anyang, Republic of Korea
| | - Jae-Young Song
- Animal and Plant Quarantine Agency, Anyang, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dong-Jun An
- Animal and Plant Quarantine Agency, Anyang, Republic of Korea
| |
Collapse
|
22
|
Hu B, Chmura AA, Li J, Zhu G, Desmond JS, Zhang Y, Zhang W, Epstein JH, Daszak P, Shi Z. Detection of diverse novel astroviruses from small mammals in China. J Gen Virol 2014; 95:2442-2449. [PMID: 25034867 DOI: 10.1099/vir.0.067686-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Astroviruses infect humans and many animal species and cause gastroenteritis. To extensively understand the distribution and genetic diversity of astrovirus in small mammals, we tested 968 anal swabs from 39 animal species, most of which were bats and rodents. We detected diverse astroviruses in 10 bat species, including known bat astroviruses and a large number of novel viruses. Meanwhile, novel groups of astroviruses were identified in three wild rodent species and a remarkably high genetic diversity of astrovirus was revealed in Eothenomys cachinus. We detected astroviruses in captive-bred porcupines and a nearly full-length genome sequence was determined for one strain. Phylogenetic analysis of the complete ORF2 sequence suggested that this strain may share a common ancestor with porcine astrovirus type 2. Moreover, to our knowledge, this study reports the first discovery of astroviruses in shrews and pikas. Our results provide new insights for understanding these small mammals as natural reservoirs of astroviruses.
Collapse
Affiliation(s)
- Ben Hu
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | - Jialu Li
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | - Yunzhi Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, PR China
| | - Wei Zhang
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | - Zhengli Shi
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
23
|
Abstract
Next-generation sequencing is a new research tool in our hands helping us to explore still unknown fields of human and veterinary virology. Metagenomic analysis has enabled the discovery of putative novel pathogens and the identification of the etiologic agents of several diseases, solving long-standing mysteries caused by divergent viruses. This approach has been used in several studies investigating fecal samples of livestock, and companion animal species, providing information on the diversity of animal fecal virome, helping the elucidation of the etiology of diarrheal disease in animals and identifying potential zoonotic and emerging viruses.
Collapse
|
24
|
Abstract
Viral diseases of rabbits have been used historically to study oncogenesis (e.g. rabbit fibroma virus, cottontail rabbit papillomavirus) and biologically to control feral rabbit populations (e.g. myxoma virus). However, clinicians seeing pet rabbits in North America infrequently encounter viral diseases although myxomatosis may be seen occasionally. The situation is different in Europe and Australia, where myxomatosis and rabbit hemorrhagic disease are endemic. Advances in epidemiology and virology have led to detection of other lapine viruses that are now recognized as agents of emerging infectious diseases. Rabbit caliciviruses, related to rabbit hemorrhagic disease, are generally avirulent, but lethal variants are being identified in Europe and North America. Enteric viruses including lapine rotavirus, rabbit enteric coronavirus and rabbit astrovirus are being acknowledged as contributors to the multifactorial enteritis complex of juvenile rabbits. Three avirulent leporid herpesviruses are found in domestic rabbits. A fourth highly pathogenic virus designated leporid herpesvirus 4 has been described in Canada and Alaska. This review considers viruses affecting rabbits by their clinical significance. Viruses of major and minor clinical significance are described, and viruses of laboratory significance are mentioned.
Collapse
Affiliation(s)
- Peter J. Kerr
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Thomas M. Donnelly
- The Kenneth S. Warren Institute, 712 Kitchawan Road, Ossining, NY 10562, USA
| |
Collapse
|
25
|
Abstract
Exotic small mammal medicine is a relatively new specialty area within veterinary medicine. Ferrets, rabbits, and rodents have long been used as animal models in human medical research investigations, resulting in a body of basic anatomic and physiologic information that can be used by veterinarians treating these species. Unfortunately, there is a paucity of veterinary articles that describe clinical presentation, diagnosis, and treatment options of gastrointestinal (GI) disease as it affects exotic small mammals. Although there is little reference material relating to exotic small mammal GI disease, patients are commonly presented to veterinary hospitals with digestive tract disorders. This article provides the latest information available for GI disease in ferrets (Helicobacter mustelae gastritis, inflammatory bowel disease [IBD], GI lymphoma, systemic coronavirus, coccidiosis, and liver disease), rabbits (GI motility disorders, liver lobe torsion, astrovirus, and coccidiosis), guinea pigs (gastric dilatation volvulus [GDV]), rats (Taenia taeniaeformis), and hamsters (Clostridium difficile). Both noninfectious diseases and emerging infectious diseases are reviewed as well as the most up-to-date diagnostics and treatment options.
Collapse
Affiliation(s)
- Minh Huynh
- Exotic Medicine Service, Centre Hospitalier Vétérinaire Fregis, Arcueil, France
| | - Charly Pignon
- Exotic Medicine Service, Centre Hospitalier Vétérinaire d’Alfort, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| |
Collapse
|
26
|
Brnić D, Prpić J, Keros T, Roić B, Starešina V, Jemeršić L. Porcine astrovirus viremia and high genetic variability in pigs on large holdings in Croatia. INFECTION GENETICS AND EVOLUTION 2013; 14:258-64. [PMID: 23313832 DOI: 10.1016/j.meegid.2012.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Astroviruses are emerging viral agents, primarily enteropathogenic in mammals, but recently have been acknowledged to have extra-intestinal implications in humans and mink. Porcine astrovirus is thought to be widely distributed and highly prevalent among pigs, nevertheless its clinical significance remains doubtful as it can be detected in diarrheic as well as in healthy pigs. Recent reports imply the immense genetic variability among porcine astrovirus strains with five distinct lineages being characterized so far. Herein, we report porcine astrovirus circulation in the blood of healthy pigs in different age categories bred on two large industrial holdings in Croatia, with viral RNA seroprevalence of 3.89%. These are the first extra-intestinal findings of astrovirus in pigs, indicating a more complex pathogenesis than previously thought. Partial polymerase sequences of serum-derived strains provisionally clustered into porcine astrovirus lineages 2 and 4, sharing high genetic identity with previously described porcine astrovirus strains. The results were supported by detecting porcine astrovirus strains in composite fecal samples, regardless of pig category or holding tested. Phylogenetic analysis of derived strains suggested the presence of porcine astrovirus lineages previously detected in pig sera with an additional highly genetically divergent lineage 5, reported for the first time in Europe. Moreover, the existence of possible sub lineages should not be excluded. The results obtained in the present study, contribute to knowledge of porcine astrovirus pathogenesis; even though it's possible clinical significance remains unclear. High fecal prevalence accompanied with vast genetic diversity on a relatively confined area, underscores the importance of pigs as porcine astrovirus reservoirs with eventual recombination events as a possible outcome.
Collapse
Affiliation(s)
- Dragan Brnić
- Croatian Veterinary Institute, Virology Department, Savska cesta 143, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
27
|
Xiao CT, Giménez-Lirola LG, Gerber PF, Jiang YH, Halbur PG, Opriessnig T. Identification and characterization of novel porcine astroviruses (PAstVs) with high prevalence and frequent co-infection of individual pigs with multiple PAstV types. J Gen Virol 2012; 94:570-582. [PMID: 23223616 DOI: 10.1099/vir.0.048744-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many astrovirus (AstV) species are associated with enteric disease, although extraintestinal manifestations in mammalian and avian hosts have also been described. In this study, the prevalence rates of porcine AstV types 1-5 (PAstV1-PAstV5) were investigated using faecal samples from 509 pigs of which 488 (95.9%) came from farms with a history of diarrhoea. All of the five known PAstV types were found to circulate in pigs in the USA, and co-infection of a single pig with two or more PAstV types was frequently observed. A high overall prevalence of 64.0% (326/509) of PAstV RNA-positive samples was detected, with 97.2% (317/326) of the PAstV RNA-positive pigs infected with PAstV4. Further genomic sequencing and characterization of the selected isolates revealed low sequence identities (49.2-89.0%) with known PAstV strains, indicating novel types or genotypes of PAstV2, PAstV4 and PAstV5. Some new features of the genomes of the PAstVs were also discovered. The first complete genome of a PAstV3 isolate was obtained and showed identities of 50.5-55.3% with mink AstV and the novel human AstVs compared with 38.4-42.7% with other PAstV types. Phylogenetic analysis revealed that PAstV1, PAstV2 and PAstV3 were more closely related to AstVs from humans and other animals than to each other, indicating past cross-species transmission and the zoonotic potential of these PAstVs.
Collapse
Affiliation(s)
- Chao-Ting Xiao
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Priscilla F Gerber
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Yong-Hou Jiang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Stenglein MD, Velazquez E, Greenacre C, Wilkes RP, Ruby JG, Lankton JS, Ganem D, Kennedy MA, DeRisi JL. Complete genome sequence of an astrovirus identified in a domestic rabbit (Oryctolagus cuniculus) with gastroenteritis. Virol J 2012; 9:216. [PMID: 22998755 PMCID: PMC3502403 DOI: 10.1186/1743-422x-9-216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/14/2012] [Indexed: 11/13/2022] Open
Abstract
A colony of domestic rabbits in Tennessee, USA, experienced a high-mortality (~90%) outbreak of enterocolitis. The clinical characteristics were one to six days of lethargy, bloating, and diarrhea, followed by death. Heavy intestinal coccidial load was a consistent finding as was mucoid enteropathy with cecal impaction. Preliminary analysis by electron microscopy revealed the presence of virus-like particles in the stool of one of the affected rabbits. Analysis using the Virochip, a viral detection microarray, suggested the presence of an astrovirus, and follow-up PCR and sequence determination revealed a previously uncharacterized member of that family. Metagenomic sequencing enabled the recovery of the complete viral genome, which contains the characteristic attributes of astrovirus genomes. Attempts to propagate the virus in tissue culture have yet to succeed. Although astroviruses cause gastroenteric disease in other mammals, the pathogenicity of this virus and the relationship to this outbreak remains to be determined. This study therefore defines a viral species and a potential rabbit pathogen.
Collapse
Affiliation(s)
- Mark D Stenglein
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The first reports of astroviruses in animals date back to the end of the 1970s, when infections in mammals such as lambs and calves suffering from diarrhea were reported for the first time. Since then, several mammalian species have been shown to be susceptible to astroviruses which appear to be genetically diverse and to have acquired host-specificity. To date, astroviruses have been detected in 16 different orders or species of mammals in addition to humans, and signs of infection range from unapparent infection or very mild disease to diarrhea, lethargy, and anorexia, mainly observed in young individuals. This chapter describes those astroviruses detected in nonhuman mammalian species worldwide, as well as their molecular and phenotypic characteristics and their role in diseases. The capacity of these viruses to cross-species barriers and their subsequent adaptation to novel hosts is also highlighted.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- , Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, 38105 Tennessee USA
| |
Collapse
|